WorldWideScience

Sample records for learn temporal sequences

  1. Learning predictive statistics from temporal sequences: Dynamics and strategies.

    Science.gov (United States)

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-10-01

    Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.

  2. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  3. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  4. Visual Statistical Learning Works after Binding the Temporal Sequences of Shapes and Spatial Positions

    Directory of Open Access Journals (Sweden)

    Osamu Watanabe

    2011-05-01

    Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.

  5. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    Science.gov (United States)

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  6. Decrease in gamma-band activity tracks sequence learning

    Science.gov (United States)

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  7. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  8. A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns.

    Directory of Open Access Journals (Sweden)

    Benjamin G Schultz

    Full Text Available Implicit learning (IL occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1 perceptual fluency may not be necessary to infer IL, or 2 conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency.

  9. SPAN: spike pattern association neuron for learning spatio-temporal sequences

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2012-01-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN — a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the prec...

  10. Online Sequence Training of Recurrent Neural Networks with Connectionist Temporal Classification

    OpenAIRE

    Hwang, Kyuyeon; Sung, Wonyong

    2015-01-01

    Connectionist temporal classification (CTC) based supervised sequence training of recurrent neural networks (RNNs) has shown great success in many machine learning areas including end-to-end speech and handwritten character recognition. For the CTC training, however, it is required to unroll (or unfold) the RNN by the length of an input sequence. This unrolling requires a lot of memory and hinders a small footprint implementation of online learning or adaptation. Furthermore, the length of tr...

  11. Spatio-temporal alignment of pedobarographic image sequences.

    Science.gov (United States)

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P alignment of pedobarographic image data, since previous methods can only be applied on static images.

  12. Multimodal sequence learning.

    Science.gov (United States)

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Science.gov (United States)

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  14. Learning multiple variable-speed sequences in striatum via cortical tutoring.

    Science.gov (United States)

    Murray, James M; Escola, G Sean

    2017-05-08

    Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.

  15. Learning of spatio-temporal codes in a coupled oscillator system.

    Science.gov (United States)

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  16. Musical Scales in Tone Sequences Improve Temporal Accuracy.

    Science.gov (United States)

    Li, Min S; Di Luca, Massimiliano

    2018-01-01

    Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.

  17. Is sequence awareness mandatory for perceptual sequence learning: An assessment using a pure perceptual sequence learning design.

    Science.gov (United States)

    Deroost, Natacha; Coomans, Daphné

    2018-02-01

    We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Environmental Enrichment Expedites Acquisition and Improves Flexibility on a Temporal Sequencing Task in Mice

    Directory of Open Access Journals (Sweden)

    Darius Rountree-Harrison

    2018-03-01

    Full Text Available Environmental enrichment (EE via increased opportunities for voluntary exercise, sensory stimulation and social interaction, can enhance the function of and behaviours regulated by cognitive circuits. Little is known, however, as to how this intervention affects performance on complex tasks that engage multiple, definable learning and memory systems. Accordingly, we utilised the Olfactory Temporal Order Discrimination (OTOD task which requires animals to recall and report sequence information about a series of recently encountered olfactory stimuli. This approach allowed us to compare animals raised in either enriched or standard laboratory housing conditions on a number of measures, including the acquisition of a complex discrimination task, temporal sequence recall accuracy (i.e., the ability to accurately recall a sequences of events and acuity (i.e., the ability to resolve past events that occurred in close temporal proximity, as well as cognitive flexibility tested in the style of a rule reversal and an Intra-Dimensional Shift (IDS. We found that enrichment accelerated the acquisition of the temporal order discrimination task, although neither accuracy nor acuity was affected at asymptotic performance levels. Further, while a subtle enhancement of overall performance was detected for both rule reversal and IDS versions of the task, accelerated performance recovery could only be attributed to the shift-like contingency change. These findings suggest that EE can affect specific elements of complex, multi-faceted cognitive processes.

  19. Temporal maps and informativeness in associative learning.

    Science.gov (United States)

    Balsam, Peter D; Gallistel, C Randy

    2009-02-01

    Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.

  20. Exploring Temporal Sequences of Regulatory Phases and Associated Interactions in Low- and High-Challenge Collaborative Learning Sessions

    Science.gov (United States)

    Sobocinski, Márta; Malmberg, Jonna; Järvelä, Sanna

    2017-01-01

    Investigating the temporal order of regulatory processes can explain in more detail the mechanisms behind success or lack of success during collaborative learning. The aim of this study is to explore the differences between high- and low-challenge collaborative learning sessions. This is achieved through examining how the three phases of…

  1. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  2. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    Science.gov (United States)

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  3. Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.

    Science.gov (United States)

    Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E

    2016-01-01

    It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven

  4. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  5. Meaningful spatial and temporal sequences of activities in dwelling

    NARCIS (Netherlands)

    Hematalikeikha, M.A.; Coolen, H.C.C.H.; Pourdeihimi, S.

    2014-01-01

    Human activities based on human needs are affected by affordances and meanings that occur in the dwelling. Activities over time and space have meaningful sequences. The meaningfulness of activities in the cultural framework is conditioned by its special temporality and spatiality. Also, temporal or

  6. Importance of the temporal structure of movement sequences on the ability of monkeys to use serial order information.

    Science.gov (United States)

    Deffains, Marc; Legallet, Eric; Apicella, Paul

    2011-10-01

    The capacity to acquire motor skills through repeated practice of a sequence of movements underlies many everyday activities. Extensive research in humans has dealt with the importance of spatial and temporal factors on motor sequence learning, standing in contrast to the few studies available in animals, particularly in nonhuman primates. In the present experiments, we studied the effect of the serial order of stimuli and associated movements in macaque monkeys overtrained to make arm-reaching movements in response to spatially distinct visual targets. Under different conditions, the temporal structure of the motor sequence was varied by changing the duration of the interval between successive target stimuli or by adding a cue that reliably signaled the onset time of the forthcoming target stimulus. In each condition, the extent to which the monkeys are sensitive to the spatial regularities was assessed by comparing performance when stimulus locations follow a repeating sequence, as opposed to a random sequence. We observed no improvement in task performance on repeated sequence blocks, compared to random sequence blocks, when target stimuli are relatively distant from each other in time. On the other hand, the shortening of the time interval between successive target stimuli or, more efficiently, the addition of a temporal cue before the target stimulus yielded a performance advantage under repeated sequence, reflected in a decrease in the latency of arm and saccadic eye movements accompanied by an increased tendency for eye movements to occur in an anticipatory manner. Contrary to the effects on movement initiation, the serial order of stimuli and movements did not markedly affect the execution of movement. Moreover, the location of a given target in the random sequence influenced task performance based on the location of the preceding target, monkeys being faster in responding as a result of familiarity caused by extensive practice with some target transitions

  7. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  8. Dynamic encoding of speech sequence probability in human temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. Copyright © 2015 the authors 0270-6474/15/357203-12$15.00/0.

  9. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  10. Attentional load and implicit sequence learning.

    Science.gov (United States)

    Shanks, David R; Rowland, Lee A; Ranger, Mandeep S

    2005-06-01

    A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.

  11. Exploring the spatio-temporal neural basis of face learning

    Science.gov (United States)

    Yang, Ying; Xu, Yang; Jew, Carol A.; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2017-01-01

    Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150–250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150–250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces. PMID:28570739

  12. Skill Learning for Intelligent Robot by Perception-Action Integration: A View from Hierarchical Temporal Memory

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2017-01-01

    Full Text Available Skill learning autonomously through interactions with the environment is a crucial ability for intelligent robot. A perception-action integration or sensorimotor cycle, as an important issue in imitation learning, is a natural mechanism without the complex program process. Recently, neurocomputing model and developmental intelligence method are considered as a new trend for implementing the robot skill learning. In this paper, based on research of the human brain neocortex model, we present a skill learning method by perception-action integration strategy from the perspective of hierarchical temporal memory (HTM theory. The sequential sensor data representing a certain skill from a RGB-D camera are received and then encoded as a sequence of Sparse Distributed Representation (SDR vectors. The sequential SDR vectors are treated as the inputs of the perception-action HTM. The HTM learns sequences of SDRs and makes predictions of what the next input SDR will be. It stores the transitions of the current perceived sensor data and next predicted actions. We evaluated the performance of this proposed framework for learning the shaking hands skill on a humanoid NAO robot. The experimental results manifest that the skill learning method designed in this paper is promising.

  13. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  14. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  15. Implicit sequence learning in people with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Katherine R Gamble

    2014-08-01

    Full Text Available Implicit sequence learning involves learning about dependencies in sequences of events without intent to learn or awareness of what has been learned. Sequence learning is related to striatal dopamine levels, striatal activation, and integrity of white matter connections. People with Parkinson’s disease (PD have degeneration of dopamine-producing neurons, leading to dopamine deficiency and therefore striatal deficits, and they have difficulties with sequencing, including complex language comprehension and postural stability. Most research on implicit sequence learning in PD has used motor-based tasks. However, because PD presents with motor deficits, it is difficult to assess whether learning itself is impaired in these tasks. The present study used an implicit sequence learning task with a reduced motor component, the Triplets Learning Task (TLT. People with PD and age- and education-matched healthy older adults completed three sessions (each consisting of 10 blocks of 50 trials of the TLT. Results revealed that the PD group was able to learn the sequence, however, when learning was examined using a Half Blocks analysis (Nemeth et al., 2013, which compared learning in the 1st 25/50 trials of all blocks to that in the 2nd 25/50 trials, the PD group showed significantly less learning than Controls in the 2nd Half Blocks, but not in the 1st. Nemeth et al. hypothesized that the 1st Half Blocks involve recall and reactivation of the sequence learned, thus reflecting hippocampal-dependent learning, while the 2nd Half Blocks involve proceduralized behavior of learned sequences, reflecting striatal-based learning. The present results suggest that the PD group had intact hippocampal-dependent implicit sequence learning, but impaired striatal-dependent learning. Thus, sequencing deficits in PD are likely due to striatal impairments, but other brain systems, such as the hippocampus, may be able to partially compensate for striatal decline to improve

  16. Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning.

    Science.gov (United States)

    Schuck, Nicolas W; Frensch, Peter A; Schjeide, Brit-Maren M; Schröder, Julia; Bertram, Lars; Li, Shu-Chen

    2013-11-01

    The striatum and medial temporal lobe play important roles in implicit and explicit memory, respectively. Furthermore, recent studies have linked striatal dopamine modulation to both implicit as well as explicit sequence learning and suggested a potential role of the striatum in the emergence of explicit memory during sequence learning. With respect to aging, previous findings indicated that implicit memory is less impaired than explicit memory in older adults and that genetic effects on cognition are magnified by aging. To understand the links between these findings, we investigated effects of aging and genotypes relevant for striatal dopamine on the implicit and explicit components of sequence learning. Reaction time (RT) and error data from 80 younger (20-30 years) and 70 older adults (60-71 years) during a serial reaction time task showed that age differences in learning-related reduction of RTs emerged gradually over the course of learning. Verbal recall and measures derived from the process-dissociation procedure revealed that younger adults acquired more explicit memory about the sequence than older adults, potentially causing age differences in RT gains in later stages of learning. Of specific interest, polymorphisms of the dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32, rs907094) and dopamine transporter (DAT, VNTR) genes showed interactive effects on overall RTs and verbal recall of the sequence in older but not in younger adults. Together our findings show that variations in genotypes relevant for dopamine functions are associated more with aging-related impairments in the explicit than the implicit component of sequence learning, providing support for theories emphasizing the role of dopaminergic modulation in cognitive aging and the magnification of genetic effects in human aging. © 2013 Elsevier Ltd. All rights reserved.

  17. Team learning : New insights through a temporal lens

    NARCIS (Netherlands)

    Lehmann-Willenbrock, N.

    2017-01-01

    Team learning is a complex social phenomenon that develops and changes over time. Hence, to promote understanding of the fine-grained dynamics of team learning, research should account for the temporal patterns of team learning behavior. Taking important steps in this direction, this special issue

  18. Characterising fire hazard from temporal sequences of thermal infrared modis measurements

    NARCIS (Netherlands)

    Maffei, C.; Alfieri, S.M.; Menenti, M.

    2012-01-01

    The objective of the present research was the characterisation of fire hazard using temporal sequences of land surface temperature (LST) derived from Terra-MODIS measurements. The investigation was based on a complete sequence of MODIS LST data from 2000 to 2006 on Campania (Italy) and on a dataset

  19. Real-time learning of predictive recognition categories that chunk sequences of items stored in working memory

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-10-01

    Full Text Available How are sequences of events that are temporarily stored in a cognitive working memory unitized, or chunked, through learning? Such sequential learning is needed by the brain in order to enable language, spatial understanding, and motor skills to develop. In particular, how does the brain learn categories, or list chunks, that become selectively tuned to different temporal sequences of items in lists of variable length as they are stored in working memory, and how does this learning process occur in real time? The present article introduces a neural model that simulates learning of such list chunks. In this model, sequences of items are temporarily stored in an Item-and-Order, or competitive queuing, working memory before learning categorizes them using a categorization network, called a Masking Field, which is a self-similar, multiple-scale, recurrent on-center off-surround network that can weigh the evidence for variable-length sequences of items as they are stored in the working memory through time. A Masking Field hereby activates the learned list chunks that represent the most predictive item groupings at any time, while suppressing less predictive chunks. In a network with a given number of input items, all possible ordered sets of these item sequences, up to a fixed length, can be learned with unsupervised or supervised learning. The self-similar multiple-scale properties of Masking Fields interacting with an Item-and-Order working memory provide a natural explanation of George Miller's Magical Number Seven and Nelson Cowan's Magical Number Four. The article explains why linguistic, spatial, and action event sequences may all be stored by Item-and-Order working memories that obey similar design principles, and thus how the current results may apply across modalities. Item-and-Order properties may readily be extended to Item-Order-Rank working memories in which the same item can be stored in multiple list positions, or ranks, as in the list

  20. Decoding sequence learning from single-trial intracranial EEG in humans.

    Directory of Open Access Journals (Sweden)

    Marzia De Lucia

    Full Text Available We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep or a later consolidated phase (day 2, after sleep, whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence. Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

  1. Narrative retelling in children with neurodevelopmental disorders: is there a role for nonverbal temporal-sequencing skills?

    Science.gov (United States)

    Johnels, Jakob Åsberg; Hagberg, Bibbi; Gillberg, Christopher; Miniscalco, Carmela

    2013-10-01

    Oral narrative retelling is often problematic for children with communicative and neurodevelopmental disorders. However, beyond a suggested role of language level, little is known about the basis of narrative performance. In this study we examine whether oral narrative retelling might be associated not just with language level but also with skills related to nonverbal narrative temporal sequencing. A diagnostically heterogeneous sample of Swedish-speaking children with a full scale IQ >70 was included in the study (N = 55; age 6-9 years). Narrative retelling skills were measured using the three subscores from the bus story test (BST). Independent predictors included (1) temporal sequencing skills according to a picture arrangement test and (2) a language skills factor consisting of definitional vocabulary and receptive grammar. Regression analyses show that language skills predicted BST Sentence Length and Subordinate Clauses subscores, while both temporal sequencing and language were independently linked with the BST Information subscore. When subdividing the sample based on nonverbal temporal sequencing level, a significant subgroup difference was found only for BST Information. Finally, a principal component analysis shows that temporal sequencing and BST Information loaded on a common factor, separately from the language measures. It is concluded that language level is an important correlate of narrative performance more generally in this diagnostically heterogeneous sample, and that nonverbal temporal sequencing functions are important especially for conveying story information. Theoretical and clinical implications are discussed. © 2013 The Scandinavian Psychological Associations.

  2. Magnifying visual target information and the role of eye movements in motor sequence learning.

    Science.gov (United States)

    Massing, Matthias; Blandin, Yannick; Panzer, Stefan

    2016-01-01

    An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Science.gov (United States)

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  4. Strength of Temporal White Matter Pathways Predicts Semantic Learning.

    Science.gov (United States)

    Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni

    2017-11-15

    Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the

  5. Implicit sequence learning in deaf children with cochlear implants.

    Science.gov (United States)

    Conway, Christopher M; Pisoni, David B; Anaya, Esperanza M; Karpicke, Jennifer; Henning, Shirley C

    2011-01-01

    Deaf children with cochlear implants (CIs) represent an intriguing opportunity to study neurocognitive plasticity and reorganization when sound is introduced following a period of auditory deprivation early in development. Although it is common to consider deafness as affecting hearing alone, it may be the case that auditory deprivation leads to more global changes in neurocognitive function. In this paper, we investigate implicit sequence learning abilities in deaf children with CIs using a novel task that measured learning through improvement to immediate serial recall for statistically consistent visual sequences. The results demonstrated two key findings. First, the deaf children with CIs showed disturbances in their visual sequence learning abilities relative to the typically developing normal-hearing children. Second, sequence learning was significantly correlated with a standardized measure of language outcome in the CI children. These findings suggest that a period of auditory deprivation has secondary effects related to general sequencing deficits, and that disturbances in sequence learning may at least partially explain why some deaf children still struggle with language following cochlear implantation. © 2010 Blackwell Publishing Ltd.

  6. First-order and higher order sequence learning in specific language impairment.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Advances in Temporal Analysis in Learning and Instruction

    Science.gov (United States)

    Molenaar, Inge

    2014-01-01

    This paper focuses on a trend to analyse temporal characteristics of constructs important to learning and instruction. Different researchers have indicated that we should pay more attention to time in our research to enhance explanatory power and increase validity. Constructs formerly viewed as personal traits, such as self-regulated learning and…

  8. A comprehensive account of sound sequence imitation in the songbird.

    Directory of Open Access Journals (Sweden)

    Maren Westkott

    2016-07-01

    Full Text Available The amazing imitation capabilities of songbirds show that they can memorize sensory sequences and transform them into motor activities which in turn generate the original sound sequences. This suggests that the bird's brain can learn 1. to reliably reproduce spatio-temporal sensory representations and 2. to transform them into corresponding spatio-temporal motor activations by using an inverse mapping. Neither the synaptic mechanisms nor the network architecture enabling these two fundamental aspects of imitation learning are known. We propose an architecture of coupled neuronal modules that mimick areas in the song bird and show that a unique synaptic plasticity mechanism can serve to learn both, sensory sequences in a recurrent neuronal network, as well as an inverse model that transforms the sensory memories into the corresponding motor activations. The proposed membrane potential dependent learning rule together with the architecture that includes basic features of the bird's brain represents the first comprehensive account of bird imitation learning based on spiking neurons.

  9. Spacio-temporal situation assessment for mobile robots

    DEFF Research Database (Denmark)

    Beck, Anders Billesø; Risager, Claus; Andersen, Nils Axel

    2011-01-01

    chains are used to model the situation states and sequence, where stream clustering is used for state matching and dealing with noise. In experiments using simulated and real data, we show that we are able to learn a situation sequence for a mobile robot passing through a narrow passage. After learning......In this paper, we present a framework for situation modeling and assessment for mobile robot applications. We consider situations as data patterns that characterize unique circumstances for the robot, and represented not only by the data but also its temporal and spacial sequence. Dynamic Markov...

  10. New learning of music after bilateral medial temporal lobe damage: evidence from an amnesic patient.

    Science.gov (United States)

    Valtonen, Jussi; Gregory, Emma; Landau, Barbara; McCloskey, Michael

    2014-01-01

    Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ's rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed and closely matched for factors contributing to a piece's musical complexity. LSJ practiced playing two of the pieces, one in each of the two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ's complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance.

  11. New Learning of Music after Bilateral Medial Temporal Lobe Damage: Evidence from an Amnesic Patient

    Science.gov (United States)

    Valtonen, Jussi; Gregory, Emma; Landau, Barbara; McCloskey, Michael

    2014-01-01

    Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ’s rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed and closely matched for factors contributing to a piece’s musical complexity. LSJ practiced playing two of the pieces, one in each of the two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ’s complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance. PMID:25232312

  12. New Learning of Music after Bilateral Medial Temporal Lobe Damage: Evidence from an Amnesic Patient

    Directory of Open Access Journals (Sweden)

    Jussi eValtonen

    2014-09-01

    Full Text Available Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly-identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ’s rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed, closely matched for factors contributing to a piece’s musical complexity. LSJ practiced playing two of the pieces, one in each of two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ’s complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance.

  13. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    Science.gov (United States)

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  14. Situation models and memory: the effects of temporal and causal information on recall sequence.

    Science.gov (United States)

    Brownstein, Aaron L; Read, Stephen J

    2007-10-01

    Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.

  15. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    Science.gov (United States)

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-07-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

  16. Temporal patterns of fire sequences observed in Canton of Ticino (southern Switzerland

    Directory of Open Access Journals (Sweden)

    L. Telesca

    2010-04-01

    Full Text Available Temporal dynamical analysis in fire sequences recorded from 1969 to 2008 in Canton Ticino (Switzerland was carried out by using the Allan Factor statistics. The obtained results show the presence of daily periodicities, superimposed to two time-scaling regimes. The daily cycle vanishes for sequences of higher altitude fires, for which a single scaling behaviour is observed.

  17. Differentiating Visual from Response Sequencing during Long-term Skill Learning.

    Science.gov (United States)

    Lynch, Brighid; Beukema, Patrick; Verstynen, Timothy

    2017-01-01

    The dual-system model of sequence learning posits that during early learning there is an advantage for encoding sequences in sensory frames; however, it remains unclear whether this advantage extends to long-term consolidation. Using the serial RT task, we set out to distinguish the dynamics of learning sequential orders of visual cues from learning sequential responses. On each day, most participants learned a new mapping between a set of symbolic cues and responses made with one of four fingers, after which they were exposed to trial blocks of either randomly ordered cues or deterministic ordered cues (12-item sequence). Participants were randomly assigned to one of four groups (n = 15 per group): Visual sequences (same sequence of visual cues across training days), Response sequences (same order of key presses across training days), Combined (same serial order of cues and responses on all training days), and a Control group (a novel sequence each training day). Across 5 days of training, sequence-specific measures of response speed and accuracy improved faster in the Visual group than any of the other three groups, despite no group differences in explicit awareness of the sequence. The two groups that were exposed to the same visual sequence across days showed a marginal improvement in response binding that was not found in the other groups. These results indicate that there is an advantage, in terms of rate of consolidation across multiple days of training, for learning sequences of actions in a sensory representational space, rather than as motoric representations.

  18. Constrained paths based on the Farey sequence in learning to juggle.

    Science.gov (United States)

    Yamamoto, Kota; Tsutsui, Seijiro; Yamamoto, Yuji

    2015-12-01

    In this article we report the results of a study conducted to investigate the learning dynamics of three-ball juggling from the perspective of frequency locking. Based on the Farey sequence, we predicted that four stable coordination patterns, corresponding to dwell ratios of 0.83, 0.75, 0.67, and 0.50, would appear in the learning process. We examined the learning process in terms of task performance, taking into account individual differences in the amount of learning. We observed that the participants acquired individual-specific coordination patterns in a relatively early stage of learning, and that those coordination patterns were preserved in subsequent learning, even though performance in terms of number of successful consecutive throws increased substantially. This increase appeared to be related to a reduction in spatial variability of the juggling movements. Finally, the observed coordination patterns were in agreement with the predicted patterns, with the proviso that the pattern corresponding to a dwell ratio of 0.50 was not realized and only a hint of evidence was found for the dwell ratio of 0.67. This implies that the dwell ratios of 0.83 and 0.75 in particular exhibited a stable coordination structure due to strong frequency locking between the temporal variables of juggling. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    Science.gov (United States)

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sleep enforces the temporal order in memory.

    Directory of Open Access Journals (Sweden)

    Spyridon Drosopoulos

    Full Text Available BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively or in a backward direction (cueing with C and B and asking for B and A, respectively. Memory was better for forward than backward associations (p<0.01. Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB transitions (p<0.01, which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in

  1. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  2. Student learning and understanding of sequence stratigraphic principles

    Science.gov (United States)

    Herrera, Juan Sebastian

    Research in geoscience education addressing students' conceptions of geological subjects has concentrated in topics such as geological time, plate tectonics, and problem solving in the field, mostly in K-12 and entry level college scenarios. Science education research addressing learning of sedimentary systems in advance undergraduates is rather limited. Therefore, this dissertation contributed to filling that research gap and explored students' narratives when explaining geological processes associated with the interaction between sediment deposition and sea level fluctuations. The purpose of the present study was to identify the common conceptions and alternative conceptions held by students when learning the basics of the sub discipline known as sequence stratigraphy - which concepts students were familiar and easily identified, and which ones they had more difficulty with. In addition, we mapped the cognitive models that underlie those conceptions by analyzing students' gestures and conceptual metaphors used in their explanations. This research also investigated the interaction between geoscientific visual displays and student gesturing in a specific learning context. In this research, an in-depth assessment of 27 students' ideas of the basic principles of sequence stratigraphy was completed. Participants were enrolled in advanced undergraduate stratigraphy courses at three research-intensive universities in Midwest U.S. Data collection methods included semi-structured interviews, spatial visualization tests, and lab assignments. Results indicated that students poorly integrated temporal and spatial scales in their sequence stratigraphic models, and that many alternative conceptions were more deeply rooted than others, especially those related to eustasy and base level. In order to better understand the depth of these conceptions, we aligned the analysis of gesture with the theory of conceptual metaphor to recognize the use of mental models known as image

  3. Memory and learning with rapid audiovisual sequences

    Science.gov (United States)

    Keller, Arielle S.; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193

  4. Memory and learning with rapid audiovisual sequences.

    Science.gov (United States)

    Keller, Arielle S; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed.

  5. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    Science.gov (United States)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  6. Prediction of Human Activity by Discovering Temporal Sequence Patterns.

    Science.gov (United States)

    Li, Kang; Fu, Yun

    2014-08-01

    Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.

  7. Dynamic sensorimotor planning during long-term sequence learning: the role of variability, response chunking and planning errors.

    Science.gov (United States)

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter

    2012-01-01

    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning.

  8. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  9. Learning sequences on the subject of energy

    International Nuclear Information System (INIS)

    1986-01-01

    The ten learning sequences follow on one another. Each picks on a particular aspect from the energy field. The subject notebooks are self-contained and can therefore be used independently. Apart from actual data and energy-related information, the information for the teacher contains: - proposals for teaching - suggestions for further activities - sample solutions for the pupil's sheets - references to the literature and media. The worksheets for the pupils are different; it should be possible to use the learning sequences in all classes of secondary school stage 1. The multicoloured foils for projectors should motivate, on the one hand, and on the other hand should help to check the results of learning. (orig./HP) [de

  10. Visual paired-associate learning: in search of material-specific effects in adult patients who have undergone temporal lobectomy.

    Science.gov (United States)

    Smith, Mary Lou; Bigel, Marla; Miller, Laurie A

    2011-02-01

    The mesial temporal lobes are important for learning arbitrary associations. It has previously been demonstrated that left mesial temporal structures are involved in learning word pairs, but it is not yet known whether comparable lesions in the right temporal lobe impair visually mediated associative learning. Patients who had undergone left (n=16) or right (n=18) temporal lobectomy for relief of intractable epilepsy and healthy controls (n=13) were administered two paired-associate learning tasks assessing their learning and memory of pairs of abstract designs or pairs of symbols in unique locations. Both patient groups had deficits in learning the designs, but only the right temporal group was impaired in recognition. For the symbol location task, differences were not found in learning, but again a recognition deficit was found for the right temporal group. The findings implicate the mesial temporal structures in relational learning. They support a material-specific effect for recognition but not for learning and recall of arbitrary visual and visual-spatial associative information. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    Science.gov (United States)

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the

  12. Classification of behavior using unsupervised temporal neural networks

    International Nuclear Information System (INIS)

    Adair, K.L.

    1998-03-01

    Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem

  13. Learning of pitch and time structures in an artificial grammar setting.

    Science.gov (United States)

    Prince, Jon B; Stevens, Catherine J; Jones, Mari Riess; Tillmann, Barbara

    2018-04-12

    Despite the empirical evidence for the power of the cognitive capacity of implicit learning of structures and regularities in several modalities and materials, it remains controversial whether implicit learning extends to the learning of temporal structures and regularities. We investigated whether (a) an artificial grammar can be learned equally well when expressed in duration sequences as when expressed in pitch sequences, (b) learning of the artificial grammar in either duration or pitch (as the primary dimension) sequences can be influenced by the properties of the secondary dimension (invariant vs. randomized), and (c) learning can be boosted when the artificial grammar is expressed in both pitch and duration. After an exposure phase with grammatical sequences, learning in a subsequent test phase was assessed in a grammaticality judgment task. Participants in both the pitch and duration conditions showed incidental (not fully implicit) learning of the artificial grammar when the secondary dimension was invariant, but randomizing the pitch sequence prevented learning of the artificial grammar in duration sequences. Expressing the artificial grammar in both pitch and duration resulted in disproportionately better performance, suggesting an interaction between the learning of pitch and temporal structure. The findings are relevant to research investigating the learning of temporal structures and the learning of structures presented simultaneously in 2 dimensions (e.g., space and time, space and objects). By investigating learning, the findings provide further insight into the potential specificity of pitch and time processing, and their integrated versus independent processing, as previously debated in music cognition research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. An imperfect dopaminergic error signal can drive temporal-difference learning.

    Directory of Open Access Journals (Sweden)

    Wiebke Potjans

    2011-05-01

    Full Text Available An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards.

  15. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Ayala Bloch

    Full Text Available Physical and psychosocial rehabilitation following spinal cord injury (SCI leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined.To test the hypothesis that spinal cord injury (SCI in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures.Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits.There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures.The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment.

  16. Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.

    Science.gov (United States)

    Reinl, Maren; Bartels, Andreas

    2014-11-15

    Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Formulaic Sequences and the Implications for Second Language Learning

    Science.gov (United States)

    Xu, Qi

    2016-01-01

    The present paper is a review of literature in relation to formulaic sequences and the implications for second language learning. The formulaic sequence is a significant part of our language, and plays an essential role in both first and second language learning. The paper first introduces the definition, classifications, and major features of…

  18. Uso da sequência FLAIR-EPI na análise da esclerose mesial temporal EPI-FLAIR sequence in the evaluation of mesial temporal sclerosis

    Directory of Open Access Journals (Sweden)

    Marcos Alberto da Costa Machado Júnior

    2001-06-01

    Full Text Available O objetivo deste estudo é analisar as alterações morfológicas e de intensidade de sinal das regiões hipocampais em pacientes, com epilepsia temporal fármaco-resistente. Para tal, estudamos 8 pacientes com esclerose mesial temporal, utilizando aparelhagem de RM de 1,5T, com sequências Spin Eco - SE, Fast Spin Eco - FSE, Fluid Atenuation Inversion Recovery, com Eco Planar Imaging - FLAIR-EPI. Observamos a superioridade da sequência FLAIR na detecção do aumento da intensidade de sinal da região hipocampal, particularmente com cortes coronais, em relação às sequências SE e FSE, com a vantagem de ser uma técnica de rápida execução. A sequência STIR evidenciou adelgaçamento da cortical do hipocampo, na metade dos casos que apresentavam alteração de sinal.The purpose of this study is to evaluate morpholologycal and signal intensity changes in the hippocampus in patients with medically intractable temporal lobe epilepsy. We studied 8 patients with mesial temporal sclerosis using a 1.5 -T MR and the following sequences Spin Eco- SE, Fast Spin Echo- FSE, Fluid Atenuation Inversion Recovery Echo Planar Imaging - FLAIR-EPI. We noticed a sensitive increase signal intensity on FLAIR- EPI sequences, particularly, in coronal images, than on SE and FSE sequences. The STIR sequence showed a cortical hippocampus atrophy in half of the cases, in whom signal abnormalities were present.

  19. Procedural learning in Tourette syndrome, ADHD, and comorbid Tourette-ADHD: Evidence from a probabilistic sequence learning task.

    Science.gov (United States)

    Takács, Ádám; Shilon, Yuval; Janacsek, Karolina; Kóbor, Andrea; Tremblay, Antoine; Németh, Dezső; Ullman, Michael T

    2017-10-01

    Procedural memory, which is rooted in the basal ganglia, plays an important role in the implicit learning of motor and cognitive skills. Few studies have examined procedural learning in either Tourette syndrome (TS) or Attention Deficit Hyperactivity Disorder (ADHD), despite basal ganglia abnormalities in both of these neurodevelopmental disorders. We aimed to assess procedural learning in children with TS (n=13), ADHD (n=22), and comorbid TS-ADHD (n=20), as well as in typically developing children (n=21). Procedural learning was measured with a well-studied implicit probabilistic sequence learning task, the alternating serial reaction time task. All four groups showed evidence of sequence learning, and moreover did not differ from each other in sequence learning. This result, from the first study to examine procedural memory across TS, ADHD and comorbid TS-ADHD, is consistent with previous findings of intact procedural learning of sequences in both TS and ADHD. In contrast, some studies have found impaired procedural learning of non-sequential probabilistic categories in TS. This suggests that sequence learning may be spared in TS and ADHD, while at least some other forms of learning in procedural memory are impaired, at least in TS. Our findings indicate that disorders associated with basal ganglia abnormalities do not necessarily show procedural learning deficits, and provide a possible path for more effective diagnostic tools, and educational and training programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sequence-specific procedural learning deficits in children with specific language impairment.

    Science.gov (United States)

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  1. Enhanced learning of natural visual sequences in newborn chicks.

    Science.gov (United States)

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  2. Learning of temporal motor patterns: An analysis of continuous vs. reset timing

    Directory of Open Access Journals (Sweden)

    Rodrigo eLaje

    2011-10-01

    Full Text Available Our ability to generate well-timed sequences of movements is critical to an array of behaviors, including the ability to play a musical instrument or a video game. Here we address two questions relating to timing with the goal of better understanding the neural mechanisms underlying temporal processing. First, how does accuracy and variance change over the course of learning of complex spatiotemporal patterns? Second, is the timing of sequential responses most consistent with starting and stopping an internal timer at each interval or with continuous timing?To address these questions we used a psychophysical task in which subjects learned to reproduce a sequence of finger taps in the correct order and at the correct times—much like playing a melody at the piano. This task allowed us to calculate the variance of the responses at different time points using data from the same trials. Our results show that while standard Weber’s law is clearly violated, variance does increase as a function of time squared, as expected according to the generalized form of Weber’s law—which separates the source of variance into time-dependent and time-independent components. Over the course of learning, both the time-independent variance and the coefficient of the time-dependent term decrease. Our analyses also suggest that timing of sequential events does not rely on the resetting of an internal timer at each event.We describe and interpret our results in the context of computer simulations that capture some of our psychophysical findings. Specifically, we show that continuous timing, as opposed to reset timing, is expected from population clock models in which timing emerges from the internal dynamics of recurrent neural networks.

  3. COGNITIVE FATIGUE FACILITATES PROCEDURAL SEQUENCE LEARNING

    Directory of Open Access Journals (Sweden)

    Guillermo eBorragán

    2016-03-01

    Full Text Available Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue. We tested the hypothesis that cognitive fatigue, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, twenty-three young healthy adults were administered a serial reaction time task (SRTT following the induction of high or low levels of cognitive fatigue, in a counterbalanced order. Cognitive fatigue was induced using the Time load Dual-back (TloadDback paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement showed more of a benefit from the sequential components than from motor. Altogether, our results suggest a paradoxical, facilitating impact of cognitive fatigue on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.

  4. Evaluating and Redesigning Teaching Learning Sequences at the Introductory Physics Level

    Science.gov (United States)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-01-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed…

  5. Synchronized tapping facilitates learning sound sequences as indexed by the P300.

    Science.gov (United States)

    Kamiyama, Keiko S; Okanoya, Kazuo

    2014-01-01

    The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals' musical ability to coordinate their finger movements along with external auditory events.

  6. Learning of Grammar-Like Visual Sequences by Adults with and without Language-Learning Disabilities

    Science.gov (United States)

    Aguilar, Jessica M.; Plante, Elena

    2014-01-01

    Purpose: Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. Method: In Study 1,…

  7. The Impact of Students' Temporal Perspectives on Time-on-Task and Learning Performance in Game Based Learning

    Science.gov (United States)

    Romero, Margarida; Usart, Mireia

    2013-01-01

    The use of games for educational purposes has been considered as a learning methodology that attracts the students' attention and may allow focusing individuals on the learning activity through the [serious games] SG game dynamic. Based on the hypothesis that students' Temporal Perspective has an impact on learning performance and time-on-task,…

  8. A theoretical analysis of temporal difference learning in the iterated prisoner's dilemma game.

    Science.gov (United States)

    Masuda, Naoki; Ohtsuki, Hisashi

    2009-11-01

    Direct reciprocity is a chief mechanism of mutual cooperation in social dilemma. Agents cooperate if future interactions with the same opponents are highly likely. Direct reciprocity has been explored mostly by evolutionary game theory based on natural selection. Our daily experience tells, however, that real social agents including humans learn to cooperate based on experience. In this paper, we analyze a reinforcement learning model called temporal difference learning and study its performance in the iterated Prisoner's Dilemma game. Temporal difference learning is unique among a variety of learning models in that it inherently aims at increasing future payoffs, not immediate ones. It also has a neural basis. We analytically and numerically show that learners with only two internal states properly learn to cooperate with retaliatory players and to defect against unconditional cooperators and defectors. Four-state learners are more capable of achieving a high payoff against various opponents. Moreover, we numerically show that four-state learners can learn to establish mutual cooperation for sufficiently small learning rates.

  9. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    Directory of Open Access Journals (Sweden)

    Vasiliki eFolia

    2014-02-01

    Full Text Available In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45 and the medial prefrontal regions (centered on BA 8/32. Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax in unsupervised AGL paradigms with proper learning designs.

  10. Consolidating the effects of waking and sleep on motor-sequence learning.

    Science.gov (United States)

    Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel

    2010-10-20

    Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.

  11. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning.

    Science.gov (United States)

    Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe

    2015-04-01

    That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Learning of grammar-like visual sequences by adults with and without language-learning disabilities.

    Science.gov (United States)

    Aguilar, Jessica M; Plante, Elena

    2014-08-01

    Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. In Study 1, adults with normal language (NL) or language-learning disability (LLD) were familiarized with the visual artificial grammar and then tested using items that conformed or deviated from the grammar. In Study 2, a 2nd sample of adults with NL and LLD were presented auditory word pairs with weak semantic associations (e.g., groom + clean) along with the visual learning task. Participants were instructed to attend to visual sequences and to ignore the auditory stimuli. Incidental encoding of these words would indicate reduced attention to the primary task. In Studies 1 and 2, both groups demonstrated learning and generalization of the artificial grammar. In Study 2, neither the NL nor the LLD group appeared to encode the words presented during the learning phase. The results argue against a general deficit in statistical learning for individuals with LLD and demonstrate that both NL and LLD learners can ignore extraneous auditory stimuli during visual learning.

  13. Evaluating and redesigning teaching learning sequences at the introductory physics level

    Science.gov (United States)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-12-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.

  14. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    Science.gov (United States)

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  15. Temporal and spatial predictability of an irrelevant event differently affect detection and memory of items in a visual sequence

    Directory of Open Access Journals (Sweden)

    Junji eOhyama

    2016-02-01

    Full Text Available We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition, it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection reaction times were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  16. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  17. Swarm-based Sequencing Recommendations in E-learning

    NARCIS (Netherlands)

    Van den Berg, Bert; Tattersall, Colin; Janssen, José; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    Van den Berg, B., Tattersall, C., Janssen, J., Brouns, F., Kurvers, H., & Koper, R. (2006). Swarm-based Sequencing Recommendations in E-learning. International Journal of Computer Science & Applications, III(III), 1-11.

  18. Holistic and component plant phenotyping using temporal image sequence.

    Science.gov (United States)

    Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala

    2018-01-01

    Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for

  19. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Implicit motor sequence learning and working memory performance changes across the adult life span

    Directory of Open Access Journals (Sweden)

    Sarah Nadine Meissner

    2016-04-01

    Full Text Available Although implicit motor sequence learning is rather well understood in young adults, effects of aging on this kind of learning are controversial. There is first evidence that working memory (WM might play a role in implicit motor sequence learning in young adults as well as in adults above the age of 65. However the knowledge about the development of these processes across the adult life span is rather limited. As the average age of our population continues to rise, a better understanding of age-related changes in motor sequence learning and potentially mediating cognitive processes takes on increasing significance. Therefore, we investigated aging effects on implicit motor sequence learning and WM. Sixty adults (18-71 years completed verbal and visuospatial n-back tasks and were trained on a serial reaction time task. Randomly varying trials served as control condition. To further assess consolidation indicated by off-line improvement and reduced susceptibility to interference, reaction times (RTs were determined 1 h after initial learning. Young and older but not middle-aged adults showed motor sequence learning. Nine out of 20 older adults (compared to one young/one middle-aged exhibited some evidence of sequence awareness. After 1 h, young and middle-aged adults showed off-line improvement. However, RT facilitation was not specific to sequence trials. Importantly, susceptibility to interference was reduced in young and older adults indicating the occurrence of consolidation. Although WM performance declined in older participants when load was high, it was not significantly related to sequence learning. The data reveal a decline in motor sequence learning in middle-aged but not in older adults. The use of explicit learning strategies in older adults might account for the latter result.

  1. Segmentation of myocardial perfusion MR sequences with multi-band Active Appearance Models driven by spatial and temporal features

    NARCIS (Netherlands)

    Baka, N.; Milles, J.; Hendriks, E.A.; Suinesiaputra, A.; Jerosh Herold, M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2008-01-01

    This work investigates knowledge driven segmentation of cardiac MR perfusion sequences. We build upon previous work on multi-band AAMs to integrate into the segmentation both spatial priors about myocardial shape as well as temporal priors about characteristic perfusion patterns. Different temporal

  2. Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.

    Science.gov (United States)

    Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi

    2016-03-01

    Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.

  3. Who Learns More? Cultural Differences in Implicit Sequence Learning

    Science.gov (United States)

    Fu, Qiufang; Dienes, Zoltan; Shang, Junchen; Fu, Xiaolan

    2013-01-01

    Background It is well documented that East Asians differ from Westerners in conscious perception and attention. However, few studies have explored cultural differences in unconscious processes such as implicit learning. Methodology/Principal Findings The global-local Navon letters were adopted in the serial reaction time (SRT) task, during which Chinese and British participants were instructed to respond to global or local letters, to investigate whether culture influences what people acquire in implicit sequence learning. Our results showed that from the beginning British expressed a greater local bias in perception than Chinese, confirming a cultural difference in perception. Further, over extended exposure, the Chinese learned the target regularity better than the British when the targets were global, indicating a global advantage for Chinese in implicit learning. Moreover, Chinese participants acquired greater unconscious knowledge of an irrelevant regularity than British participants, indicating that the Chinese were more sensitive to contextual regularities than the British. Conclusions/Significance The results suggest that cultural biases can profoundly influence both what people consciously perceive and unconsciously learn. PMID:23940773

  4. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    Science.gov (United States)

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  5. Interference effects in learning similar sequences of discrete movements

    NARCIS (Netherlands)

    Koedijker, J.M.; Oudejans, R.R.D.; Beek, P.J.

    2010-01-01

    Three experiments were conducted to examine proactive and retroactive interference effects in learning two similar sequences of discrete movements. In each experiment, the participants in the experimental group practiced two movement sequences on consecutive days (1 on each day, order

  6. Perceived ambiguity as a barrier to intentions to learn genome sequencing results.

    Science.gov (United States)

    Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Han, Paul K J; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B

    2015-10-01

    Many variants that could be returned from genome sequencing may be perceived as ambiguous-lacking reliability, credibility, or adequacy. Little is known about how perceived ambiguity influences thoughts about sequencing results. Participants (n = 494) in an NIH genome sequencing study completed a baseline survey before sequencing results were available. We examined how perceived ambiguity regarding sequencing results and individual differences in medical ambiguity aversion and tolerance for uncertainty were associated with cognitions and intentions concerning sequencing results. Perceiving sequencing results as more ambiguous was associated with less favorable cognitions about results and lower intentions to learn and share results. Among participants low in tolerance for uncertainty or optimism, greater perceived ambiguity was associated with lower intentions to learn results for non-medically actionable diseases; medical ambiguity aversion did not moderate any associations. Results are consistent with the phenomenon of "ambiguity aversion" and may influence whether people learn and communicate genomic information.

  7. Infants learn better from left to right: a directional bias in infants' sequence learning.

    Science.gov (United States)

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  8. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  9. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation

    Science.gov (United States)

    Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  10. Male Music Frogs Compete Vocally on the Basis of Temporal Sequence Rather Than Spatial Cues of Rival Calls

    Institute of Scientific and Technical Information of China (English)

    Fan JIANG; Guangzhan FANG; Fei XUE; Jianguo CUI; Steven E BRAUTH; Yezhong TANG

    2015-01-01

    Male-male vocal competition in anuran species may be influenced by cues related to the temporal sequence of male calls as well by internal temporal, spectral and spatial ones. Nevertheless, the conditions under which each type of cue is important remain unclear. Since the salience of different cues could be reflected by dynamic properties of male-male competition under certain experimental manipulation, we investigated the effects of repeating playbacks of conspecific calls on male call production in the Emei music frog (Babina daunchina). In Babina, most males produce calls from nest burrows which modify the spectral features of the cues. Females prefer calls produced from inside burrows which are defined as highly sexually attractive (HSA) while those produced outside burrows as low sexual attractiveness (LSA). In this study HSA and LSA calls were broadcasted either antiphonally or stereophonically through spatially separated speakers in which the temporal sequence and/or spatial position of the playbacks was either predictable or random. Results showed that most males consistently avoided producing advertisement calls overlapping the playback stimuli and generally produced calls competitively in advance of the playbacks. Furthermore males preferentially competed with the HSA calls when the sequence was predictable but competed equally with HSA and LSA calls if the sequence was random regardless of the availability of spatial cues, implying that males relied more on available sequence cues than spatial ones to remain competitive.

  11. Temporal integration windows for naturalistic visual sequences.

    Directory of Open Access Journals (Sweden)

    Scott L Fairhall

    Full Text Available There is increasing evidence that the brain possesses mechanisms to integrate incoming sensory information as it unfolds over time-periods of 2-3 seconds. The ubiquity of this mechanism across modalities, tasks, perception and production has led to the proposal that it may underlie our experience of the subjective present. A critical test of this claim is that this phenomenon should be apparent in naturalistic visual experiences. We tested this using movie-clips as a surrogate for our day-to-day experience, temporally scrambling them to require (re- integration within and beyond the hypothesized 2-3 second interval. Two independent experiments demonstrate a step-wise increase in the difficulty to follow stimuli at the hypothesized 2-3 second scrambling condition. Moreover, only this difference could not be accounted for by low-level visual properties. This provides the first evidence that this 2-3 second integration window extends to complex, naturalistic visual sequences more consistent with our experience of the subjective present.

  12. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  13. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  14. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  15. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    Science.gov (United States)

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning.

    Science.gov (United States)

    Tzvi, Elinor; Bauhaus, Leon J; Kessler, Till U; Liebrand, Matthias; Wöstmann, Malte; Krämer, Ulrike M

    2018-03-01

    Cross-frequency coupling is suggested to serve transfer of information between wide-spread neuronal assemblies and has been shown to underlie many cognitive functions including learning and memory. In previous work, we found that alpha (8-13 Hz) - gamma (30-48 Hz) phase amplitude coupling (αγPAC) is decreased during sequence learning in bilateral frontal cortex and right parietal cortex. We interpreted this to reflect decreased demands for visuo-motor mapping once the sequence has been encoded. In the present study, we put this hypothesis to the test by adding a "simple" condition to the standard serial reaction time task (SRTT) with minimal needs for visuo-motor mapping. The standard SRTT in our paradigm entailed a perceptual sequence allowing for implicit learning of a sequence of colors with randomly assigned motor responses. Sequence learning in this case was thus not associated with reduced demands for visuo-motor mapping. Analysis of oscillatory power revealed a learning-related alpha decrease pointing to a stronger recruitment of occipito-parietal areas when encoding the perceptual sequence. Replicating our previous findings but in contrast to our hypothesis, αγPAC was decreased in sequence compared to random trials over right frontal and parietal cortex. It also tended to be smaller compared to trials requiring a simple motor sequence. We additionally analyzed αγPAC in resting-state data of a separate cohort. PAC in electrodes over right parietal cortex was significantly stronger compared to sequence trials and tended to be higher compared to simple and random trials of the SRTT data. We suggest that αγPAC in right parietal cortex reflects a "default-mode" brain state, which gets perturbed to allow for encoding of visual regularities into memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Predicting effects of noncoding variants with deep learning-based sequence model.

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G

    2015-10-01

    Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

  18. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Improving sequence segmentation learning by predicting trigrams

    NARCIS (Netherlands)

    van den Bosch, A.; Daelemans, W.; Dagan, I.; Gildea, D.

    2005-01-01

    Symbolic machine-learning classifiers are known to suffer from near-sightedness when performing sequence segmentation (chunking) tasks in natural language processing: without special architectural additions they are oblivious of the decisions they made earlier when making new ones. We introduce a

  20. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  1. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  2. Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences

    International Nuclear Information System (INIS)

    Dai, Tao; Gómez-Laberge, Camille; Adler, Andy

    2008-01-01

    Electrical impedance tomography (EIT) reconstructs a conductivity change image within a body from electrical measurements on the body surface; while it has relatively low spatial resolution, it has a high temporal resolution. One key difficulty with EIT measurements is due to the movement and position uncertainty of the electrodes, especially due to breathing and posture change. In this paper, we develop an approach to reconstruct both the conductivity change image and the electrode movements from the temporal sequence of EIT measurements. Since both the conductivity change and electrode movement are slow with respect to the data frame rate, there are significant temporal correlations which we formulate as priors for the regularized image reconstruction model. Image reconstruction is posed in terms of a regularization matrix and a Jacobian matrix which are augmented for the conductivity change and electrode movement, and then further augmented to concatenate the d previous and future frames. Results are shown for simulation, phantom and human data, and show that the proposed algorithm yields improved resolution and noise performance in comparison to a conventional one-step reconstruction method

  3. Visuospatial working memory training facilitates visually-aided explicit sequence learning.

    Science.gov (United States)

    Chan, John S Y; Wu, Qiaofeng; Liang, Danxia; Yan, Jin H

    2015-10-01

    Finger sequence learning requires visuospatial working memory (WM). However, the dynamics between age, WM training, and motor skill acquisition are unclear. Therefore, we examined how visuospatial WM training improves finger movement sequential accuracy in younger (n=26, 21.1±1.37years) and older adults (n=22, 70.6±4.01years). After performing a finger sequence learning exercise and numerical and spatial WM tasks, participants in each age group were randomly assigned to either the experimental (EX) or control (CO) groups. For one hour daily over a 10-day period, the EX group practiced an adaptive n-back spatial task while those in the CO group practiced a non-adaptive version. As a result of WM practice, the EX participants increased their accuracy in the spatial n-back tasks, while accuracy remained unimproved in the numerical n-back tasks. In all groups, reaction times (RT) became shorter in most numerical and spatial n-back tasks. The learners in the EX group - but not in the CO group - showed improvements in their retention of finger sequences. The findings support our hypothesis that computerized visuospatial WM training improves finger sequence learning both in younger and in older adults. We discuss the theoretical implications and clinical relevance of this research for motor learning and functional rehabilitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The effect of cognitive aging on implicit sequence learning and dual tasking

    Directory of Open Access Journals (Sweden)

    Jochen eVandenbossche

    2014-02-01

    Full Text Available We investigated the influence of attentional demands on sequence-specific learning by means of the serial reaction time (SRT task (Nissen & Bullemer, 1987 in young (age 18-25 and aged (age 55-75 adults. Participants had to respond as fast as possible to a stimulus presented in one of four horizontal locations by pressing a key corresponding to the spatial position of the stimulus. During the training phase sequential blocks were accompanied by (1 no secondary task (single, (2 a secondary tone counting task (dual tone, or (3 a secondary shape counting task (dual shape. Both secondary tasks were administered to investigate whether low and high interference tasks interact with implicit learning and age. The testing phase, under baseline single condition, was implemented to assess differences in sequence-specific learning between young and aged adults. Results indicate that (1 aged subjects show less sequence learning compared to young adults, (2 young participants show similar implicit learning effects under both single and dual task conditions when we account for explicit awareness, and (3 aged adults demonstrate reduced learning when the primary task is accompanied with a secondary task, even when explicit awareness is included as a covariate in the analysis. These findings point to implicit learning deficits under dual task conditions that can be related to cognitive aging, demonstrating the need for sufficient cognitive resources while performing a sequence learning task.

  5. Neural Monkey: An Open-source Tool for Sequence Learning

    Directory of Open Access Journals (Sweden)

    Helcl Jindřich

    2017-04-01

    Full Text Available In this paper, we announce the development of Neural Monkey – an open-source neural machine translation (NMT and general sequence-to-sequence learning system built over the TensorFlow machine learning library. The system provides a high-level API tailored for fast prototyping of complex architectures with multiple sequence encoders and decoders. Models’ overall architecture is specified in easy-to-read configuration files. The long-term goal of the Neural Monkey project is to create and maintain a growing collection of implementations of recently proposed components or methods, and therefore it is designed to be easily extensible. Trained models can be deployed either for batch data processing or as a web service. In the presented paper, we describe the design of the system and introduce the reader to running experiments using Neural Monkey.

  6. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Science.gov (United States)

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension

  7. Modeling Time Series Data for Supervised Learning

    Science.gov (United States)

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  8. Learning and memory and its relationship with the lateralization of epileptic focus in subjects with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Daniel Fuentes

    2014-04-01

    Full Text Available Background : In medial temporal lobe epilepsy (MTLE, previous studies addressing the hemispheric laterality of epileptogenic focus and its relationship with learning and memory processes have reported controversial findings. Objective : To compare the performance of MTLE patients according to the location of the epileptogenic focus on the left (MTLEL or right temporal lobe (MTLER on tasks of episodic learning and memory for verbal and visual content. Methods : One hundred patients with MTLEL and one hundred patients with MTLER were tested with the following tasks: the Rey Auditory Verbal Learning Test (RAVLT and the Logical Memory-WMS-R to evaluate verbal learning and memory; and the Rey Visual Design Learning Test (RVDLT and the Visual Reproduction-WMS-R to evaluate visual learning and memory. Results : The MTLEL sample showed significantly worse performance on the RAVLT (p < 0.005 and on the Logical Memory tests (p < 0.01 than MTLER subjects. However, there were no significant between-group differences in regard to the visual memory tests. Discussion : Our findings suggest that verbal learning and memory abilities are dependent on the structural and functional integrity of the left temporal lobe, while visual abilities are less dependent on the right temporal lobe.

  9. Motor Speech Sequence Learning in Adults Who Stutter

    Directory of Open Access Journals (Sweden)

    Mahsa Aghazamani

    2018-04-01

    Conclusion The results of this study showed that PWS show improvement in accuracy, reaction time and sequence duration variables from day 1 to day 3. Also, PWS show more substantial number of errors compared to PNS, but this difference was not significant between the two groups. Similar results were obtained for the reaction time. Results of this study demonstrated that PWS show slower sequence duration compared to PNS. Some studies suggested that this could be because people who stutter use a control strategy to reduce the number of errors, although many studies suggested that this may indicate motor learning. According to speech motor skills hypothesis, it can be concluded that people who stutter have limitations in motor speech learning abilities. The findings of the present study could have clinical implication for the treatment of stuttering.

  10. Auditory temporal-order processing of vowel sequences by young and elderly listeners.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Kewley-Port, Diane

    2010-04-01

    This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.

  11. Learning rational temporal eye movement strategies.

    Science.gov (United States)

    Hoppe, David; Rothkopf, Constantin A

    2016-07-19

    During active behavior humans redirect their gaze several times every second within the visual environment. Where we look within static images is highly efficient, as quantified by computational models of human gaze shifts in visual search and face recognition tasks. However, when we shift gaze is mostly unknown despite its fundamental importance for survival in a dynamic world. It has been suggested that during naturalistic visuomotor behavior gaze deployment is coordinated with task-relevant events, often predictive of future events, and studies in sportsmen suggest that timing of eye movements is learned. Here we establish that humans efficiently learn to adjust the timing of eye movements in response to environmental regularities when monitoring locations in the visual scene to detect probabilistically occurring events. To detect the events humans adopt strategies that can be understood through a computational model that includes perceptual and acting uncertainties, a minimal processing time, and, crucially, the intrinsic costs of gaze behavior. Thus, subjects traded off event detection rate with behavioral costs of carrying out eye movements. Remarkably, based on this rational bounded actor model the time course of learning the gaze strategies is fully explained by an optimal Bayesian learner with humans' characteristic uncertainty in time estimation, the well-known scalar law of biological timing. Taken together, these findings establish that the human visual system is highly efficient in learning temporal regularities in the environment and that it can use these regularities to control the timing of eye movements to detect behaviorally relevant events.

  12. Modality and Perceptual-Motor Experience Influence the Detection of Temporal Deviations in Tap Dance Sequences

    Directory of Open Access Journals (Sweden)

    Mauro Murgia

    2017-08-01

    Full Text Available Accurate temporal information processing is critically important in many motor activities within disciplines such as dance, music, and sport. However, it is still unclear how temporal information related to biological motion is processed by expert and non-expert performers. It is well-known that the auditory modality dominates the visual modality in processing temporal information of simple stimuli, and that experts outperform non-experts in biological motion perception. In the present study, we combined these two areas of research; we investigated how experts and non-experts detected temporal deviations in tap dance sequences, in the auditory modality compared to the visual modality. We found that temporal deviations were better detected in the auditory modality compared to the visual modality, and by experts compared to non-experts. However, post hoc analyses indicated that these effects were mainly due to performances obtained by experts in the auditory modality. The results suggest that the experience advantage is not equally distributed across the modalities, and that tap dance experience enhances the effectiveness of the auditory modality but not the visual modality when processing temporal information. The present results and their potential implications are discussed in both temporal information processing and biological motion perception frameworks.

  13. Domain-specific and domain-general constraints on word and sequence learning.

    Science.gov (United States)

    Archibald, Lisa M D; Joanisse, Marc F

    2013-02-01

    The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.

  14. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

    Science.gov (United States)

    Fernández-Pousa, Carlos R.

    2017-11-01

    We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

  15. No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Cazzoli, Dario; Müri, René; Meier, Beat

    2017-08-29

    Neurostimulation of the dorsolateral prefrontal cortex (DLPFC) can modulate performance in cognitive tasks. In a recent study, however, transcranial direct current stimulation (tDCS) of the DLPFC did not affect implicit task sequence learning and consolidation in a paradigm that involved bimanual responses. Because bimanual performance increases the coupling between homologous cortical areas of the hemispheres and left and right DLPFC were stimulated separately the null findings may have been due to the bimanual setup. The aim of the present study was to test the effect of neuro-stimulation on sequence learning in a uni-manual setup. For this purpose two experiments were conducted. In Experiment 1, the DLPFC was stimulated with tDCS. In Experiment 2 the DLPFC was stimulated with transcranial magnetic stimulation (TMS). In both experiments, consolidation was measured 24 hours later. The results showed that sequence learning was present in all conditions and sessions, but it was not influenced by stimulation. Likewise, consolidation of sequence learning was robust across sessions, but it was not influenced by stimulation. These results replicate and extend previous findings. They indicate that established tDCS and TMS protocols on the DLPFC do not influence implicit task sequence learning and consolidation.

  16. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    Science.gov (United States)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  17. Neural correlates of temporal credit assignment in the parietal lobe.

    Directory of Open Access Journals (Sweden)

    Timothy M Gersch

    Full Text Available Empirical studies of decision making have typically assumed that value learning is governed by time, such that a reward prediction error arising at a specific time triggers temporally-discounted learning for all preceding actions. However, in natural behavior, goals must be acquired through multiple actions, and each action can have different significance for the final outcome. As is recognized in computational research, carrying out multi-step actions requires the use of credit assignment mechanisms that focus learning on specific steps, but little is known about the neural correlates of these mechanisms. To investigate this question we recorded neurons in the monkey lateral intraparietal area (LIP during a serial decision task where two consecutive eye movement decisions led to a final reward. The underlying decision trees were structured such that the two decisions had different relationships with the final reward, and the optimal strategy was to learn based on the final reward at one of the steps (the "F" step but ignore changes in this reward at the remaining step (the "I" step. In two distinct contexts, the F step was either the first or the second in the sequence, controlling for effects of temporal discounting. We show that LIP neurons had the strongest value learning and strongest post-decision responses during the transition after the F step regardless of the serial position of this step. Thus, the neurons encode correlates of temporal credit assignment mechanisms that allocate learning to specific steps independently of temporal discounting.

  18. Campylobacter jejuni sequence types show remarkable spatial and temporal stability in Blackbirds

    Directory of Open Access Journals (Sweden)

    Petra Griekspoor

    2015-12-01

    Full Text Available Background: The zoonotic bacterium Campylobacter jejuni has a broad host range but is especially associated with birds, both domestic and wild. Earlier studies have indicated thrushes of the genus Turdus in Europe to be frequently colonized with C. jejuni, and predominately with host-associated specific genotypes. The European Blackbird Turdus merula has a large distribution in Europe, including some oceanic islands, and was also introduced to Australia by European immigrants in the 1850s. Methods: The host specificity and temporal stability of European Blackbird C. jejuni was investigated with multilocus sequence typing in a set of isolates collected from Sweden, Australia, and The Azores. Results: Remarkably, we found that the Swedish, Australian, and Azorean isolates were genetically highly similar, despite extensive spatial and temporal isolation. This indicates adaptation, exquisite specificity, and stability in time for European Blackbirds, which is in sharp contrast with the high levels of recombination and mutation found in poultry-related C. jejuni genotypes. Conclusion: The maintenance of host-specific signals in spatially and temporally separated C. jejuni populations suggests the existence of strong purifying selection for this bacterium in European Blackbirds.

  19. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    Science.gov (United States)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  20. Towards Statistical Unsupervised Online Learning for Music Listening with Hearing Devices

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Marchini, Marco; Marxer, Richard

    of sounds into phonetic/instrument categories and learning of instrument event sequences is performed jointly using a Hierarchical Dirichlet Process Hidden Markov Model. Whereas machines often learn by processing a large data base and subsequently updating parameters of the algorithm, humans learn...... and their respective transition counts. We propose to use online learning for the co-evolution of both CI user and machine in (re-)learning musical language. [1] Marco Marchini and Hendrik Purwins. Unsupervised analysis and generation of audio percussion sequences. In International Symposium on Computer Music Modeling...... categories) as well as the temporal context horizon (e.g. storing up to 2-note sequences or up to 10-note sequences) is adaptable. The framework in [1] is based on two cognitively plausible principles: unsupervised learning and statistical learning. Opposed to supervised learning in primary school children...

  1. Effects of tonal language background on tests of temporal sequencing in children.

    Science.gov (United States)

    Mukari, Siti Zamratol-Mai S; Yu, Xuan; Ishak, Wan Syafira; Mazlan, Rafidah

    2015-01-01

    The aims of the present study were to determine the effects of language background on the performance of the pitch pattern sequence test (PPST) and duration pattern sequence test (DPST). As temporal order sequencing may be affected by age and working memory, these factors were also studied. Performance of tonal and non-tonal language speakers on PPST and DPST were compared. Twenty-eight native Mandarin (tonal language) speakers and twenty-nine native Malay (non-tonal language) speakers between seven to nine years old participated in this study. The results revealed that relative to native Malay speakers, native Mandarin speakers demonstrated better scores on the PPST in both humming and verbal labeling responses. However, a similar language effect was not apparent in the DPST. An age effect was only significant in the PPST (verbal labeling). Finally, no significant effect of working memory was found on the PPST and the DPST. These findings suggest that the PPST is affected by tonal language background, and highlight the importance of developing different normative values for tonal and non-tonal language speakers.

  2. Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?

    Science.gov (United States)

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2013-01-01

    Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…

  3. The impact of cerebellar transcranial direct current stimulation (tDCS) on learning fine-motor sequences.

    Science.gov (United States)

    Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J

    2017-01-05

    The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  4. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    Science.gov (United States)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  5. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning.

    Science.gov (United States)

    Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph

    2012-12-01

    Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.

  6. Real time eye tracking using Kalman extended spatio-temporal context learning

    Science.gov (United States)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  7. Unified Deep Learning Architecture for Modeling Biology Sequence.

    Science.gov (United States)

    Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang

    2017-10-09

    Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.

  8. Team-based learning to improve learning outcomes in a therapeutics course sequence.

    Science.gov (United States)

    Bleske, Barry E; Remington, Tami L; Wells, Trisha D; Dorsch, Michael P; Guthrie, Sally K; Stumpf, Janice L; Alaniz, Marissa C; Ellingrod, Vicki L; Tingen, Jeffrey M

    2014-02-12

    To compare the effectiveness of team-based learning (TBL) to that of traditional lectures on learning outcomes in a therapeutics course sequence. A revised TBL curriculum was implemented in a therapeutic course sequence. Multiple choice and essay questions identical to those used to test third-year students (P3) taught using a traditional lecture format were administered to the second-year pharmacy students (P2) taught using the new TBL format. One hundred thirty-one multiple-choice questions were evaluated; 79 tested recall of knowledge and 52 tested higher level, application of knowledge. For the recall questions, students taught through traditional lectures scored significantly higher compared to the TBL students (88%±12% vs. 82%±16%, p=0.01). For the questions assessing application of knowledge, no differences were seen between teaching pedagogies (81%±16% vs. 77%±20%, p=0.24). Scores on essay questions and the number of students who achieved 100% were also similar between groups. Transition to a TBL format from a traditional lecture-based pedagogy allowed P2 students to perform at a similar level as students with an additional year of pharmacy education on application of knowledge type questions. However, P3 students outperformed P2 students regarding recall type questions and overall. Further assessment of long-term learning outcomes is needed to determine if TBL produces more persistent learning and improved application in clinical settings.

  9. On the limits of statistical learning: Intertrial contextual cueing is confined to temporally close contingencies.

    Science.gov (United States)

    Thomas, Cyril; Didierjean, André; Maquestiaux, François; Goujon, Annabelle

    2018-04-12

    Since the seminal study by Chun and Jiang (Cognitive Psychology, 36, 28-71, 1998), a large body of research based on the contextual-cueing paradigm has shown that the cognitive system is capable of extracting statistical contingencies from visual environments. Most of these studies have focused on how individuals learn regularities found within an intratrial temporal window: A context predicts the target position within a given trial. However, Ono, Jiang, and Kawahara (Journal of Experimental Psychology, 31, 703-712, 2005) provided evidence of an intertrial implicit-learning effect when a distractor configuration in preceding trials N - 1 predicted the target location in trials N. The aim of the present study was to gain further insight into this effect by examining whether it occurs when predictive relationships are impeded by interfering task-relevant noise (Experiments 2 and 3) or by a long delay (Experiments 1, 4, and 5). Our results replicated the intertrial contextual-cueing effect, which occurred in the condition of temporally close contingencies. However, there was no evidence of integration across long-range spatiotemporal contingencies, suggesting a temporal limitation of statistical learning.

  10. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    Science.gov (United States)

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  11. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  12. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  13. A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns

    Science.gov (United States)

    Kinnebrew, John S.; Loretz, Kirk M.; Biswas, Gautam

    2013-01-01

    Computer-based learning environments can produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs a novel combination of sequence mining techniques to identify deferentially…

  14. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  15. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  16. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  17. Learning Sequences of Actions in Collectives of Autonomous Agents

    Science.gov (United States)

    Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.

  18. Auditory access, language access, and implicit sequence learning in deaf children.

    Science.gov (United States)

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  19. Music as a mnemonic to learn gesture sequences in normal aging and Alzheimer’s disease

    OpenAIRE

    Aline eMoussard; Emmanuel eBigand; Emmanuel eBigand; Isabelle ePeretz; Isabelle ePeretz; Isabelle ePeretz; Sylvie eBelleville; Sylvie eBelleville

    2014-01-01

    Strong links between music and motor functions suggest that music could represent an interesting aid for motor learning. The present study aims for the first time to test the potential of music to assist in the learning of sequences of gestures in normal and pathological aging. Participants with mild Alzheimer's disease (AD) and healthy older adults (Controls) learned sequences of meaningless gestures that were either accompanied by music or a metronome. We also manipulated the learning proce...

  20. Music as a Mnemonic to Learn Gesture Sequences in Normal Aging and Alzheimer’s Disease

    OpenAIRE

    Moussard, Aline; Bigand, Emmanuel; Belleville, Sylvie; Peretz, Isabelle

    2014-01-01

    Strong links between music and motor functions suggest that music could represent an interesting aid for motor learning. The present study aims for the first time to test the potential of music to assist in the learning of sequences of gestures in normal and pathological aging. Participants with mild Alzheimer’s disease (AD) and healthy older adults (controls) learned sequences of meaningless gestures that were either accompanied by music or a metronome. We also manipulated the learning proce...

  1. Music as a mnemonic to learn gesture sequences in normal aging and Alzheimer's disease.

    Science.gov (United States)

    Moussard, Aline; Bigand, Emmanuel; Belleville, Sylvie; Peretz, Isabelle

    2014-01-01

    Strong links between music and motor functions suggest that music could represent an interesting aid for motor learning. The present study aims for the first time to test the potential of music to assist in the learning of sequences of gestures in normal and pathological aging. Participants with mild Alzheimer's disease (AD) and healthy older adults (controls) learned sequences of meaningless gestures that were either accompanied by music or a metronome. We also manipulated the learning procedure such that participants had to imitate the gestures to-be-memorized in synchrony with the experimenter or after the experimenter during encoding. Results show different patterns of performance for the two groups. Overall, musical accompaniment had no impact on the controls' performance but improved those of AD participants. Conversely, synchronization of gestures during learning helped controls but seemed to interfere with retention in AD. We discuss these findings regarding their relevance for a better understanding of auditory-motor memory, and we propose recommendations to maximize the mnemonic effect of music for motor sequence learning for dementia care.

  2. Sensitivity to structure in action sequences: An infant event-related potential study.

    Science.gov (United States)

    Monroy, Claire D; Gerson, Sarah A; Domínguez-Martínez, Estefanía; Kaduk, Katharina; Hunnius, Sabine; Reid, Vincent

    2017-05-06

    Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Statistical learning of music- and language-like sequences and tolerance for spectral shifts.

    Science.gov (United States)

    Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato

    2015-02-01

    In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    Science.gov (United States)

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  5. Visual artificial grammar learning by rhesus macaques (Macaca mulatta): exploring the role of grammar complexity and sequence length.

    Science.gov (United States)

    Heimbauer, Lisa A; Conway, Christopher M; Christiansen, Morten H; Beran, Michael J; Owren, Michael J

    2018-03-01

    Humans and nonhuman primates can learn about the organization of stimuli in the environment using implicit sequential pattern learning capabilities. However, most previous artificial grammar learning studies with nonhuman primates have involved relatively simple grammars and short input sequences. The goal in the current experiments was to assess the learning capabilities of monkeys on an artificial grammar-learning task that was more complex than most others previously used with nonhumans. Three experiments were conducted using a joystick-based, symmetrical-response serial reaction time task in which two monkeys were exposed to grammar-generated sequences at sequence lengths of four in Experiment 1, six in Experiment 2, and eight in Experiment 3. Over time, the monkeys came to respond faster to the sequences generated from the artificial grammar compared to random versions. In a subsequent generalization phase, subjects generalized their knowledge to novel sequences, responding significantly faster to novel instances of sequences produced using the familiar grammar compared to those constructed using an unfamiliar grammar. These results reveal that rhesus monkeys can learn and generalize the statistical structure inherent in an artificial grammar that is as complex as some used with humans, for sequences up to eight items long. These findings are discussed in relation to whether or not rhesus macaques and other primate species possess implicit sequence learning abilities that are similar to those that humans draw upon to learn natural language grammar.

  6. Negative affect reduces performance in implicit sequence learning.

    Directory of Open Access Journals (Sweden)

    Junchen Shang

    Full Text Available BACKGROUND: It is well documented that positive rather than negative moods encourage integrative processing of conscious information. However, the extent to which implicit or unconscious learning can be influenced by affective states remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: A Serial Reaction Time (SRT task with sequence structures requiring integration over past trials was adopted to examine the effect of affective states on implicit learning. Music was used to induce and maintain positive and negative affective states. The present study showed that participants in negative rather than positive states learned less of the regularity. Moreover, the knowledge was shown by a Bayesian analysis to be largely unconscious as participants were poor at recognizing the regularity. CONCLUSIONS/SIGNIFICANCE: The results demonstrated that negative rather than positive affect inhibited implicit learning of complex structures. Our findings help to understand the effects of affective states on unconscious or implicit processing.

  7. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    Science.gov (United States)

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  8. Music Learning with Long Short Term Memory Networks

    OpenAIRE

    Colombo, Florian François

    2015-01-01

    Humans are able to learn and compose complex, yet beautiful, pieces of music as seen in e.g. the highly complicated works of J.S. Bach. However, how our brain is able to store and produce these very long temporal sequences is still an open question. Long short-term memory (LSTM) artificial neural networks have been shown to be efficient in sequence learning tasks thanks to their inherent ability to bridge long time lags between input events and their target signals. Here, I investigate the po...

  9. Effects of dopamine medication on sequence learning with stochastic feedback in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Moonsang Seo

    2010-08-01

    Full Text Available A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (‘ON’ and ‘OFF’ their dopamine medication affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were ‘ON’ and ‘OFF’ medication relative to healthy controls, but smaller differences between patients ‘OFF’ and ‘ON’. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD.

  10. Effects of Dopamine Medication on Sequence Learning with Stochastic Feedback in Parkinson's Disease

    Science.gov (United States)

    Seo, Moonsang; Beigi, Mazda; Jahanshahi, Marjan; Averbeck, Bruno B.

    2010-01-01

    A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD) may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (“ON” and “OFF” their dopamine medication) affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were “ON” and “OFF” medication relative to healthy controls, but smaller differences between patients “OFF” and “ON”. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD. PMID:20740077

  11. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    2017-08-01

    Full Text Available The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP and synaptic normalization (SN. When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that

  12. Effect of lesion site on serial position during list learning: a study with the CVLT.

    Science.gov (United States)

    Albuquerque, Luisa; Loureiro, Clara; Martins, Isabel Pavao

    2008-07-01

    Successful learning of supraspan word lists such as the California Verbal Learning Test (CVLT) relies more on clustering strategies than rote learning, subserved by the frontal and temporal lobes. The authors studied the effect of word sequence in CVLT learning, in 15 patients with frontal (FLL) and 15 temporal (TLL) lesions, and 33 controls. Experimental measures were: number of clusters, number of first (FI), middle (MI) and last items (LI), in learning trials and in total immediate recall. FLL disclosed significantly lower FI along learning. Clusters were similar among groups. This difficulty is discussed according to the role of frontal lobes in learning and memory.

  13. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    Science.gov (United States)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  14. Felder-Soloman's Index of Learning Styles: internal consistency, temporal stability, and factor structure.

    Science.gov (United States)

    Hosford, Charles C; Siders, William A

    2010-10-01

    Strategies to facilitate learning include using knowledge of students' learning style preferences to inform students and their teachers. Aims of this study were to evaluate the factor structure, internal consistency, and temporal stability of medical student responses to the Index of Learning Styles (ILS) and determine its appropriateness as an instrument for medical education. The ILS assesses preferences on four dimensions: sensing/intuitive information perceiving, visual/verbal information receiving, active/reflective information processing, and sequential/global information understanding. Students entering the 2002-2007 classes completed the ILS; some completed the ILS again after 2 and 4 years. Analyses of responses supported the ILS's intended structure and moderate reliability. Students had moderate preferences for sensing and visual learning. This study provides evidence supporting the appropriateness of the ILS for assessing learning style preferences in medical students.

  15. Music as a mnemonic to learn gesture sequences in normal aging and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Aline eMoussard

    2014-05-01

    Full Text Available Strong links between music and motor functions suggest that music could represent an interesting aid for motor learning. The present study aims for the first time to test the potential of music to assist in the learning of sequences of gestures in normal and pathological aging. Participants with mild Alzheimer's disease (AD and healthy older adults (Controls learned sequences of meaningless gestures that were either accompanied by music or a metronome. We also manipulated the learning procedure such that participants had to imitate the gestures to-be-memorized in synchrony with the experimenter or after the experimenter during encoding. Results show different patterns of performance for the two groups. Overall, musical accompaniment had no impact on the Controls' performance, but improved those of AD participants. Conversely, synchronization of gestures during learning helped Controls but seemed to interfere with retention in AD. We discuss these findings regarding their relevance for a better understanding of auditory-motor memory, and we propose recommendations to maximize the mnemonic effect of music for motor sequence learning for dementia care.

  16. Music as a Mnemonic to Learn Gesture Sequences in Normal Aging and Alzheimer’s Disease

    Science.gov (United States)

    Moussard, Aline; Bigand, Emmanuel; Belleville, Sylvie; Peretz, Isabelle

    2014-01-01

    Strong links between music and motor functions suggest that music could represent an interesting aid for motor learning. The present study aims for the first time to test the potential of music to assist in the learning of sequences of gestures in normal and pathological aging. Participants with mild Alzheimer’s disease (AD) and healthy older adults (controls) learned sequences of meaningless gestures that were either accompanied by music or a metronome. We also manipulated the learning procedure such that participants had to imitate the gestures to-be-memorized in synchrony with the experimenter or after the experimenter during encoding. Results show different patterns of performance for the two groups. Overall, musical accompaniment had no impact on the controls’ performance but improved those of AD participants. Conversely, synchronization of gestures during learning helped controls but seemed to interfere with retention in AD. We discuss these findings regarding their relevance for a better understanding of auditory–motor memory, and we propose recommendations to maximize the mnemonic effect of music for motor sequence learning for dementia care. PMID:24860476

  17. Infants' statistical learning: 2- and 5-month-olds' segmentation of continuous visual sequences.

    Science.gov (United States)

    Slone, Lauren Krogh; Johnson, Scott P

    2015-05-01

    Past research suggests that infants have powerful statistical learning abilities; however, studies of infants' visual statistical learning offer differing accounts of the developmental trajectory of and constraints on this learning. To elucidate this issue, the current study tested the hypothesis that young infants' segmentation of visual sequences depends on redundant statistical cues to segmentation. A sample of 20 2-month-olds and 20 5-month-olds observed a continuous sequence of looming shapes in which unit boundaries were defined by both transitional probability and co-occurrence frequency. Following habituation, only 5-month-olds showed evidence of statistically segmenting the sequence, looking longer to a statistically improbable shape pair than to a probable pair. These results reaffirm the power of statistical learning in infants as young as 5 months but also suggest considerable development of statistical segmentation ability between 2 and 5 months of age. Moreover, the results do not support the idea that infants' ability to segment visual sequences based on transitional probabilities and/or co-occurrence frequencies is functional at the onset of visual experience, as has been suggested previously. Rather, this type of statistical segmentation appears to be constrained by the developmental state of the learner. Factors contributing to the development of statistical segmentation ability during early infancy, including memory and attention, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A specific implicit sequence learning deficit as an underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks.

    Science.gov (United States)

    Staels, Eva; Van den Broeck, Wim

    2017-05-01

    Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    Science.gov (United States)

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  20. Implicit Sequence Learning and Contextual Cueing Do Not Compete for Central Cognitive Resources

    Science.gov (United States)

    Jimenez, Luis; Vazquez, Gustavo A.

    2011-01-01

    Sequence learning and contextual cueing explore different forms of implicit learning, arising from practice with a structured serial task, or with a search task with informative contexts. We assess whether these two learning effects arise simultaneously when both remain implicit. Experiments 1 and 2 confirm that a cueing effect can be observed…

  1. LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise.

    Science.gov (United States)

    Hayashi, Hatsuo; Igarashi, Jun

    2009-06-01

    Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.

  2. Semi-Supervised Learning for Classification of Protein Sequence Data

    Directory of Open Access Journals (Sweden)

    Brian R. King

    2008-01-01

    Full Text Available Protein sequence data continue to become available at an exponential rate. Annotation of functional and structural attributes of these data lags far behind, with only a small fraction of the data understood and labeled by experimental methods. Classification methods that are based on semi-supervised learning can increase the overall accuracy of classifying partly labeled data in many domains, but very few methods exist that have shown their effect on protein sequence classification. We show how proven methods from text classification can be applied to protein sequence data, as we consider both existing and novel extensions to the basic methods, and demonstrate restrictions and differences that must be considered. We demonstrate comparative results against the transductive support vector machine, and show superior results on the most difficult classification problems. Our results show that large repositories of unlabeled protein sequence data can indeed be used to improve predictive performance, particularly in situations where there are fewer labeled protein sequences available, and/or the data are highly unbalanced in nature.

  3. Not so primitive: context-sensitive meta-learning about unattended sound sequences.

    Science.gov (United States)

    Todd, Juanita; Provost, Alexander; Whitson, Lisa R; Cooper, Gavin; Heathcote, Andrew

    2013-01-01

    Mismatch negativity (MMN), an evoked response potential elicited when a "deviant" sound violates a regularity in the auditory environment, is integral to auditory scene processing and has been used to demonstrate "primitive intelligence" in auditory short-term memory. Using a new multiple-context and -timescale protocol we show that MMN magnitude displays a context-sensitive modulation depending on changes in the probability of a deviant at multiple temporal scales. We demonstrate a primacy bias causing asymmetric evidence-based modulation of predictions about the environment, and we demonstrate that learning how to learn about deviant probability (meta-learning) induces context-sensitive variation in the accessibility of predictive long-term memory representations that underpin the MMN. The existence of the bias and meta-learning are consistent with automatic attributions of behavioral salience governing relevance-filtering processes operating outside of awareness.

  4. A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Müri, René; Meier, Beat

    Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. The purpose of this study was to modulate implicit task sequence learning with tDCS. As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A teaching-learning sequence about weather map reading

    Science.gov (United States)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-07-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.

  6. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    Science.gov (United States)

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  7. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  8. Sequence Learning Under Uncertainty in Children: Self-Reflection vs. Self-Assertion.

    Science.gov (United States)

    Lange-Küttner, Christiane; Averbeck, Bruno B; Hirsch, Silvia V; Wießner, Isabel; Lamba, Nishtha

    2012-01-01

    We know that stochastic feedback impairs children's associative stimulus-response (S-R) learning (Crone et al., 2004a; Eppinger et al., 2009), but the impact of stochastic feedback on sequence learning that involves deductive reasoning has not been not tested so far. In the current study, 8- to 11-year-old children (N = 171) learned a sequence of four left and right button presses, LLRR, RRLL, LRLR, RLRL, LRRL, and RLLR, which needed to be deduced from feedback because no directional cues were given. One group of children experienced consistent feedback only (deterministic feedback, 100% correct). In this condition, green feedback on the screen indicated that the children had been right when they were right, and red feedback indicated that the children had been wrong when they were wrong. Another group of children experienced inconsistent feedback (stochastic feedback, 85% correct, 15% false), where in some trials, green feedback on the screen could signal that children were right when in fact they were wrong, and red feedback could indicate that they were wrong when in fact they had been right. Independently of age, children's sequence learning in the stochastic condition was initially much lower than in the deterministic condition, but increased gradually and improved with practice. Responses toward positive vs. negative feedback varied with age. Children were increasingly able to understand that they could have been wrong when feedback indicated they were right (self-reflection), but they remained unable to understand that they could have been right when feedback indicated they were wrong (self-assertion).

  9. Sequence Learning Under Uncertainty in Children: Self-reflection vs. Self-Assertion

    Directory of Open Access Journals (Sweden)

    Christiane eLange-Küttner

    2012-05-01

    Full Text Available We know that stochastic feedback impairs children’s associative stimulus-response (S-R learning (Crone, Jennigs, & Van der Molen, 2004a; Eppinger, Mock, & Kray, 2009, but the impact of stochastic feedback on sequence learning that involves deductive reasoning has not been not tested so far. In the current study, 8- to 11-year-old children (N = 171 learned a sequence of four left and right button presses, LLRR, RRLL, LRLR, RLRL, LRRL and RLLR, that needed to be deduced from feedback because no directional cues were given. One group of children experienced consistent feedback only (deterministic feedback, 100% correct. In this condition, green feedback on the screen indicated that the children had been right when they were right, and red feedback indicated that the children had been wrong when they were wrong. Another group of children experienced inconsistent feedback (stochastic feedback, 85% correct, 15% false, where in some trials, green feedback on the screen could signal that children were right when in fact they were wrong, and red feedback could indicate that they were wrong when in fact they had been right. Independently of age, children’s sequence learning in the stochastic condition was initially much lower than in the deterministic condition, but increased gradually and improved with practice. Responses towards positive vs. negative feedback varied with age. Children were increasingly able to understand that they could have been wrong when feedback indicated they were right (self-reflection, but they remained unable to understand that they could have been right when feedback indicated they were wrong (self-assertion.

  10. Fluoxetine Restores Spatial Learning but Not Accelerated Forgetting in Mesial Temporal Lobe Epilepsy

    Science.gov (United States)

    Barkas, Lisa; Redhead, Edward; Taylor, Matthew; Shtaya, Anan; Hamilton, Derek A.; Gray, William P.

    2012-01-01

    Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task,…

  11. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    Directory of Open Access Journals (Sweden)

    Mozerov M

    2010-01-01

    Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  12. Generation of novel motor sequences: the neural correlates of musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  13. Impacts of visuomotor sequence learning methods on speed and accuracy: Starting over from the beginning or from the point of error.

    Science.gov (United States)

    Tanaka, Kanji; Watanabe, Katsumi

    2016-02-01

    The present study examined whether sequence learning led to more accurate and shorter performance time if people who are learning a sequence start over from the beginning when they make an error (i.e., practice the whole sequence) or only from the point of error (i.e., practice a part of the sequence). We used a visuomotor sequence learning paradigm with a trial-and-error procedure. In Experiment 1, we found fewer errors, and shorter performance time for those who restarted their performance from the beginning of the sequence as compared to those who restarted from the point at which an error occurred, indicating better learning of spatial and motor representations of the sequence. This might be because the learned elements were repeated when the next performance started over from the beginning. In subsequent experiments, we increased the occasions for the repetitions of learned elements by modulating the number of fresh start points in the sequence after errors. The results showed that fewer fresh start points were likely to lead to fewer errors and shorter performance time, indicating that the repetitions of learned elements enabled participants to develop stronger spatial and motor representations of the sequence. Thus, a single or two fresh start points in the sequence (i.e., starting over only from the beginning or from the beginning or midpoint of the sequence after errors) is likely to lead to more accurate and faster performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Identifying Learning Behaviors by Contextualizing Differential Sequence Mining with Action Features and Performance Evolution

    Science.gov (United States)

    Kinnebrew, John S.; Biswas, Gautam

    2012-01-01

    Our learning-by-teaching environment, Betty's Brain, captures a wealth of data on students' learning interactions as they teach a virtual agent. This paper extends an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs sequence mining techniques to…

  15. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    Science.gov (United States)

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  16. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    Directory of Open Access Journals (Sweden)

    Jurjen van der Helden

    Full Text Available Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha and motor (mu rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for

  17. Online incidental statistical learning of audiovisual word sequences in adults: a registered report.

    Science.gov (United States)

    Kuppuraj, Sengottuvel; Duta, Mihaela; Thompson, Paul; Bishop, Dorothy

    2018-02-01

    Statistical learning has been proposed as a key mechanism in language learning. Our main goal was to examine whether adults are capable of simultaneously extracting statistical dependencies in a task where stimuli include a range of structures amenable to statistical learning within a single paradigm. We devised an online statistical learning task using real word auditory-picture sequences that vary in two dimensions: (i) predictability and (ii) adjacency of dependent elements. This task was followed by an offline recall task to probe learning of each sequence type. We registered three hypotheses with specific predictions. First, adults would extract regular patterns from continuous stream (effect of grammaticality). Second, within grammatical conditions, they would show differential speeding up for each condition as a factor of statistical complexity of the condition and exposure. Third, our novel approach to measure online statistical learning would be reliable in showing individual differences in statistical learning ability. Further, we explored the relation between statistical learning and a measure of verbal short-term memory (STM). Forty-two participants were tested and retested after an interval of at least 3 days on our novel statistical learning task. We analysed the reaction time data using a novel regression discontinuity approach. Consistent with prediction, participants showed a grammaticality effect, agreeing with the predicted order of difficulty for learning different statistical structures. Furthermore, a learning index from the task showed acceptable test-retest reliability ( r  = 0.67). However, STM did not correlate with statistical learning. We discuss the findings noting the benefits of online measures in tracking the learning process.

  18. Scaffolding and interventions between students and teachers in a Learning Design Sequence

    Directory of Open Access Journals (Sweden)

    Eva Edman Stålbrandt

    Full Text Available The aims of this paper are to develop knowledge about scaffolding when students in Swedish schools use digital educational material and to investigate what the main focus is in teachers' interventions during a Learning Design Sequence (LDS, based on a socio-cultural perspective. The results indicate that scaffolding were most common in the primary transformation unit and the most frequent type was procedural scaffolding, although all types of scaffolds; conceptual, metacognitive, procedural, strategic, affective and technical scaffolding occurred in all parts of a learning design sequence. In this study most of the teachers and students, think that using digital educational material requires more and other forms of scaffolding and concerning teacher interventions teachers interact both supportively and restrictively according to students' learning process. Reasons for that are connected to the content of the intervention and whether teachers intervene together with the students or not.

  19. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  20. Evolution of learning strategies in temporally and spatially variable environments: a review of theory.

    Science.gov (United States)

    Aoki, Kenichi; Feldman, Marcus W

    2014-02-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Evolution of learning strategies in temporally and spatially variable environments: A review of theory

    Science.gov (United States)

    Aoki, Kenichi; Feldman, Marcus W.

    2013-01-01

    The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681

  2. Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.

    Science.gov (United States)

    Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M

    2016-05-01

    In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Gift from statistical learning: Visual statistical learning enhances memory for sequence elements and impairs memory for items that disrupt regularities.

    Science.gov (United States)

    Otsuka, Sachio; Saiki, Jun

    2016-02-01

    Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Serial position learning in honeybees.

    Directory of Open Access Journals (Sweden)

    Randolf Menzel

    Full Text Available Learning of stimulus sequences is considered as a characteristic feature of episodic memory since it contains not only a particular item but also the experience of preceding and following events. In sensorimotor tasks resembling navigational performance, the serial order of objects is intimately connected with spatial order. Mammals and birds develop episodic(-like memory in serial spatio-temporal tasks, and the honeybee learns spatio-temporal order when navigating between the nest and a food source. Here I examine the structure of the bees' memory for a combined spatio-temporal task. I ask whether discrimination and generalization are based solely on simple forms of stimulus-reward learning or whether they require sequential configurations. Animals were trained to fly either left or right in a continuous T-maze. The correct choice was signaled by the sequence of colors (blue, yellow at four positions in the access arm. If only one of the possible 4 signals is shown (either blue or yellow, the rank order of position salience is 1, 2 and 3 (numbered from T-junction. No learning is found if the signal appears at position 4. If two signals are shown, differences at positions 1 and 2 are learned best, those at position 3 at a low level, and those at position 4 not at all. If three or more signals are shown these results are corroborated. This salience rank order again appeared in transfer tests, but additional configural phenomena emerged. Most of the results can be explained with a simple model based on the assumption that the four positions are equipped with different salience scores and that these add up independently. However, deviations from the model are interpreted by assuming stimulus configuration of sequential patterns. It is concluded that, under the conditions chosen, bees rely most strongly on memories developed during simple forms of associative reward learning, but memories of configural serial patterns contribute, too.

  5. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal; Escorcia, Victor; Shen, Chuanqi; Ghanem, Bernard; Niebles, Juan Carlos

    2017-01-01

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  6. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal

    2017-11-09

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  7. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  8. Speech Motor Sequence Learning: Acquisition and Retention in Parkinson Disease and Normal Aging

    Science.gov (United States)

    Whitfield, Jason A.; Goberman, Alexander M.

    2017-01-01

    Purpose: The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. Method: A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a…

  9. Temporal Cyber Attack Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Joey Burton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Draelos, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Galiardi, Meghan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doak, Justin E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Rigorous characterization of the performance and generalization ability of cyber defense systems is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty largely stems from a lack of labeled attack data that fully explores the potential adversarial space. Currently, performance of cyber defense systems is typically evaluated in a qualitative manner by manually inspecting the results of the system on live data and adjusting as needed. Additionally, machine learning has shown promise in deriving models that automatically learn indicators of compromise that are more robust than analyst-derived detectors. However, to generate these models, most algorithms require large amounts of labeled data (i.e., examples of attacks). Algorithms that do not require annotated data to derive models are similarly at a disadvantage, because labeled data is still necessary when evaluating performance. In this work, we explore the use of temporal generative models to learn cyber attack graph representations and automatically generate data for experimentation and evaluation. Training and evaluating cyber systems and machine learning models requires significant, annotated data, which is typically collected and labeled by hand for one-off experiments. Automatically generating such data helps derive/evaluate detection models and ensures reproducibility of results. Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on learning the structure of attack graphs, based on a realistic example. These derived models can then be used to generate more data. Additionally, we provide a roadmap for future research efforts in this area.

  10. Preliminary Validation of a New Measure of Negative Response Bias: The Temporal Memory Sequence Test.

    Science.gov (United States)

    Hegedish, Omer; Kivilis, Naama; Hoofien, Dan

    2015-01-01

    The Temporal Memory Sequence Test (TMST) is a new measure of negative response bias (NRB) that was developed to enrich the forced-choice paradigm. The TMST does not resemble the common structure of forced-choice tests and is presented as a temporal recall memory test. The validation sample consisted of 81 participants: 21 healthy control participants, 20 coached simulators, and 40 patients with acquired brain injury (ABI). The TMST had high reliability and significantly high positive correlations with the Test of Memory Malingering and Word Memory Test effort scales. Moreover, the TMST effort scales exhibited high negative correlations with the Glasgow Coma Scale, thus validating the previously reported association between probable malingering and mild traumatic brain injury. A suggested cutoff score yielded acceptable classification rates in the ABI group as well as in the simulator and control groups. The TMST appears to be a promising measure of NRB detection, with respectable rates of reliability and construct and criterion validity.

  11. Temporal Discontiguity Is neither Necessary nor Sufficient for Learning-Induced Effects on Adult Neurogenesis

    Science.gov (United States)

    Leuner, Benedetta; Waddell, Jaylyn; Gould, Elizabeth; Shors, Tracey J.

    2012-01-01

    Some, but not all, types of learning and memory can influence neurogenesis in the adult hippocampus. Trace eyeblink conditioning has been shown to enhance the survival of new neurons, whereas delay eyeblink conditioning has no such effect. The key difference between the two training procedures is that the conditioning stimuli are separated in time during trace but not delay conditioning. These findings raise the question of whether temporal discontiguity is necessary for enhancing the survival of new neurons. Here we used two approaches to test this hypothesis. First, we examined the influence of a delay conditioning task in which the duration of the conditioned stimulus (CS) was increased nearly twofold, a procedure that critically engages the hippocampus. Although the CS and unconditioned stimulus are contiguous, this very long delay conditioning procedure increased the number of new neurons that survived. Second, we examined the influence of learning the trace conditioned response (CR) after having acquired the CR during delay conditioning, a procedure that renders trace conditioning hippocampal-independent. In this case, trace conditioning did not enhance the survival of new neurons. Together, these results demonstrate that associative learning increases the survival of new neurons in the adult hippocampus, regardless of temporal contiguity. PMID:17192426

  12. Critical factors in the empirical performance of temporal difference and evolutionary methods for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Taylor, M.E.; Stone, P.

    2010-01-01

    Temporal difference and evolutionary methods are two of the most common approaches to solving reinforcement learning problems. However, there is little consensus on their relative merits and there have been few empirical studies that directly compare their performance. This article aims to address

  13. Sex differences in verbal and nonverbal learning before and after temporal lobe epilepsy surgery.

    Science.gov (United States)

    Berger, Justus; Oltmanns, Frank; Holtkamp, Martin; Bengner, Thomas

    2017-01-01

    Women outperform men in a host of episodic memory tasks, yet the neuroanatomical basis for this effect is unclear. It has been suggested that the anterior temporal lobe might be especially relevant for sex differences in memory. In the current study, we investigated whether temporal lobe epilepsy (TLE) has an influence on sex effects in learning and memory and whether women and men with TLE differ in their risk for memory deficits after epilepsy surgery. 177 patients (53 women and 41 men with left TLE, 42 women and 41 men with right TLE) were neuropsychologically tested before and one year after temporal lobe resection. We found that women with TLE had better verbal, but not figural, memory than men with TLE. The female advantage in verbal memory was not affected by temporal lobe resection. The same pattern of results was found in a more homogeneous subsample of 84 patients with only hippocampal sclerosis who were seizure-free after surgery. Our findings challenge the concept that the anterior temporal lobe plays a central role in the verbal memory advantage for women. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.

    Science.gov (United States)

    Gnadt, William; Grossberg, Stephen

    2008-06-01

    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory

  15. Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available We propose a multiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment are considered to simulate temporal-spatial characteristics of activity-travel patterns in a city. Road congestion degree is added to the reinforcement learning algorithm as a medium that passes the influence of one traveler’s decision to others. Meanwhile, the agents used in the algorithm are initialized from typical activity patterns extracted from the travel survey diary data of Shangyu city in China. In the simulation, both macroscopic activity-travel characteristics such as traffic flow spatial-temporal distribution and microscopic characteristics such as activity-travel schedules of each agent are obtained. Comparing the simulation results with the survey data, we find that deviation of the peak-hour traffic flow is less than 5%, while the correlation of the simulated versus survey location choice distribution is over 0.9.

  16. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M

    2018-01-01

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  17. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian

    2018-04-10

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  18. Chained learning architectures in a simple closed-loop behavioural context

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-01-01

    are very simple and consist of single learning unit. The current study is trying to solve this problem focusing on chained learning architectures in a simple closed-loop behavioural context. METHODS: We applied temporal sequence learning (Porr B and Wörgötter F 2006) in a closed-loop behavioural system...... where a driving robot learns to follow a line. Here for the first time we introduced two types of chained learning architectures named linear chain and honeycomb chain. We analyzed such architectures in an open and closed-loop context and compared them to the simple learning unit. CONCLUSIONS...

  19. It’s all in the past: Temporal-context effects modulate subjective evaluations of emotional visual stimuli, regardless of presentation sequence

    Czech Academy of Sciences Publication Activity Database

    Czekóová, K.; Shaw, D. J.; Janoušová, E.; Urbánek, Tomáš

    2015-01-01

    Roč. 6, č. 367 (2015), s. 1-11 ISSN 1664-1078 Institutional support: RVO:68081740 Keywords : emotion * temporal context * presentation sequence * assimilation effect * contrast effect Subject RIV: AN - Psychology Impact factor: 2.463, year: 2015 http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00367/full

  20. Enhanced learning of proportional math through music training and spatial-temporal training.

    Science.gov (United States)

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  1. Formal Learning Sequences and Progression in the Studio: A Framework for Digital Design Education

    Directory of Open Access Journals (Sweden)

    Pontus Wärnestål

    2016-02-01

    Full Text Available This paper examines how to leverage the design studio learning environment throughout long-term Digital Design education in order to support students to progress from tactical, well-defined, device-centric routine design, to confidently design sustainable solutions for strategic, complex, problems for a wide range of devices and platforms in the digital space. We present a framework derived from literature on design, creativity, and theories on learning that: (a implements a theory of formal learning sequences as a user-centered design process in the studio; and (b describes design challenge progressions in the design studio environment modeled in seven dimensions. The framework can be used as a tool for designing, evaluating, and communicating course progressions within – and between series of – design studio courses. This approach is evaluated by implementing a formal learning sequence framework in a series of design studio courses that progress in an undergraduate design-oriented Informatics program. Reflections from students, teachers, and external clients indicate high student motivation and learning goal achievement, high teacher satisfaction and skill development, and high satisfaction among external clients.

  2. Lateralized implicit sequence learning in uni- and bi-manual conditions.

    Science.gov (United States)

    Schmitz, Rémy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe

    2013-02-01

    It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT), we tested whether participants trained in a divided visual field condition primarily stimulating the RH would learn the implicit regularities embedded in sequential material faster than participants in a condition favoring LH processing. In the first study, half of participants were presented sequences in the left (vs. right) visual field, and had to respond using their ipsilateral hand (unimanual condition), hence making visuo-motor processing possible within the same hemisphere. Results showed successful implicit sequence learning, as indicated by increased reaction time for a transfer sequence in both hemispheric conditions and lack of conscious knowledge in a generation task. There was, however, no evidence of interhemispheric differences. In the second study, we hypothesized that a bimanual response version of the lateralized SRT, which requires interhemispheric communication and increases computational and cognitive processing loads, would favor RH-dependent visuospatial/attentional processes. In this bimanual condition, our results revealed a much higher transfer effect in the RH than in the LH condition, suggesting higher RH sensitivity to the processing of novel sequential material. This LH/RH difference was interpreted within the framework of the Novelty-Routinization model [Goldberg, E., & Costa, L. D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14(1), 144-173] and interhemispheric interactions in attentional processing [Banich, M. T. (1998). The missing link: the role of interhemispheric interaction in attentional processing. Brain and Cognition, 36

  3. Effects of neonatal inferior prefrontal and medial temporal lesions on learning the rule for delayed nonmatching-to-sample.

    Science.gov (United States)

    Málková, L; Bachevalier, J; Webster, M; Mishkin, M

    2000-01-01

    The ability of rhesus monkeys to master the rule for delayed nonmatching-to-sample (DNMS) has a protracted ontogenetic development, reaching adult levels of proficiency around 4 to 5 years of age (Bachevalier, 1990). To test the possibility that this slow development could be due, at least in part, to immaturity of the prefrontal component of a temporo-prefrontal circuit important for DNMS rule learning (Kowalska, Bachevalier, & Mishkin, 1991; Weinstein, Saunders, & Mishkin, 1988), monkeys with neonatal lesions of the inferior prefrontal convexity were compared on DNMS with both normal controls and animals given neonatal lesions of the medial temporal lobe. Consistent with our previous results (Bachevalier & Mishkin, 1994; Málková, Mishkin, & Bachevalier, 1995), the neonatal medial temporal lesions led to marked impairment in rule learning (as well as in recognition memory with long delays and list lengths) at both 3 months and 2 years of age. By contrast, the neonatal inferior convexity lesions yielded no impairment in rule-learning at 3 months and only a mild impairment at 2 years, a finding that also contrasts sharply with the marked effects of the same lesion made in adulthood. This pattern of sparing closely resembles the one found earlier after neonatal lesions to the cortical visual area TE (Bachevalier & Mishkin, 1994; Málková et al., 1995). The functional sparing at 3 months probably reflects the fact that the temporo-prefrontal circuit is nonfunctional at this early age, resulting in a total dependency on medial temporal contributions to rule learning. With further development, however, this circuit begins to provide a supplementary route for learning.

  4. Dispositional optimism and perceived risk interact to predict intentions to learn genome sequencing results.

    Science.gov (United States)

    Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B

    2015-07-01

    Dispositional optimism and risk perceptions are each associated with health-related behaviors and decisions and other outcomes, but little research has examined how these constructs interact, particularly in consequential health contexts. The predictive validity of risk perceptions for health-related information seeking and intentions may be improved by examining dispositional optimism as a moderator, and by testing alternate types of risk perceptions, such as comparative and experiential risk. Participants (n = 496) had their genomes sequenced as part of a National Institutes of Health pilot cohort study (ClinSeq®). Participants completed a cross-sectional baseline survey of various types of risk perceptions and intentions to learn genome sequencing results for differing disease risks (e.g., medically actionable, nonmedically actionable, carrier status) and to use this information to change their lifestyle/health behaviors. Risk perceptions (absolute, comparative, and experiential) were largely unassociated with intentions to learn sequencing results. Dispositional optimism and comparative risk perceptions interacted, however, such that individuals higher in optimism reported greater intentions to learn all 3 types of sequencing results when comparative risk was perceived to be higher than when it was perceived to be lower. This interaction was inconsistent for experiential risk and absent for absolute risk. Independent of perceived risk, participants high in dispositional optimism reported greater interest in learning risks for nonmedically actionable disease and carrier status, and greater intentions to use genome information to change their lifestyle/health behaviors. The relationship between risk perceptions and intentions may depend on how risk perceptions are assessed and on degree of optimism. (c) 2015 APA, all rights reserved.

  5. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  6. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  7. Deficit in implicit motor sequence learning among children and adolescents with spastic cerebral palsy.

    Science.gov (United States)

    Gofer-Levi, Moran; Silberg, Tamar; Brezner, Amichai; Vakil, Eli

    2013-11-01

    Skill learning (SL) is learning as a result of repeated exposure and practice, which encompasses independent explicit (response to instructions) and implicit (response to hidden regularities) processes. Little is known about the effects of developmental disorders, such as Cerebral Palsy (CP), on the ability to acquire new skills. We compared performance of CP and typically developing (TD) children and adolescents in completing the serial reaction time (SRT) task, which is a motor sequence learning task, and examined the impact of various factors on this performance as indicative of the ability to acquire motor skills. While both groups improved in performance, participants with CP were significantly slower than TD controls and did not learn the implicit sequence. Our results indicate that SL in children and adolescents with CP is qualitatively and quantitatively different than that of their peers. Understanding the unique aspects of SL in children and adolescents with CP might help plan appropriate and efficient interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education

    Science.gov (United States)

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2014-01-01

    A novel didactic sequence is proposed for the teaching of chemical equilibrium. This teaching sequence takes into account the historical and epistemological evolution of the concept, the alternative conceptions and learning difficulties highlighted by teaching science and research in education, and the need to focus on both the students'…

  9. The role of the temporal sequences in the Augmentative and Alternative Communication Systems for the Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Saverio Fontani

    2014-12-01

    Full Text Available The Augmentative and Alternative Communication systems (AAC represent a promising integration for more effective models of special education specifically developed for the special educational needs of children with Autism Spectrum Disorders. In this paper the historical foundations of the approach are presented, and its implications on the promotion of functional spontaneous communication skills based on the temporal sequences approach are discussed.  

  10. ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    Science.gov (United States)

    Porr, Bernd; von Ferber, Christian; Wörgötter, Florentin

    2003-04-01

    In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.

  11. Learning About Time Within the Spinal Cord II: Evidence that Temporal Regularity is Encoded by a Spinal Oscillator

    Directory of Open Access Journals (Sweden)

    Kuan Hsien Lee

    2016-02-01

    Full Text Available How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock is applied and the interval between shock pulses is varied (unpredictable, it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail. Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2 region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.

  12. Neuronal representations of stimulus associations develop in the temporal lobe during learning.

    Science.gov (United States)

    Messinger, A; Squire, L R; Zola, S M; Albright, T D

    2001-10-09

    Visual stimuli that are frequently seen together become associated in long-term memory, such that the sight of one stimulus readily brings to mind the thought or image of the other. It has been hypothesized that acquisition of such long-term associative memories proceeds via the strengthening of connections between neurons representing the associated stimuli, such that a neuron initially responding only to one stimulus of an associated pair eventually comes to respond to both. Consistent with this hypothesis, studies have demonstrated that individual neurons in the primate inferior temporal cortex tend to exhibit similar responses to pairs of visual stimuli that have become behaviorally associated. In the present study, we investigated the role of these areas in the formation of conditional visual associations by monitoring the responses of individual neurons during the learning of new stimulus pairs. We found that many neurons in both area TE and perirhinal cortex came to elicit more similar neuronal responses to paired stimuli as learning proceeded. Moreover, these neuronal response changes were learning-dependent and proceeded with an average time course that paralleled learning. This experience-dependent plasticity of sensory representations in the cerebral cortex may underlie the learning of associations between objects.

  13. Different propagation speeds of recalled sequences in plastic spiking neural networks

    Science.gov (United States)

    Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.

    2015-03-01

    Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in

  14. Spatio-temporal Hotelling observer for signal detection from image sequences.

    Science.gov (United States)

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  15. Temporal correlation of fluvial and alluvial sequences in the Makran Range, SE-Iran

    Science.gov (United States)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Burg, J.-P.; Bahroudi, A.; Kubik, P. W.; Baur, H.; Wieler, R.; Haghipour, N.

    2009-04-01

    The Makran region of southeastern Iran is an active accretionary wedge with a partially subaerial component. New investigations have revealed a rather complex geodynamic evolution of the Makran active accretionary wedge that is not yet fully understood in its entity. Ongoing convergence between the Arabian and Eurasian plates and tectonic activity since the late Mesozoic has extended all trough the Quaternary. We focus here on fluvial and alluvial sequences in tectonically separated basins that have been deposited probably in the Pliocene/Quaternary, based on stratigraphic classification in official geological maps, in order to understand the climatic and tectonic forces occurring during the ongoing accretionary wegde formation. Specifically, we investigate the influence of Quaternary climate variations (Pleistocene cold period, monsoonal variations) on erosional and depositional processes in the (semi)arid Makran as well as local and regional tectonic forces in the Coastal and Central Makran Range region. Necessary for such an analysis is a temporal calibration of alluvial and fluvial terrace sequences that will allow an inter-basin correlation. We utilize the exposure age dating method using terrestrial cosmogenic nuclides (TCN) due to the lack of otherwise datatable material in the arid Makran region. Limited radiocarbon data are only available for marine terraces (wave-cut platforms). Our preliminary 21Ne and 10Be TCN-ages of amalgamated clast samples from (un)deformed terrace and alluvial sequences range from ~250 ky to present day (modern wash). These ages agree in relative terms with sequences previously assigned by other investigations through correlation of Quaternary sequences from Central and Western Iran regions. However, our minimum ages suggest that all age sequences are of middle to late Pleistocene age, compared to Pliocene age estimates previously assigned for the oldest units. Although often suggested, a genetical relation and connection of those

  16. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis

    Science.gov (United States)

    Tabelow, Karsten; König, Reinhard; Polzehl, Jörg

    2016-01-01

    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809

  17. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis.

    Directory of Open Access Journals (Sweden)

    Matthias Deliano

    Full Text Available Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.

  18. Preferences for learning different types of genome sequencing results among young breast cancer patients: Role of psychological and clinical factors.

    Science.gov (United States)

    Kaphingst, Kimberly A; Ivanovich, Jennifer; Lyons, Sarah; Biesecker, Barbara; Dresser, Rebecca; Elrick, Ashley; Matsen, Cindy; Goodman, Melody

    2018-01-29

    The growing importance of genome sequencing means that patients will increasingly face decisions regarding what results they would like to learn. The present study examined psychological and clinical factors that might affect these preferences. 1,080 women diagnosed with breast cancer at age 40 or younger completed an online survey. We assessed their interest in learning various types of genome sequencing results: risk of preventable disease or unpreventable disease, cancer treatment response, uncertain meaning, risk to relatives' health, and ancestry/physical traits. Multivariable logistic regression was used to examine whether being "very" interested in each result type was associated with clinical factors: BRCA1/2 mutation status, prior genetic testing, family history of breast cancer, and psychological factors: cancer recurrence worry, genetic risk worry, future orientation, health information orientation, and genome sequencing knowledge. The proportion of respondents who were very interested in learning each type of result ranged from 16% to 77%. In all multivariable models, those who were very interested in learning a result type had significantly higher knowledge about sequencing benefits, greater genetic risks worry, and stronger health information orientation compared to those with less interest (p-values psychological factors. Shared decision-making approaches that increase knowledge about genome sequencing and incorporate patient preferences for health information and learning about genetic risks may help support patients' informed choices about learning different types of sequencing results. © Society of Behavioral Medicine 2018.

  19. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    Science.gov (United States)

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Mediators of exposure therapy for youth obsessive-compulsive disorder: specificity and temporal sequence of client and treatment factors.

    Science.gov (United States)

    Chu, Brian C; Colognori, Daniela B; Yang, Guang; Xie, Min-ge; Lindsey Bergman, R; Piacentini, John

    2015-05-01

    Behavioral engagement and cognitive coping have been hypothesized to mediate effectiveness of exposure-based therapies. Identifying which specific child factors mediate successful therapy and which therapist factors facilitate change can help make our evidence-based treatments more efficient and robust. The current study examines the specificity and temporal sequence of relations among hypothesized client and therapist mediators in exposure therapy for pediatric Obsessive Compulsive Disorder (OCD). Youth coping (cognitive, behavioral), youth safety behaviors (avoidance, escape, compulsive behaviors), therapist interventions (cognitive, exposure extensiveness), and youth anxiety were rated via observational ratings of therapy sessions of OCD youth (N=43; ages=8 - 17; 62.8% male) who had received Exposure and Response Prevention (ERP). Regression analysis using Generalized Estimation Equations and cross-lagged panel analysis (CLPA) were conducted to model anxiety change within and across sessions, to determine formal mediators of anxiety change, and to establish sequence of effects. Anxiety ratings decreased linearly across exposures within sessions. Youth coping and therapist interventions significantly mediated anxiety change across exposures, and youth-interfering behavior mediated anxiety change at the trend level. In CLPA, youth-interfering behaviors predicted, and were predicted by, changes in anxiety. Youth coping was predicted by prior anxiety change. The study provides a preliminary examination of specificity and temporal sequence among child and therapist behaviors in predicting youth anxiety. Results suggest that therapists should educate clients in the natural rebound effects of anxiety between sessions and should be aware of the negatively reinforcing properties of avoidance during exposure. Copyright © 2015. Published by Elsevier Ltd.

  1. Motor Sequence Learning Performance in Parkinson's Disease Patients Depends on the Stage of Disease

    Science.gov (United States)

    Stephan, Marianne A.; Meier, Beat; Zaugg, Sabine Weber; Kaelin-Lang, Alain

    2011-01-01

    It is still unclear, whether patients with Parkinson's disease (PD) are impaired in the incidental learning of different motor sequences in short succession, although such a deficit might greatly impact their daily life. The aim of this study was thus to clarify the relation between disease parameters of PD and incidental motor learning of two…

  2. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    Science.gov (United States)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  3. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  4. Phonological learning in semantic dementia.

    Science.gov (United States)

    Jefferies, Elizabeth; Bott, Samantha; Ehsan, Sheeba; Lambon Ralph, Matthew A

    2011-04-01

    Patients with semantic dementia (SD) have anterior temporal lobe (ATL) atrophy that gives rise to a highly selective deterioration of semantic knowledge. Despite pronounced anomia and poor comprehension of words and pictures, SD patients have well-formed, fluent speech and normal digit span. Given the intimate connection between phonological STM and word learning revealed by both neuropsychological and developmental studies, SD patients might be expected to show good acquisition of new phonological forms, even though their ability to map these onto meanings is impaired. In contradiction of these predictions, a limited amount of previous research has found poor learning of new phonological forms in SD. In a series of experiments, we examined whether SD patient, GE, could learn novel phonological sequences and, if so, under which circumstances. GE showed normal benefits of phonological knowledge in STM (i.e., normal phonotactic frequency and phonological similarity effects) but reduced support from semantic memory (i.e., poor immediate serial recall for semantically degraded words, characterised by frequent item errors). Next, we demonstrated normal learning of serial order information for repeated lists of single-digit number words using the Hebb paradigm: these items were well-understood allowing them to be repeated without frequent item errors. In contrast, patient GE showed little learning of nonsense syllable sequences using the same Hebb paradigm. Detailed analysis revealed that both GE and the controls showed a tendency to learn their own errors as opposed to the target items. Finally, we showed normal learning of phonological sequences for GE when he was prevented from repeating his errors. These findings confirm that the ATL atrophy in SD disrupts phonological processing for semantically degraded words but leaves the phonological architecture intact. Consequently, when item errors are minimised, phonological STM can support the acquisition of new phoneme

  5. Does Sleep Facilitate the Consolidation of Allocentric or Egocentric Representations of Implicitly Learned Visual-Motor Sequence Learning?

    Science.gov (United States)

    Viczko, Jeremy; Sergeeva, Valya; Ray, Laura B.; Owen, Adrian M.; Fogel, Stuart M.

    2018-01-01

    Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation…

  6. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    Science.gov (United States)

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  7. Learning to predict is spared in mild cognitive impairment due to Alzheimer's disease.

    Science.gov (United States)

    Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe

    2015-10-01

    Learning the statistics of the environment is critical for predicting upcoming events. However, little is known about how we translate previous knowledge about scene regularities to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are known to have spared implicit but impaired explicit recognition memory are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards oriented gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we show that executive cognitive control may account for individual variability in predictive learning. That is, we observed significant positive correlations of performance in attentional and working memory tasks with post-training performance in the prediction task. Taken together, these results suggest a mediating role of circuits involved in cognitive control (i.e. frontal circuits) that may support the ability for predictive learning in MCI-AD.

  8. Examining the Effectiveness of a Semi-Self-Paced Flipped Learning Format in a College General Chemistry Sequence

    Science.gov (United States)

    Hibbard, Lisa; Sung, Shannon; Wells, Breche´

    2016-01-01

    Flipped learning has come to the forefront in education. It maximizes learning by moving content delivery online, where learning can be self-paced, allowing for class time to focus on student-centered active learning. This five-year cross-sectional study assessed student performance in a college general chemistry for majors sequence taught by a…

  9. Insertion of Contemporary and Modern Physics in classroom: a teaching learning sequence on radioactivity

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre dos Santos Batista

    2017-12-01

    Full Text Available After more than two decades of justifications on the insertion of Modern and Contemporary Physics in the high school Education, the current challenge regards to how this content can be inserted in the classroom in an interesting and innovative way. Recent research reveals that despite a significant accumulation of recent academic research, whose purpose is to assist teachers pedagogically, few are grounded and proposed theoretically seeking to investigate how this integration happens. In this sense, we present a teaching-learning sequence on the topic of radioactivity, forged in the theoretical and methodological assumptions of Design-Based Research and a Teaching-Learning Sequence that, when implemented in public schools in the south of Bahia, produced the relevant knowledge to be shared with the community on teaching physics. Forged in our assumptions, the proposal allows teachers and researchers to understand questions about how, when and why, in fact, the inclusion of Modern and Contemporary Physics can occur in a non-traditional way. Therefore, the importance of this proposal is revealed to the high school of physics as it translates its ability to transform the theoretical demands on the curriculum and methodological innovation in the practical interventions in the classroom. We add that the availability of the necessary sources to find lesson plans, quizzes, texts, videos of teaching-learning sequence, shows the contribution of this work for teachers and researchers, in particular, to improve the scientific learning of students in the Basic Education.

  10. Sequencing learning experiences to engage different level learners in the workplace: An interview study with excellent clinical teachers.

    Science.gov (United States)

    Chen, H Carrie; O'Sullivan, Patricia; Teherani, Arianne; Fogh, Shannon; Kobashi, Brent; ten Cate, Olle

    2015-01-01

    Learning in the clinical workplace can appear to rely on opportunistic teaching. The cognitive apprenticeship model describes assigning tasks based on learner rather than just workplace needs. This study aimed to determine how excellent clinical teachers select clinical learning experiences to support the workplace participation and development of different level learners. Using a constructivist grounded theory approach, we conducted semi-structured interviews with medical school faculty identified as excellent clinical teachers teaching multiple levels of learners. We explored their approach to teach different level learners and their perceived role in promoting learner development. We performed thematic analysis of the interview transcripts using open and axial coding. We interviewed 19 clinical teachers and identified three themes related to their teaching approach: sequencing of learning experiences, selection of learning activities and teacher responsibilities. All teachers used sequencing as a teaching strategy by varying content, complexity and expectations by learner level. The teachers initially selected learning activities based on learner level and adjusted for individual competencies over time. They identified teacher responsibilities for learner education and patient safety, and used sequencing to promote both. Excellent clinical teachers described strategies for matching available learning opportunities to learners' developmental levels to safely engage learners and improve learning in the clinical workplace.

  11. Learning Bounds of ERM Principle for Sequences of Time-Dependent Samples

    Directory of Open Access Journals (Sweden)

    Mingchen Yao

    2015-01-01

    Full Text Available Many generalization results in learning theory are established under the assumption that samples are independent and identically distributed (i.i.d.. However, numerous learning tasks in practical applications involve the time-dependent data. In this paper, we propose a theoretical framework to analyze the generalization performance of the empirical risk minimization (ERM principle for sequences of time-dependent samples (TDS. In particular, we first present the generalization bound of ERM principle for TDS. By introducing some auxiliary quantities, we also give a further analysis of the generalization properties and the asymptotical behaviors of ERM principle for TDS.

  12. Detecting false positive sequence homology: a machine learning approach.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  13. Self-learning fuzzy controllers based on temporal back propagation

    Science.gov (United States)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  14. Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

    KAUST Repository

    Zhang, Tianzhu

    2014-06-19

    Object tracking is the process of determining the states of a target in consecutive video frames based on properties of motion and appearance consistency. In this paper, we propose a consistent low-rank sparse tracker (CLRST) that builds upon the particle filter framework for tracking. By exploiting temporal consistency, the proposed CLRST algorithm adaptively prunes and selects candidate particles. By using linear sparse combinations of dictionary templates, the proposed method learns the sparse representations of image regions corresponding to candidate particles jointly by exploiting the underlying low-rank constraints. In addition, the proposed CLRST algorithm is computationally attractive since temporal consistency property helps prune particles and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25 challenging image sequences. Experimental results show that the CLRST algorithm performs favorably against state-of-the-art tracking methods in terms of accuracy and execution time.

  15. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

    Science.gov (United States)

    Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping

    2017-12-01

    Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

  16. Complete mitochondrial genome sequences of Korean native horse from Jeju Island: uncovering the spatio-temporal dynamics.

    Science.gov (United States)

    Yoon, Sook Hee; Kim, Jaemin; Shin, Donghyun; Cho, Seoae; Kwak, Woori; Lee, Hak-Kyo; Park, Kyoung-Do; Kim, Heebal

    2017-04-01

    The Korean native horse (Jeju horse) is one of the most important animals in Korean historical, cultural, and economical viewpoints. In the early 1980s, the Jeju horse was close to extinction. The aim of this study is to explore the phylogenomics of Korean native horse focusing on spatio-temporal dynamics. We determined complete mitochondrial genome sequences for the first Korean native (n = 6) and additional Mongolian (n = 2) horses. Those sequences were analyzed together with 143 published ones using Bayesian coalescent approach as well as three different phylogenetic analysis methods, Bayesian inference, maximum likelihood, and neighbor-joining methods. The phylogenomic trees revealed that the Korean native horses had multiple origins and clustered together with some horses from four European and one Middle Eastern breeds. Our phylogenomic analyses also supported that there was no apparent association between breed or geographic location and the evolution of global horses. Time of the most recent common ancestor of the Korean native horse was approximately 13,200-63,200 years, which was much younger than 0.696 My of modern horses. Additionally, our results showed that all global horse lineages including Korean native horse existed prior to their domestication events occurred in about 6000-10,000 years ago. This is the first study on phylogenomics of the Korean native horse focusing on spatio-temporal dynamics. Our findings increase our understanding of the domestication history of the Korean native horses, and could provide useful information for horse conservation projects as well as for horse genomics, emergence, and the geographical distribution.

  17. Learning sequences on the subject of energy. Secondary school stage 1. Lernsequenzen zum Thema Energie. Sekundarstufe 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The ten learning sequences follow on one another. Each picks on a particular aspect from the energy field. The subject notebooks are self-contained and can therefore be used independently. Apart from actual data and energy-related information, the information for the teacher contains: - proposals for teaching - suggestions for further activities - sample solutions for the pupil's sheets - references to the literature and media. The worksheets for the pupils are different; it should be possible to use the learning sequences in all classes of secondary school stage 1. The multicoloured foils for projectors should motivate, on the one hand, and on the other hand should help to check the results of learning.

  18. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery.

    Directory of Open Access Journals (Sweden)

    Rubén Armañanzas

    Full Text Available Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE. Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery.

  19. Influenza A virus evolution and spatio-temporal dynamics in eurasian wild birds: A phylogenetic and phylogeographical study of whole-genome sequence data

    NARCIS (Netherlands)

    N.S. Lewis (Nicola); J.H. Verhagen (Josanne); Z. Javakhishvili (Zurab); C.A. Russell (Colin); P. Lexmond (Pascal); K.B. Westgeest (Kim); T.M. Bestebroer (Theo); R.A. Halpin (Rebecca); X. Lin (Xudong); A. Ransier (Amy); N.B. Fedorova (Nadia B.); T.B. Stockwell (Timothy B.); N. Latorre-Margalef (Neus); B. Olsen (Björn); G.J.D. Smith (Gavin); J. Bahl (Justin); D.E. Wentworth (David E.); J. Waldenström (Jonas); R.A.M. Fouchier (Ron); M.T. de Graaf (Marieke)

    2015-01-01

    textabstractLow pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences

  20. Joint level-set and spatio-temporal motion detection for cell segmentation.

    Science.gov (United States)

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan

  1. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  2. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls

    Science.gov (United States)

    Ortiz Alonso, Tomás; Santos, Juan Matías; Ortiz Terán, Laura; Borrego Hernández, Mayelin; Poch Broto, Joaquín; de Erausquin, Gabriel Alejandro

    2015-01-01

    Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision. PMID:26225827

  3. Definition and Analysis of a System for the Automated Comparison of Curriculum Sequencing Algorithms in Adaptive Distance Learning

    Science.gov (United States)

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    2011-01-01

    LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…

  4. Modelling estimation and analysis of dynamic processes from image sequences using temporal random closed sets and point processes with application to the cell exocytosis and endocytosis

    OpenAIRE

    Díaz Fernández, Ester

    2010-01-01

    In this thesis, new models and methodologies are introduced for the analysis of dynamic processes characterized by image sequences with spatial temporal overlapping. The spatial temporal overlapping exists in many natural phenomena and should be addressed properly in several Science disciplines such as Microscopy, Material Sciences, Biology, Geostatistics or Communication Networks. This work is related to the Point Process and Random Closed Set theories, within Stochastic Ge...

  5. Auditory temporal processing in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi

    2016-07-01

    Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    Science.gov (United States)

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  7. Temporality of Features in Near-Death Experience Narratives

    Directory of Open Access Journals (Sweden)

    Charlotte Martial

    2017-06-01

    Full Text Available Background: After an occurrence of a Near-Death Experience (NDE, Near-Death Experiencers (NDErs usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area.Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives as well as the most frequently reported temporality sequences of features.Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32. A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features.Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs.Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon.

  8. Music and language perception: expectations, structural integration, and cognitive sequencing.

    Science.gov (United States)

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. Copyright © 2012 Cognitive Science Society, Inc.

  9. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    Science.gov (United States)

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse.

    Science.gov (United States)

    Finnie, J W; Blumbergs, P C; Manavis, J

    2016-05-01

    This study examined the temporal sequence of post-mortem changes in the cerebellar cortical granular and Purkinje cell layers of mice kept at a constant ambient temperature for up to 4 weeks. Nuclei of granule cell microneurons became pyknotic early after death, increasing progressively until, by 7 days, widespread nuclear lysis resulted in marked cellular depletion of the granular layer. Purkinje cells were relatively unaltered until about 96 h post mortem, at which time there was shrinkage and multivacuolation of the amphophilic cytoplasm, nuclear hyperchromasia and, sometimes, a perinuclear clear space. By 7 days, Purkinje cells had hypereosinophilic cytoplasm and frequent nuclear pyknosis. By 2 weeks after death, Purkinje cells showed homogenization, the cytoplasm being uniformly eosinophilic, progressing to a 'ghost-like' appearance in which the cytoplasm had pale eosinophilic staining with indistinct cell boundaries, and nuclei often absent. The results of this study could assist in differentiating post-mortem autolysis from ante-mortem lesions in the cerebellar cortex and determining the post-mortem interval. Moreover, this information could be useful when interpreting brain lesions in valuable mice found dead unexpectedly during the course of biomedical experiments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Temporal Reference, Attentional Modulation, and Crossmodal Assimilation

    Directory of Open Access Journals (Sweden)

    Yingqi Wan

    2018-06-01

    Full Text Available Crossmodal assimilation effect refers to the prominent phenomenon by which ensemble mean extracted from a sequence of task-irrelevant distractor events, such as auditory intervals, assimilates/biases the perception (such as visual interval of the subsequent task-relevant target events in another sensory modality. In current experiments, using visual Ternus display, we examined the roles of temporal reference, materialized as the time information accumulated before the onset of target event, as well as the attentional modulation in crossmodal temporal interaction. Specifically, we examined how the global time interval, the mean auditory inter-intervals and the last interval in the auditory sequence assimilate and bias the subsequent percept of visual Ternus motion (element motion vs. group motion. We demonstrated that both the ensemble (geometric mean and the last interval in the auditory sequence contribute to bias the percept of visual motion. Longer mean (or last interval elicited more reports of group motion, whereas the shorter mean (or last auditory intervals gave rise to more dominant percept of element motion. Importantly, observers have shown dynamic adaptation to the temporal reference of crossmodal assimilation: when the target visual Ternus stimuli were separated by a long gap interval after the preceding sound sequence, the assimilation effect by ensemble mean was reduced. Our findings suggested that crossmodal assimilation relies on a suitable temporal reference on adaptation level, and revealed a general temporal perceptual grouping principle underlying complex audio-visual interactions in everyday dynamic situations.

  12. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    Science.gov (United States)

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal

  13. Activity in the superior temporal sulcus highlights learning competence in an interaction game.

    Science.gov (United States)

    Haruno, Masahiko; Kawato, Mitsuo

    2009-04-08

    During behavioral adaptation through interaction with human and nonhuman agents, marked individual differences are seen in both real-life situations and games. However, the underlying neural mechanism is not well understood. We conducted a neuroimaging experiment in which subjects maximized monetary rewards by learning in a prisoner's dilemma game with two computer agents: agent A, a tit-for-tat player who repeats the subject's previous action, and agent B, a simple stochastic cooperator oblivious to the subject's action. Approximately 1/3 of the subjects (group I) learned optimally in relation to both A and B, while another 1/3 (group II) did so only for B. Post-experiment interviews indicated that group I exploited the agent strategies more often than group II. Significant differences in learning-related brain activity between the two groups were only found in the superior temporal sulcus (STS) for both A and B. Furthermore, the learning performance of each group I subject was predictable based on this STS activity, but not in the group II subjects. This differential activity could not be attributed to a behavioral difference since it persisted in relation to agent B for which the two groups behaved similarly. In sharp contrast, the brain structures for reward processing were recruited similarly by both groups. These results suggest that STS provides knowledge of the other agent's strategies for association between action and reward and highlights learning competence during interactive reinforcement learning.

  14. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  15. Observational fear learning in degus is correlated with temporal vocalization patterns.

    Science.gov (United States)

    Lidhar, Navdeep K; Insel, Nathan; Dong, June Yue; Takehara-Nishiuchi, Kaori

    2017-08-14

    Some animals learn to fear a situation after observing another individual come to harm, and this learning is influenced by the animals' social relationship and history. An important but sometimes overlooked factor in studies of observational fear learning is that social context not only affects observers, but may also influence the behavior and communications expressed by those being observed. Here we sought to investigate whether observational fear learning in the degu (Octodon degus) is affected by social familiarity, and the degree to which vocal expressions of alarm or distress contribute. 'Demonstrator' degus underwent contextual fear conditioning in the presence of a cagemate or stranger observer. Among the 15 male pairs, observers of familiar demonstrators exhibited higher freezing rates than observers of strangers when returned to the conditioning environment one day later. Observer freezing during testing was, however, also related to the proportion of short- versus long- inter-call-intervals (ICIs) in vocalizations recorded during prior conditioning. In a regression model that included both social relationship and ICI patterns, only the latter was significant. Further investigation of vocalizations, including use of a novel, directed k-means clustering approach, suggested that temporal structure rather than tonal variations may have been responsible for communicating danger. These data offer insight into how different expressions of distress or fear may impact an observer, adding to the complexity of social context effects in studies of empathy and social cognition. The experiments also offer new data on degu alarm calls and a potentially novel methodological approach to complex vocalizations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies

    Science.gov (United States)

    Fournier-Viger, Philippe; Nkambou, Roger; Faghihi, Usef; Nguifo, Engelbert Mephu

    We propose two mechanisms for agent learning based on the idea of mining temporal patterns from agent behavior. The first one consists of extracting temporal patterns from the perceived behavior of other agents accomplishing a task, to learn the task. The second learning mechanism consists in extracting temporal patterns from an agent's own behavior. In this case, the agent then reuses patterns that brought self-satisfaction. In both cases, no assumption is made on how the observed agents' behavior is internally generated. A case study with a real application is presented to illustrate each learning mechanism.

  17. Initial uncertainty impacts statistical learning in sound sequence processing.

    Science.gov (United States)

    Todd, Juanita; Provost, Alexander; Whitson, Lisa; Mullens, Daniel

    2016-11-01

    This paper features two studies confirming a lasting impact of first learning on how subsequent experience is weighted in early relevance-filtering processes. In both studies participants were exposed to sequences of sound that contained a regular pattern on two different timescales. Regular patterning in sound is readily detected by the auditory system and used to form "prediction models" that define the most likely properties of sound to be encountered in a given context. The presence and strength of these prediction models is inferred from changes in automatically elicited components of auditory evoked potentials. Both studies employed sound sequences that contained both a local and longer-term pattern. The local pattern was defined by a regular repeating pure tone occasionally interrupted by a rare deviating tone (p=0.125) that was physically different (a 30msvs. 60ms duration difference in one condition and a 1000Hz vs. 1500Hz frequency difference in the other). The longer-term pattern was defined by the rate at which the two tones alternated probabilities (i.e., the tone that was first rare became common and the tone that was first common became rare). There was no task related to the tones and participants were asked to ignore them while focussing attention on a movie with subtitles. Auditory-evoked potentials revealed long lasting modulatory influences based on whether the tone was initially encountered as rare and unpredictable or common and predictable. The results are interpreted as evidence that probability (or indeed predictability) assigns a differential information-value to the two tones that in turn affects the extent to which prediction models are updated and imposed. These effects are exposed for both common and rare occurrences of the tones. The studies contribute to a body of work that reveals that probabilistic information is not faithfully represented in these early evoked potentials and instead exposes that predictability (or conversely

  18. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  19. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    Science.gov (United States)

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  20. Contributions of Medial Temporal Lobe and Striatal Memory Systems to Learning and Retrieving Overlapping Spatial Memories

    Science.gov (United States)

    Brown, Thackery I.; Stern, Chantal E.

    2014-01-01

    Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868

  1. Learning to Automatically Detect Features for Mobile Robots Using Second-Order Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Olivier Aycard

    2004-12-01

    Full Text Available In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.

  2. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  3. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  4. More Than Words: The Role of Multiword Sequences in Language Learning and Use.

    Science.gov (United States)

    Christiansen, Morten H; Arnon, Inbal

    2017-07-01

    The ability to convey our thoughts using an infinite number of linguistic expressions is one of the hallmarks of human language. Understanding the nature of the psychological mechanisms and representations that give rise to this unique productivity is a fundamental goal for the cognitive sciences. A long-standing hypothesis is that single words and rules form the basic building blocks of linguistic productivity, with multiword sequences being treated as units only in peripheral cases such as idioms. The new millennium, however, has seen a shift toward construing multiword linguistic units not as linguistic rarities, but as important building blocks for language acquisition and processing. This shift-which originated within theoretical approaches that emphasize language learning and use-has far-reaching implications for theories of language representation, processing, and acquisition. Incorporating multiword units as integral building blocks blurs the distinction between grammar and lexicon; calls for models of production and comprehension that can accommodate and give rise to the effect of multiword information on processing; and highlights the importance of such units to learning. In this special topic, we bring together cutting-edge work on multiword sequences in theoretical linguistics, first-language acquisition, psycholinguistics, computational modeling, and second-language learning to present a comprehensive overview of the prominence and importance of such units in language, their possible role in explaining differences between first- and second-language learning, and the challenges the combined findings pose for theories of language. Copyright © 2017 Cognitive Science Society, Inc.

  5. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun

    2011-02-05

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  6. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak

    2011-01-01

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  7. An online supervised learning method based on gradient descent for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sequence Learning with Stochastic Feedback in a Cross-Cultural Sample of Boys in the Autistic Spectrum

    Science.gov (United States)

    Hentschel, Maren; Lange-Kuttner, Christiane; Averbeck, Bruno B.

    2016-01-01

    The study investigated sequence learning from stochastic feedback in boys with Autistic Spectrum Disorder (ASD) and typically developed (TD) boys. We asked boys with ASD from Nigeria and the UK as well as age- and gender-matched controls (also males only) to deduce a sequence of four left and right button presses, LLRR, RRLL, LRLR, RLRL, LRRL and…

  9. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-11-01

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Learning Predictive Statistics: Strategies and Brain Mechanisms.

    Science.gov (United States)

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-08-30

    When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to

  11. Temporal Coordination and Adaptation to Rate Change in Music Performance

    Science.gov (United States)

    Loehr, Janeen D.; Large, Edward W.; Palmer, Caroline

    2011-01-01

    People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase…

  12. Pre-learning stress differentially affects long-term memory for emotional words, depending on temporal proximity to the learning experience.

    Science.gov (United States)

    Zoladz, Phillip R; Clark, Brianne; Warnecke, Ashlee; Smith, Lindsay; Tabar, Jennifer; Talbot, Jeffery N

    2011-07-06

    Stress exerts a profound, yet complex, influence on learning and memory and can enhance, impair or have no effect on these processes. Here, we have examined how the administration of stress at different times before learning affects long-term (24-hr) memory for neutral and emotional information. Participants submerged their dominant hand into a bath of ice cold water (Stress) or into a bath of warm water (No stress) for 3 min. Either immediately (Exp. 1) or 30 min (Exp. 2) after the water bath manipulation, participants were presented with a list of 30 words varying in emotional valence. The next day, participants' memory for the word list was assessed via free recall and recognition tests. In both experiments, stressed participants exhibited greater blood pressure, salivary cortisol levels, and subjective pain and stress ratings than non-stressed participants in response to the water bath manipulation. Stress applied immediately prior to learning (Exp. 1) enhanced the recognition of positive words, while stress applied 30 min prior to learning (Exp. 2) impaired free recall of negative words. Participants' recognition of positive words in Experiment 1 was positively associated with their heart rate responses to the water bath manipulation, while participants' free recall of negative words in Experiment 2 was negatively associated with their blood pressure and cortisol responses to the water bath manipulation. These findings indicate that the differential effects of pre-learning stress on long-term memory may depend on the temporal proximity of the stressor to the learning experience and the emotional nature of the to-be-learned information. Copyright © 2011. Published by Elsevier Inc.

  13. Comparison of Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model in a successive temporal bisection task.

    Science.gov (United States)

    Arantes, Joana

    2008-06-01

    The present research tested the generality of the "context effect" previously reported in experiments using temporal double bisection tasks [e.g., Arantes, J., Machado, A. Context effects in a temporal discrimination task: Further tests of the Scalar Expectancy Theory and Learning-to-Time models. J. Exp. Anal. Behav., in press]. Pigeons learned two temporal discriminations in which all the stimuli appear successively: 1s (red) vs. 4s (green) and 4s (blue) vs. 16s (yellow). Then, two tests were conducted to compare predictions of two timing models, Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model. In one test, two psychometric functions were obtained by presenting pigeons with intermediate signal durations (1-4s and 4-16s). Results were mixed. In the critical test, pigeons were exposed to signals ranging from 1 to 16s and followed by the green or the blue key. Whereas SET predicted that the relative response rate to each of these keys should be independent of the signal duration, LeT predicted that the relative response rate to the green key (compared with the blue key) should increase with the signal duration. Results were consistent with LeT's predictions, showing that the context effect is obtained even when subjects do not need to make a choice between two keys presented simultaneously.

  14. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    Science.gov (United States)

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Event-related potentials reflect impaired temporal interval learning following haloperidol administration.

    Science.gov (United States)

    Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P

    2017-09-01

    Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.

  16. Dissociable effects of practice variability on learning motor and timing skills.

    Science.gov (United States)

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a

  17. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.

  18. The facial nerve in the temporal bone as visualised via thin-layer paratransversal and sagittal MR tomographic images by means of T1 spin-echo and FLASH sequences

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.; Jaeger, L.J.E.; Bruegel, F.J.; Grevers, G.; Reiser, M.F.

    1995-01-01

    It is difficult to effect visualization and delineation of the facial nerve and its neighbouring structures in the temporal bone with conventional MRI examination protocols. We tested temporal bone MRI with 2 mm slices and compared T 1 -weighted FLASH (T R =400 ms, T E =10 ms, 90 flip angle) and spin-echo (T R =540 ms, T E =15 ms) sequences. 5 volunteers and 14 patients were examined with the head coil of a 1.0 T whole body MRI scanner (Impact, Siemens, Erlangen) with para-transversal images orientated parallel to the inferior outline of the clivus and sagittal images orientated along the brainstem. The facial nerve and its neighbouring structures could be reliably visualized and differentiated along its entire course. The FLASH sequence was superior to the spin-echo sequence. 8 of 11 patients with peripheral facial nerve palsy showed contrast enhancement. In two patients, local swelling of the affected facial nerve was evident. (orig./MG) [de

  19. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    Science.gov (United States)

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Temporal Dynamics of Task Switching and Abstract-Concept Learning in Pigeons

    Directory of Open Access Journals (Sweden)

    Thomas Alexander Daniel

    2015-09-01

    Full Text Available The current study examined whether pigeons could learn to use abstract concepts as the basis for conditionally switching behavior as a function of time. Using a mid-session reversal task, experienced pigeons were trained to switch from matching-to-sample (MTS to non-matching-to-sample (NMTS conditional discriminations within a session. One group had prior training with MTS, while the other had prior training with NMTS. Over training, stimulus set size was progressively doubled from 3 to 6 to 12 stimuli to promote abstract concept development. Prior experience had an effect on the initial learning at each of the set sizes but by the end of training there were no group differences, as both groups showed similar within-session linear matching functions. After acquiring the 12-item set, abstract-concept learning was tested by placing novel stimuli at the beginning and end of a test session. Prior matching and non-matching experience affected transfer behavior. The matching experienced group transferred to novel stimuli in both the matching and non-matching portion of the sessions using a matching rule. The non-matching experienced group transferred to novel stimuli in both portions of the session using a non-matching rule. The representations used as the basis for mid-session reversal of the conditional discrimination behaviors and subsequent transfer behavior appears to have different temporal sources. The implications for the flexibility and organization of complex behaviors are considered.

  1. Application of Deep Learning of Multi-Temporal SENTINEL-1 Images for the Classification of Coastal Vegetation Zone of the Danube Delta

    Science.gov (United States)

    Niculescu, S.; Ienco, D.; Hanganu, J.

    2018-04-01

    Land cover is a fundamental variable for regional planning, as well as for the study and understanding of the environment. This work propose a multi-temporal approach relying on a fusion of radar multi-sensor data and information collected by the latest sensor (Sentinel-1) with a view to obtaining better results than traditional image processing techniques. The Danube Delta is the site for this work. The spatial approach relies on new spatial analysis technologies and methodologies: Deep Learning of multi-temporal Sentinel-1. We propose a deep learning network for image classification which exploits the multi-temporal characteristic of Sentinel-1 data. The model we employ is a Gated Recurrent Unit (GRU) Network, a recurrent neural network that explicitly takes into account the time dimension via a gated mechanism to perform the final prediction. The main quality of the GRU network is its ability to consider only the important part of the information coming from the temporal data discarding the irrelevant information via a forgetting mechanism. We propose to use such network structure to classify a series of images Sentinel-1 (20 Sentinel-1 images acquired between 9.10.2014 and 01.04.2016). The results are compared with results of the classification of Random Forest.

  2. A Teaching-Learning Sequence of Colour Informed by History and Philosophy of Science

    Science.gov (United States)

    Maurício, Paulo; Valente, Bianor; Chagas, Isabel

    2017-01-01

    In this work, we present a teaching-learning sequence on colour intended to a pre-service elementary teacher programme informed by History and Philosophy of Science. Working in a socio-constructivist framework, we made an excursion on the history of colour. Our excursion through history of colour, as well as the reported misconception on colour…

  3. Rehearsal strategies during motor-sequence learning in old age : Execution vs motor imagery

    NARCIS (Netherlands)

    Stoter, Arjan J. R.; Scherder, Erik J. A.; Kamsma, Yvo P. T.; Mulder, Theo

    Motor imagery and action-based rehearsal were compared during motor sequence-learning by young adults (M = 25 yr., SD = 3) and aged adults (M = 63 yr., SD = 7). General accuracy of aged adults was lower than that of young adults (F-1,F-28 = 7.37, p = .01) even though working-memory capacity was

  4. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  5. The role of consolidation in learning context-dependent phonotactic patterns in speech and digital sequence production.

    Science.gov (United States)

    Anderson, Nathaniel D; Dell, Gary S

    2018-04-03

    Speakers implicitly learn novel phonotactic patterns by producing strings of syllables. The learning is revealed in their speech errors. First-order patterns, such as "/f/ must be a syllable onset," can be distinguished from contingent, or second-order, patterns, such as "/f/ must be an onset if the vowel is /a/, but a coda if the vowel is /o/." A metaanalysis of 19 experiments clearly demonstrated that first-order patterns affect speech errors to a very great extent in a single experimental session, but second-order vowel-contingent patterns only affect errors on the second day of testing, suggesting the need for a consolidation period. Two experiments tested an analogue to these studies involving sequences of button pushes, with fingers as "consonants" and thumbs as "vowels." The button-push errors revealed two of the key speech-error findings: first-order patterns are learned quickly, but second-order thumb-contingent patterns are only strongly revealed in the errors on the second day of testing. The influence of computational complexity on the implicit learning of phonotactic patterns in speech production may be a general feature of sequence production.

  6. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    Science.gov (United States)

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.

  7. Food Sauces to Understand Volcanoes: a Learning Sequence in Middle School

    Science.gov (United States)

    Pieraccioni, Fabio; Bonaccorsi, Elena; Gioncada, Anna

    2017-04-01

    Some volcanic processes occur at pressures and temperatures very different from daily experience. Such extreme conditions, unreproducible in the classroom, can lead children to build concepts about volcanic phenomena very different from the reality (Greca & Moreira, 2000; Dove, 1998). The didactic goals of this learning sequence concern the relationships between the viscosity of magmas and types of erupted materials and their consequences on volcano shapes, to favour pupils' comprehension of what a volcano is. Viscosity and its temperature dependence can be easily experimented in class with analogue materials at room temperature (Baker et al., 2004). Our research aims are to observe the development of the thought of pupils of middle schools on volcanic phenomena; this allowed to put in evidence the benefits of this approach and to give suggestions to avoid possible critical points. We have experimented a hands-on learning sequence about volcanoes in four third classes of Tuscan middle schools, for an amount of 95 pupils, 48 females and 47 males. Sharing the principles of constructivism, we think useful that pupils start from their own direct experience for understanding natural phenomena not directly observable. Therefore, we start from the experiences and knowledge of children to build a inquiry-based itinerary (Minner et al., 2010; Pieraccioni et al., 2016). The learning sequence begins with a practical activity in which we employ common and well-known materials to introduce the concept of viscosity in order to relate various kinds of magma to the shape of volcanoes. One of the benefits of this approach is to overcome the problems of introducing complex concepts such as acidity of magmas or silica content, far from the pupils' experience and knowledge. These concepts are often used in Italian middle school textbooks to describe and classify volcanoes. The result is a list of names to learn by heart. On the contrary, by using oil, ketchup, peanut butter or honey

  8. "I know your name, but not your number"--Patients with verbal short-term memory deficits are impaired in learning sequences of digits.

    Science.gov (United States)

    Bormann, Tobias; Seyboth, Margret; Umarova, Roza; Weiller, Cornelius

    2015-06-01

    Studies on verbal learning in patients with impaired verbal short-term memory (vSTM) have revealed dissociations among types of verbal information. Patients with impaired vSTM are able to learn lists of known words but fail to acquire new word forms. This suggests that vSTM is involved in new word learning. The present study assessed both new word learning and the learning of digit sequences in two patients with impaired vSTM. In two experiments, participants were required to learn people's names, ages and professions, or their four digit 'phone numbers'. The STM patients were impaired on learning unknown family names and phone numbers, but managed to acquire other verbal information. In contrast, a patient with a severe verbal episodic memory impairment was impaired across information types. These results indicate verbal STM involvement in the learning of digit sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability.

    Science.gov (United States)

    Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M

    2011-07-15

    Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter

  10. Region segmentation along image sequence

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  11. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Directory of Open Access Journals (Sweden)

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  12. Substructural Regularization With Data-Sensitive Granularity for Sequence Transfer Learning.

    Science.gov (United States)

    Sun, Shichang; Liu, Hongbo; Meng, Jiana; Chen, C L Philip; Yang, Yu

    2018-06-01

    Sequence transfer learning is of interest in both academia and industry with the emergence of numerous new text domains from Twitter and other social media tools. In this paper, we put forward the data-sensitive granularity for transfer learning, and then, a novel substructural regularization transfer learning model (STLM) is proposed to preserve target domain features at substructural granularity in the light of the condition of labeled data set size. Our model is underpinned by hidden Markov model and regularization theory, where the substructural representation can be integrated as a penalty after measuring the dissimilarity of substructures between target domain and STLM with relative entropy. STLM can achieve the competing goals of preserving the target domain substructure and utilizing the observations from both the target and source domains simultaneously. The estimation of STLM is very efficient since an analytical solution can be derived as a necessary and sufficient condition. The relative usability of substructures to act as regularization parameters and the time complexity of STLM are also analyzed and discussed. Comprehensive experiments of part-of-speech tagging with both Brown and Twitter corpora fully justify that our model can make improvements on all the combinations of source and target domains.

  13. Infants' Learning, Memory, and Generalization of Learning for Bimodal Events.

    Science.gov (United States)

    Morrongiello, Barbara A.; Lasenby, Jennifer; Lee, Naomi

    2003-01-01

    Two studies examined the impact of temporal synchrony on infants' learning of and memory for sight-sound pairs. Findings indicated that 7-month-olds had no difficulty learning auditory-visual pairs regardless of temporal synchrony, remembering them 10 minutes later and 1 week later. Three-month-olds showed poorer learning in no-synchrony than in…

  14. Sequence Synopsis: Optimize Visual Summary of Temporal Event Data.

    Science.gov (United States)

    Chen, Yuanzhe; Xu, Panpan; Ren, Liu

    2018-01-01

    Event sequences analysis plays an important role in many application domains such as customer behavior analysis, electronic health record analysis and vehicle fault diagnosis. Real-world event sequence data is often noisy and complex with high event cardinality, making it a challenging task to construct concise yet comprehensive overviews for such data. In this paper, we propose a novel visualization technique based on the minimum description length (MDL) principle to construct a coarse-level overview of event sequence data while balancing the information loss in it. The method addresses a fundamental trade-off in visualization design: reducing visual clutter vs. increasing the information content in a visualization. The method enables simultaneous sequence clustering and pattern extraction and is highly tolerant to noises such as missing or additional events in the data. Based on this approach we propose a visual analytics framework with multiple levels-of-detail to facilitate interactive data exploration. We demonstrate the usability and effectiveness of our approach through case studies with two real-world datasets. One dataset showcases a new application domain for event sequence visualization, i.e., fault development path analysis in vehicles for predictive maintenance. We also discuss the strengths and limitations of the proposed method based on user feedback.

  15. E-learning task analysis making temporal evolution graphics on symptoms of waves and the ability to solve problems

    Science.gov (United States)

    Rosdiana, L.; Widodo, W.; Nurita, T.; Fauziah, A. N. M.

    2018-04-01

    This study aimed to describe the ability of pre-service teachers to create graphs, solve the problem of spatial and temporal evolution on the symptoms of vibrations and waves. The learning was conducted using e-learning method. The research design is a quasi-experimental design with one-shot case study. The e-learning contained learning materials and tasks involving answering tasks, making questions, solving their own questions, and making graphs. The participants of the study was 28 students of Science Department, Universitas Negeri Surabaya. The results obtained by using the e-learning were that the students’ ability increase gradually from task 1 to task 3 (the tasks consisted of three tasks). Additionally, based on the questionnaire with 28 respondents, it showed that 24 respondents stated that making graphs via e-learning were still difficult. Four respondents said that it was easy to make graphs via e-learning. Nine respondents stated that the e-learning did not help them in making graphs and 19 respondents stated that the e-learning help in creating graphs. The conclusion of the study is that the students was able to make graphs on paper sheet, but they got difficulty to make the graphs in e-learning (the virtual form).

  16. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    Science.gov (United States)

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2015-01-01

    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  17. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  18. Time and Associative Learning.

    Science.gov (United States)

    Balsam, Peter D; Drew, Michael R; Gallistel, C R

    2010-01-01

    In a basic associative learning paradigm, learning is said to have occurred when the conditioned stimulus evokes an anticipatory response. This learning is widely believed to depend on the contiguous presentation of conditioned and unconditioned stimulus. However, what it means to be contiguous has not been rigorously defined. Here we examine the empirical bases for these beliefs and suggest an alternative view based on the hypothesis that learning about the temporal relationships between events determines the speed of emergence, vigor and form of conditioned behavior. This temporal learning occurs very rapidly and prior to the appearance of the anticipatory response. The temporal relations are learned even when no anticipatory response is evoked. The speed with which an anticipatory response emerges is proportional to the informativeness of the predictive cue (CS) regarding the rate of occurrence of the predicted event (US). This analysis gives an account of what we mean by "temporal pairing" and is in accord with the data on speed of acquisition and basic findings in the cue competition literature. In this account, learning depends on perceiving and encoding temporal regularities rather than stimulus contiguities.

  19. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy

    Directory of Open Access Journals (Sweden)

    Françoise eLecaignard

    2015-09-01

    Full Text Available Deviant stimuli, violating regularities in a sensory environment, elicit the Mismatch Negativity (MMN, largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.

  20. DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging.

    Science.gov (United States)

    Saranathan, Manojkumar; Rettmann, Dan W; Hargreaves, Brian A; Clarke, Sharon E; Vasanawala, Shreyas S

    2012-06-01

    To develop and evaluate a multiphasic contrast-enhanced MRI method called DIfferential Sub-sampling with Cartesian Ordering (DISCO) for abdominal imaging. A three-dimensional, variable density pseudo-random k-space segmentation scheme was developed and combined with a Dixon-based fat-water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three-dimensional SPGR-Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded. There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively). DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio-temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4-5 s. Copyright © 2012 Wiley Periodicals, Inc.

  1. Unsupervised Learning of Word-Sequence Representations from Scratch via Convolutional Tensor Decomposition

    OpenAIRE

    Huang, Furong; Anandkumar, Animashree

    2016-01-01

    Unsupervised text embeddings extraction is crucial for text understanding in machine learning. Word2Vec and its variants have received substantial success in mapping words with similar syntactic or semantic meaning to vectors close to each other. However, extracting context-aware word-sequence embedding remains a challenging task. Training over large corpus is difficult as labels are difficult to get. More importantly, it is challenging for pre-trained models to obtain word-...

  2. Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Elliott, Mark A.; Bailey, Anthony J.

    2012-01-01

    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning

  3. Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm

    NARCIS (Netherlands)

    Bouwer, F.L.; Werner, C.M.; Knetemann, M.; Honing, H.

    Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence

  4. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    Science.gov (United States)

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  5. Temporal and Statistical Information in Causal Structure Learning

    Science.gov (United States)

    McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David

    2015-01-01

    Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…

  6. A Teaching and Learning Sequence about the Interplay of Chance and Determinism in Nonlinear Systems

    Science.gov (United States)

    Stavrou, D.; Duit, R.; Komorek, M.

    2008-01-01

    A teaching and learning sequence aimed at introducing upper secondary school students to the interplay between chance and determinism in nonlinear systems is presented. Three experiments concerning nonlinear systems (deterministic chaos, self-organization and fractals) and one experiment concerning linear systems are introduced. Thirty upper…

  7. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2017-01-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool--an interaction diagram (ID)--highlighting…

  8. Hidden temporal order unveiled in stock market volatility variance

    Directory of Open Access Journals (Sweden)

    Y. Shapira

    2011-06-01

    Full Text Available When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

  9. Temporal contingency.

    Science.gov (United States)

    Gallistel, C R; Craig, Andrew R; Shahan, Timothy A

    2014-01-01

    Contingency, and more particularly temporal contingency, has often figured in thinking about the nature of learning. However, it has never been formally defined in such a way as to make it a measure that can be applied to most animal learning protocols. We use elementary information theory to define contingency in such a way as to make it a measurable property of almost any conditioning protocol. We discuss how making it a measurable construct enables the exploration of the role of different contingencies in the acquisition and performance of classically and operantly conditioned behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Temporal contingency

    Science.gov (United States)

    Gallistel, C.R.; Craig, Andrew R.; Shahan, Timothy A.

    2015-01-01

    Contingency, and more particularly temporal contingency, has often figured in thinking about the nature of learning. However, it has never been formally defined in such a way as to make it a measure that can be applied to most animal learning protocols. We use elementary information theory to define contingency in such a way as to make it a measurable property of almost any conditioning protocol. We discuss how making it a measurable construct enables the exploration of the role of different contingencies in the acquisition and performance of classically and operantly conditioned behavior. PMID:23994260

  11. Segment-Tube: Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation

    OpenAIRE

    Le Wang; Xuhuan Duan; Qilin Zhang; Zhenxing Niu; Gang Hua; Nanning Zheng

    2018-01-01

    Inspired by the recent spatio-temporal action localization efforts with tubelets (sequences of bounding boxes), we present a new spatio-temporal action localization detector Segment-tube, which consists of sequences of per-frame segmentation masks. The proposed Segment-tube detector can temporally pinpoint the starting/ending frame of each action category in the presence of preceding/subsequent interference actions in untrimmed videos. Simultaneously, the Segment-tube detector produces per-fr...

  12. The Perceptions of Temporal Path Analysis of Learners' Self-Regulation on Learning Stress and Social Relationships in Junior High School

    Science.gov (United States)

    Chang, Hsiu-Ju

    2016-01-01

    This research focus on the temporal path analysis of learning stress, test anxiety, peer stress (classmate relatedness), teacher relatedness, autonomy, and self-regulative performance in junior high school. Owing to the processes of self-determination always combines several negotiations with the interactive perceptions of personal experiences and…

  13. Modality effects in implicit artificial grammar learning: An EEG study.

    Science.gov (United States)

    Silva, Susana; Folia, Vasiliki; Inácio, Filomena; Castro, São Luís; Petersson, Karl Magnus

    2018-05-15

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  15. MedTime: a temporal information extraction system for clinical narratives.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Hsinchun; Brown, Randall A

    2013-12-01

    Temporal information extraction from clinical narratives is of critical importance to many clinical applications. We participated in the EVENT/TIMEX3 track of the 2012 i2b2 clinical temporal relations challenge, and presented our temporal information extraction system, MedTime. MedTime comprises a cascade of rule-based and machine-learning pattern recognition procedures. It achieved a micro-averaged f-measure of 0.88 in both the recognitions of clinical events and temporal expressions. We proposed and evaluated three time normalization strategies to normalize relative time expressions in clinical texts. The accuracy was 0.68 in normalizing temporal expressions of dates, times, durations, and frequencies. This study demonstrates and evaluates the integration of rule-based and machine-learning-based approaches for high performance temporal information extraction from clinical narratives. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Foundations of Sequence-to-Sequence Modeling for Time Series

    OpenAIRE

    Kuznetsov, Vitaly; Mariet, Zelda

    2018-01-01

    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...

  17. Image sequence analysis using spatio-temporal texture

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Clark, G.A.; Barnes, F.L.; Schaich, P.C.

    1994-01-01

    The authors have developed and coded an algorithm for motion pattern classification based on spatio-temporal texture. The algorithm has been implemented and tested for the detection of wakes in simulated data with a relatively low signal-to-noise ratio (0.7 dB). Using a open-quote hold one out close-quote method, a detection probability of 100% with a 0% false alarm rate has been achieved on the limited number of samples (47 in each category) tested. The actual detection can be displayed in the form of a movie that can effectively show the submarine tracks based on the detected wake locations

  18. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  19. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    Science.gov (United States)

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  20. Temporal Feature Integration for Music Organisation

    DEFF Research Database (Denmark)

    Meng, Anders

    2006-01-01

    This Ph.D. thesis focuses on temporal feature integration for music organisation. Temporal feature integration is the process of combining all the feature vectors of a given time-frame into a single new feature vector in order to capture relevant information in the frame. Several existing methods...... for handling sequences of features are formulated in the temporal feature integration framework. Two datasets for music genre classification have been considered as valid test-beds for music organisation. Human evaluations of these, have been obtained to access the subjectivity on the datasets. Temporal...... ranking' approach is proposed for ranking the short-time features at larger time-scales according to their discriminative power in a music genre classification task. The multivariate AR (MAR) model has been proposed for temporal feature integration. It effectively models local dynamical structure...

  1. Aplicação dos testes de padrão temporal em crianças com gagueira desenvolvimental persistente Application of temporal pattern tests in children with persistent developmental stuttering

    Directory of Open Access Journals (Sweden)

    Rosimeire da Silva

    2011-10-01

    Full Text Available OBJETIVO: caracterizar e comparar o desempenho das crianças com diagnóstico de gagueira nos testes de padrão temporal, com crianças sem queixas e/ou sinais de transtornos psiquiátricos ou neurológicos, dificuldades de fala, audição, linguagem e/ou aprendizagem. MÉTODO: participaram 30 crianças entre 9 e 12 anos de idade, de ambos os gêneros, divididas em dois grupos: GI - 15 crianças com gagueira desenvolvimental persistente; GII - 15 crianças sem queixas e/ou sinais de transtornos psiquiátricos ou neurológicos, dificuldades de fala, audição, linguagem e/ou aprendizagem. Para avaliação do processamento auditivo temporal, foi aplicado os Testes Tonais de Padrão de Frequência (PPS-Pitch Pattern Sequence Test e Testes Tonais de Padrão de Duração (DPS - Duration Pattern Sequence Test. RESULTADOS: o grupo II apresentou desempenho superior no teste de padrão de frequência e de padrão de duração quando comparado ao grupo I. Os resultados indicaram que houve diferença estatisticamente significante entre os grupos estudados. CONCLUSÃO: os participantes do grupo I apresentaram desempenho alterado nos testes de padrão temporal, o que indica que existe relação entre a gagueira e o transtorno do processamento auditivo.PURPOSE: to characterize and compare the performance of children with diagnosis of stuttering under temporal pattern tests with the performance of children without complaints. METHOD: we evaluated 30 children between 9 and 12-year old, both genders, divided in two groups: GI - 15 children with persistent development stuttering; GII - 15 children without complaints and/or signals of psychiatric or neurological upheavals, speech, hearing, language and/or learning difficulties. To evaluate the auditory processing we applied Pitch Pattern Sequence Test (PPS and Duration Pattern Sequence Test (DPS. RESULTS: group II showed a better performance on PPS and DPS tests when compared with group I. The results indicated

  2. Verbal learning and memory outcome in selective amygdalohippocampectomy versus temporal lobe resection in patients with hippocampal sclerosis.

    Science.gov (United States)

    Foged, Mette Thrane; Vinter, Kirsten; Stauning, Louise; Kjær, Troels W; Ozenne, Brice; Beniczky, Sándor; Paulson, Olaf B; Madsen, Flemming Find; Pinborg, Lars H

    2018-02-01

    With the advent of new very selective techniques like thermal laser ablation to treat drug-resistant focal epilepsy, the controversy of resection size in relation to seizure outcome versus cognitive deficits has gained new relevance. The purpose of this study was to test the influence of the selective amygdalohippocampectomy (SAH) versus nonselective temporal lobe resection (TLR) on seizure outcome and cognition in patients with mesial temporal lobe epilepsy (MTLE) and histopathological verified hippocampal sclerosis (HS). We identified 108 adults (>16years) with HS, operated between 1995 and 2009 in Denmark. Exclusion criteria are the following: Intelligence below normal range, right hemisphere dominance, other native languages than Danish, dual pathology, and missing follow-up data. Thus, 56 patients were analyzed. The patients were allocated to SAH (n=22) or TLR (n=34) based on intraoperative electrocorticography. Verbal learning and verbal memory were tested pre- and postsurgery. Seizure outcome did not differ between patients operated using the SAH versus the TLR at 1year (p=0.951) nor at 7years (p=0.177). Verbal learning was more affected in patients resected in the left hemisphere than in the right (p=0.002). In patients with left-sided TLR, a worsening in verbal memory performance was found (p=0.011). Altogether, 73% were seizure-free for 1year and 64% for 7years after surgery. In patients with drug-resistant focal MTLE, HS and no magnetic resonance imaging (MRI) signs of dual pathology, selective amygdalohippocampectomy results in sustained seizure freedom and better memory function compared with patients operated with nonselective temporal lobe resection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  4. Further tests of the Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model in a temporal bisection task.

    Science.gov (United States)

    Machado, Armando; Arantes, Joana

    2006-06-01

    To contrast two models of timing, Scalar Expectancy Theory (SET) and Learning to Time (LeT), pigeons were exposed to a double temporal bisection procedure. On half of the trials, they learned to choose a red key after a 1s signal and a green key after a 4s signal; on the other half of the trials, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. This was Phase A of an ABA design. On Phase B, the pigeons were divided into two groups and exposed to a new bisection task in which the signals ranged from 1 to 16s and the choice keys were blue and green. One group was reinforced for choosing blue after 1-s signals and green after 16-s signals and the other group was reinforced for the opposite mapping (green after 1-s signals and blue after 16-s signals). Whereas SET predicted no differences between the groups, LeT predicted that the former group would learn the new discrimination faster than the latter group. The results were consistent with LeT. Finally, the pigeons returned to Phase A. Only LeT made specific predictions regarding the reacquisition of the four temporal discriminations. These predictions were only partly consistent with the results.

  5. Statistical Features of the 2010 Beni-Ilmane, Algeria, Aftershock Sequence

    Science.gov (United States)

    Hamdache, M.; Peláez, J. A.; Gospodinov, D.; Henares, J.

    2018-03-01

    The aftershock sequence of the 2010 Beni-Ilmane ( M W 5.5) earthquake is studied in depth to analyze the spatial and temporal variability of seismicity parameters of the relationships modeling the sequence. The b value of the frequency-magnitude distribution is examined rigorously. A threshold magnitude of completeness equal to 2.1, using the maximum curvature procedure or the changing point algorithm, and a b value equal to 0.96 ± 0.03 have been obtained for the entire sequence. Two clusters have been identified and characterized by their faulting type, exhibiting b values equal to 0.99 ± 0.05 and 1.04 ± 0.05. Additionally, the temporal decay of the aftershock sequence was examined using a stochastic point process. The analysis was done through the restricted epidemic-type aftershock sequence (RETAS) stochastic model, which allows the possibility to recognize the prevailing clustering pattern of the relaxation process in the examined area. The analysis selected the epidemic-type aftershock sequence (ETAS) model to offer the most appropriate description of the temporal distribution, which presumes that all events in the sequence can cause secondary aftershocks. Finally, the fractal dimensions are estimated using the integral correlation. The obtained D 2 values are 2.15 ± 0.01, 2.23 ± 0.01 and 2.17 ± 0.02 for the entire sequence, and for the first and second cluster, respectively. An analysis of the temporal evolution of the fractal dimensions D -2, D 0, D 2 and the spectral slope has been also performed to derive and characterize the different clusters included in the sequence.

  6. Arbitrary digital pulse sequence generator with delay-loop timing

    Science.gov (United States)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  7. Implicit motor sequence learning in schizophrenia and in old age: reduced performance only in the third session

    NARCIS (Netherlands)

    Cornelis, Claudia; de Picker, Livia J.; de Boer, Peter; Dumont, Glenn; Coppens, Violette; Morsel, Anne; Janssens, Luc; Timmers, Maarten; Sabbe, Bernard G. C.; Morrens, Manuel; Hulstijn, Wouter

    2016-01-01

    Although there still is conflicting evidence whether schizophrenia is a neurodegenerative disease, cognitive changes in schizophrenia resemble those observed during normal aging. In contrast to extensively demonstrated deficits in explicit learning, it remains unclear whether implicit sequence

  8. Solving the Curriculum Sequencing Problem with DNA Computing Approach

    Science.gov (United States)

    Debbah, Amina; Ben Ali, Yamina Mohamed

    2014-01-01

    In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…

  9. Children's Representation and Imitation of Events: How Goal Organization Influences 3-Year-Old Children's Memory for Action Sequences.

    Science.gov (United States)

    Loucks, Jeff; Mutschler, Christina; Meltzoff, Andrew N

    2017-09-01

    Children's imitation of adults plays a prominent role in human cognitive development. However, few studies have investigated how children represent the complex structure of observed actions which underlies their imitation. We integrate theories of action segmentation, memory, and imitation to investigate whether children's event representation is organized according to veridical serial order or a higher level goal structure. Children were randomly assigned to learn novel event sequences either through interactive hands-on experience (Study 1) or via storybook (Study 2). Results demonstrate that children's representation of observed actions is organized according to higher level goals, even at the cost of representing the veridical temporal ordering of the sequence. We argue that prioritizing goal structure enhances event memory, and that this mental organization is a key mechanism of social-cognitive development in real-world, dynamic environments. It supports cultural learning and imitation in ecologically valid settings when social agents are multitasking and not demonstrating one isolated goal at a time. Copyright © 2016 Cognitive Science Society, Inc.

  10. Sequence Matters but How Exactly? A Method for Evaluating Activity Sequences from Data

    Science.gov (United States)

    Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma

    2016-01-01

    How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…

  11. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

    Science.gov (United States)

    van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y

    2018-04-17

    Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to

  12. Learning of serial digits leads to frontal activation in functional MR imaging.

    Science.gov (United States)

    Karakaş, Hakki Muammer; Karakaş, Sirel

    2006-03-01

    Clinical studies have shown that performance on the serial digit learning test (SDLT) is dependent upon the mesial temporal lobes, which are responsible for learning and its consolidation. However, an effective SDLT performance is also dependent upon sequencing, temporal ordering, and the utilization of mnemonic strategies. All of these processes are among the functions of the frontal lobes; in spite of this, the relationship between SDLT performance and the frontal lobes has not been demonstrated with previously used mapping techniques. The aim of this study was to investigate the areas of the brain that are activated by SDLT performance. Ten healthy, right handed volunteers (mean age, 20.1 years; SD: 3.3) who had 12 years of education were studied with a 1.0 T MR imaging scanner. BOLD (blood oxygen level dependent) contrast and a modified SDLT were used. Activated loci were automatically mapped using a proportional grid. In learning, the most consistent activation was observed in B-a-7 of the right (80%) and the left hemispheres (50%). In recall, the most consistent activation was observed in B-a-7 of the right hemisphere (60%). Activations were observed in 2.5+/-0.97 Talairach volumes in learning, whereas they encompassed 1.7+/-0.95 volumes in recall. The difference between both phases (learning and recall) regarding total activated volume was significant (p SDLT performance was not related to learning or to recall, but to a function that is common to both of these cognitive processes. A candidate for this common factor may be the executive functions, which also include serial position processing and temporal ordering.

  13. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Science.gov (United States)

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  14. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Cen Wan

    2017-10-01

    Full Text Available Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  15. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    Science.gov (United States)

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  16. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.

  17. The consolidation of implicit sequence memory in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Eszter Csabi

    Full Text Available Obstructive Sleep Apnea (OSA Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning.

  18. Full-fledged temporal processing: bridging the gap between deep linguistic processing and temporal extraction

    Directory of Open Access Journals (Sweden)

    Francisco Costa

    2013-07-01

    Full Text Available The full-fledged processing of temporal information presents specific challenges. These difficulties largely stem from the fact that the temporal meaning conveyed by grammatical means interacts with many extra-linguistic factors (world knowledge, causality, calendar systems, reasoning. This article proposes a novel approach to this problem, based on a hybrid strategy that explores the complementarity of the symbolic and probabilistic methods. A specialized temporal extraction system is combined with a deep linguistic processing grammar. The temporal extraction system extracts eventualities, times and dates mentioned in text, and also temporal relations between them, in line with the tasks of the recent TempEval challenges; and uses machine learning techniques to draw from different sources of information (grammatical and extra-grammatical even if it is not explicitly known how these combine to produce the final temporal meaning being expressed. In turn, the deep computational grammar delivers richer truth-conditional meaning representations of input sentences, which include a principled representation of temporal information, on which higher level tasks, including reasoning, can be based. These deep semantic representations are extended and improved according to the output of the aforementioned temporal extraction module. The prototype implemented shows performance results that increase the quality of the temporal meaning representations and are better than the performance of each of the two components in isolation.

  19. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Task-related functional connectivity of the caudate mediates the association between trait mindfulness and implicit learning in older adults.

    Science.gov (United States)

    Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V

    2016-08-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.

  1. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  2. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    Directory of Open Access Journals (Sweden)

    Michael W. Hall

    2017-09-01

    Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.

  3. Temporal Processing in Audition: Insights from Music.

    Science.gov (United States)

    Rajendran, Vani G; Teki, Sundeep; Schnupp, Jan W H

    2017-11-03

    Music is a curious example of a temporally patterned acoustic stimulus, and a compelling pan-cultural phenomenon. This review strives to bring some insights from decades of music psychology and sensorimotor synchronization (SMS) literature into the mainstream auditory domain, arguing that musical rhythm perception is shaped in important ways by temporal processing mechanisms in the brain. The feature that unites these disparate disciplines is an appreciation of the central importance of timing, sequencing, and anticipation. Perception of musical rhythms relies on an ability to form temporal predictions, a general feature of temporal processing that is equally relevant to auditory scene analysis, pattern detection, and speech perception. By bringing together findings from the music and auditory literature, we hope to inspire researchers to look beyond the conventions of their respective fields and consider the cross-disciplinary implications of studying auditory temporal sequence processing. We begin by highlighting music as an interesting sound stimulus that may provide clues to how temporal patterning in sound drives perception. Next, we review the SMS literature and discuss possible neural substrates for the perception of, and synchronization to, musical beat. We then move away from music to explore the perceptual effects of rhythmic timing in pattern detection, auditory scene analysis, and speech perception. Finally, we review the neurophysiology of general timing processes that may underlie aspects of the perception of rhythmic patterns. We conclude with a brief summary and outlook for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Dynamic Textures Modeling via Joint Video Dictionary Learning.

    Science.gov (United States)

    Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng

    2017-04-06

    Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.

  5. Measurement of traffic parameters in image sequence using spatio-temporal information

    International Nuclear Information System (INIS)

    Lee, Daeho; Park, Youngtae

    2008-01-01

    This paper proposes a novel method for measurement of traffic parameters, such as the number of passed vehicles, velocity and occupancy rate, by video image analysis. The method is based on a region classification followed by spatio-temporal image analysis. Local detection region images in traffic lanes are classified into one of four categories: the road, the vehicle, the reflection and the shadow, by using statistical and structural features. Misclassification at a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. This capability of error correction results in the accurate estimation of traffic parameters even in high traffic congestion. Also headlight detection is employed for nighttime operation. Experimental results show that the accuracy is more than 94% in our test database of diverse operating conditions such as daytime, shadowy daytime, highway, urban way, rural way, rainy day, snowy day, dusk and nighttime. The average processing time is 30 ms per frame when four traffic lanes are processed, and real-time operation could be realized while ensuring robust detection performance even for high-speed vehicles up to 150 km h −1

  6. Automatic identification of temporal sequences in chewing sounds

    NARCIS (Netherlands)

    Amft, O.D.; Kusserow, M.; Tröster, G.

    2007-01-01

    Chewing is an essential part of food intake. The analysis and detection of food patterns is an important component of an automatic dietary monitoring system. However chewing is a time-variable process depending on food properties. We present an automated methodology to extract sub-sequences of

  7. Transferring a Teaching Learning Sequence between Two Different Educational Contexts: The Case of Greece and Finland

    Science.gov (United States)

    Spyrtou, Anna; Lavonen, Jari; Zoupidis, Anastasios; Loukomies, Anni; Pnevmatikos, Dimitris; Juuti, Kalle; Kariotoglou, Petros

    2018-01-01

    In the present paper, we report on the idea of exchanging educational innovations across European countries aiming to shed light on the following question: how feasible and useful is it to transfer an innovation across different national educational settings? The innovation, in this case, Inquiry-Based Teaching Learning Sequences, is recognized as…

  8. Temporal and extra-temporal hypoperfusion in medial temporal lobe epilepsy evaluated by arterial-spin-labeling based MRI

    International Nuclear Information System (INIS)

    Shen Lianfang; Zhang Zhiqiang; Lu Guangming; Yuan Cuiping; Wang Zhengge; Wang Haoxue; Huang Wei; Wei Fangyuan; Chen Guanghui; Tan Qifu

    2012-01-01

    Objective: To evaluate the feasibility of the lateralization of unilateral medial temporal lobe epilepsy (mTLE) by using arterial-spin-labeling (ASL) based perfusion MR imaging and investigate the changes of perfusion in the regions related to mTLE network and the relationship between the perfusion and the clinical status. Methods: Twenty-five patients with left-sided and 23 with right-sided mTLE were enrolled, and 30 healthy volunteers were recruited. The cerebral blood flow (CBF) of related region was measured based on pulsed-ASL sequence on Siemens 3 T scanner. The CBF of the mTLE group were compared with that in the controls by using ANOVA analysis. The asymmetric indices of CBF in the medial temporal lobe were calculated as the lesion side compared with the normal side in matched region in mTLE group. Results: Compared with the volunteers, the patients with mTLE showed the decrease of CBF in the bilateral medial and lateral temporal, the frontal and parietal regions relating to the default-mode network and more serious in lesion side. The CBF values of the medial temporal lobe were negatively correlated with the epilepsy duration (r=-0.51, P<0.01). The asymmetric index of CBF as-0.01 has a 76.0% (19/25) sensitivity and a 78.3% (18/23) specificity to distinguish the lesion side. Conclusions: The decrease of CBF in the temporal and extra-temporal region by ASL-based MRI suggests the functional abnormalities in the network involved by mTLE. The ASL technique is a useful tool for lateralizing the unilateral mTLE. (authors)

  9. A time series based sequence prediction algorithm to detect activities of daily living in smart home.

    Science.gov (United States)

    Marufuzzaman, M; Reaz, M B I; Ali, M A M; Rahman, L F

    2015-01-01

    The goal of smart homes is to create an intelligent environment adapting the inhabitants need and assisting the person who needs special care and safety in their daily life. This can be reached by collecting the ADL (activities of daily living) data and further analysis within existing computing elements. In this research, a very recent algorithm named sequence prediction via enhanced episode discovery (SPEED) is modified and in order to improve accuracy time component is included. The modified SPEED or M-SPEED is a sequence prediction algorithm, which modified the previous SPEED algorithm by using time duration of appliance's ON-OFF states to decide the next state. M-SPEED discovered periodic episodes of inhabitant behavior, trained it with learned episodes, and made decisions based on the obtained knowledge. The results showed that M-SPEED achieves 96.8% prediction accuracy, which is better than other time prediction algorithms like PUBS, ALZ with temporal rules and the previous SPEED. Since human behavior shows natural temporal patterns, duration times can be used to predict future events more accurately. This inhabitant activity prediction system will certainly improve the smart homes by ensuring safety and better care for elderly and handicapped people.

  10. Temporal networks

    Science.gov (United States)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  11. Unsupervised learning of a steerable basis for invariant image representations

    Science.gov (United States)

    Bethge, Matthias; Gerwinn, Sebastian; Macke, Jakob H.

    2007-02-01

    There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of 'steerability' and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. 'complex cells') from sequences of natural images.

  12. The Local Territory as a Resource for Learning Science: A Proposal for the Design of Teaching-learning Sequences in Science Education

    OpenAIRE

    González-Weil, C.; Merino-Rubilar, C.; Ahumada, G.; Arenas, A.; Salinas, V.; Bravo, P.

    2014-01-01

    The present work arises from the need to reform Science Education, particularly through the contextualization of teaching. It is proposed to achieve this through the use of local territory as a resource for the design of teaching-learning-sequences (TLS). To do this, an interdisciplinary group of researchers and teachers from a Secondary School created a Professional Circle for Reflection on Teaching, which constructed an emerging conceptualization of Territory, analyzed the possibil...

  13. Dissecting Sequences of Regulation and Cognition: Statistical Discourse Analysis of Primary School Children's Collaborative Learning

    Science.gov (United States)

    Molenaar, Inge; Chiu, Ming Ming

    2014-01-01

    Extending past research showing that regulative activities (metacognitive and relational) can aid learning, this study tests whether sequences of cognitive, metacognitive and relational activities affect subsequent cognition. Scaffolded by a computer avatar, 54 primary school students (working in 18 groups of 3) discussed writing a report about a…

  14. Modeling temporal sequences of cognitive state changes based on a combination of EEG-engagement, EEG-workload, and heart rate metrics

    Directory of Open Access Journals (Sweden)

    Maja eStikic

    2014-11-01

    Full Text Available The objective of this study was to investigate the feasibility of physiological metrics such as ECG-derived heart rate and EEG-derived cognitive workload and engagement as potential predictors of performance on different training tasks. An unsupervised approach based on self-organizing neural network (NN was utilized to model cognitive state changes over time. The feature vector comprised EEG-engagement, EEG-workload, and heart rate metrics, all self-normalized to account for individual differences. During the competitive training process, a linear topology was developed where the feature vectors similar to each other activated the same NN nodes. The NN model was trained and auto-validated on combat marksmanship training data from 51 participants that were required to make deadly force decisions in challenging combat scenarios. The trained NN model was cross validated using 10-fold cross-validation. It was also validated on a golf study in which additional 22 participants were asked to complete 10 sessions of 10 putts each. Temporal sequences of the activated nodes for both studies followed the same pattern of changes, demonstrating the generalization capabilities of the approach. Most node transition changes were local, but important events typically caused significant changes in the physiological metrics, as evidenced by larger state changes. This was investigated by calculating a transition score as the sum of subsequent state transitions between the activated NN nodes. Correlation analysis demonstrated statistically significant correlations between the transition scores and subjects’ performances in both studies. This paper explored the hypothesis that temporal sequences of physiological changes comprise the discriminative patterns for performance prediction. These physiological markers could be utilized in future training improvement systems (e.g., through neurofeedback, and applied across a variety of training environments.

  15. A comparison of the effects of temporary hippocampal lesions on single and dual context versions of the olfactory sequence memory task.

    Science.gov (United States)

    Sill, Orriana C; Smith, David M

    2012-08-01

    In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the "where" component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task that requires the use of contextual information along with the requirement to remember the "what" and "when" components of the odor sequence. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus.

  16. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    Science.gov (United States)

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-05-24

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    Science.gov (United States)

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing

  18. Teaching Task Sequencing via Verbal Mediation.

    Science.gov (United States)

    Rusch, Frank R.; And Others

    1987-01-01

    Verbal sequence training was used to teach a moderately mentally retarded woman to sequence job-related tasks. Learning to say the tasks in the proper sequence resulted in the employee performing her tasks in that sequence, and the employee was capable of mediating her own work behavior when scheduled changes occurred. (Author/JDD)

  19. Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective

    Science.gov (United States)

    Story, Giles W.; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J.

    2014-01-01

    The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a “model-based” (or goal-directed) system and a “model-free” (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes. PMID:24659960

  20. An introduction to deep learning on biological sequence data: examples and solutions.

    Science.gov (United States)

    Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose Juan; Nielsen, Henrik; Sønderby, Casper Kaae; Winther, Ole; Sønderby, Søren Kaae

    2017-11-15

    Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. skaaesonderby@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Value learning through reinforcement : The basics of dopamine and reinforcement learning

    NARCIS (Netherlands)

    Daw, N.D.; Tobler, P.N.; Glimcher, P.W.; Fehr, E.

    2013-01-01

    This chapter provides an overview of reinforcement learning and temporal difference learning and relates these topics to the firing properties of midbrain dopamine neurons. First, we review the RescorlaWagner learning rule and basic learning phenomena, such as blocking, which the rule explains. Then

  2. A Teaching-Learning Sequence for the Special Relativity Theory at High School Level Historically and Epistemologically Contextualized

    Science.gov (United States)

    Arriassecq, Irene; Greca, Ileana Maria

    2012-01-01

    This paper discusses some topics that stem from recent contributions made by the History, the Philosophy, and the Didactics of Science. We consider these topics relevant to the introduction of the Special Relativity Theory (SRT) in high school within a contextualized approach. We offer an outline of a teaching-learning sequence dealing with the…

  3. Pitting temporal against spatial integration in schizophrenic patients.

    Science.gov (United States)

    Herzog, Michael H; Brand, Andreas

    2009-06-30

    Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.

  4. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori [Kyoto University Graduate School of Medicine, Department of Diagnostic Imaging and Nuclear Medicine, Kyoto (Japan); Mori, Nobuyuki [Tenri Hospital, Department of Radiology, Tenri, Nara (Japan); Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke [Kyoto University Graduate School of Medicine, Department of Neurology, Kyoto (Japan); Mikuni, Nobuhiro [Sapporo Medical University, Department of Neurosurgery, Sapporo, Hokkaido (Japan); Kunieda, Takeharu; Miyamoto, Susumu [Kyoto University Graduate School of Medicine, Department of Neurosurgery, Kyoto (Japan); Paul, Dominik [Siemens AG Healthcare Sector, Erlangen (Germany)

    2013-01-15

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using {kappa} statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P {<=} 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  5. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    International Nuclear Information System (INIS)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori; Mori, Nobuyuki; Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke; Mikuni, Nobuhiro; Kunieda, Takeharu; Miyamoto, Susumu; Paul, Dominik

    2013-01-01

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using κ statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P ≤ 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  6. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  7. Brain activation during anticipation of sound sequences.

    Science.gov (United States)

    Leaver, Amber M; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R; Rauschecker, Josef P

    2009-02-25

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive "anticipatory imagery" at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in "training" frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.

  8. Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm.

    Science.gov (United States)

    Bouwer, Fleur L; Werner, Carola M; Knetemann, Myrthe; Honing, Henkjan

    2016-05-01

    Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence can also affect processing of rhythmic events and must be differentiated from beat perception. In the current study, using EEG, we examined the effects of attention and musical abilities on beat perception. To ensure we measured beat perception and not absolute perception of temporal intervals, we used alternating loud and soft tones to create a rhythm with two hierarchical metrical levels. To control for sequential learning of the order of the different sounds, we used temporally regular (isochronous) and jittered rhythmic sequences. The order of sounds was identical in both conditions, but only the regular condition allowed for the perception of a beat. Unexpected intensity decrements were introduced on the beat and offbeat. In the regular condition, both beat perception and sequential learning were expected to enhance detection of these deviants on the beat. In the jittered condition, only sequential learning was expected to affect processing of the deviants. ERP responses to deviants were larger on the beat than offbeat in both conditions. Importantly, this difference was larger in the regular condition than in the jittered condition, suggesting that beat perception influenced responses to rhythmic events in addition to sequential learning. The influence of beat perception was present both with and without attention directed at the rhythm. Moreover, beat perception as measured with ERPs correlated with musical abilities, but only when attention was directed at the stimuli. Our study shows that beat perception is possible when attention is not directed at a rhythm. In addition, our results suggest that attention may mediate the influence of musical abilities on beat

  9. Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task.

    Science.gov (United States)

    Wirzberger, Maria; Esmaeili Bijarsari, Shirin; Rey, Günter Daniel

    2017-09-01

    Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning.

    Science.gov (United States)

    Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C

    2018-02-08

    Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Nursing Student Perceptions Regarding Simulation Experience Sequencing.

    Science.gov (United States)

    Woda, Aimee A; Gruenke, Theresa; Alt-Gehrman, Penny; Hansen, Jamie

    2016-09-01

    The use of simulated learning experiences (SLEs) have increased within nursing curricula with positive learning outcomes for nursing students. The purpose of this study is to explore nursing students' perceptions of their clinical decision making (CDM) related to the block sequencing of different patient care experiences, SLEs versus hospital-based learning experiences (HLEs). A qualitative descriptive design used open-ended survey questions to generate information about the block sequencing of SLEs and its impact on nursing students' perceived CDM. Three themes emerged from the data: Preexperience Anxiety, Real-Time Decision Making, and Increased Patient Care Experiences. Nursing students identified that having SLEs prior to HLEs provided several benefits. Even when students preferred SLEs prior to HLEs, the sequence did not impact their CDM. This suggests that alternating block sequencing can be used without impacting the students' perceptions of their ability to make decisions. [J Nurs Educ. 2016;55(9):528-532.]. Copyright 2016, SLACK Incorporated.

  12. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

    Directory of Open Access Journals (Sweden)

    Haobo Lyu

    2016-06-01

    Full Text Available When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-class changes. The proposed method relies on an improved Long Short-Term Memory (LSTM model to acquire and record the change information of long-term sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule from the information concerning binary changes or multi-class changes. Three gates are utilized to control the input, output and update of the LSTM model for optimization. In addition, the learned rule can be applied to detect changes and transfer the change rule from one learned image to another new target multi-temporal image. In this study, binary experiments, transfer experiments and multi-class change experiments are exploited to demonstrate the superiority of our method. Three contributions of this work can be summarized as follows: (1 the proposed method can learn an effective change rule to provide reliable change information for multi-temporal images; (2 the learned change rule has good transferability for detecting changes in new target images without any extra learning process, and the new target images should have a multi-spectral distribution similar to that of the training images; and (3 to the authors’ best knowledge, this is the first time that deep learning in recurrent neural networks is exploited for change detection. In addition, under the framework of the proposed method, changes can be detected under both binary detection and multi-class change detection.

  13. IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform.

    Directory of Open Access Journals (Sweden)

    N Lance Hepler

    2014-09-01

    Full Text Available Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab, determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license, documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.

  14. Relating What Is To Be Learned To What Is Known: Subsumptive Sequencing, Co-ordination and Cognitive Skills Activation.

    Science.gov (United States)

    Stein, Faith S.; And Others

    Recent advances have been made in facilitating implementation of Ausubel's advance organizer strategy. One reason Ausubel's approach has not been widely adopted is its lack of specificity about how to relate what is to be learned to what has already been assimilated within the cognitive structure. The use of subsumptive sequencing, coordinate…

  15. Facial Expression Recognition from Video Sequences Based on Spatial-Temporal Motion Local Binary Pattern and Gabor Multiorientation Fusion Histogram

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2017-01-01

    Full Text Available This paper proposes novel framework for facial expressions analysis using dynamic and static information in video sequences. First, based on incremental formulation, discriminative deformable face alignment method is adapted to locate facial points to correct in-plane head rotation and break up facial region from background. Then, spatial-temporal motion local binary pattern (LBP feature is extracted and integrated with Gabor multiorientation fusion histogram to give descriptors, which reflect static and dynamic texture information of facial expressions. Finally, a one-versus-one strategy based multiclass support vector machine (SVM classifier is applied to classify facial expressions. Experiments on Cohn-Kanade (CK + facial expression dataset illustrate that integrated framework outperforms methods using single descriptors. Compared with other state-of-the-art methods on CK+, MMI, and Oulu-CASIA VIS datasets, our proposed framework performs better.

  16. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  17. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. CT-MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors

    International Nuclear Information System (INIS)

    Nemec, Stefan Franz; Donat, Markus Alexander; Mehrain, Sheida; Friedrich, Klaus; Krestan, Christian; Matula, Christian; Imhof, Herwig; Czerny, Christian

    2007-01-01

    Purpose: To demonstrate the value of multi detector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative work up of temporal bone tumors and to present, especially, CT and MR image fusion for surgical planning and performance in computer assisted navigated neurosurgery of temporal bone tumors. Materials and methods: Fifteen patients with temporal bone tumors underwent MDCT and MRI. MDCT was performed in high-resolution bone window level setting in axial plane. The reconstructed MDCT slice thickness was 0.8 mm. MRI was performed in axial and coronal plane with T2-weighted fast spin-echo (FSE) sequences, un-enhanced and contrast-enhanced T1-weighted spin-echo (SE) sequences, and coronal T1-weighted SE sequences with fat suppression and with 3D T1-weighted gradient-echo (GE) contrast-enhanced sequences in axial plane. The 3D T1-weighted GE sequence had a slice thickness of 1 mm. Image data sets of CT and 3D T1-weighted GE sequences were merged utilizing a workstation to create CT-MR fusion images. MDCT and MR images were separately used to depict and characterize lesions. The fusion images were utilized for interventional planning and intraoperative image guidance. The intraoperative accuracy of the navigation unit was measured, defined as the deviation between the same landmark in the navigation image and the patient. Results: Tumorous lesions of bone and soft tissue were well delineated and characterized by CT and MR images. The images played a crucial role in the differentiation of benign and malignant pathologies, which consisted of 13 benign and 2 malignant tumors. The CT-MR fusion images supported the surgeon in preoperative planning and improved surgical performance. The mean intraoperative accuracy of the navigation system was 1.25 mm. Conclusion: CT and MRI are essential in the preoperative work up of temporal bone tumors. CT-MR image data fusion presents an accurate tool for planning the correct surgical procedure and is a

  19. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    Science.gov (United States)

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  20. Study on memories of temporal lobes and the principles of lateralization using near infrared spectroscopy

    Science.gov (United States)

    Kamakura, Katsutoshi

    2007-01-01

    In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.

  1. Principles of Temporal Processing Across the Cortical Hierarchy.

    Science.gov (United States)

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  3. Self-Exciting Point Process Modeling of Conversation Event Sequences

    Science.gov (United States)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  4. Efficacy of the fluid attenuated inversion recovery (FLAIR) sequence of MRI as a preoperative diagnosis of hippocampal sclerosis

    International Nuclear Information System (INIS)

    Morioka, Takato; Nishio, Shunji; Mihara, Futoshi; Muraishi, Mitsuteru; Hisada, Kei; Hasuo, Kanehiro; Fukui, Masashi

    1998-01-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no-signal intensity area. There have been only a few reports on the FLAIR pulse sequence of temporal lobe epilepsy (TLE) as yet. We examined 9 cases of intractable TLE by FLAIR images and analyzed the advantages and disadvantages of the FLAIR pulse sequence for decision making on temporal lobectomy. All patients underwent anterior temporal lobectomy with hippocampectomy, and the diagnoses were confirmed histologically after surgery. Abnormally high T2 signals (HT2S) were more conspicuous with the FLAIR sequence than with any of the conventional sequences. Tilted axial plane, orientated along to the long axis of the hippocampal body, clearly demonstrated hippocampal atrophy (HA). Selection of a FLAIR sequence into the routine MR examination of patients with TLE is recommended. (author)

  5. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    Science.gov (United States)

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  6. Sequence-specific bias correction for RNA-seq data using recurrent neural networks.

    Science.gov (United States)

    Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2017-01-25

    The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.

  7. Temporal grouping effects in musical short-term memory.

    Science.gov (United States)

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-07-01

    Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.

  8. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  9. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  10. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  11. The Effects of CBI Lesson Sequence Type and Field Dependence on Learning from Computer-Based Cooperative Instruction in Web

    Science.gov (United States)

    Ipek, Ismail

    2010-01-01

    The purpose of this study was to investigate the effects of CBI lesson sequence type and cognitive style of field dependence on learning from Computer-Based Cooperative Instruction (CBCI) in WEB on the dependent measures, achievement, reading comprehension and reading rate. Eighty-seven college undergraduate students were randomly assigned to…

  12. A teaching and learning sequence about the interplay of chance and determinism in nonlinear systems

    International Nuclear Information System (INIS)

    Stavrou, D; Duit, R; Komorek, M

    2008-01-01

    A teaching and learning sequence aimed at introducing upper secondary school students to the interplay between chance and determinism in nonlinear systems is presented. Three experiments concerning nonlinear systems (deterministic chaos, self-organization and fractals) and one experiment concerning linear systems are introduced. Thirty upper secondary students' capabilities and difficulties in understanding the scientific point of view were investigated, using a teaching experiment design. The results show that most students were capable of sound explanations concerning the interplay of chance and determinism in nonlinear systems

  13. Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms.

    Science.gov (United States)

    Carrault, G; Cordier, M-O; Quiniou, R; Wang, F

    2003-07-01

    This paper proposes a novel approach to cardiac arrhythmia recognition from electrocardiograms (ECGs). ECGs record the electrical activity of the heart and are used to diagnose many heart disorders. The numerical ECG is first temporally abstracted into series of time-stamped events. Temporal abstraction makes use of artificial neural networks to extract interesting waves and their features from the input signals. A temporal reasoner called a chronicle recogniser processes such series in order to discover temporal patterns called chronicles which can be related to cardiac arrhythmias. Generally, it is difficult to elicit an accurate set of chronicles from a doctor. Thus, we propose to learn automatically from symbolic ECG examples the chronicles discriminating the arrhythmias belonging to some specific subset. Since temporal relationships are of major importance, inductive logic programming (ILP) is the tool of choice as it enables first-order relational learning. The approach has been evaluated on real ECGs taken from the MIT-BIH database. The performance of the different modules as well as the efficiency of the whole system is presented. The results are rather good and demonstrate that integrating numerical techniques for low level perception and symbolic techniques for high level classification is very valuable.

  14. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.

    Science.gov (United States)

    Zhang, Minliang; Chen, Qian; Tao, Tianyang; Feng, Shijie; Hu, Yan; Li, Hui; Zuo, Chao

    2017-08-21

    Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection profilometry (FPP), especially when measuring complex objects with discontinuities and isolated surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement, one needs to make wise choices about three key experimental parameters: the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However, there was very little research on how to optimize these parameters quantitatively, especially considering all three aspects from a theoretical and analytical perspective simultaneously. In this work, we propose a new scheme to determine simultaneously the optimal fringe frequency, phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is proposed. Finally, a judgment criterion is established, which can be used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the phase. The proposed method provides a simple and effective theoretical framework to improve the accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions. The correctness of the derived models as well as the validity of the proposed schemes have been verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP hardware system

  15. Memory for Random Time Patterns in Audition, Touch, and Vision.

    Science.gov (United States)

    Kang, HiJee; Lancelin, Denis; Pressnitzer, Daniel

    2018-03-22

    Perception deals with temporal sequences of events, like series of phonemes for audition, dynamic changes in pressure for touch textures, or moving objects for vision. Memory processes are thus needed to make sense of the temporal patterning of sensory information. Recently, we have shown that auditory temporal patterns could be learned rapidly and incidentally with repeated exposure [Kang et al., 2017]. Here, we tested whether rapid incidental learning of temporal patterns was specific to audition, or if it was a more general property of sensory systems. We used a same behavioral task in three modalities: audition, touch, and vision, for stimuli having identical temporal statistics. Participants were presented with sequences of acoustic pulses for audition, motion pulses to the fingertips for touch, or light pulses for vision. Pulses were randomly and irregularly spaced, with all inter-pulse intervals in the sub-second range and all constrained to be longer than the temporal acuity in any modality. This led to pulse sequences with an average inter-pulse interval of 166 ms, a minimum inter-pulse interval of 60 ms, and a total duration of 1.2 s. Results showed that, if a random temporal pattern re-occurred at random times during an experimental block, it was rapidly learned, whatever the sensory modality. Moreover, patterns first learned in the auditory modality displayed transfer of learning to either touch or vision. This suggests that sensory systems may be exquisitely tuned to incidentally learn re-occurring temporal patterns, with possible cross-talk between the senses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Striatal and Tegmental Neurons Code Critical Signals for Temporal-Difference Learning of State Value in Domestic Chicks

    Directory of Open Access Journals (Sweden)

    Chentao Wen

    2016-11-01

    Full Text Available To ensure survival, animals must update the internal representations of their environment in a trial-and-error fashion. Psychological studies of associative learning and neurophysiological analyses of dopaminergic neurons have suggested that this updating process involves the temporal-difference (TD method in the basal ganglia network. However, the way in which the component variables of the TD method are implemented at the neuronal level is unclear. To investigate the underlying neural mechanisms, we trained domestic chicks to associate color cues with food rewards. We recorded neuronal activities from the medial striatum or tegmentum in a freely behaving condition and examined how reward omission changed neuronal firing. To compare neuronal activities with the signals assumed in the TD method, we simulated the behavioral task in the form of a finite sequence composed of discrete steps of time. The three signals assumed in the simulated task were the prediction signal, the target signal for updating, and the TD-error signal. In both the medial striatum and tegmentum, the majority of recorded neurons were categorized into three types according to their fitness for three models, though these neurons tended to form a continuum spectrum without distinct differences in the firing rate. Specifically, two types of striatal neurons successfully mimicked the target signal and the prediction signal. A linear summation of these two types of striatum neurons was a good fit for the activity of one type of tegmental neurons mimicking the TD-error signal. The present study thus demonstrates that the striatum and tegmentum can convey the signals critically required for the TD method. Based on the theoretical and neurophysiological studies, together with tract-tracing data, we propose a novel model to explain how the convergence of signals represented in the striatum could lead to the computation of TD error in tegmental dopaminergic neurons.

  17. Students' Learning of a Generalized Theory of Sound Transmission from a Teaching-Learning Sequence about Sound, Hearing and Health

    Science.gov (United States)

    West, Eva; Wallin, Anita

    2013-04-01

    Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.

  18. Metrical presentation boosts implicit learning of artificial grammar.

    Science.gov (United States)

    Selchenkova, Tatiana; François, Clément; Schön, Daniele; Corneyllie, Alexandra; Perrin, Fabien; Tillmann, Barbara

    2014-01-01

    The present study investigated whether a temporal hierarchical structure favors implicit learning. An artificial pitch grammar implemented with a set of tones was presented in two different temporal contexts, notably with either a strongly metrical structure or an isochronous structure. According to the Dynamic Attending Theory, external temporal regularities can entrain internal oscillators that guide attention over time, allowing for temporal expectations that influence perception of future events. Based on this framework, it was hypothesized that the metrical structure provides a benefit for artificial grammar learning in comparison to an isochronous presentation. Our study combined behavioral and event-related potential measurements. Behavioral results demonstrated similar learning in both participant groups. By contrast, analyses of event-related potentials showed a larger P300 component and an earlier N2 component for the strongly metrical group during the exposure phase and the test phase, respectively. These findings suggests that the temporal expectations in the strongly metrical condition helped listeners to better process the pitch dimension, leading to improved learning of the artificial grammar.

  19. Intentional Learning Vs Incidental Learning

    OpenAIRE

    Shahbaz Ahmed

    2017-01-01

    This study is conducted to demonstrate the knowledge of intentional learning and incidental learning. Hypothesis of this experiment is intentional learning is better than incidental learning, participants were demonstrated and were asked to learn the 10 non sense syllables in a specific sequence from the colored cards in the end they were asked to recall the background color of each card instead of non-sense syllables. Independent variables of the experiment are the colored cards containing n...

  20. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment.

    Science.gov (United States)

    Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara

    2016-01-01

    Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation.

  1. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra

  2. Implicit visual learning and the expression of learning.

    Science.gov (United States)

    Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael

    2013-03-01

    Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  4. Detailed temporal structure of communication networks in groups of songbirds.

    Science.gov (United States)

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  5. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  6. The temporal dynamics of speeded decision making

    NARCIS (Netherlands)

    Dutilh, G.

    2012-01-01

    This dissertation sheds light on the temporal dynamics of behavior in speeded decision making. Participants on reaction time (RT) tasks learn, get distracted, speed up, slow down, get confused, get bored, and eventually may start guessing. One can safely say that participants' behavior is dynamic.

  7. Temporal Segmentation of MPEG Video Streams

    Directory of Open Access Journals (Sweden)

    Janko Calic

    2002-06-01

    Full Text Available Many algorithms for temporal video partitioning rely on the analysis of uncompressed video features. Since the information relevant to the partitioning process can be extracted directly from the MPEG compressed stream, higher efficiency can be achieved utilizing information from the MPEG compressed domain. This paper introduces a real-time algorithm for scene change detection that analyses the statistics of the macroblock features extracted directly from the MPEG stream. A method for extraction of the continuous frame difference that transforms the 3D video stream into a 1D curve is presented. This transform is then further employed to extract temporal units within the analysed video sequence. Results of computer simulations are reported.

  8. Context effects in a temporal discrimination task" further tests of the Scalar Expectancy Theory and Learning-to-Time models.

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-07-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.

  9. Learning Human Actions by Combining Global Dynamics and Local Appearance.

    Science.gov (United States)

    Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J

    2014-12-01

    In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods.

  10. On the nature of phase attraction in sensorimotor synchronization with interleaved auditory sequences.

    Science.gov (United States)

    Repp, Bruno H

    2004-10-01

    In a task that requires in-phase synchronization of finger taps with an isochronous sequence of target tones that is interleaved with a sequence of distractor tones at various fixed phase relationships, the taps tend to be attracted to the distractor tones, especially when the distractor tones closely precede the target tones [Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy. Journal of Experimental Psychology: Human Perception and Performance, 29, 290-309]. The present research addressed two related questions about this distractor effect: (1) Is it a function of the absolute temporal separation or of the relative phase of the two stimulus sequences? (2) Is it the result of perceptual grouping (integration) of target and distractor tones or of simultaneous attraction to two independent sequences? In three experiments, distractor effects were compared across two different sequence rates. The results suggest that absolute temporal separation, not relative phase, is the critical variable. Experiment 3 also included an anti-phase tapping task that addressed the second question directly. The results suggest that the attraction of taps to distractor tones is caused mainly by temporal integration of target and distractor tones within a fixed window of 100-150 ms duration, with the earlier-occurring tone being weighted more strongly than the later-occurring one.

  11. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  12. Definition of the concept of «social temporality»

    Directory of Open Access Journals (Sweden)

    Yana S. Cherkun

    2016-02-01

    Full Text Available In the article is realized the theoretical analysis of the concepts of «temporality», «social» and «social temporality». Include such attributes of temporality: temporality as an internal time; temporality as a sequence; temporality as temporary; temporality as the length of time a certain point; temporality as a current event. Demarcation with similar concepts and definitions of the semantic aspects of the concept of «social temporality» had conducted. The author notes, that there are many definitions of «temporality», each of which has a right to exist, but the integration of existing social senses to determine temporality as a concept which indicates the rate of turnover in the time of the events that occur in the vital functions of humans in society. It is emphasized that in the presented interpretation of the concept of «social temporality» integrated internalization and exteriorization, and combined the discreteness and integrity. The author analyzes the relationship of the concept of «social temporality» with the concepts «social time», «social space» and «chronotops». The relationship of these concepts is represented by the fact that social time-space trajectory is represented by the flow of events that occur in the social space and move in social time and social temporality stress determines the speed of events. Thus, in the article the connection between the semantic aspects of social temporality and the definition of temporary and spatial specificity of global conflicts had established.

  13. Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning

    NARCIS (Netherlands)

    Wiering, Marco A.

    2010-01-01

    A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game position evaluation function. In this paper we examine and compare three different methods for generating training games: 1) Learning by self-play, 2) Learning by playing against an

  14. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

    OpenAIRE

    Park, Seong Hyeon; Kim, ByeongDo; Kang, Chang Mook; Chung, Chung Choo; Choi, Jun Won

    2018-01-01

    In this paper, we propose a deep learning based vehicle trajectory prediction technique which can generate the future trajectory sequence of surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short-term memory (LSTM) based encoder and generates the future trajectory sequence using the LSTM based decoder. This structure produces the $K$ most likely trajectory candidates over occupancy grid ma...

  15. Intelligent Web-Based Learning System with Personalized Learning Path Guidance

    Science.gov (United States)

    Chen, C. M.

    2008-01-01

    Personalized curriculum sequencing is an important research issue for web-based learning systems because no fixed learning paths will be appropriate for all learners. Therefore, many researchers focused on developing e-learning systems with personalized learning mechanisms to assist on-line web-based learning and adaptively provide learning paths…

  16. The effect of Vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats.

    Science.gov (United States)

    Kiasalari, Zahra; Khalili, Mohsen; Shafiee, Samaneh; Roghani, Mehrdad

    2016-01-01

    Since temporal lobe epilepsy (TLE) is associated with learning and memory impairment, we investigated the beneficial effect of Vitamin E on the impaired learning and memory in the intrahippocampal kainate model of TLE in rats. Rats were divided into sham, Vitamin E-treated sham, kainate, and Vitamin E-treated kainate. Intrahippocampal kainate was used for induction of epilepsy. Vitamin E was injected intraperitoneal (i.p.) at a dose of 200 mg/kg/day started 1 week before surgery until 1 h presurgery. Initial and step-through latencies in the passive avoidance test and alternation behavior percentage in Y-maze were finally determined in addition to measurement of some oxidative stress markers. Kainate injection caused a higher severity and rate of seizures and deteriorated learning and memory performance in passive avoidance paradigm and spontaneous alternation as an index of spatial recognition memory in Y-maze task. Intrahippocampal kainate also led to the elevation of malondialdehyde (MDA) and nitrite and reduced activity of superoxide dismutase (SOD). Vitamin E pretreatment significantly attenuated severity and incidence rate of seizures, significantly improved retrieval and recall in passive avoidance, did not ameliorate spatial memory deficit in Y-maze, and lowered MDA and enhanced SOD activity. Vitamin E improves passive avoidance learning and memory and part of its beneficial effect is due to its potential to mitigate hippocampal oxidative stress.

  17. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning.

    Science.gov (United States)

    Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L

    2017-09-09

    Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.

  18. Modeling the Temporal Nature of Human Behavior for Demographics Prediction

    DEFF Research Database (Denmark)

    Felbo, Bjarke; Sundsøy, Pål; Pentland, Alex

    2017-01-01

    Mobile phone metadata is increasingly used for humanitarian purposes in developing countries as traditional data is scarce. Basic demographic information is however often absent from mobile phone datasets, limiting the operational impact of the datasets. For these reasons, there has been a growing...... interest in predicting demographic information from mobile phone metadata. Previous work focused on creating increasingly advanced features to be modeled with standard machine learning algorithms. We here instead model the raw mobile phone metadata directly using deep learning, exploiting the temporal...... on both age and gender prediction using only the temporal modality in mobile metadata. We finally validate our method on low activity users and evaluate the modeling assumptions....

  19. A dynamic texture based approach to recognition of facial actions and their temporal models

    NARCIS (Netherlands)

    Koelstra, Sander; Pantic, Maja; Patras, Ioannis (Yannis)

    2010-01-01

    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the

  20. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  1. Multi-Task Video Captioning with Video and Entailment Generation

    OpenAIRE

    Pasunuru, Ramakanth; Bansal, Mohit

    2017-01-01

    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware vid...

  2. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series.

    Science.gov (United States)

    Chambon, Stanislas; Galtier, Mathieu N; Arnal, Pierrick J; Wainrib, Gilles; Gramfort, Alexandre

    2018-04-01

    Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of the signal of a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEGs), electrooculograms (EOGs), electrocardiograms, and electromyograms (EMGs). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or extracting handcrafted features, that exploits all multivariate and multimodal polysomnography (PSG) signals (EEG, EMG, and EOG), and that can exploit the temporal context of each 30-s window of data. For each modality, the first layer learns linear spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up to 20 EEG channels demonstrate that our network architecture yields the state-of-the-art performance. Our study reveals a number of insights on the spatiotemporal distribution of the signal of interest: a good tradeoff for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels. Also exploiting 1 min of data before and after each data segment offers the strongest improvement when a limited number of channels are available. As sleep experts, our system exploits the multivariate and multimodal nature of PSG signals in order to deliver the state-of-the-art classification performance with a small computational cost.

  3. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  4. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  5. Rescaling of temporal expectations during extinction

    Science.gov (United States)

    Drew, Michael R.; Walsh, Carolyn; Balsam, Peter D

    2016-01-01

    Previous research suggests that extinction learning is temporally specific. Changing the CS duration between training and extinction can facilitate the loss of the CR within the extinction session but impairs long-term retention of extinction. In two experiments using conditioned magazine approach with rats, we examined the relation between temporal specificity of extinction and CR timing. In Experiment 1 rats were trained on a 12-s, fixed CS-US interval and then extinguished with CS presentations that were 6, 12, or 24 s in duration. The design of Experiment 2 was the same except rats were trained using partial rather than continuous reinforcement. In both experiments, extending the CS duration in extinction facilitated the diminution of CRs during the extinction session, but shortening the CS duration failed to slow extinction. In addition, extending (but not shortening) the CS duration caused temporal rescaling of the CR, in that the peak CR rate migrated later into the trial over the course of extinction training. This migration partially accounted for the faster loss of the CR when the CS duration was extended. Results are incompatible with the hypothesis that extinction is driven by cumulative CS exposure and suggest that temporally extended nonreinforced CS exposure reduces conditioned responding via temporal displacement rather than through extinction per se. PMID:28045291

  6. Detecting Scareware by Mining Variable Length Instruction Sequences

    OpenAIRE

    Shahzad, Raja Khurram; Lavesson, Niklas

    2011-01-01

    Scareware is a recent type of malicious software that may pose financial and privacy-related threats to novice users. Traditional countermeasures, such as anti-virus software, require regular updates and often lack the capability of detecting novel (unseen) instances. This paper presents a scareware detection method that is based on the application of machine learning algorithms to learn patterns in extracted variable length opcode sequences derived from instruction sequences of binary files....

  7. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  8. Working memory for sequences of temporal durations reveals a volatile single-item store

    Directory of Open Access Journals (Sweden)

    Sanjay G Manohar

    2016-10-01

    Full Text Available When a sequence is held in working memory, different items are retained with differing fidelity. Here we ask whether a sequence of brief time intervals that must be remembered show recency effects, similar to those observed in verbal and visuospatial working memory. It has been suggested that prioritising some items over others can be accounted for by a focus of attention, maintaining some items in a privileged state. We therefore also investigated whether such benefits are vulnerable to disruption by attention or expectation. Participants listened to sequences of one to five tones, of varying durations (200ms to 2s. Subsequently, the length of one of the tones in the sequence had to be reproduced by holding a key. The discrepancy between the reproduced and actual durations quantified the fidelity of memory for auditory durations. Recall precision decreased with the number of items that had to be remembered, and was better for the first and last items of sequences, in line with set-size and serial position effects seen in other modalities. To test whether attentional filtering demands might impair performance, an irrelevant variation in pitch was introduced in some blocks of trials. In those blocks, memory precision was worse for sequences that consisted of only one item, i.e. the smallest memory set size. Thus, when irrelevant information was present, the benefit of having only one item in memory is attenuated. Finally we examined whether expectation could interfere with memory. On half the trials, the number of items in the upcoming sequence was cued. When the number of items was known in advance, performance was paradoxically worse when the sequence consisted of only one item. Thus the benefit of having only one item to remember is stronger when it is unexpectedly the only item. Our results suggest that similar mechanisms are used to hold auditory time durations in working memory, as for visual or verbal stimuli. Further, solitary items were

  9. Detecting the temporal structure of sound sequences in newborn infants

    NARCIS (Netherlands)

    Háden, G.P.; Honing, H.; Török, M.; Winkler, I.

    2015-01-01

    Most high-level auditory functions require one to detect the onset and offset of sound sequences as well as registering the rate at which sounds are presented within the sound trains. By recording event-related brain potentials to onsets and offsets of tone trains as well as to changes in the

  10. Interference-free acquisition of overlapping sequences in explicit spatial memory.

    Science.gov (United States)

    Eggert, Thomas; Drever, Johannes; Straube, Andreas

    2014-04-01

    Some types of human sequential memory, e.g. the acquisition of a new composition by a trained musician, seem to be very efficient in extending the length of a memorized sequence and in flexible reuse of known subsequences in a newly acquired sequential context. This implies that interference between known and newly acquired subsequences can be avoided even when learning a sequence which is a partial mutation of a known sequence. It is known that established motor sequences do not have such flexibility. Using learning of deferred imitation, the current study investigates the flexibility of explicit spatial memory by quantifying the interferences between successively acquired, partially overlapping sequences. After learning a spatial sequence on day 1, this sequence was progressively modified on day 2. On day 3, a retention test was performed with both the initial and the modified sequence. The results show that subjects performed very well on day 1 and day 2. No spatial interference between changed and unchanged targets was observed during the stepwise progressive modification of the reproduced sequence. Surprisingly, subjects performed well on both sequences on day 3. Comparison with a control experiment without intermediate mutation training showed that the initial training on day 1 did not proactively interfere with the retention of the modified sequence on day 3. Vice versa, the mutation training on day 2 did not interfere retroactively with the retention of the original sequence as tested on day 3. The results underline the flexibility in acquiring explicit spatial memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.

    Science.gov (United States)

    Tatjewski, Marcin; Kierczak, Marcin; Plewczynski, Dariusz

    2017-01-01

    Here, we present two perspectives on the task of predicting post translational modifications (PTMs) from local sequence fragments using machine learning algorithms. The first is the description of the fundamental steps required to construct a PTM predictor from the very beginning. These steps include data gathering, feature extraction, or machine-learning classifier selection. The second part of our work contains the detailed discussion of more advanced problems which are encountered in PTM prediction task. Probably the most challenging issues which we have covered here are: (1) how to address the training data class imbalance problem (we also present statistics describing the problem); (2) how to properly set up cross-validation folds with an approach which takes into account the homology of protein data records, to address this problem we present our folds-over-clusters algorithm; and (3) how to efficiently reach for new sources of learning features. Presented techniques and notes resulted from intense studies in the field, performed by our and other groups, and can be useful both for researchers beginning in the field of PTM prediction and for those who want to extend the repertoire of their research techniques.

  12. Constraint Satisfaction Inference : Non-probabilistic Global Inference for Sequence Labelling

    NARCIS (Netherlands)

    Canisius, S.V.M.; van den Bosch, A.; Daelemans, W.; Basili, R.; Moschitti, A.

    2006-01-01

    We present a new method for performing sequence labelling based on the idea of using a machine-learning classifier to generate several possible output sequences, and then applying an inference procedure to select the best sequence among those. Most sequence labelling methods following a similar

  13. TEMPTING system: a hybrid method of rule and machine learning for temporal relation extraction in patient discharge summaries.

    Science.gov (United States)

    Chang, Yung-Chun; Dai, Hong-Jie; Wu, Johnny Chi-Yang; Chen, Jian-Ming; Tsai, Richard Tzong-Han; Hsu, Wen-Lian

    2013-12-01

    Patient discharge summaries provide detailed medical information about individuals who have been hospitalized. To make a precise and legitimate assessment of the abundant data, a proper time layout of the sequence of relevant events should be compiled and used to drive a patient-specific timeline, which could further assist medical personnel in making clinical decisions. The process of identifying the chronological order of entities is called temporal relation extraction. In this paper, we propose a hybrid method to identify appropriate temporal links between a pair of entities. The method combines two approaches: one is rule-based and the other is based on the maximum entropy model. We develop an integration algorithm to fuse the results of the two approaches. All rules and the integration algorithm are formally stated so that one can easily reproduce the system and results. To optimize the system's configuration, we used the 2012 i2b2 challenge TLINK track dataset and applied threefold cross validation to the training set. Then, we evaluated its performance on the training and test datasets. The experiment results show that the proposed TEMPTING (TEMPoral relaTion extractING) system (ranked seventh) achieved an F-score of 0.563, which was at least 30% better than that of the baseline system, which randomly selects TLINK candidates from all pairs and assigns the TLINK types. The TEMPTING system using the hybrid method also outperformed the stage-based TEMPTING system. Its F-scores were 3.51% and 0.97% better than those of the stage-based system on the training set and test set, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Different brain circuits underlie motor and perceptual representations of temporal intervals

    DEFF Research Database (Denmark)

    Bueti, Doemnica; Walsh, Vincent; Frith, Christopher

    2008-01-01

    V5/MT. Our findings point to a role for the parietal cortex as an interface between sensory and motor processes and suggest that it may be a key node in translation of temporal information into action. Furthermore, we discuss the potential importance of the extrastriate cortex in processing visual......In everyday life, temporal information is used for both perception and action, but whether these two functions reflect the operation of similar or different neural circuits is unclear. We used functional magnetic resonance imaging to investigate the neural correlates of processing temporal...... information when either a motor or a perceptual representation is used. Participants viewed two identical sequences of visual stimuli and used the information differently to perform either a temporal reproduction or a temporal estimation task. By comparing brain activity evoked by these tasks and control...

  15. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno; Mallick, Bani K.

    2011-01-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  16. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno

    2011-03-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  17. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    Science.gov (United States)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  18. A dynamic texture-based approach to recognition of facial actions and their temporal models.

    Science.gov (United States)

    Koelstra, Sander; Pantic, Maja; Patras, Ioannis

    2010-11-01

    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set.

  19. Beta band transcranial alternating (tACS and direct current stimulation (tDCS applied after initial learning facilitate retrieval of a motor sequence

    Directory of Open Access Journals (Sweden)

    Vanessa eKrause

    2016-01-01

    Full Text Available The primary motor cortex (M1 contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS and direct current stimulation (tDCS. Alpha (10 Hz, beta (20 Hz or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for ten minutes. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions.Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. TDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioural modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization.

  20. Using a Learning Activity Sequence in Large-Enrollment Physical Geology Classes: Supporting the Needs of Underserved Students While Motivating Interest, Learning, and Success

    Science.gov (United States)

    Pun, A.; Smith, G. A.

    2011-12-01

    The learning activity sequence (LAS) strategy is a student-focused pedagogy that emphasizes active classroom learning to promote learning among all students, and in particular, those with diverse backgrounds. Online assessments both set the stage for active learning and help students synthesize material during their learning. UNM is one of only two Carnegie Research University Very High institutions also designated as Hispanic-serving and the only state flagship university that is also a majority-minority undergraduate institution. In 2010 Hispanics comprised 40% of 20,655 undergraduates (and 49% of freshmen), 37% of undergraduates were Pell Grant recipients (the largest proportion of any public flagship research university; J. Blacks Higher Ed., 2009) and 44% of incoming freshmen were first-generation students. To maximize student learning in this environment rich in traditionally underserved students, we designed a LAS for nonmajor physical geology (enrollments 100-160) that integrates in-class instruction with structured out-of-class learning. The LAS has 3 essential parts: Students read before class to acquire knowledge used during in-class collaborative, active-learning activities that build conceptual understanding. Lastly, students review notes and synthesize what they've learned before moving on to the next topic. The model combines online and in-class learning and assessment: Online reading assessments before class; active-learning experiences during class; online learning assessments after class. Class sessions include short lectures, peer instruction "clickers", and small-group problem solving (lecture tutorials). Undergraduate Peer-Learning Facilitators are available during class time to help students with problem solving. Effectiveness of the LAS approach is reflected in three types of measurements. (1) Using the LAS strategy, the overall rate of students earning a grade of C or higher is higher than compared to the average for all large

  1. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Science.gov (United States)

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    Science.gov (United States)

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  3. Spatio-Temporal Data Construction

    Directory of Open Access Journals (Sweden)

    Hai Ha Le

    2013-08-01

    Full Text Available On the route to a spatio-temporal geoscience information system, an appropriate data model for geo-objects in space and time has been developed. In this model, geo-objects are represented as sequences of geometries and properties with continuous evolution in each time interval. Because geomodeling software systems usually model objects at specific time instances, we want to interpolate the geometry and properties from two models of an object with only geometrical constraints (no physical or mechanical constraints. This process is called spatio-temporal data construction or morphological interpolation of intermediate geometries. This paper is strictly related to shape morphing, shape deformation, cross-parameterization and compatible remeshing and is only concerned with geological surfaces. In this study, two main sub-solutions construct compatible meshes and find trajectories in which vertices of the mesh evolve. This research aims to find an algorithm to construct spatio-temporal data with some constraints from the geosciences, such as cutting surfaces by faulting or fracturing phenomena and evolving boundaries attached to other surfaces. Another goal of this research is the implementation of the algorithm in a software product, namely a gOcad plug-in. The four main procedures of the algorithm are cutting the surfaces, setting up constraints, partitioning and calculating the parameterizations and trajectories. The software has been tested to construct data for a salt dome and other surfaces in regard to the geological processes of faulting, deposition and erosion. The result of this research is an algorithm and software for the construction of spatio-temporal data.

  4. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  5. CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontine angle

    International Nuclear Information System (INIS)

    Imhof, H.; Henk, C.B.; Dirisamer, A.; Czerny, C.; Gstoettner, W.

    2003-01-01

    Tumours lesions of the temporal bone and of the cerebello-pontine angle are rare.This tumours can be separated into benign and malignant lesions. In this paper the CT and MRI characteristica of tumours of the temporal bone and the cerebello-pontane angle will be demonstrated. High resolution CT (HRCT) as usually performed in the axial plane are using a high resolution bone window level setting, coronal planes are the reconstructed from the axial data set or will be obtained directly. With the MRI FLAIR sequence in the axial plane the whole brain will be scanned either to depict or exclude a tumour invasion into the brain. After this,T2-weighted fast spin echo sequences or fatsuppressed inversion recovery sequences in high resolution technique in the axial plane will be obtained from the temporal bone and axial T1-weighted spinecho sequences before and after the intravenous application of contrast material will be obtained of this region. Finally T1-weighted spinecho sequences in high resolution technique with fatsuppression after the intravenous application of contrast material will be performed in the coronal plane. HRCT and MRI are both used to depict the most exact tumorous borders. HRCT excellently depicts the osseous changes for example exostosis of the external auditory canal, while also with HRCT osseous changes maybe characterized into more benign or malignant types. MRI has a very high soft tissue contrast and may therefore either characterize vascular space-occupying lesions for example glomus jugulare tumours or may differentiate between more benign or malignant lesions. In conclusion HRCT and MRI of the temporal bone are excellent methods to depict and mostly characterize tumour lesions and can help to differentiate between benign and malignant lesion. These imaging methods shall be used complementary and may have a great impact for the therapeutic planning. (orig.) [de

  6. Analyzing State Sequences with Probabilistic Suffix Trees: The PST R Package

    Directory of Open Access Journals (Sweden)

    Alexis Gabadinho

    2016-08-01

    Full Text Available This article presents the PST R package for categorical sequence analysis with probabilistic suffix trees (PSTs, i.e., structures that store variable-length Markov chains (VLMCs. VLMCs allow to model high-order dependencies in categorical sequences with parsimonious models based on simple estimation procedures. The package is specifically adapted to the field of social sciences, as it allows for VLMC models to be learned from sets of individual sequences possibly containing missing values; in addition, the package is extended to account for case weights. This article describes how a VLMC model is learned from one or more categorical sequences and stored in a PST. The PST can then be used for sequence prediction, i.e., to assign a probability to whole observed or artificial sequences. This feature supports data mining applications such as the extraction of typical patterns and outliers. This article also introduces original visualization tools for both the model and the outcomes of sequence prediction. Other features such as functions for pattern mining and artificial sequence generation are described as well. The PST package also allows for the computation of probabilistic divergence between two models and the fitting of segmented VLMCs, where sub-models fitted to distinct strata of the learning sample are stored in a single PST.

  7. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  8. When Learning Disturbs Memory – Temporal Profile of Retroactive Interference of Learning on Memory Formation

    Science.gov (United States)

    Sosic-Vasic, Zrinka; Hille, Katrin; Kröner, Julia; Spitzer, Manfred; Kornmeier, Jürgen

    2018-01-01

    Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules. PMID:29503621

  9. When Learning Disturbs Memory – Temporal Profile of Retroactive Interference of Learning on Memory Formation

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    2018-02-01

    Full Text Available Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference.Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners.Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules.

  10. Unpredictable visual changes cause temporal memory averaging.

    Science.gov (United States)

    Ohyama, Junji; Watanabe, Katsumi

    2007-09-01

    Various factors influence the perceived timing of visual events. Yet, little is known about the ways in which transient visual stimuli affect the estimation of the timing of other visual events. In the present study, we examined how a sudden color change of an object would influence the remembered timing of another transient event. In each trial, subjects saw a green or red disk travel in circular motion. A visual flash (white frame) occurred at random times during the motion sequence. The color of the disk changed either at random times (unpredictable condition), at a fixed time relative to the motion sequence (predictable condition), or it did not change (no-change condition). The subjects' temporal memory of the visual flash in the predictable condition was as veridical as that in the no-change condition. In the unpredictable condition, however, the flash was reported to occur closer to the timing of the color change than actual timing. Thus, an unpredictable visual change distorts the temporal memory of another visual event such that the remembered moment of the event is closer to the timing of the unpredictable visual change.

  11. Temporal lobe epilepsy: Comparison of CT and MR in 100 patients

    International Nuclear Information System (INIS)

    Schoerner, W.; Meencke, H.J.; Sander, B.; Henkes, H.; Felix, R.; Klinikum Rudolf Virchow, Berlin

    1989-01-01

    The value of CT and MR was studied in 100 patients with temporal lobe epilepsy. Axial CT scans were obtained before and after contrast injection. Coronary MR scans were carried out with T 1 -(SE 400/30, GE 315/14) and T 2 -weighted sequences (SE 1600/30 + 70). A circumscribed lesion was demonstrated in fifteen patients by CT and in 25 patients by MR. With the exception of a small area of calcification, all lesions seen on CT could also be recognized on MR. Better sensitivity and improved demonstration of the temporal lobes makes MR the method of choice in the diagnosis of temporal lobe epilepsy. (orig./GDG) [de

  12. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  13. Neural correlates of contextual cueing are modulated by explicit learning.

    Science.gov (United States)

    Westerberg, Carmen E; Miller, Brennan B; Reber, Paul J; Cohen, Neal J; Paller, Ken A

    2011-10-01

    Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer's knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Time integration and statistical regulation applied to mobile objects detection in a sequence of images

    International Nuclear Information System (INIS)

    Letang, Jean-Michel

    1993-01-01

    This PhD thesis deals with the detection of moving objects in monocular image sequences. The first section presents the inherent problems of motion analysis in real applications. We propose a method robust to perturbations frequently encountered during acquisition of outdoor scenes. It appears three main directions for investigations, all of them pointing out the importance of the temporal axis, which is a specific dimension for motion analysis. In the first part, the image sequence is considered as a set of temporal signals. The temporal multi-scale decomposition enables the characterization of various dynamical behaviors of the objects being in the scene at a given instant. A second module integrates motion information. This elementary trajectography of moving objects provides a temporal prediction map, giving a confidence level of motion presence. Interactions between both sets of data are expressed within a statistical regularization. Markov random field models supply a formal framework to convey a priori knowledge of the primitives to be evaluated. A calibration method with qualitative boxes is presented to estimate model parameters. Our approach requires only simple computations and leads to a rather fast algorithm, that we evaluate in the last section over various typical sequences. (author) [fr

  15. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  16. A Three-Dimensional Approach and Open Source Structure for the Design and Experimentation of Teaching-Learning Sequences: The Case of Friction

    Science.gov (United States)

    Besson, Ugo; Borghi, Lidia; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We have developed a teaching-learning sequence (TLS) on friction based on a preliminary study involving three dimensions: an analysis of didactic research on the topic, an overview of usual approaches, and a critical analysis of the subject, considered also in its historical development. We found that mostly the usual presentations do not take…

  17. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  18. Occupational Sequences: Auto Engines 1. AT 121.

    Science.gov (United States)

    Korb, A. W.; And Others

    In an attempt to individualize an automotive course, the Vocational-Technical Division of Northern Montana College has developed Occupational Sequences for an engine rebuilding course. Occupational Sequences, a learning or teaching aid, is an analysis of numbered operations involved in engine rebuilding. Job sheets, included in the book, provide a…

  19. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    Science.gov (United States)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  20. Anterior Temporal Lobe Tracks the Formation of Prejudice.

    Science.gov (United States)

    Spiers, Hugo J; Love, Bradley C; Le Pelley, Mike E; Gibb, Charlotte E; Murphy, Robin A

    2017-03-01

    Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.

  1. Protecting genomic sequence anonymity with generalization lattices.

    Science.gov (United States)

    Malin, B A

    2005-01-01

    Current genomic privacy technologies assume the identity of genomic sequence data is protected if personal information, such as demographics, are obscured, removed, or encrypted. While demographic features can directly compromise an individual's identity, recent research demonstrates such protections are insufficient because sequence data itself is susceptible to re-identification. To counteract this problem, we introduce an algorithm for anonymizing a collection of person-specific DNA sequences. The technique is termed DNA lattice anonymization (DNALA), and is based upon the formal privacy protection schema of k -anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic sequence from k-1 other entries in a collection. To maximize information retained in protected sequences, we incorporate a concept generalization lattice to learn the distance between two residues in a single nucleotide region. The lattice provides the most similar generalized concept for two residues (e.g. adenine and guanine are both purines). The method is tested and evaluated with several publicly available human population datasets ranging in size from 30 to 400 sequences. Our findings imply the anonymization schema is feasible for the protection of sequences privacy. The DNALA method is the first computational disclosure control technique for general DNA sequences. Given the computational nature of the method, guarantees of anonymity can be formally proven. There is room for improvement and validation, though this research provides the groundwork from which future researchers can construct genomics anonymization schemas tailored to specific datasharing scenarios.

  2. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis.

    Science.gov (United States)

    Griffin, Nicole G; Wang, Yu; Hulette, Christine M; Halvorsen, Matt; Cronin, Kenneth D; Walley, Nicole M; Haglund, Michael M; Radtke, Rodney A; Skene, J H Pate; Sinha, Saurabh R; Heinzen, Erin L

    2016-03-01

    Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology. Wiley Periodicals, Inc. © 2016

  3. Learning Recursion: Multiple Nested and Crossed Dependencies

    Directory of Open Access Journals (Sweden)

    Meinou de Vries

    2011-06-01

    Full Text Available Language acquisition in both natural and artificial language learning settings crucially depends on extracting information from ordered sequences. A shared sequence learning mechanism is thus assumed to underlie both natural and artificial language learning. A growing body of empirical evidence is consistent with this hypothesis. By means of artificial language learning experiments, we may therefore gain more insight in this shared mechanism. In this paper, we review empirical evidence from artificial language learning and computational modeling studies, as well as natural language data, and suggest that there are two key factors that help deter-mine processing complexity in sequence learning, and thus in natural language processing. We propose that the specific ordering of non-adjacent dependencies (i.e. nested or crossed, as well as the number of non-adjacent dependencies to be resolved simultaneously (i.e. two or three are important factors in gaining more insight into the boundaries of human sequence learning; and thus, also in natural language processing. The implications for theories of linguistic competence are discussed.

  4. How to find the way out from four rooms? The learning of "chaining" associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia.

    Science.gov (United States)

    Polgár, Patricia; Farkas, Márta; Nagy, Orsolya; Kelemen, Oguz; Réthelyi, János; Bitter, István; Myers, Catherine E; Gluck, Mark A; Kéri, Szabolcs

    2008-02-01

    Recent meta-analytic evidence suggests that clinical neuropsychological methods are not likely to uncover circumscribed cognitive impairments in the deficit syndrome of schizophrenia. To overcome this issue, we adapted a cognitive neuroscience perspective and used a new "chaining" habit learning task. Participants were requested to navigate a cartoon character through a sequence of 4 rooms by learning to choose the open door from 3 colored doors in each room. The aim of the game was to learn the full sequence of rooms until the character reached the outside. In the training phase, each stimulus leading to reward (open door in each room) was trained via feedback until the complete sequence was learned. In the probe phase, the context of rewarded stimuli was manipulated: in a given room, in addition to the correct door of that room, there also appeared a door which was open in another room. Whereas the training phase is dominantly related to basal ganglia circuits, the context-dependent probe phase requires intact medial-temporal lobe functioning. Results revealed that deficit and non-deficit patients were similarly impaired on the probe phase compared with controls. However, the training phase was only compromised in deficit patients. More severe negative symptoms were associated with more errors on the training phase. Executive functions were unrelated to performance on the "chaining" task. These results indicate that the deficit syndrome is associated with prominently impaired stimulus-response reinforcement learning, which may indicate abnormal functioning of basal ganglia circuits.

  5. SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity.

    Science.gov (United States)

    Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

  6. Egocentric Temporal Action Proposals.

    Science.gov (United States)

    Shao Huang; Weiqiang Wang; Shengfeng He; Lau, Rynson W H

    2018-02-01

    We present an approach to localize generic actions in egocentric videos, called temporal action proposals (TAPs), for accelerating the action recognition step. An egocentric TAP refers to a sequence of frames that may contain a generic action performed by the wearer of a head-mounted camera, e.g., taking a knife, spreading jam, pouring milk, or cutting carrots. Inspired by object proposals, this paper aims at generating a small number of TAPs, thereby replacing the popular sliding window strategy, for localizing all action events in the input video. To this end, we first propose to temporally segment the input video into action atoms, which are the smallest units that may contain an action. We then apply a hierarchical clustering algorithm with several egocentric cues to generate TAPs. Finally, we propose two actionness networks to score the likelihood of each TAP containing an action. The top ranked candidates are returned as output TAPs. Experimental results show that the proposed TAP detection framework performs significantly better than relevant approaches for egocentric action detection.

  7. Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network.

    Science.gov (United States)

    Del Papa, Bruno; Priesemann, Viola; Triesch, Jochen

    2017-01-01

    Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions - matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model's performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN's spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences.

  8. The gamma model : a new neural network for temporal processing

    NARCIS (Netherlands)

    Vries, de B.

    1992-01-01

    In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.

  9. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    Science.gov (United States)

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  10. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  11. Learning by observation: insights from Williams syndrome.

    Science.gov (United States)

    Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura

    2013-01-01

    Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies

  12. Learning by observation: insights from Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Francesca Foti

    Full Text Available Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for

  13. Objective Audio Quality Assessment Based on Spectro-Temporal Modulation Analysis

    OpenAIRE

    Guo, Ziyuan

    2011-01-01

    Objective audio quality assessment is an interdisciplinary research area that incorporates audiology and machine learning. Although much work has been made on the machine learning aspect, the audiology aspect also deserves investigation. This thesis proposes a non-intrusive audio quality assessment algorithm, which is based on an auditory model that simulates human auditory system. The auditory model is based on spectro-temporal modulation analysis of spectrogram, which has been proven to be ...

  14. What can we learn about lyssavirus genomes using 454 sequencing?

    Science.gov (United States)

    Höper, Dirk; Finke, Stefan; Freuling, Conrad M; Hoffmann, Bernd; Beer, Martin

    2012-01-01

    The main task of the individual project number four"Whole genome sequencing, virus-host adaptation, and molecular epidemiological analyses of lyssaviruses "within the network" Lyssaviruses--a potential re-emerging public health threat" is to provide high quality complete genome sequences from lyssaviruses. These sequences are analysed in-depth with regard to the diversity of the viral populations as to both quasi-species and so-called defective interfering RNAs. Moreover, the sequence data will facilitate further epidemiological analyses, will provide insight into the evolution of lyssaviruses and will be the basis for the design of novel nucleic acid based diagnostics. The first results presented here indicate that not only high quality full-length lyssavirus genome sequences can be generated, but indeed efficient analysis of the viral population gets feasible.

  15. Three children with autism spectrum disorder learn to perform a three-step communication sequence using an iPad®-based speech-generating device.

    Science.gov (United States)

    Waddington, Hannah; Sigafoos, Jeff; Lancioni, Giulio E; O'Reilly, Mark F; van der Meer, Larah; Carnett, Amarie; Stevens, Michelle; Roche, Laura; Hodis, Flaviu; Green, Vanessa A; Sutherland, Dean; Lang, Russell; Marschik, Peter B

    2014-12-01

    Many children with autism spectrum disorder (ASD) have limited or absent speech and might therefore benefit from learning to use a speech-generating device (SGD). The purpose of this study was to evaluate a procedure aimed at teaching three children with ASD to use an iPad(®)-based SGD to make a general request for access to toys, then make a specific request for one of two toys, and then communicate a thank-you response after receiving the requested toy. A multiple-baseline across participants design was used to determine whether systematic instruction involving least-to-most-prompting, time delay, error correction, and reinforcement was effective in teaching the three children to engage in this requesting and social communication sequence. Generalization and follow-up probes were conducted for two of the three participants. With intervention, all three children showed improvement in performing the communication sequence. This improvement was maintained with an unfamiliar communication partner and during the follow-up sessions. With systematic instruction, children with ASD and severe communication impairment can learn to use an iPad-based SGD to complete multi-step communication sequences that involve requesting and social communication functions. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. TEXPLORE temporal difference reinforcement learning for robots and time-constrained domains

    CERN Document Server

    Hester, Todd

    2013-01-01

    This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuou...

  17. Sleep to the beat: A nap favours consolidation of timing.

    Science.gov (United States)

    Verweij, Ilse M; Onuki, Yoshiyuki; Van Someren, Eus J W; Van der Werf, Ysbrand D

    2016-06-01

    Growing evidence suggests that sleep is important for procedural learning, but few studies have investigated the effect of sleep on the temporal aspects of motor skill learning. We assessed the effect of a 90-min day-time nap on learning a motor timing task, using 2 adaptations of a serial interception sequence learning (SISL) task. Forty-two right-handed participants performed the task before and after a 90-min period of sleep or wake. Electroencephalography (EEG) was recorded throughout. The motor task consisted of a sequential spatial pattern and was performed according to 2 different timing conditions, that is, either following a sequential or a random temporal pattern. The increase in accuracy was compared between groups using a mixed linear regression model. Within the sleep group, performance improvement was modeled based on sleep characteristics, including spindle- and slow-wave density. The sleep group, but not the wake group, showed improvement in the random temporal, but especially and significantly more strongly in the sequential temporal condition. None of the sleep characteristics predicted improvement on either general of the timing conditions. In conclusion, a daytime nap improves performance on a timing task. We show that performance on the task with a sequential timing sequence benefits more from sleep than motor timing. More important, the temporal sequence did not benefit initial learning, because differences arose only after an offline period and specifically when this period contained sleep. Sleep appears to aid in the extraction of regularities for optimal subsequent performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. A Probabilistic Framework for Constructing Temporal Relations in Replica Exchange Molecular Trajectories.

    Science.gov (United States)

    Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva

    2018-05-23

    Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).

  19. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills

    Directory of Open Access Journals (Sweden)

    Rebecca M. C. Spencer

    2013-11-01

    Full Text Available Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based versus muscle-based learning in older adults has not been disentangled. We trained young (n=62 and older (n=50 adults on a motor sequence learning task and re-tested learning following 12 hr intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based v. muscle-based learning by interval (sleep v. wake interaction, F(1,58=6.58, p=.013: Goal-based learning tended to be greater following sleep compared to wake, t(29=1.47, p=.072. Conversely, muscle-based learning was greater following wake than sleep, t(29=2.11, p=.021. Unlike young adults, this interaction was not significant in older adults, F(1,46=.04, p=.84, nor was there a main effect of interval, F(1,46=1.14, p=.29. Thus, older adults do not preferentially consolidate sequence learning over wake or sleep.

  20. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.