WorldWideScience

Sample records for leaf surface characteristics

  1. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.

    Science.gov (United States)

    Bringe, Katja; Schumacher, Christina F A; Schmitz-Eiberger, Michaela; Steiner, Ulrike; Oerke, Erich-Christian

    2006-01-01

    The reaction of plants to environmental factors often varies with developmental stage. It was hypothesized, that also the cuticle, the outer surface layer of plants is modified during ontogenesis. Apple plantlets, cv. Golden Delicious, were grown under controlled conditions avoiding biotic and abiotic stress factors. The cuticular wax surface of adaxial apple leaves was analyzed for its chemical composition as well as for its micromorphology and hydrophobicity just after unfolding of leaves ending in the seventh leaf insertion. The outer surface of apple leaves was formed by a thin amorphous layer of epicuticular waxes. Epidermal cells of young leaves exhibited a distinctive curvature of the periclinal cell walls resulting in an undulated surface of the cuticle including pronounced lamellae, with the highest density at the centre of cells. As epidermal cells expanded during ontogenesis, the upper surface showed only minor surface sculpturing and a decrease in lamellae. With increasing leaf age the hydrophobicity of adaxial leaf side decreased significantly indicated by a decrease in contact angle. Extracted from plants, the amount of apolar cuticular wax per area unit ranged from only 0.9 microgcm(-2) for the oldest studied leaf to 1.5 microgcm(-2) for the youngest studied leaf. Differences in the total amount of cuticular waxes per leaf were not significant for older leaves. For young leaves, triterpenes (ursolic acid and oleanolic acid), esters and alcohols were the main wax components. During ontogenesis, the proportion of triterpenes in total mass of apolar waxes decreased from 32% (leaf 1) to 13% (leaf 7); absolute amounts decreased by more than 50%. The proportion of wax alcohols and esters, and alkanes to a lesser degree, increased with leaf age, whereas the proportion of acids decreased. The epicuticular wax layer also contained alpha-tocopherol described for the first time to be present also in the epicuticular wax. The modifications in the chemical

  2. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LIU Lian-you; GAO Shang-yu; HASI Eer-dun; WANG Zhi

    2006-01-01

    Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, Ailanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust,the densities of particles ofEuonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM10 (particulate matter less than 10 μm in aerodynamic diameter; 98.4%) and PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si,earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.

  3. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]?

    Indian Academy of Sciences (India)

    Nitish Kumar; Subedar Pandey; Amita Bhattacharya; Paramvir Singh Ahuja

    2004-09-01

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 and Kangra jat showed higher rate (75%) of Agrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves of A. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower (larger surface area covered by water droplet), higher phenol and wax content were more suitable for Agrobacterium infection. Caffeine fraction of tea promoted Agrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited both Agrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing the Agrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable for Agrobacterium infection the first step in Agrobacterium-mediated genetic transformation.

  4. Age-related leaf characteristics of surface features and ultrastructure of Dendropanax morbifera.

    Science.gov (United States)

    Kim, Ki Woo; Koo, Young Kuk; Yoon, Chul Jong

    2012-02-01

    Age-related morphological and anatomical changes were investigated by light and electron microscopy with juvenile and adult leaves of Dendropanax morbifera. Most juvenile leaves were glossy and palmate with five deep and narrow lobes divided nearly to two-thirds of the leaf base. Adult leaves were thick and possessed three lobes divided nearly to half of the leaf base. Stomata were ovoid and found on the abaxial surface. The epicuticular waxes of the plant included platelets, angular rodlets and threads. Platelets were attached to the surface at various angles. Distinct angular rodlets could be found on either the adaxial or the abaxial surface. Platelets on surface undulations occurred exclusively on the abaxial surface of adult leaves. Juvenile leaves were ca. 150 μm thick and had few intercellular spaces. Adult leaves were nearly two times thicker than juvenile leaves, and showed highly vacuolated cells and large intercellular spaces. The cuticle proper was apparent on the epidermis and showed distinctly alternating lamellate structures in juvenile leaves. The epidermal cell wall of adult leaves was covered with a cuticle layer for which a lamellate structure was not found. These results suggest that the species is heteroblastic in leaf characteristics with increasing leaf age.

  5. Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics.

    Science.gov (United States)

    Honour, Sarah L; Bell, J Nigel B; Ashenden, Trevor W; Cape, J Neil; Power, Sally A

    2009-04-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO(x)) representative of urban conditions, in solardome chambers. Annual mean NO(x) concentrations ranged from 77 nl l(-l) to 98 nl l(-1), with NO:NO(2) ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.

  6. Effects of simulated acid rain on leaf cuticular characteristics and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Percy, K.E.

    1987-01-01

    The effects of simulated acid rain (SAR) on adaxial leaf cuticles were investigated for a group of plant species selected from commercially-important crops and trees which exhibited markedly different cuticular characteristics. Expanding leaves of controlled-environment grown plants were exposed from emergence to full expansion to pH 5.6, 4.6, 4.2, 3.8, 3.4, 3.0 or 2.6 simulated rain (SAR) applied at 2 mm/h on alternate days. The number of events, the amount, droplet size and velocity were representative of UK ambient rainfall characteristics. The non-acidic pH 5.6 simulated rain consisted of 14 inorganic ions in weight/volume concentrations equivalent to those measured at a site in Eastern Canada. The degree of foliar injury and size of lesions was greater on crop species with waxy leaves than those with non-waxy leaves. Injury was least on needles of Sitka spruce (Picea sitchensis (Bong.) Carr.). The relative sensitivity of the species examined to foliar injury decreased in the order: field rap (Brassica napus L.) > Eucalyptus globulus L.) > pea (Pisum sativum L.) > dwarf bean (Phaseolus vulgaris L.) > field bean (Vicia faba L.) > Sitka spruce.

  7. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为%Characteristics of Rice Leaf Surface and Droplets Deposition Behavior on Rice Leaf Surface with Different Inclination Angles

    Institute of Scientific and Technical Information of China (English)

    徐广春; 顾中言; 徐德进; 许小龙

    2014-01-01

    θr)的分析结果表明θa总是大于θr,在40 s的测定时间内,随时间延迟θa和θr总是逐渐减少。结论稻叶的强疏水性主要归因于其表面布满了包被着蜡质的乳头状突起,同时这还可能与其叶表面的毛长和气孔密度密切相关。水稻叶面为低能叶面。只有Silwet-408溶液的表面张力小于稻叶的临界表面张力且溶液中的Silwet-408浓度达到临界胶束浓度才能使雾滴很好的黏附在不同倾角的稻叶上并润湿展布;过低浓度的溶液的雾滴由于较大的表面张力易从不同倾角的稻叶上滚落。Silwet-408溶液的雾滴在不同倾角叶片上的θa大于θr形成的润湿滞后说明了稻叶表面的粗糙,而这种粗糙与稻叶表面存在的高密度乳突密切相关。%Objective]In order to provide a basis of mechanisms controlling retention of pesticide droplets on target leaf, characterization of rice leaf surface and behavior analysis of single droplets of trisiloxane surfactant (Silwet-408) solutions on rice leaf surface with different inclination angles were studied.[Method]Scanning electron microscope (SEM) was used for observation of rice leaf surface characteristics and the critical surface tension (CST) of rice leaf was determined by Zisman method. Surface tension of Silwet-408 solutions at concentrations of 0, 3.91, 7.81, 15.63, 31.25, 62.50, 125.00 and 250.00 mg·L-1 was measured and the critical micelle concentration (CMC) of Silwet-408 was also measured according to the change of surface tension of Silwet-408 solutions. Then the contact angle of a single droplet on the rice leaf surface with 3 inclination angles was determined by contact angle meter.[Result]SEM images showed that 3 types of hairs and densely covered papillae were observed on both the adaxial and abaxial sides of rice leaf. Densities of papillae, with significant difference between the adaxial and abaxial rice leaf surface, were ((12.4±0.7)×103) and ((7.6±0.8)

  8. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3528 Section 29.3528 Agriculture... Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf. Leaf surface is affected to some extent by the size and shrinkage of the veins or fibers (See...

  9. 7 CFR 29.3036 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface...

  10. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  11. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  12. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  13. Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest.

    Science.gov (United States)

    Kenzo, Tanaka; Ichie, Tomoaki; Yoneda, Reiji; Kitahashi, Yoshinori; Watanabe, Yoko; Ninomiya, Ikuo; Koike, Takayoshi

    2004-10-01

    Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration.

  14. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

    Directory of Open Access Journals (Sweden)

    Huixia Wang

    Full Text Available The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion depends not only on droplet formulation and parameters but also on the physical (leaf roughness and physico-chemical (surface free energy, its components, and work-of-adhesion properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2 on adaxial surfaces and 0.72 to 93.35 g/m(2 on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000, but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000, its dispersive component (r = 0.526, p = 0.000, and work of adhesion for water (r = 0.698, p = 0.000. However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000. These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water.

  15. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2015-01-01

    Full Text Available The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive strength generally increased with curing age, and that the mix containing 15% Bamboo Leaf Ash (BLA by mass competes favorably with that of the reference mix at 28days and above. The water absorption and apparent porosity were observed to increase with increase in BLA content, while the bulk density decreases as the percentage of BLA increases from 5% to 25% by mass. The study concluded that 15% BLA replacing cement is adequate for the production of masonry mortar.

  16. Isotopic characteristics of canopies in simulated leaf assemblages

    Science.gov (United States)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the "canopy effect" could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  17. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  18. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.).

    Science.gov (United States)

    Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland

    2010-12-01

    In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.

  19. A comparative analysis of stomata and leaf trichome characteristics in Quercus robur L. genotypes

    Directory of Open Access Journals (Sweden)

    Nikolić Nataša P.

    2003-01-01

    Full Text Available The objective of this study was to determine genotype variability of leaf trichome and stoma characteristics. Leaves were sampled from seventeen pedunculate oak (Quercus robur L genotypes originating from clonal seed orchard Banov Brod (Srem, the Vojvodina Province. The pedunculate oak has hypostomatal leaves. Statistically significant differences were found for the dimensions and density of stomata. Genotype variability of stomatal dimensions was less pronounced in comparison with their density (CV = 8.88%. Stomata number ranged from 530 to 791 per mm2 of leaf area; genotypes 18 and 25 could be distinguished from the others for the highest stomata number per leaf unit area, genotype 35 for the lowest number. In all genotypes, only solitary eglandular trichomes were observed on the adaxial leaf surface while both solitary eglandular and uniseriate glandular hairs were present on the abaxial surface. Single glandular trichomes were observed in all genotypes, while some of them were characterized by the presence of two (genotypes 4, 5, 6, 16, 22, 25, 28, 29, 30, 35, 38, 40, and 85 or three (genotypes 16, 25, 35 hairs joined by their basal cells.

  20. Variation of Leaf Characteristics in Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An investigation was conducted to determine the extent of variations among nine provenances of Populus tomentosa Carr. in terms of leaf characteristics. A total of 263 accessions were studied under field conditions in the National Gene Bank of P. tomentosa in 2003. All of the accessions were characterized by 17 indices from 1 to 2-dimension constructions. Variance analysis of all characteristics showed that there were significant differences among the nine provenances and among individuals within each provenance. This study reveals that the evaluated germplasm appears to have a wide genetic base and high potential for further genetic improvements and it also indicates that abundant gene resources of P. tomentosa have been collected and preserved in the National Gene Bank.

  1. Relationship of 2 100-2 300 nm Spectral Characteristics of Wheat Canopy to Leaf Area Index and Leaf N as Affected by Leaf Water Content

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chun-Jiang; WANG Ji-Hua; LIU Liang-Yun; HUANG Wen-Jiang; ZHOU Qi-Fa

    2006-01-01

    The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2 000-2 300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2 224 or2 054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.

  2. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  3. Effect of leaf surface waxes on leaf colonization by Pantoea agglomerans and Clavibacter michiganensis.

    Science.gov (United States)

    Marcell, Lise M; Beattie, Gwyn A

    2002-12-01

    To evaluate the influence of leaf cuticular waxes on bacterial colonization of leaves, bacterial colonization patterns were examined on four glossy maize (Zea mays L.) mutants that were altered in their cuticular wax biosynthesis. Mutant gl3 was indistinguishable from the wild-type maize in its ability to foster colonization by the two bacterial species, Pantoea agglomerans and Clavibacter michiganensis subsp. nebraskensis. In contrast, the other three mutants supported the development of populations that significantly differed in size from those on the wild type. Mutant gl5 gl20 supported smaller populations of P. agglomerans, but not C. michiganensis, while mutant gl1 supported larger populations of C. michiganensis but not P. agglomerans. Mutant gl4 supported larger populations of both bacterial species. The exceptional ability of mutant gl4 to support bacterial colonization was hypothesized to result from the lower density of the crystalline waxes on gl4 than on the wild type, because a reduced crystal density could promote capillary water movement and water trapping among the wax crystals. This hypothesis was supported by the demonstration that the mechanical introduction of gaps among the wax crystals of the wild-type leaves resulted in the establishment of larger P. agglomerans populations on the altered leaves. These results provide the first direct evidence that leaf surface waxes affect bacterial leaf colonization at various stages of colonization and in a bacterial species-dependent manner.

  4. [XPS analysis of tea plant leaf and root surface].

    Science.gov (United States)

    Fang, Jiang-yu; Wan, Xiao-chun

    2008-09-01

    XPS was applied to analyze the surface chemical composition and structure of the tea plant leaf and root. It was detected that the surface is made up of mainly 4 elements: C, O, N and Al, with little P and F in abaxial leaf. Based on the botanic epidermis structure and the chemical composition, with the help of the standard spectrum data bank on line and the wood XPS study results, and through line Gaussian and Lorentizian the mixed, the binding energy of C(1s) of the leaf surface was classified as 3 types: the first was C1, with the electron binding energy of 285 eV, from C-C or C-H group, representing lipid compound like cutin and wax. C2 with the binding energy of 286.35 eV in the adaxial and 286.61 eV in the abaxial, came from the single bond of carbon and oxygen C-O, mainly standing for cellulose. C3 with the binding energy of approximately 288 eV (288.04 eV in adaxial and 288.09 eV in abaxial) was the sign of C=O group, which is acyl in protein with the confirmation of N(1s) (399-401 eV)and O(1s) analyses. In the root surface, besides the same compounds of cutin and wax (C1, binding energy 285 eV), cellulose (C2, binding energy 286.49 eV) and protein (C3, binding energy 288.78 eV)as in the leaf, there appeared C5 type with the binding energy of 283.32 eV. Because it was lower than C1, it was estimated as carbon linking to metal. Both the leaf and the root surfaces didn't have C4, a type of O-C=O, which is common in wood surface with the highest oxidated carbon of 289-289.5 eV binding energy, indicating that organic acid secreted by the root existed freely on the root surface, without any chemical association with the surface compounds. The results of the separated spectrum of O(1s) supported the above C(1s) results. By the ratio of each type of C, there were more oxygen groups in the abaxial than in the adaxial, implicating more active chemical properties on the abaxial. Compared with the leaf, cutin and wax was little in the root and oxygen groups were many

  5. Non-Smooth Morphologies of Typical Plant Leaf Surfaces and Their Anti-Adhesion Effects

    Institute of Scientific and Technical Information of China (English)

    Lu-quan Ren; Shu-jie Wang; Xi-mei Tian; Zhi-wu Han; Lin-na Yan; Zhao-mei Qiu

    2007-01-01

    The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM).Different non-smooth surface characteristics were described and classified.The hydrophobicity and anti-adhesion of non-smooth leaf surfaces were quantitatively measured.Results show that the morphology of epidermal cells and the morphology and distribution density of epicuticular wax directly affect the hydrophobicity and anti-adhesion.The surface with uniformly distributed convex units shows the best anti-adhesion,and the surface with regularly arranged trellis units displays better anti-adhesion.In contrast,the surface with randomly distributed hair units performs relatively bad anti-adhesion.The hydrophobic models of papilla-ciliary and fold-setal non-smooth surfaces were set up to determine the impacts of geometric parameters on the hydrophobicity.This study may provide an insight into surface machine molding and apparent morphology design for biomimetics engineering.

  6. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  7. Accumulation of particles on the surface of leaves during leaf expansion.

    Science.gov (United States)

    Wang, Lei; Gong, Huili; Liao, Wenbo; Wang, Zhi

    2015-11-01

    Plants can effectively remove airborne particles from ambient air and consequently improve air quality and human health. The accumulation of particles on the leaf surfaces of three plant species with different epicuticular wax ultrastructures, such as thin films, platelets and tubules, was investigated during leaf expansion in Beijing under extremely high particulate matter (PM) concentration. The accumulation of particles on the leaf surfaces after bud break rapidly reached a high amount within 4-7 days. Rainfall occasionally resulted in a considerable increase in the accumulation of particles on the leaf surfaces at a high PM concentration, which resulted from the wet deposition of PM, and balanced the amount of PM on the leaf surfaces over a longer period. The equilibrium value of the particle cover area on the adaxial leaf surface of the three test species in this study was 10%-50% compared with 3%-35% on the abaxial leaf surface. The epicuticular wax ultrastructures contributed significantly to the PM adsorption of the leaves. The capability of these ultrastructures to capture PM decreased in the following order: thin films, platelets and tubules. The ridges (at a scale of 1-2 μm) on the leaf surfaces were more efficient at accumulating PM, particularly PM2.5, compared with the roughness (P-V distance) at a 5-20-μm scale.

  8. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.

    Science.gov (United States)

    Zhu, H; Yu, Y; Ozkan, H E; Derksen, R C; Krause, C R

    2008-01-01

    Understanding the evaporation of pesticide droplets and wetting of Leaf surfaces can increase foliar application efficiency and reduce pesticide use. Evaporation time and wetted area of single pesticide droplets on hairy and waxy geranium leaf surfaces were measured under the controlled conditions for five droplet sizes and three relative humidities. The sprays used to form droplets included water, a nonionic colloidal polymer drift retardant, an alkyl polyoxyethylene surfactant, and an insecticide. Adding the surfactant into spray mixtures greatly increased droplet wetted area on the surfaces while droplet evaporation time was greatly reduced. Adding the drift retardant into spray mixture slightly increased the droplet evaporation time and the wetted area. Also, droplets had Longer evaporation times on waxy leaves than on hairy leaves for all droplet diameters and all relative humidity conditions. Increasing relative humidity could increase the droplet evaporation time greatly but did not change the the wetted area. The droplet evaporation time and wetted area increased exponentially as the droplet size increased. Therefore, droplet size, surface characteristics of the target, relative humidity, and chemical composition of the spray mixtures (water alone, pesticide, additives) should be included as important factors that affect the efficacy and efficiency of pesticide applications.

  9. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus

    2013-07-01

    In terrestrial biosphere models, key biochemical controls on carbon uptake by vegetation canopies are typically assigned fixed literature-based values for broad categories of vegetation types although in reality significant spatial and temporal variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based retrievals of leaf chlorophyll for estimating leaf photosynthetic capacity and for constraining model simulations of water and carbon fluxes. © 2013 IEEE.

  10. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  11. A study of the adsorption of NH 3 and SO 2 on leaf surfaces

    Science.gov (United States)

    Van Hove, L. W. A.; Adema, E. H.; Vredenberg, W. J.; Pieters, G. A.

    The adsorption of NH 3 and SO 2 on the external leaf surface of bean ( Phaseolus vulgaris L.) and poplar ( Populus euramericana L.) was studied. The adsorbed quantities increased strongly with increasing air humidity, indicating that water on the leaf surface plays a major role in the interaction of these gases with the leaf surface. On the other hand temperature in the range between 15 and 26°C had no significant influence. The adsorbed quantities of NH 3 at a specific air humidity appeared to be proportional to NH 3 concentration. This proportionality was less clear for SO 2. The affinity of SO 2 for the leaf surface was found to be approximately twice that of NH 3. A mixture of these gases in the air mutually stimulated their adsorption on the leaf. No significant desorption or uptake of these gases through the cuticle could be detected, indicating that the bulk of the adsorbed gases remains associated with the cuticle.

  12. Leaf morphometric characteristics variability of different beech provenances in juvenile development stage

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2013-01-01

    Full Text Available The taxonomic status of beech from the Balkan Peninsula is not yet clearly defined. There is no agreement among different authors about the morphological characteristics discriminating between the Balkan and European and/or Eastern beech. For most characteristics, the mean values are different but the ranges of variation overlap considerably. Provenance trial of beech established in Serbia, at the locality Debeli Lug, has provided an opportunity for research of interprovenance variability at the level of leaf morphometric characteristics in juvenile development stage. Research included 10 provenances originating from the Western Balkans (Serbian provenance 36 and 38; Croatian provenance 24 and 25; Bosnian provenance 30 and 32 and from Central Europe (German provenance 47 and 49; Austrian provenance 56 and Hungarian provenance 42, where following morphometric characteristics were analyzed: leaf length (Ll, leaf width (Lw, petiole lenght (Pl, leaf base width on 1 cm (Blw, number of veins - left (Vl, number of veins - right (Vr, distance between 3rd and 4th vein - left (Dv 3-4. The results of this research show existence of clear differentiation among provenances from the Western Balkan and from Central Europe, from the point of leaf dimensions, number of veins and leaf base width. [Projekat Ministarstva nauke Republike Srbije, br. TR31041: Establishment of Wood Plantations Intended for Afforestation of Serbia i br. 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  13. Variability of leaf characteristics in different pedunculate oak genotypes (Ouercus robur L

    Directory of Open Access Journals (Sweden)

    Nikolić Nataša P.

    2006-01-01

    Full Text Available The objective of this study was to determine genotype influences on pedunculate oak's leaf traits: leaf area, specific leaf area (leaf area per unit of leaf mass, concentration of photosynthetic pigments, rates of photosynthesis and respiration, and nutrient concentrations (nitrogen phosphorus, potassium, calcium, and sodium. Leaf samples were taken from seventeen Q. robur genotypes originating from clonal seed orchard Banov Brod (Srem, Vojvodina, Serbia. Leaf area of the studied genotypes ranged from 248.4 to 628.8 cm2, SLA from 109.4 to 160.7 cm2 dry matter-1, rates of photosynthesis and respiration from 6.98 to 20.32 and from 6.73 to 14.65 µmol O2 m-2 s-1, respectively. The leaves of genotype 35 contained the highest concentration of photosynthetic pigments, while the lowest were recorded in genotype 29. The following pattern of nutrient concentrations was obtained for the studied genotypes: N>Ca>K>P>Na. Genotype variability of P K, Ca, and Na concentrations was more pronounced when compared with nitrogen. Estimated quantitative differences are the consequence of interaction of certain genotype and common environmental conditions for all trees. These results will provide information on intraspecific variation of the studied leaf characteristics.

  14. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  15. [Characteristics of leaf carbon, nitrogen and phosphorus stoichiometry in relation to plant size of Machilus pauhoi].

    Science.gov (United States)

    Zhang, Lei-lei; Zhong, Quan-lin; Cheng, Dong-liang; Zhang, Zhong-rui; Fei, Ling; Xu, Chao-bin; He, Li-zhong; Wang, Wei-jun

    2015-07-01

    To explore the effects of stand age on variation patterns of leaf C, N, P stoichiometric characteristics of Machilus pauhoi, two stands, i.e., 9 and 13 years old, were selected. The relationships between leaf nutrient contents (C, N and P) and diameters at breast height (DBH) of individual plants were analyzed. The data revealed that the individual variations of seedlings in M. pauhoi stands were strengthened with the stand development. The stand age had significant effects on leaf C, N, P contents and C:N ratio but not on C:P and N: P ratios. Specifically, the mean values of leaf C, N, P contents and N:P ratio in the 9-year-old stand were lower than those in the 13-year-old stand, whereas, inverse pattern of C:N and C:P ratios were found in the two stands. Furthermore, leaf N and P stoichiometry varied significantly within the stand. Specifically, leaf N and P contents, as well as their stoichiometric ratios, linearly correlated with DBH in the 9-year-old stand. On the contrary, leaf N and P stoichiometry showed quadratic correlation in 13-year-old stand (except leaf C:N which linearly correlated with DBH). Lastly, nutrient transfer rates of leaf N and P in the 9-year-old stand were higher than that in 13-year-old stand, and the discrepancies of leaf nutrient transfer strategy between growing and non-growing seasons were caused by the different growth phases and environmental conditions.

  16. Evolution and environmental degradation of superhydrophobic aspen and black locust leaf surfaces

    Science.gov (United States)

    Tranquada, George Christopher

    The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nanoscale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

  17. Effects of CO/sub 2/ enrichment on internal leaf surface area in soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Leadley, P.W.; Reynolds, J.A.; Thomas, J.F.; Reynolds, J.F.

    1987-06-01

    Internal cell surface areas were measured on fully expanded leaves of soybean seedlings that had been continuously exposed to 348 or 645 ppm CO/sub 2/ environments. Plants grown in the high CO/sub 2/ treatment had thicker leaves but less palisade cell surface area per unit of leaf area. Surface area of the mesophyll per unit leaf area was unaffected by CO/sub 2/. The potential ramifications of these CO/sub 2/-induced changes in leaf anatomy on photosynthesis and water-use efficiency are explored.

  18. Comparative Study of Leaf Surface Texture and Ability to Expand of Cured Tobacco

    Directory of Open Access Journals (Sweden)

    Rohr R

    2014-12-01

    Full Text Available Tobacco leaf texture, appreciated by the difference of surface roughness of cured leaves, is studies with light microscopy and scanning electron microscopy (SEM. The leaf texture is obviously determined by the presence or absence of conical cellular protuberances on the adaxial side of the leaf. Considering the anatomic point of view, the leaf thickness, always more important when the leaf texture is open, is the only objective criterion which could be associated to the texture. The ultra-structural study with SEM and transmission electron microscopy (TEM demonstrates that the expansion capacity of tobacco doesn't rely on cytological factors such as cellular reserves or debris. The expansion capacity could be inversely proportional with the relative importance of the mesophyll comparing to palisade parenchyma. On the studied material, no direct relation between the leaf texture and the expansion capacity has been noticed.

  19. Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata).

    Science.gov (United States)

    Roda, Amy L; Oldham, Neil J; Svatos, Ales; Baldwin, Ian T

    2003-02-01

    Trichomes excrete secondary metabolites that may alter the chemical composition of the leaf surface, reducing damage caused by herbivores, pathogens and abiotic stresses. We examined the surface exudates produced by Nicotiana attenuata Torr. Ex Wats., a plant known to contain and secrete a number of secondary metabolites that are toxic or a deterrent to herbivorous insects. Extractions specific to the leaf surface, the trichomes, and the laminar components demonstrated the localization of particular compounds. Diterpene glycosides occurred exclusively in leaf mesophyll, whereas nicotine was found in both the trichomes and mesophyll. Neither rutin nor nicotine was found on the leaf surface. Quercetin and 7 methylated derivatives were found in the glandular trichomes and appeared to be excreted onto the leaf surface. We examined the elicitation of these flavonols on the leaf surface with a surface-area allometric analysis, which measures changes in metabolites independent of the effects of leaf expansion. The flavonols responded differently to wounding, methyl jasmonate (MeJA), herbivore attack and UV-C radiation, and the response patterns corresponded to their compound-specific allometries. Finding greater amounts of quercetin on younger leaves and reduced amounts after herbivore feeding and MeJA treatment, we hypothesized that quercetin may function as an attractant, helping the insects locate a preferred feeding site. Consistent with this hypothesis, mirids (Tupiocoris notatus) were found more often on mature leaves sprayed with quercetin at a concentration typical of young leaves than on unsupplemented mature leaves. The composition of metabolites on the leaf surface of N. attenuata changes throughout leaf development and in response to herbivore attack or environmental stress, and these changes are mediated in part by responses of the glandular trichomes.

  20. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf

    Directory of Open Access Journals (Sweden)

    Sanjay S. Latthe

    2014-04-01

    Full Text Available The lotus plant is recognized as a ‘King plant’ among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous ‘Lotus Effect’, along with extremely high water contact angle (>150° and low sliding angle (<10°, have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces.

  1. [Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize].

    Science.gov (United States)

    Wang, Xiao-Juan; Jia, Zhi-Kuan; Liang, Lian-You; Ding, Rui-Xia; Wang, Min; Li, Han

    2012-02-01

    A 4-year field experiment was conducted at the Heyang Research Station in Weibei dryland to study the effects of organic fertilizer application rate on the leaf photosynthetic characteristics and grain yield of dryland maize. Comparing with applying chemical fertilizer, applying organic fertilizer increased the leaf photosynthetic rate and stomatal conductance, but decreased the leaf intercellular CO2 concentration at each growth stage of maize significantly. With the increasing application rate of organic fertilizer, the leaf photosynthetic rate and stomatal conductance at each growth stage of maize had a gradual increase, while the leaf intercellular CO2 concentration had a gradual decrease. The leaf photosynthesis of maize at each growth stage was controlled by non-stomatal factors, and the application of organic fertilizer reduced the non-stomatal limitation on the photosynthesis performance significantly. The 4-year application of organic fertilizer improved soil nutrient status, and soil nutrients were no longer the main factors limiting the leaf photosynthetic rate and grain yield of maize.

  2. Lippia alba morphotypes cidreira and melissa exhibit significant differences in leaf characteristics and essential oil profile

    Directory of Open Access Journals (Sweden)

    Caroline N. Jezler

    2013-04-01

    Full Text Available Lippia alba (Mill. N.E. Br. ex Britton & P. Wilson, Verbenaceae, is widely used in traditional Brazilian medicine for the treatment of abdominal distress. The species exhibits considerable chemical and morphological diversity, and various chemotypes have been characterized. A comparative study of L. alba, has been carried out of the morphoanatomical characteristics of the leaves and the profiles of the essential oils of the morphotypes cidreira and melissa grown in the Medicinal Plant Garden of the Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil. The mean plant height of cidreira was 1.80 m and the stems and branches were fairly erect, while melissa plants were smaller (1.60 m and presented prostrate stems and branches. Although the leaf of the morphotypes look were similar, the mean values of length, width and area of the leaves of cidreira (respectively, 7.42 cm, 3.32 cm and 17.31 cm² differed significantly from those of melissa (4.68 cm, 2.35 cm and 7.32 cm2. The morphotypes presented amphistomatic leaves with uniseriate epidermis on both surfaces. The mesophyll was dorsiventral, but in cidreira the palisade parenchyma was biseriate while in melissa it was uniseriate. Simple tector and capitate glandular trichomes were present on the adaxial and abaxial surfaces of the leaf blades of both morphotypes. Six distinct types of glandular trichomes could be distinguished: types I and II were present in both morphotypes, while type III was detected only in cidreira, and types IV to VI were present only in melissa. The two morphotypes also differed with respect to the composition of the essential oil, cidreira produced oil composed mainly of citral, while the oil from melissa was rich in citral, limonene and carvone.

  3. Micromorphological features of pollen grains, seeds and leaf surfaces of Atocion hypanicum (Klok. Tzvel. and A. compactum (Fisch. Tzvel.

    Directory of Open Access Journals (Sweden)

    V.O. Martynyuk

    2015-05-01

    Full Text Available Based on scanning electron microscopy, ultrastructure of leaf surfaces, pollen grains and seeds have been investigated for two Atocion Adans. species – Ukrainian endemic A. hypanicum (Klok. Tzvel., and A. compactum (Fisch. Tzvel., which areal comprises the Balkans, Caucasus and Western Asia. New delimiting micromorphological characteristics, associated with ultrastracture of pollen grains (microechinate number on the operculum: A. hypanicum – 6-15, A. compactum – 11-26 and interporal distance (A. hypanicum – 6.72±1,2 μm, A. compactum – 5.19±1,22 μm, have been designated. A. compactum seeds also clearly differ from A. hypanicum by the papilla presence on periclinal walls of lateral and dorsal surfaces. However, ultrastructure of the leaf surface, including epicuticular wax projections, does not significantly differ between these taxa.

  4. Role of leaf surface sugars in colonization of plants by bacterial epiphytes.

    Science.gov (United States)

    Mercier, J; Lindow, S E

    2000-01-01

    The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.

  5. Phylogenetic and Systematic Value of Leaf Epidermal Characteristics in Some Members of Nigerian Fabaceae

    Directory of Open Access Journals (Sweden)

    Gbenga Olorunshola Alege

    2015-06-01

    Full Text Available This study was undertaken at the Botanical Garden of Biological Sciences Department, Kogi State University, Anyigba with the aim of assessing the systematic and phylogenetic relevance of leaf epidermal attributes in the 10 selected species of Fabaceae. Stomata, trichomes and epidermal cell attributes were taken from adaxial and abaxial leaf surfaces. Results obtained in this study revealed that all the 10 plant species considered possess hypo-amphistomatic leaf condition, paracytic stomata type, polygon and irregular shape epidermal cells(on the abaxial surface which points to their common ancestry. All the analyzed leaf epidermal traits considered on the adaxial and abaxial surfaces showed significant variations among the 10 studied plant species which indicates that genetic diversity exists among members of Fabaceae for their delimitation. It was also observed that all the plants with tree habit considered in this study (i.e Delonix regia, Parkia biglobosa, Senna siamea, Daniella oliveri and Caesalpinia pulcherrima lack stomata on the adaxial surfaces which strongly suggest that absence of stomata on the adaxial surface may be peculiar to Legumes with such habit. Cluster analysis revealed 2 major clusters and 2 sub-clusters with the first cluster comprising only Senna siamea and Caesalpinia pulcherrima which confirms their close phylogenetic relationship. Variations in trichomes, stomata and epidermal attributes were obvious and could be used to resolve systematic and phylogenetic problems in this family.

  6. Plant species differences in particulate matter accumulation on leaf surfaces.

    Science.gov (United States)

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  7. Evaluation of Surface anesthetic action of Aqueous Extract of Piper Betel leaf On Rabbit Cornea

    Directory of Open Access Journals (Sweden)

    Dr.T.Jayasree

    2014-07-01

    Full Text Available Aim: Piper betel Linn. (Piperaceae commonly known as betel leaf and the habit of betel chewing is widely prevalent in most parts of India. It is claimed to have aphrodisiac, laxative, antimicrobial, mucolytic, antiinflammatory and euphoric properties and proven antimutagenic and anti-carcinogenic effect. It is commonly observed that chewing of betel leaf produces numbness in the mouth, suggesting a possible local anesthetic effect. This observation prompted us to take this study . The aim of the study was to evaluate the local anesthetic activity of betel leaf extract after autoclaving the extract of betel leaf. Materials and methods: Extract of plain betel leaf, was tested for surface anesthetic activity using rabbits. Aqueous extraction of Piper betel leaf (AEPBL done by Soxhelts apparatus .Twenty male Rabbit’s were taken and divided in to four groups each group contain 5 animals, Group I - Standard (2% xylocaine, Group II - Test 0.3% (AEPBL, Group III - Test 0.6 % (AEPBL,Group IV - Test 12 % (AEPBL was instilled in conjunctival sac of right eyes. Standard protocol was followed to elicit light reflex, corneal reflex and to measure pupillary size after instilling the test drugs in the eye. There was dose dependent increase in onset and duration of local anesthetic activity with 6% and 12% doses of alcoholic extract of Piper betel leaf. Results: Betel leaf showed significant surface anesthetic activity comparable to that of Xylocaine. Conclusion: As a surface anesthetic, the onset was as quick as xylocaine and the duration was shorter than xylocaine

  8. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply

    Directory of Open Access Journals (Sweden)

    Sue Elaine Hartley

    2015-02-01

    Full Text Available Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and 3 different grass species (F. ovina, F. rubra and Deschampsia cespitosa differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F.arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species.

  9. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply.

    Science.gov (United States)

    Hartley, Sue E; Fitt, Rob N; McLarnon, Emma L; Wade, Ruth N

    2015-01-01

    Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si) is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and three different grass species (F. ovina, F. rubra, and Deschampsia cespitosa) differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F. arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species.

  10. Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S. (Manhattan Coll., Bronx, NY); Gmur, N.F.; Da Costa, F.

    1977-08-01

    Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongy mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.

  11. Leaf blade anatomy characteristics of the genus Amorphophallus Blume ex Decne. in Thailand

    Directory of Open Access Journals (Sweden)

    Duangchai Sookchaloem

    2016-11-01

    Full Text Available Twenty-three species of Amorphophallus Blume ex Decne. were collected from several areas of Thailand between November 2008 and May 2012, and grown under greenhouse conditions with 70% sunlight. Leaf blade anatomy characteristics were studied using free hand section and epidermal peeled slides before being observed using a light transmission microscope from May 2011 to November 2013. The results showed the different anatomical characteristics of each species. The midribs in cross section were curved, or had 5, 6, 7, 8 or 12 lobes. Vascular bundles numbered 5, 6, 7, 8, 9, 10, 13, 15, 16 or 23. The upper and lower epidermal cell walls had three subtypes—straight-sided, undulate or sinuous anticlinal. Both sides of the epidermal cell wall can be similar or can vary in each species. There were 1, 2, 3, 4 or 6 subsidiary cells along both sides of paired guard cells and the stomatal type was paracytic and stomatal subtypes varied from species to species, being brachyparacytic, hemiparacytic, amphibrachyparacytic, paratetracytic or parahexacytic. The stomatal number was 16–104/mm2 of leaf area and varied with the leaf gloss and leaf texture of each species.

  12. Orientation of Germ Tubes of Puccinia hordei on the Hordeum chilense Leaf Surface

    NARCIS (Netherlands)

    Vaz Patto, M.C.; Niks, R.E.

    2000-01-01

    The directional growth of urediospores germ tubes along the transverse axis of a cereal's leaf is considered to be a response to stimuli from the plant surface. In order to find out if the germ tube growth is directed towards stomata, and if the cuticular wax layer plays a role in this orientated gr

  13. Orientation of Germ Tubes of Puccinia hordei on the Hordeum chilense Leaf Surface

    NARCIS (Netherlands)

    Vaz Patto, M.C.; Niks, R.E.

    2000-01-01

    The directional growth of urediospores germ tubes along the transverse axis of a cereal's leaf is considered to be a response to stimuli from the plant surface. In order to find out if the germ tube growth is directed towards stomata, and if the cuticular wax layer plays a role in this orientated gr

  14. Leaf photosynthetic characteristics of seedlings of actinorhizal Alnus spp. and Elaeagnus spp.

    Science.gov (United States)

    Côté, B; Carlson, R W; Dawson, J O

    1988-06-01

    Single leaf photosynthetic characteristics of Alnus glutinosa, A. incana, A. rubra, Elaeagnus angustifolia, and E. umbellata seedlings conditioned to ambient sunlight in a glasshouse were assessed. Light saturation occurred between 930 and 1400 μmol m(-2)s(-1) PAR for all species. Maximum rates of net photosynthesis (Pn) measured at 25°C ranged from 12.8 to 17.3 μmol CO2m(-2)s(-1) and rates of dark respiration ranged from 0.74 to 0.95 μmol CO2m(-2)s(-1). These values of leaf photosynthetic variables are typical of early to midsuccessional species. The rate of Pn measured at optimal temperature (20°C) and 530μmol m(-2)s(-1) PAR was significantly (pElaeagnus umbellata and to a lesser degree for E. angustifolia are genetic adaptations related to their crown architecture.

  15. [Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth].

    Science.gov (United States)

    Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu

    2010-06-01

    A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.

  16. Reactive uptake of ozone at simulated leaf surfaces: implications for ‘non-stomatal’ ozone deposition.

    OpenAIRE

    Cape, J. Neil; Hamilton, Richard; Heal, Mathew R

    2009-01-01

    The reaction of ozone (O3) with alpha-pinene has been studied as a function of temperature and relative humidity and in the presence of wax surfaces that simulate a leaf surface. The objective was to determine whether the presence of a wax surface, in which alpha-pinene could dissolve and form a high surface concentration, would lead to enhanced reaction with O3. The reaction of O3 itself with the empty stainless steel reactor and with aluminium and wax surfaces demonstrated an apparent activ...

  17. Photosynthetic responses to leaf surface wetness in tropical plant species of Costa Rica with varying leaf traits

    Science.gov (United States)

    Aparecido, L. M. T.; Moore, G. W.; Miller, G. R.; Cahill, A. T.

    2015-12-01

    Wet tropical forests are some of the environments with the greatest annual precipitation, but are also considered as the world's major carbon sink; however, literature postulates that phothsynthesis rates are inhibited while leaves are wet. Yet measurements of photosynthesis during wet conditions are challenging to obtain due to equipment limitations and the extreme complexity of canopy-atmosphere interactions in tropical environments. The objective of this study was to evaluate tropical species reactions to simulated leaf wetness and test the hypothesis that leaf wetness reduces rates of photosynthesis. In a central Costa Rica site with an average 4200 mm annual rainfall, we selected six tropical species with distinct leaf traits in which five sun-exposed leaf replicates from each species were subjected to gas exchange measurements using a LI-6400 IRGA (LICOR Inc., Lincoln, NE) under dry and wet/misted leaf conditions. Relationships between photosynthesis (As) and stomatal conductance (gs) with leaf to air temperature difference (DT), VPD, and relative humidity were evaluated using linear regression analysis. We found that the responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf As was a significant percentage of total leaf As. Stachytarpheta jamaicens had an 18.7% reduction in As, while others, like Zamia skinneri, had a 7% increase in As. Tibouchina heteromalla showed a rapid stomatal recovery of 2 mins, while Carapa guianensis was slower with 7 mins. This variability between species suggests that leaf traits, such as presence or absence of trichomes, water repellency, vein distribution and size and leaf angle variation, may be critical for optimizing photosynthesis under wet conditions. Relative humidity and leaf temperature were the strongest secondary influences on As and gs under wet leaf conditions. While tropical vegetation-atmosphere interactions are complex, such

  18. Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.

    Science.gov (United States)

    Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing

    2016-01-27

    A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.

  19. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  20. Characterization of E coli biofim formations on baby spinach leaf surfaces using hyperspectral fluorescence imaging

    Science.gov (United States)

    Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.

    2017-05-01

    Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.

  1. Adaptative changes of leaf surface of tropical orchid Cattleya gaskelliana (N.E.Br. B.S. Williams after transferring from in vitro to ex vitro conditions

    Directory of Open Access Journals (Sweden)

    Lyudmila I. Buyun

    2013-04-01

    Full Text Available The leaf surface micromorphology of Cattleya gaskellianajuvenile plants, propagated in vitrofrom seeds, as well as of adult plants, cultivated in glasshouse, was analyzed by scanning electron microscopy (SEM. The leaves of both juvenile and adult plants are hypostomatic, their stomata are of tetracytic type. It was found that development of single stomata on the adaxial leaf surface of juvenile plants was induced byin vitro conditions. During the acclimation of in vitro propagated plants to glasshouse conditions the following changes of leaf surface micromorphology have been observed: 1 configuration of epidermal cells changed; 2 dimensions of typical epidermal cells reduced; 3 stomata density and their dimensions increased. The results suggest that structural changes, probably, can be regarded as an adaptation to avoid excessive rate leaf transpiration during a period of C. gaskelliana juvenile plants acclimation to glasshouse conditions. In the case when micromorphological leaf characteristics (stomata density per mm2, stomatal index, epidermal cells number per mm 2 of in vitro propagated plants of C. gaskelliana were comparable to those of adult plants, survival rate was more than 95%.

  2. Characteristics of Bamboo Leaf Ash Stabilization on Lateritic Soil in Highway Construction

    Directory of Open Access Journals (Sweden)

    Akinwole A. Adetuberu

    2010-08-01

    Full Text Available This research was carried out to study the characteristics of bamboo leaf ash stabilization on lateritic soil in highway construction. Preliminary tests were performed on three samples, A, B, and C foridentification and classification purposes followed by the consistency limit tests. Geotechnical property tests (compaction, California bearing ratio (CBR, and triaxial were also performed on the samples, both at the stabilized and unstabilized states by adding 2, 4, 6, 8 and 10% bamboo leaf ash (BLA by weight of sample tothe soils. The results showed that the addition of BLA improved the strengths of the samples. Optimum moisture contents reduced to 20.20, 19.60 and 9.32% at 8, 4 and 6% BLA additions in samples A, B and Crespectively while MDD increased to 1400, 1676 and 1941 kg/m3 respectively at 8, 2 and 4% BLA additions in samples A, B, and C. The unsoaked CBR values of samples A and B increased from 5.44 to 38.21% and from 11.42 to 34.99% respectively. The shear strengths of samples A and B also increased from 181.31 to 199.00 kN/m2 and from 144.81 to 155.90 kN/m2 respectively. It was therefore concluded that bamboo leaf ash has a good potential for stabilizing lateritic soils in highway construction.

  3. Biaxially stretchable silver nanowire conductive film embedded in a taro leaf-templated PDMS surface

    Science.gov (United States)

    Wu, Chunhui; Jiu, Jinting; Araki, Teppei; Koga, Hirotaka; Sekitani, Tsuyoshi; Wang, Hao; Suganuma, Katsuaki

    2017-01-01

    A biaxially wave-shaped polydimethylsiloxane (PDMS) surface was developed simply by using a taro leaf as the template. The resulting leaf-templated PDMS (L-PDMS) possesses a micro-sized curved interface structure, which is greatly beneficial for the exact embedding of a silver nanowire (AgNW) network conductive film covering the L-PDMS surface. The intrinsically curved AgNW/L-PDMS film surface, without any dangling nanowire, could prevent the fracture of AgNWs due to stretching stress even after cyclic stretching. More importantly, it also exhibited a biaxial stretchability, which showed ultra-stable resistance after continuous stretching for 100 cycles each in X- and Y-directions. This biaxially stretchable AgNW/L-PDMS film could extend the application fields in stretchable electronics.

  4. Rheological characteristics of soft rock structural surface

    Institute of Scientific and Technical Information of China (English)

    陈沅江; 吴超; 傅衣铭

    2008-01-01

    There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.

  5. Wettability and morphology of the leaf surface in cashew tree from the Amazon, Northern Brazil

    Directory of Open Access Journals (Sweden)

    Glenda Quaresma Ramos

    2016-10-01

    Full Text Available Leaves surfaces, which represent an interface with plants and the environment, have several structures with specific functions. Some foliar properties, including wettability and mechanical containment, are inferred in terms of cellular adaptation and the presence or absence of cuticular wax. Various morphological parameters, ranging from macro- to nano scales, are analyzed and contribute to the study of taxonomy, pharmacognosy, and ecology of plants. The aim of this paper was to analyze the effect and influence of epicuticular wax granules on the hydrophobicity of Anacardium occidentale L. leaf surfaces. Leaf specimens were directly examined with an environmental scanning electron microscope without metal coating. Images revealed epidermis ornament, stomata type, was, and trichomes. Static contact angle between water and the surface was also measured on both sides. On the adaxial side, an angle of 104.09° ± 0.95° was found, suggesting that adaxial surface is hydrophobic. On the abaxial side, the angle was 62.20° ± 1.60°, which indicates a hydrophilic nature, probably because of the greater amount of epicuticular wax on the adaxial leaf surface. The present investigation provided an important contribution to morphological and ultrastructural characterization of leaves of cashew tree, which is a plant of great medicinal and economic importance.

  6. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  7. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.

  8. Reactive uptake of ozone at simulated leaf surfaces: Implications for 'non-stomatal' ozone flux

    Science.gov (United States)

    Cape, J. Neil; Hamilton, Richard; Heal, Mathew R.

    The reaction of ozone (O 3) with α-pinene has been studied as a function of temperature and relative humidity and in the presence of wax surfaces that simulate a leaf surface. The objective was to determine whether the presence of a wax surface, in which α-pinene could dissolve and form a high surface concentration, would lead to enhanced reaction with O 3. The reaction of O 3 itself with the empty stainless steel reactor and with aluminium and wax surfaces demonstrated an apparent activation energy of around 30 kJ mol -1 for all the surfaces, similar to that observed in long-term field measurements of O 3 fluxes to vegetation. However, the absolute reaction rate was 14 times greater for aluminium foil and saturated hydrocarbon wax surfaces than for stainless steel, and a further 5 times greater for beeswax than hydrocarbon wax. There was no systematic dependence on either relative or absolute humidity for these surface reactions over the range studied (20-100% RH). Reaction of O 3 with α-pinene occurred at rates close to those predicted for the homogeneous gas-phase reaction, and was similar for both the empty reactor and in the presence of wax surfaces. The hypothesis of enhanced reaction at leaf surfaces caused by enhanced surface concentrations of α-pinene was therefore rejected. Comparison of surface decomposition reactions on different surfaces as reported in the literature with the results obtained here demonstrates that the loss of ozone at the earth's surface by decomposition to molecular oxygen (i.e. without oxidative reaction with a substrate) can account for measured 'non-stomatal' deposition velocities of a few mm s -1. In order to quantify such removal, the effective molecular surface area of the vegetation/soil canopy must be known. Such knowledge, combined with the observed temperature-dependence, provides necessary input to global-scale models of O 3 removal from the troposphere at the earth's surface.

  9. Euler Characteristic and Quadrilaterals of Normal Surfaces

    Indian Academy of Sciences (India)

    Tejas Kalelkar

    2008-05-01

    Let be a compact 3-manifold with a triangulation . We give an inequality relating the Euler characteristic of a surface normally embedded in with the number of normal quadrilaterals in . This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of , that depends on the maximum number of tetrahedrons that share a vertex in .

  10. Anatomical and Chemical Characteristics of a Rolling Leaf Mutant of Rice and Its Ecophysiological Properties

    Institute of Scientific and Technical Information of China (English)

    BAI Lei; DUAN Zhuang-qin; WANG Jun-min; AN Li-zhe; ZHAO Zhi-guang; CHEN Kun-ming

    2008-01-01

    The anatomical and chemical characteristics of a rolling leaf mutant (r/m) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT),the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in r/m, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between r/m and WT. The r/m exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in r/m by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in r/m than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.

  11. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  12. Morphological characteristics of leaf epidermis and size variation of leaf, flower and fruit in different ploidy levels in Buddleja macrostachya (Buddlejaceae)

    Institute of Scientific and Technical Information of China (English)

    Gao CHEN; Wei-Bang SUN; Hang SUN

    2009-01-01

    Buddleja macrostachya (Buddlejaceae) is a widespread shrub native to the Sino-Himalayan mountains and beyond. It has been found to occur at two ploidy levels, hexaploid, 2n=6x=114 and dodecaploid, 2n=12x=228. To determine if morphological characters might be used as indicators of ploidy levels, we measured floral and fruit length, relative and absolute leaf size, trichome density on both leaf surfaces, and stomatal density and length in different populations of B. macrostachya. In general, flower and fruit length, absolute leaf size, and stomatal length increased with an increase at ploidy level (P0.05) in different populations. Other characters studied such as trichome type, cuticular membrane and ornamentation of stomata, cell and stomatal shape, and anticlinal wall pattern were quite constant in this species. Thus it appears that flower and fruit length, absolute leaf size, and stomatal frequency and length can be used to distinguish hexaploid from dodecaploid cytotypes either in the field or in herbarium specimens.

  13. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax...... layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH4 emission measured at surface level in all species. Here, we...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  14. LEAF GAS EXCHANGE CHARACTERISTICS OF FOUR PAPAYA GENOTYPES DURING DIFFERENT STAGES OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CAMPOSTRINI ELIEMAR

    2001-01-01

    Full Text Available In this research, was used four papaya (Carica papaya L. genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália group and one from the 'Formosa' group (Know-You 01. They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 , stomatal conductance (g s mol m-2 s-1, leaf temperature (T I, 0C and intercellular carbon dioxide concentration (ci, muL L-1 on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.

  15. [Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress].

    Science.gov (United States)

    Wu, Li-jun; Li, Zhi-hui; Yang, Mo-hua; Wang, Pei-lan

    2015-12-01

    In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability.

  16. The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.

    Science.gov (United States)

    Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette

    2015-11-01

    Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies.

  17. A method for quantitative analysis of spatially variable physiological processes across leaf surfaces.

    Science.gov (United States)

    Aldea, Mihai; Frank, Thomas D; DeLucia, Evan H

    2006-11-01

    Many physiological processes are spatially variable across leaf surfaces. While maps of photosynthesis, stomatal conductance, gene expression, water transport, and the production of reactive oxygen species (ROS) for individual leaves are readily obtained, analytical methods for quantifying spatial heterogeneity and combining information gathered from the same leaf but with different instruments are not widely used. We present a novel application of tools from the field of geographical imaging to the multivariate analysis of physiological images. Procedures for registration and resampling, cluster analysis, and classification provide a general framework for the analysis of spatially resolved physiological data. Two experiments were conducted to illustrate the utility of this approach. Quantitative analysis of images of chlorophyll fluorescence and the production of ROS following simultaneous exposure of soybean leaves to atmospheric O3 and soybean mosaic virus revealed that areas of the leaf where the operating quantum efficiency of PSII was depressed also experienced an accumulation of ROS. This correlation suggests a causal relationship between oxidative stress and inhibition of photosynthesis. Overlaying maps of leaf surface temperature and chlorophyll fluorescence following a photoinhibition treatment indicated that areas with low operating quantum efficiency of PSII also experienced reduced stomatal conductance (high temperature). While each of these experiments explored the covariance of two processes by overlaying independent images gathered with different instruments, the same procedures can be used to analyze the covariance of information from multiple images. The application of tools from geographic image analysis to physiological processes occurring over small spatial scales will help reveal the mechanisms generating spatial variation across leaves.

  18. Research on Pulse Radiation Characteristics of Leaf-like Ultra Wide Band Antenna

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-qing; WANG Jun-hong; CHEN Mei-e

    2007-01-01

    A new kind of ultra wideband antenna, which consists of a leaf-like dipole and a dielectric block, is proposed and analyzed. The dielectric block is attached in parallel with the dipole near its feed point. Thus, the near field is attracted to the side where the dielectric block is located. It leads to a focusing effect of the energy in the far zone. The finitedifference time -domain (FDTD) method combined with the perfectly matched layers (PML) technique is used in the simulation of the antenna radiation characteristics. The research shows that, with proper dielectric loading and 50 Ω feeding line, the bandwidth of the antenna can be up to 6.5 GHz, from 3.5 GHz to 10 GHz with VSWR (voltage standing wave ratio) less than 2.5.

  19. Preparation of Material Surface Structure Similar to Hydrophobic Structure of Lotus Leaf

    Institute of Scientific and Technical Information of China (English)

    CAO Feng; GUAN Zisheng; LI Dongxu

    2008-01-01

    Nano/micro replication,a technique widely applied in the microelectronics field,was introduced to prepare the hydrophobic bionics microstructure on material surface.Poly(vinyl alcohol)(PVA)and polystyrene(PS)moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology.And poly(dimethylsiloxane)(PDMS)replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds.Scanning electronic microscope(SEM) was employed to investigate the morphology and microstructures on moulds and replicas.Both the static and dynamic contact angles between water droplet and PDMS replicas'surface were also measured.As a result,similar microstructure Can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.

  20. Wetting Characteristics of Insect Wing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Doyoung Byun; Jongin Hong; Saputra; Jin Hwan Ko; Young Jong Lee; Hoon Cheol Park; Bong-Kyu Byun; Jennifer R. Lukes

    2009-01-01

    Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves, which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces. We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity. After examining 10 orders and 24 species of flying Pterygotan insects, we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects. The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity, thereby enabling the wings to be cleaned more easily. And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20. In order to examine the wetting characteristics on a rough surface, a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing, with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.

  1. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter, four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05. Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05, and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05 were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05 with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  2. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    Directory of Open Access Journals (Sweden)

    Patrick R. SCHMIDLIN

    2013-01-01

    Full Text Available Objective To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA. Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU. At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05 but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.

  3. Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.).

    Science.gov (United States)

    Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena

    2017-08-03

    This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.

  4. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology.

    Science.gov (United States)

    Tecon, Robin; Leveau, Johan H J

    2012-05-01

    Bacteria that colonize the leaves of terrestrial plants often occur in clusters whose size varies from a few to thousands of cells. For the formation of such bacterial clusters, two non-mutually exclusive but very different mechanisms may be proposed: aggregation of multiple cells or clonal reproduction of a single cell. Here we assessed the contribution of both mechanisms on the leaves of bean plants that were colonized by the bacterium Pantoea agglomerans. In one approach, we used a mixture of green and red fluorescent P. agglomerans cells to populate bean leaves. We observed that this resulted in clusters made up of only one colour as well as two-colour clusters, thus providing evidence for both mechanisms. Another P. agglomerans bioreporter, designed to quantify the reproductive success of bacterial colonizers by proxy to the rate at which green fluorescent protein is diluted from dividing cells, revealed that during the first hours on the leaf surface, many bacteria were dividing, but not staying together and forming clusters, which is suggestive of bacterial relocation. Together, these findings support a dynamic model of leaf surface colonization, where both aggregative and reproductive mechanisms take place. The bioreporter-based approach we employed here should be broadly applicable towards a more quantitative and mechanistic understanding of bacterial colonization of surfaces in general. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: a case study on non-target effects.

    Science.gov (United States)

    Xue, Kun; Deng, Su; Wang, RongJiang; Yan, FengMing; Xu, ChongRen

    2008-02-01

    The present paper reports case study results of the risk assessment of transgenic Bt cotton on a non-target pest, cotton aphid, Aphis gossypii. Several types of techniques, i.e., electrical penetration graph (EPG), light and electron microscopy, bioassays and chemical analysis, were applied to investigate physical and chemical leaf factors of 2 transgenic Bt cotton lines (GK12 and GK19) and their parental non-Bt cotton line (Simian3) associated with searching and feeding behaviors of cotton aphids on leaves or leaf extracts of cotton plants. EPG results showed that there were some differences among behaviors of cotton aphids on 2 Bt cotton and 1 non-Bt cotton lines. Cotton aphids performed similarly to leaf surface extracts from 3 cotton lines; and leaf surface chemicals, mainly volatiles and waxes, were almost identical in the components and concentrations among the cotton lines. However, three cotton lines were quite different from each other in the densities of certain kinds of covering trichomes. Therefore, the relationships between the physical characteristics and the searching behaviors of cotton aphids on the three cotton lines were constructed as the regression equations. Glandular trichomes and covering trichomes with 5 branches influenced the cotton aphids' searching behaviors effectively; and other trichomes with other branches affected aphids in varying ways. These results demonstrated that leaf surface physical factors of transgenic Bt cotton lines different from their parental non-Bt line could affect the penetration behaviors of non-target cotton aphids. Cotton aphids penetrate and feed more easily on two Bt cotton lines than on the non-Bt cotton line.

  6. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids:A case study on non-target effects

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The present paper reports case study results of the risk assessment of transgenic Bt cotton on a non-target pest, cotton aphid, Aphis gossypii. Several types of techniques, i.e., electrical penetration graph (EPG), light and electron microscopy, bioassays and chemical analysis, were applied to investigate physical and chemical leaf factors of 2 transgenic Bt cotton lines (GK12 and GK19) and their pa-rental non-Bt cotton line (Simian3) associated with searching and feeding behaviors of cotton aphids on leaves or leaf extracts of cotton plants. EPG results showed that there were some differences among behaviors of cotton aphids on 2 Bt cotton and 1 non-Bt cotton lines. Cotton aphids performed similarly to leaf surface extracts from 3 cotton lines; and leaf surface chemicals, mainly volatiles and waxes, were almost identical in the components and concentrations among the cotton lines. However, three cotton lines were quite different from each other in the densities of certain kinds of covering trichomes. Therefore, the relationships between the physical characteristics and the searching behaviors of cotton aphids on the three cotton lines were constructed as the regression equations. Glandular trichomes and covering trichomes with 5 branches influenced the cotton aphids’ searching behaviors effectively; and other trichomes with other branches affected aphids in varying ways. These results demonstrated that leaf surface physical factors of transgenic Bt cotton lines different from their parental non-Bt line could affect the penetration behaviors of non-target cotton aphids. Cotton aphids penetrate and feed more easily on two Bt cotton lines than on the non-Bt cotton line.

  7. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: A case study on non-target effects

    Institute of Scientific and Technical Information of China (English)

    XUE Kun; DENG Su; WANG RongJiang; YAN FengMing; XU ChongRen

    2008-01-01

    The present paper reports case study results of the risk assessment of transgenic Bt cotton on a non-target pest, cotton aphid, Aphis gossypii. Several types of techniques, i.e., electrical penetration graph (EPG), light and electron microscopy, bioessays and chemical analysis, were applied to investigate physical and chemical leaf factors of 2 transgenic Bt cotton lines(GK12 and GK19) and their parental non-Bt cotton line (Simian3) associated with searching and feeding behaviors of cotton aphids on leaves or leaf extracts of cotton plants. EPG results showed that there were some differences among behaviors of cotton aphids on 2 Bt cotton and 1 non-Bt cotton lines. Cotton aphids performed similarly to leaf surface extracts from 3 cotton lines; and leaf surface chemicals, mainly volatiles and waxes,were almost identical in the components and concentrations among the cotton lines. However, three cotton lines were quite different from each other in the densities of certain kinds of covering trichomes.Therefore, the relationships between the physical characteristics and the searching behaviors of cotton aphids on the three cotton lines were constructed as the regression equations. Glandular trichomes and covering trichomes with 5 branches Influenced the cotton aphids' searching behaviors effectively;and other trichomes with other branches affected aphids in varying ways. These results demonstrated that leaf surface physical factors of transgenic Bt cotton lines different from their parental non-Bt line could affect the penetration behaviors of non-target cotton aphids. Cotton aphids penetrate and feed more easily on two Bt cotton lines than on the non-Bt cotton line.

  8. Characteristics of leaf areas of plantations in semiarid hills and gully loess regions

    Institute of Scientific and Technical Information of China (English)

    Jing YIN; Fan HE; Guoyu QIU; Kangning HE; Jinghui TIAN; Weiqiang ZHANG; Yujiu XIONG; Shaohua ZHAO; Jianxin LIU

    2009-01-01

    The objectives of our study were to explore the relationship of leaf area and stand density and to find a convenient way to measure stand leaf areas. During the 2004 growing season, from May to October, we used direct and indirect methods to measure the seasonal variation of the leaf areas of tree and shrub species. The trees were from Robinia pseudoacacia stands of four densities (3333 plants/hm2, 1666 plants/hm2, 1111 plants/hm2, and 833 plants/hm2) and Platycladus orientalis stands of three densities (3333 plants/hm2, 1666 plants/hm2, and 1111 plants/hm2). The shrub species were Caragana korshinskii, Hippophae rhamnoides, and Amorpha fruticosa. Based on our survey data, empirical formulas for calculating leaf area were obtained by correlating leaf fresh weight, diameter of base branches, and leaf areas. Our results show the following: 1) in September, the leaf area and leaf area index (LAI) of trees (R. pseudoacacia and P orientalis) reached their maximum values, with LAI peak values of 10.5 and 3.2, respectively. In August, the leaf area and LAI of shrubs (C. korshinskii, H. rhamnoides, and A. fruticosa) reached their maximum values, with LAI peak values of 1.195, 1.123, and 1.882, respectively. 2) There is a statistically significant power relation between leaf area and leaf fresh weight for R. pseudoacacia. There are significant linear relationships between leaf area and leaf fresh weight for P. orientalis, C. korshinskii, H. rhamnoides, and A. fruticosa. Moreover, there is also a significant power relation between leaf area and diameter of base branches for C. korshinskii. There are significant linear relations between leaf area and diameter of base branches of H. rhamnoides and A. fruticosa. 3) In the hills and gully regions of the Loess Plateau, the LAIs of R. pseudoacacia stand at different densities converged after the planted stands entered their fast growth stage. Their LAI do not seem to be affected by its initial and current density. The same is true

  9. Dispersion and surface characteristics of nanosilica suspensions.

    Science.gov (United States)

    Kumar, Ranganathan; Milanova, Denitsa

    2009-04-01

    Nanofluids consisting of nanometer-sized particles dispersed in base liquids are known to be effective in extending the saturated boiling regime and critical heat flux in pool boiling. The heat transfer characteristics of nanosilica suspensions with particle sizes of 10 and 20 nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When silica is suspended in water with no additives, the surface potential of the nanoparticles determines their movement toward the electrodes. Particles continuously deposit on the wire and extend the burnout heat flux, influenced by the chemical composition of the nanofluids. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. Particle size, zeta potential, and the burnout heat flux values under different volume concentrations are provided. The burnout heat flux of the wire does not increase monotonically with concentration, but depends on the agglomeration characteristics, particle shape, and the hydroxylated surface of the nanoparticles.

  10. Leaf Surface Wettability and Implications for Drop Shedding and Evaporation from Forest Canopies

    Science.gov (United States)

    Konrad, W.; Ebner, M.; Traiser, C.; Roth-Nebelsick, A.

    2012-05-01

    Wettability and retention capacity of leaf surfaces are parameters that contribute to interception of rain, fog or dew by forest canopies. Contrary to common expectation, hydrophobicity or wettability of a leaf do not dictate the stickiness of drops to leaves. Crucial for the adhesion of drops is the contact angle hysteresis, the difference between leading edge contact angle and trailing edge contact angle for a running drop. Other parameters that are dependent on the static contact angle are the maximum volume of drops that can stick to the surface and the persistence of an adhering drop with respect to evaporation. Adaption of contact angle and contact angle hysteresis allow one to pursue different strategies of drop control, for example efficient water shedding or maximum retention of adhering water. Efficient water shedding is achieved if contact angle hysteresis is low. Retention of (isolated) large drops requires a high contact angle hysteresis and a static contact angle of 65.5°, while maximum retention by optimum spacing of drops necessitates a high contact angle hysteresis and a static contact angle of 111.6°. Maximum persistence with respect to evaporation is obtained if the static contact angle amounts to 77.5°, together with a high contact angle hysteresis. It is to be expected that knowledge of these parameters can contribute to the capacity of a forest to intercept water.

  11. Finite element analysis on the static and fatigue characteristics of composite multi-leaf spring

    Institute of Scientific and Technical Information of China (English)

    Joo-teck Jeffrey KUEH; Tarlochan FARIS

    2012-01-01

    This paper investigated the static and fatigue behaviors of steel and composite multi-leaf spring using the ANSYS V12 software.The dimensions of an existing conventional leaf spring of a light commercial vehicle were used.The same dimensions were used to design composite multi-leaf spring for the two materials,E-glass fiber/epoxy and E-glass fiber/vinyl ester,which are of great interest to the transportation industry.Main consideration was given to the effects of material composition and its fiber orientation on the static and fatigue behaviors of leaf spring.The design constraints were bending stresses,deflection and fatigue life.Compared to the steel leaf spring,the designed composite spring has much lower bending stresses and deflections and higher fatigue life cycles.

  12. [Leaf characteristics extraction of rice under potassium stress based on static scan and spectral segmentation technique].

    Science.gov (United States)

    Shi, Yuan-yuan; Deng, Jin-song; Chen, Li-su; Zhang, Dong-yan; Ding, Xiao-dong; Wang, Ke

    2010-01-01

    The timing, convenient and reliable method of diagnosing and monitoring crop nutrition is the foundation of scientific fertilization management. However, this expectation cannot be fulfilled by traditional methods, which always need excessively work on sampling, detection and analysis and even exhibit lagging timing. In the present study, stable images for potassium-stressed leaf were acquired using stationary scanning, and object-oriented segmentation technique was adopted to produce image objects. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify characteristics of potassium-stressed features. Diagnosing with image, the 3rd expanded leaves are superior to the 1st expanded leaves. In order to assess the result, 250 random samples and an error matrix were applied to undertake the accuracy assessment of identification. The results showed that the overall accuracy and kappa coefficient was 96.00% and 0.9453 respectively. The study offered an information extraction method for quantitative diagnosis of rice under potassium stress.

  13. Photosynthetic Characteristics of Purple-leaf Plants in Drought Region%干旱区3种彩叶植物的光合特性

    Institute of Scientific and Technical Information of China (English)

    庄红梅; 黄俊华; 李建贵; 石游

    2011-01-01

    The photosynthetic characteristics of three purple-leaf plants were studied in this research, the results would provide scientific guidance for configuring colorful plants in plant landscaping. The portable photosynthetic system LI-6400 (LI-COR company, U. S) was used to measure daily changes and light response curves of three years old purple-leaf lee (Prunus cerasifera Ehrhart f. Atropur-purea Jacq) , purple-leaf dwarf cherry (PrunusXcistena Pissardii) and purple-leaf peach (.Prunus per-sica cv. Atropurpurea). The light compensation point of purple-leaf peach, lee and dwarf cherry were 12, 24, 92 μmol ? M-2 ? S-1, respectively; light saturation point were 1 044, 688, 1 196 μmol ? M-2 ? S-1, respectively. The purple-leaf dwarf cherry showed some characters of heliophilous plants, so, in landscape configuration they should be placed in a upper level of a plants community . The purple-leaf lee and purple-leaf dwarf cherry have a clear photosynthetic "midday depression" around noon, which is mainly caused by the decline of stomatal conductance, while purple leaf peach is limited by non-stomatal factors. The transpiration rates of three tree species belong to the afternoon peak type. Diurnal temperature variation of the ground surface is greater than it in the ground ,and the surface humidity variation is inversely proportional to the diurnal ground surface temperature change.%以3a生紫叶李(Prunus cerasi era Ehrhart f.atropurpurea Jacq)、紫叶矮樱(Prunus×cistena Pis-sardii)、紫叶桃(Prunus persica cv.atropurpurea)为试材,研究3种彩叶植物的光合作用基本生理特征和规律.结果表明,紫叶桃、紫叶李和紫叶矮樱的光补偿点分别为12、24和92 μmol·m-2·s-1;光饱和点分别为1 044、688和1 196 μmol·m-2·s-1;表明紫叶矮樱较为喜阳,在园林绿化配置时应处于群落的上层.紫叶李与紫叶矮樱有明显的光合“午休”现象,主要是由气孔导度下降引起的,紫叶桃

  14. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Science.gov (United States)

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (psoil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, psoil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (perosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  15. Reflectance Spectral Characteristics of Lunar Surface Materials

    Institute of Scientific and Technical Information of China (English)

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu

    2004-01-01

    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  16. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  17. 10 CFR 960.5-2-8 - Surface characteristics.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8... Closure § 960.5-2-8 Surface characteristics. (a) Qualifying condition. The site shall be located such that, considering the surface characteristics and conditions of the site and surrounding area, including...

  18. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology.

    Science.gov (United States)

    Şahin, Selin; Samlı, Rüya

    2013-01-01

    In the present article, ultrasound-assisted extraction (UAE) of polyphenols from agricultural and industrial waste of olive oil and table oil productions, olive tree (Olea europaea) leaves were investigated. The aim of the study is to examine the extraction parameters such as solvent concentration (0-100% ethanol (EtOH), v/v), the ratio of solid to solvent (25-50mg/mL) and extraction time (20-60 min), and to obtain the best possible combinations of these parameters through response surface methodology (RSM). The extract yield was stated as mg extract per g of dried leaf (DL). Total phenolic content was expressed in gallic acid equivalent (GAE) per g of dried leaf. Free radical scavenging activity for the antioxidant capacity was tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The second order polynomial model gave a satisfactory description of the experimental data. 201.2158 mg extract/g DL, 25.0626 mg GAE/g DL, and 95.5610% in respect to inhibition of DPPH radical were predicted at the optimum operating conditions (500 mg solid to 10 mL solvent ratio, 60 min of extraction time and 50% EtOH composition), respectively.

  19. Leaf Growth Characteristics of Larix olgensis%黄花落叶松叶片生长性状

    Institute of Scientific and Technical Information of China (English)

    孙忠林; 蔡雪颖; 孙令娟; 徐天保; 刘晓华; 袁媛

    2011-01-01

    A study was conducted to explore the leaf growth characteristics of annual branches of Larix olgensis Henry in a natural secondary forest in Tonghua City, Jilin Province. Results showed that the length, width, biomass per individual leaf and specific leaf area of the annual branches had significant difference between L. Olgensis trees located at different altitudes (P<0. 05). An unobvious difference in growth characteristics of annual branches of different age classes was observed. However, the leaf biomass increased with age-class decreasing, indicating that the young trees had faster biomass gain than the elder ones. Time-scale models of leaf growth characteristics were built for the annual branches of L. Olgensis. The leaf biomass followed the logistic growth curve, while logarithmic functions could be used to describe the growth of leaf length and leaf width, and the power function to describe the growth of specific leaf area. Results indicate that time and space factors all have certain effects on the growth characteristics of the annual branches of L. Olgensis, and the change in space and time factors at a small scale can also cause the variation of the leaf growth characteristics.%以黄花落叶松(Larix olgensis Henry)天然次生林为研究对象,分析黄花落叶松1年生枝条叶片(leaves on annual branches,LAB)生长性状的分布规律.结果表明:黄花落叶松1年生枝条叶片的长度、宽度、单叶生物量及比叶面积对海拔的变化比较敏感,不同海拔高度的生长性状指标总体上差异显著(P<0.05).龄级对黄花落叶松1年生枝条叶片的生长性状的影响不显著,但随着龄级的变小,叶片生物量有增大的趋势,表现为低龄级的黄花落叶松1年生枝条叶片的生物量增长较快.时间尺度上对黄花落叶松1年生枝条叶片的生长性状建模,结果表明1年生枝条叶片的生物量遵循logistic增长;叶片长度与叶片宽度遵循对数函数增长;比叶面

  20. Genetic diversity of pomegranate germplasm collection from Spain determined by fruit, seed, leaf and flower characteristics

    Directory of Open Access Journals (Sweden)

    Juan J. Martinez-Nicolas

    2016-07-01

    size as well as the juice’s acidity and pH had the highest power of discrimination, and were, therefore, the most useful for genetic characterization of this pomegranate germplasm banks. This is opposed to leaf and flower characteristics, which had a low power of discrimination. This germplasm bank, more specifically, was characterized by its considerable phenotypic (and presumably genetic diversity among pomegranate accessions, with a greater proximity existing among the varieties from the same geographical area, suggesting that over time, there had not been an exchange of plant material among the different cultivation areas. In summary, knowledge on the extent of the genetic diversity of the collection is essential for germplasm management. In this study, these data may help in developing strategies for pomegranate germplasm management and may allow for more efficient use of this germplasm in future breeding programs for this species.

  1. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?

    Science.gov (United States)

    Burkhardt, J; Pariyar, S

    2016-01-01

    Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and increasing VPD and are thus related to air pollution and

  2. Investigating the Alometric Relationships between Leaf Area and Some of Vegetative Characteristics in SC704 Corn Hybrid

    Directory of Open Access Journals (Sweden)

    E Zeinali

    2016-10-01

    Full Text Available Introduction Since the leaves are the main source of production of photosynthetic substances in plants, dry matter production and crop yield potential is largely dependent on the leaf surface, and many environmental changes affect growth and yield through changes in leaf area. Hence, green leaf area per plant and leaf area index is measured in almost all studies of crop physiology to understand the mechanism of yield alteration. However, measurement of leaf area compared with the other traits such as plant height and total plant dry weight is very difficult, need to precision instruments and spend more time and cost. Therefore, according to the allometric relationships in plants, extensive studies were done to find the relationship between leaf area and the other plant traits that their measurement is easier, faster and cheaper, and does not require expensive equipment. Using these relationships will be used to estimate plant leaf area with acceptable accuracy without measuring. Plant traits that have high correlation with leaf area and usually use to estimate the plant leaf area are the number of leaves or nodes per main stem, plant height, leaf dry weight and dry weight of vegetative parts of the plant. Allometric equations was used successfully to calculate leaf area for various crops such as cotton, wheat, chickpea, faba bean, peanuts, soybean and sweet sorghum. This study was conducted to obtain the allometric relationships between green leaf area (cm2 per plant with number of leaves or nodes per main stem, plant height, green leaf dry weight and dry weight of vegetative parts of the plant (gram per plant, and investigating the effect of plant density and planting date on these relationships in SC704 corn (Zea mays L. hybrid. Materials and Methods This study was conducted at Gorgan University of Agricultural Sciences and Natural Resources farm located at latitude 36 o 51’ N, longitude 54 o27’ E and altitude of 13 meters above sea level

  3. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  4. The Characteristics and Parameterization of Aerodynamic Roughness Length over Heterogeneous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LU Li; LIU Shaomin; XU Ziwei; YANG Kun; CAI Xuhui; JIA Li; WANG Jiemin

    2009-01-01

    Aerodynamic roughness length (zOm) is a key factor in surface flux estimations with remote sensing algorithms and/or land surface models. This paper calculates zOm over several land surfaces, with 3 years of experimental data from Xiaotangshan. The results show that zOm is direction-dependent, mainly due to the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length for heterogeneous surfaces is proposed. Individual zOm over each surface component (patch) is calculated firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.), then zOm over the whole experimental field is aggregated, using the footprint weighting method.

  5. Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Chen, Yue

    2017-02-01

    A new class of hierarchical porous carbon (HPC) with ultrahigh surface area is successfully fabricated by carefully selecting biomass carbon precursors and activation reagent, through which corn leaf (CL) with natural well-defined macropore channels is used as the carbon precursor, and H3PO4 is used as the active agent by virtue of its pore-widening effect. The as-prepared CL-based HPC (CLHPC) with a H3PO4/semi-carbonized CL mass ratio of 2 (CLHPC-2) demonstrates the highest specific surface area of 2507 m2 g-1 donated by 28.3% of micropore and 71.6% of mesopore, while maintaining the channel-like macroporous structure derived from the well-defined natural structure in CL. The combination of the hierarchical porous structure and ultrahigh surface area enables rapid electrolyte diffusion and sufficient active sites for charge accumulation. As a result, CLHPC-2 exhibits excellent electrochemical performance, such as high specific capacitance of 230 F g-1 at the current density of 0.1 A g-1, excellent high-rate capability (retention of 91% from 0.1 to 5 A g-1), and good cycling stability (99% capacitance retention after 10 000 cycles).

  6. Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces.

    Science.gov (United States)

    Szyndler, Megan W; Haynes, Kenneth F; Potter, Michael F; Corn, Robert M; Loudon, Catherine

    2013-06-06

    Resurgence in bed bug infestations and widespread pesticide resistance have greatly renewed interest in the development of more sustainable, environmentally friendly methods to manage bed bugs. Historically, in Eastern Europe, bed bugs were entrapped by leaves from bean plants, which were then destroyed; this purely physical entrapment was related to microscopic hooked hairs (trichomes) on the leaf surfaces. Using scanning electron microscopy and videography, we documented the capture mechanism: the physical impaling of bed bug feet (tarsi) by these trichomes. This is distinct from a Velcro-like mechanism of non-piercing entanglement, which only momentarily holds the bug without sustained capture. Struggling, trapped bed bugs are impaled by trichomes on several legs and are unable to free themselves. Only specific, mechanically vulnerable locations on the bug tarsi are pierced by the trichomes, which are located at effective heights and orientations for bed bug entrapment despite a lack of any evolutionary association. Using bean leaves as templates, we microfabricated surfaces indistinguishable in geometry from the real leaves, including the trichomes, using polymers with material properties similar to plant cell walls. These synthetic surfaces snag the bed bugs temporarily but do not hinder their locomotion as effectively as real leaves.

  7. Evaluation of dosimetric characteristics of multi-leaf and conventional collimated radiation fields using a scanning liquid ionization chamber EPID.

    Science.gov (United States)

    Mohammadi, M; Bezak, E

    2008-12-01

    The characteristics of radiation fields set up using conventional and Multi-Leaf collimators were investigated using a Scanning Liquid Ionization Chamber Electronic Portal Imaging Device (SLIC-EPID). Results showed that the radiation fields set up using MLCs are generally larger than those set up using conventional collimators. A significant difference was observed between the penumbra width for conventional and MLC radiation fields. SLIC-EPID was found to be a sensitive device to evaluate the characteristics of the radiation fields generated with MLCs.

  8. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  9. Contact of surfaces and contact characteristics of offset surfaces

    Institute of Scientific and Technical Information of China (English)

    Lixin CAO; Hu GONG; Jian LIU

    2008-01-01

    Based on differential geometry, the contact problems of two surfaces are discussed in this paper. The relationship between the contact status of two sur-faces and that of offset surfaces are also analyzed. For a 5-axis NC machining, some research such as optimization of cutter location and calculation of the geometrical cusp height are important. The research results indicate that the relative normal curvature is an important geometrical invariant for describing the contact state of two surfaces. For point contact two surfaces, the calculation equation for the second order remained error is given. For line contact two surfaces, the condition of the second order line contact is that the principal directions and curvatures of the two surfaces are the same along the contact curve. If two surfaces keep the second order line contact, their two offset surfaces will also keep the second order line contact, and their third order remained errors are also uniform with that of the two offset surfaces.

  10. Surface characteristics of PLA and PLGA films

    Energy Technology Data Exchange (ETDEWEB)

    Paragkumar N, Thanki [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Edith, Dellacherie [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Six, Jean-Luc [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France)]. E-mail: Jean-Luc.Six@ensic.inpl-nancy.fr

    2006-12-30

    Surface segregation and restructuring in polylactides (poly(D,L-lactide) and poly(L-lactide)) and poly(D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly(D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly(L-lactide) (PLLA) thin and clear films with thickness {approx}15 {mu}m undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  11. Penumbra characteristics of square photon beams delimited by a GEMS multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Briot, E.; Julia, F. [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)

    1995-12-01

    A multi-leaf collimator (MLC) has been designed to replace directly the standard collimator of a SATURNE IV Series linac. It consists of 2 x 32 tungsten leaves and one set of upper block jaws. Isodose curves and dose profiles were measured for symmetric fields at the depth of the maximum and the reference depths for 6 MV, 10 MV, 18 MV photon beams. The penumbra (80%-20%) corresponding to the face and the side of the leaves have been compared with the standard collimators. Along with the X direction, the field delimitation is performed primarily with the leaves which are continuously variable in position. Along the Y direction, the field is initially approximated by the closure of opposite leaf pairs; then the Y upper jaws produce the exact size of the required field. As the leaves move linearly the penumbra (80%-20%) corresponding to the leaf ends is minimized and held constant at all positions by curvature of their faces. Penumbra obtained with the superposition of leaves and Y jaws depend on their relative position. The penumbra is minimum when the leaf side and the Y jaw edge coincide and the comparison of the measurement values with the conventional collimator shows that the differences are within 1 mm. When the leaves delineating the field are not entirely covered by the Y block upper jaws, the penumbra increases, and the junction of the opposing leaves, a width increase up to 3.5 mm has been measured.

  12. Modeling Characteristics Of Surfaces For Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.; Durden, Stephen L.

    1992-01-01

    Paper reviews mathematical models of polarimetric radar backscattering characteristics of various types of terrain; forests, grasslands, and lava fields. Represents approach to imaging radar polarimetry in which one accumulates models predicting realistic polarization signatures and represent distinct scattering processes, without attempting full vector solutions of Maxwell's equations in all cases. Idea to develop ability to invert models to identify unknown terrain depicted in polarimetric radar images. Describes models, major scattering characteristics predicted by models, and interpretation of characteristics in terms of dominant scattering mechanisms. Models predict realistic polarization signatures.

  13. Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments

    Directory of Open Access Journals (Sweden)

    Yusran Payae

    2009-07-01

    Full Text Available Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principle benefits: moderate strength and stiffness, low cost, and be an environmental friendly, degradable, and renewablematerial. Due to their inherently hydrophilic nature, they are prone to absorb moisture, which can plasticise or weaken theadhesion of fibers to the surrounding matrix and by this affect the performance of composites used in atmospheric humidity,particularly at elevated temperatures. The surface treatments are often applied to the fiber to improve the bond strengthbetween the fibers and matrix. This work discussed the effect of sodium hydroxide (NaOH treatment and epoxy resin as acompatibilizing agent on interface properties of pineapple leaf fiber (PALF-epoxy composites. A single-fiber fragmentationtest coupled with data reduction technique was employed to assess interface quality in terms of apparent interfacial shearstrength (IFSS or a of untreated, NaOH, and epoxy resin treated PALFs-epoxy composites. Tensile properties of untreatedand treated PALFs were also examined. It was found that both treatments substantially increase a, corresponding to animproved level of adhesion. The improvement in the level of adhesion for the alkali and epoxy treated fiber composites wasdue to an increase in the physical bonding between the alkali treated fibers and the matrix, and due to a promoted compatibilitybetween the epoxy treated fibers and matrix, respectively.

  14. Influence of simulated acid rain on the flowering dogwood (Cornus florida) leaf surface

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.A. (Auburn Univ., AL (United States)); Windham, M.T.; Trigiano, R.N. (Tennessee Univ., Knoxville, TN (United States)); Anderson, R.L. (United States Dept. of Agriculture, Asheville, NC (United States))

    1994-01-01

    Acidic rainfall has the potential to influence anthracnose incidence and severity in flowering dogwood (Cornus florida L.) of the eastern United States. One-year-old, nursery-grown flowering dogwood seedlings were exposed to 1 cm of simulated rain 10 times over a 42-day period in 1990. Simulated rains were composed of a mixture of salts typical of ambient rainfall in the eastern United States and pH was adjusted to 5.5, 4.5, 3.5, and 2.5 with sulfuric and nitric acids. Samples were cut from the leaf tip, margin, and midvein of rain-treated trees and prepared for scanning electron microscopy. Cuticular cracking, desiccation, and erosion of trichrome surfaces were observed with decreasing pH for all samples. Cuticular erosion due to acid rain has the potential to predispose dogwoods in the eastern United States to anthracnose caused by Discula destructiva sp.nov. (Red.) and an unnamed Discula sp. 25 refs., 4 figs.

  15. Leaf anatomical characteristics of Bouea, Mangifera and Spondias(Anacardiaceae) in Malaysia

    Science.gov (United States)

    Norfaizal, G. Mohd.; Latiff, A.

    2013-11-01

    Leaves anatomy of two species of Bouea, 11species of Mangifera and two species of Spondias were studied in order to see the differences in stomata type, petiole, midrib and lamina anatomy and leaf venation. This study aims to use anatomical characters for species and genus identification. Common characters observed were the absence of trichomes, closed vascular bundles, uniseriate epidermal layers, resin canal in parenchyma cells, anticline wall patterns and druses crystals in leaf lamina transverse sections. All species displayed closed vascular bundles except Mangifera pajang which showed a combination of medullary vascular bundles. Uniseriate epidermal layer was observed in all the species. All the species showed straight-wavy anticlinal walls. Druses crystals were found in the parenchyma cells of all the species. Four types of stomata were observed namely anomocytic, anisocytic, staurocytic and diacytic. Anomocytic, anisocytic and staurocytic stomata were observed in Mangifera, diacytic in Bouea and anomocytic in Spondias.

  16. Response of sunflower (Helianthus annuus L.) leaf surface defenses to exogenous methyl jasmonate.

    Science.gov (United States)

    Rowe, Heather C; Ro, Dae-kyun; Rieseberg, Loren H

    2012-01-01

    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography-mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.

  17. Response of sunflower (Helianthus annuus L. leaf surface defenses to exogenous methyl jasmonate.

    Directory of Open Access Journals (Sweden)

    Heather C Rowe

    Full Text Available Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL, a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography-mass spectroscopy (LC-MS showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.

  18. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    Science.gov (United States)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to

  19. The reflectance characteristics of snow covered surfaces

    Science.gov (United States)

    Batten, E. S.

    1979-01-01

    Data analysis techniques were developed to most efficiently use available satellite measurements to determine and understand components of the surface energy budget for ice and snow-covered areas. The emphasis is placed on identifying the important components of the heat budget related to snow surfaces, specifically the albedo and the energy consumed in the melting process. Ice and snow charts are prepared by NOAA from satellite observations which map areas into three relative reflectivity zones. Field measurements are analyzed of the reflectivity of an open snow field to assist in the interpretation of the NOAA reflectivity zones.

  20. Inactivation of baculovirus by isoflavonoids on chickpea (Cicer arietinum) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against Helicoverpa armigera

    OpenAIRE

    Stevenson, Philip C.; D'Cunha, Reju F.; Grzywacz, David

    2010-01-01

    Biological pesticides based on nucleopolyhedroviruses (NPVs) can provide an effective and environmentally benign alternative to synthetic chemicals. On some crops, however, the efficacy and persistence of NPVs is known to be reduced by plant specific factors. The present study investigated the efficacy of Helicoverpa armigera NPV (HearNPV) for control of H. armigera larvae, and showed that chickpea reduced the infectivity of virus occlusion bodies (OBs) exposed to the leaf surface of chickpea...

  1. [Colonization characteristics of endophytic bacteria NJ13 in Panax ginseng and its biocontrol efficiency against Alternaria leaf spot of ginseng].

    Science.gov (United States)

    Chen, Chang-Qing; Li, Tong; Li, Xin-Lian; Jiang, Yun; Tian, Lei; Xu, Peng

    2014-05-01

    To reveal the colonization characteristics in host of endophytic biocontrol bacteria NJ13 isolated from Panax ginseng, this study obtained the marked strain NJ13-R which was double antibiotic resistant to rifampicin and streptomycin through enhancing the method of inducing antibiotic. The colonization characteristics in ginseng and its biocontrol efficiency against Alternaria spot of ginseng in the field were studied. The results showed that the strain could colonize in root, stem and leaf of ginseng and the colonization amount was positive correlated with inoculation concentration. Meanwhile, the strain could infect and then transfer in different tissues of ginseng The colonization amount of strain in roots and leaves of ginseng increased first and then decreased. However, the tendency of colonization amount of strain in stems was ascend at first and then descend slowly, and was more than that in roots and leaves along with time, which had a preference to specific tissue of its host. In field experiment, the endophytic bacteria NJ13 was proved to be effective in controlling Alternaria leaf spot of ginseng. The biocontrol efficiency of fermentation broth at the concentration of 0.76 x 10(8) cfu x mL(-1) reached 75.62%, which was close to the controlling level (73.06%) of 0.67 mg x L(-1) 50% cyprodinil WG.

  2. Phytochemical, Physico-chemical & Spectroscopic Characteristics of Ethanolic Extract of Leaf, Stem and Flower bud of Hibiscus hispidissimus Griffith

    Directory of Open Access Journals (Sweden)

    Thamizh Selvam N

    2015-08-01

    Full Text Available The plant Hibiscus hispidissimus belongs to the family Malvaceae (Mallow family. The plant has wide range of medicinal uses. Considering the ethno medicinal value of Hibiscus hispidissimus, the present work has been taken up to document the physico-chemical composition, phytochemical details and spectrophotometric characteristics of the plant. The work has been carried out on ethanolic extract of leaf, stem and flower bud of H. hispidissimus. Phytochemical analysis showed the presence of saponis, tannins, glycosides, diterpenes and quinones. Spectroscopic characteristics were analyzed and found to have wide range of compounds including steroids, alkaloids, pigments like chlorophyll a and b, phenolic compounds mainly gallic acid, flavanoids like anthocyanins, flavanols, flvanones and isoflavones.

  3. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    Science.gov (United States)

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB.

  4. Spatial characteristics of ocean surface waves

    Science.gov (United States)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  5. In situ determination of multiple polycyclic aromatic hydrocarbons uptake by crop leaf surfaces using multi-way models.

    Science.gov (United States)

    Sun, Haifeng; Guo, Shuai; Zhu, Na; Sang, Nan; Chen, Zhang

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) in the atmosphere can partition into agricultural crops, which poses a potential risk to human health through the food chain. In this study, controlled chamber experiments were conducted to investigate the kinetic uptake of anthracene (Ant), phenanthrene (Phe), fluoranthene (Fla) and pyrene (Pyr), individually or as a mixture, by the leaf surfaces of living soybean and corn seedlings using the excitation-emission matrix (EEM) coupled with three-way parallel factor analysis (PARAFAC) and n-way partial least squares (n-PLS). The four selected PAHs achieved equilibrium between the air and the two living crop leaf surfaces over the 15-day monitoring period. Inter-species and inter-chemical variability existed in terms of the time required to achieve equilibrium, mass transfer coefficients (kAL) and the equilibrated adsorption capacity (EAC), which was mainly attributed to the different lg KOA values among the four PAHs and the variable leaf-wax content between the soybean and corn species. Compared with when the PAHs existed singly, the time required to achieve adsorption equilibrium was longer while the EAC was reduced for each of the four PAHs in a mixture, which was attributed to competitive adsorption among the coexisting components. These findings prove that the novel analytical method provides a novel platform for the in situ characterization of the environmental behaviors of multiple PAHs, with their spectra overlapping, between the air and plant skin. The coexistence of multiple PAHs in the air inhibits their individual uptake capacity by crop leaf skin, but increases the total adsorption of PAHs, potentially reducing crop security and increasing human health risk via the terrestrial food web. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Han, Susan S. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-04-15

    Bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive)/'R123' (O{sub 3}-tolerant) and cultivars 'BBL 290' (O{sub 3}-sensitive)/'BBL 274' (O{sub 3}-tolerant) were used to study the effects of O{sub 3} on stomatal conductance (g {sub s}), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O{sub 3} and plasticity of stomatal properties in response to O{sub 3}. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O{sub 3} sensitivity and g {sub s}: while 'S156' had higher g {sub s} rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G {sub s} rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O{sub 3}-tolerant counterparts. Exposure to O{sub 3} in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O{sub 3}-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O{sub 3} concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O{sub 3} concentrations (30 ppb). Exposure to O{sub 3} eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O{sub 3} and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O{sub 3} has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This

  7. Influences of leaf litter replacement on soil biochemical characteristics of main planted forests in Qinling Mountains of China

    Institute of Scientific and Technical Information of China (English)

    Zengwen LIU; Erjun DUAN; Wenjun GAO

    2009-01-01

    Long-term continuous growth of the same tree species in planted pure forest will lead to soil polarization and degradation. Mixed forestation or litter replacement between different needle- and broad-leaved forests are effective measures, except fertilization, to control soil polarization according to the mutual compensation principle of different tree species. Through a two-year leaf litter replacement experiment in 4 typical planted pure forests of Larix kaempferi, Pinus tabulaeformis, Catalpa fargesii and Quercus aliena var. acuteserrata in Qinling Mountains of China, influences of leaf litter replacement on soil biochemical characteristics and their interspecific relationships were studied and main conclusions were reached as follows. (1) Annual leaf litter decomposition rate of broadleaved forests was 33.70% higher than those of needleleaved forests and increased by 8.35%-12.15% when needle-leaved litter was replaced with broad-leaved forests, whereas it decreased by 5.38%-9.49% when broad-leaved litter was replaced with needle-leaved forests. (2) Leaf litter replacement between needle- and broad-leaved forests popularly raised the contents of organic C, available N, P and K in soil, whose content increments in the needle-leaved forests (8.70%-35.84%) were obviously more than those in the broad-leaved forests (3.73%-10.44%), and in the former, the content increments after replacement with the litter of Catalpa fargesii (24.63%-35.84%) were more than those after replacement with the litter ofQuercus aliena var. acuteserrata (8.70% 28.15%). Furthermore, the litter replacement was found to make the soil pH of needle-leaved forests developed from light-acid to neutral. (3) Litter replacement of the needleleaved forests with the broad-leaved litter popularly raised enzyme activities, amounts of microorganisms and contents of micro-biomass C and N in soil, the increments of which after replacement with the litter of Catalpa fargesii were also more than those after

  8. Surface pore tension and adsorption characteristics of polluted sediment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  9. The Heat and Mass Transfer Analysis of a Leaf

    Institute of Scientific and Technical Information of China (English)

    Hong Ye; Zhi Yuan; Shuanqin Zhang

    2013-01-01

    Understanding the heat and mass transfer processes of plant leaves is essential for plant bionic engineering.A general thermophysical model was established for a plant leaf with particular emphasis on the transpiration process.The model was verified by the field measured stomatal resistance and temperature of a camphor leaf.A dynamical simulation revealed that diurnal transpiration water consumption is dominated by the solar irradiance and the day-average temperature of the leaf is dominated by the ambient air temperature; transpiration plays an important role in the cooling of the leaf,in average it could dissipate around 32.9% of the total solar energy absorbed by the leaf in summer.To imitate the thermal infared characteristic of the real leaf,the up surface of the bionic leaf must have emissivity and solar absorptivity close to those of a real leaf and its shape and surface roughness must be similar to those of the real leaf.The key point is that the bionic leaf must be able to evaporate water to simulate the transpiration of a plant leaf,appropriate adsorbent can be used to realize this function.

  10. Scale effects on the controls on mountain grassland leaf stomatal and ecosystem surface conductance to water vapour

    Science.gov (United States)

    Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

    2010-05-01

    Stomata are the major pathway by which plants exert control on the exchange of trace gases and water vapour with the aerial environment and thus provide a key link between the functioning of terrestrial ecosystems and the state and composition of the atmosphere. Understanding the nature of this control, i.e. how stomatal conductance differs between plant species and ecosystems and how it varies in response to external and internal forcings, is key to predicting feedbacks plants may be providing to changing climatic conditions. Despite a long history of research on stomatal functioning, a fully mechanistic understanding of how stomata function in response to biotic and abiotic controls is still elusive which has led to the development of a large number of (semi-)empirical models of varying complexity. Two of the most widely used models go back to Jarvis (1976) and Ball, Woodrow and Berry (1987), termed J-model and BWB-model, respectively, in the following. The J-model simulates stomatal conductance as some maximal value attenuated by a series of multiplicative functions which are bound between zero and unity, while the BWB-model predicts stomatal conductance as a linear function of photosynthesis, relative humidity and carbon dioxide concentration in the leaf boundary layer. Both models were developed for the prediction of leaf-scale stomatal conductance to water vapour, but have been applied for simulating ecosystem-scale surface conductance as well. The objective of the present paper is to compare leaf- and ecosystem-scale conductances to water vapour and to assess the respective controls using the two above-mentioned models as analysis frameworks. To this end leaf-level stomatal conductance has been measured by means of leaf-gas exchange methods and ecosystem-scale surface conductance by inverting eddy covariance evapotranspiration estimates at a mountain grassland site in Austria. Our major findings are that the proportionality parameter in the BWB-model is

  11. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  12. Performance and Haematological Characteristics of Broiler Finisher FedMoringa oleifera Leaf Meal Diets

    Institute of Scientific and Technical Information of China (English)

    Obakanurhe Oghenebrorhie; Okpara Oghenesuvwe

    2016-01-01

    To investigate the effects ofMoringa oleifera leaf meal (MOLM) on the performance and haematology of broiler finisher using 120 Cobb chicks of 4 weeks old broiler chicks. The birds were assigned randomly into four dietary treatments containing MOLM at 0, 6%, 8%, and 10% (treatments 1, 2, 3 and 4) inclusion levels, respectively, in a complete randomized design experiment. The effect of the dietary treatments on the growth performance and blood parameters of the broiler finisher was determined. MOLM at a rate of 6% (T2), 8% (T3), and 10% (T4) of the diets (as fed basis) to replace 3.2%, 5.6% and 8.6% of the crude protein (CP) of the control diet. The daily feed, dry matter and CP intake of the chicks fed MOLM diets were higher (p0.05) among treatments. The results indicated that at 10% in the diets of broiler finisher chick, MOLM could be substituted with expensive conventional protein sources without any deleterious effects on performance and blood parameters of broiler finisher chicken.

  13. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    OpenAIRE

    Barbara Dyki; Jan Borowski; Waldemar Kowalczyk

    2013-01-01

    The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in ...

  14. Anatomical structure and surface micromorphology of tomatillo leaf and flower (Physalis ixocarpa Brot., Solanaceae)

    OpenAIRE

    Barbara Dyki; Leszek S. Jankiewicz; Mirosław Staniaszek

    2014-01-01

    Tomatillo (Physalis ixocarpa Brot.) is a newly introduced cultivated plant in Poland. Its anatomy was investigated in light and scanning electron microscopes. Tomatillo adult leaf had one layer of palisade parenchyma. The 1-2 cell layers of spongy parenchyma situated just below the palisade parenchyma showed large, tightly packed cells with great druses. The remaining spongy parenchyma was built of cells showing several extensions. Peculiarity of the sepals were the stomata situated on column...

  15. Super-hydrophobic characteristics of butterfly wing surface

    Institute of Scientific and Technical Information of China (English)

    CONG Qian; CHEN Guang-hua; FANG Yan; REN Lu-quan

    2004-01-01

    Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact angles of water droplets on the butterfly wing surface were consistently measured to be about 150° and 100° with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3°. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent,self-cleaning, or "Lotus-effect" characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas.Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 μm×80 μm of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.

  16. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    Science.gov (United States)

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  17. Inactivation of baculovirus by isoflavonoids on chickpea (Cicer arietinum) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against Helicoverpa armigera.

    Science.gov (United States)

    Stevenson, Philip C; D'Cunha, Reju F; Grzywacz, David

    2010-02-01

    Biological pesticides based on nucleopolyhedroviruses (NPVs) can provide an effective and environmentally benign alternative to synthetic chemicals. On some crops, however, the efficacy and persistence of NPVs is known to be reduced by plant specific factors. The present study investigated the efficacy of Helicoverpa armigera NPV (HearNPV) for control of H. armigera larvae, and showed that chickpea reduced the infectivity of virus occlusion bodies (OBs) exposed to the leaf surface of chickpea for at least 1 h. The degree of inactivation was greater on chickpea than that previously reported on cotton, and the mode of action is different from that of cotton. The effect was observed for larvae that consumed OBs on chickpea leaves, but it also occurred when OBs were removed after exposure to plants and inoculated onto artificial diet, indicating that inhibition was leaf surface-related and permanent. Despite their profuse exudation from trichomes on chickpea leaves and their low pH, organic acids-primarily oxalic and malic acid-caused no inhibition. When HearNPV was incubated with biochanin A and sissotrin, however, two minor constituents of chickpea leaf extracts, OB activity was reduced significantly. These two isoflavonoids increased in concentration by up to 3 times within 1 h of spraying the virus suspension onto the plants and also when spraying only the carrier, indicating induction was in response to spraying and not a specific response to the HearNPV. Although inactivation by the isoflavonoids did not account completely for the level of effect recorded on whole plants, this work constitutes evidence for a novel mechanism of NPV inactivation in legumes. Expanding the use of biological pesticides on legume crops will be dependent upon the development of suitable formulations for OBs to overcome plant secondary chemical effects.

  18. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.

    Science.gov (United States)

    McLauchlin, Melissa L; Yang, Dongqing; Aella, P; Garcia, Antonio A; Picraux, S T; Hayes, Mark A

    2007-04-24

    Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mum and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees . As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees . The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5.

  19. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development.

    Science.gov (United States)

    Jia, Xiao-Ling; Wang, Guang-Long; Xiong, Fei; Yu, Xu-Run; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-02-05

    Celery of the family Apiaceae is a biennial herb that is cultivated and consumed worldwide. Lignin is essential for cell wall structural integrity, stem strength, water transport, mechanical support, and plant pathogen defense. This study discussed the mechanism of lignin formation at different stages of celery development. The transcriptome profile, lignin distribution, anatomical characteristics, and expression profile of leaves at three stages were analyzed. Regulating lignin synthesis in celery growth development has a significant economic value. Celery leaves at three stages were collected, and Illumina paired-end sequencing technology was used to analyze large-scale transcriptome sequences. From Stage 1 to 3, the collenchyma and vascular bundles in the petioles and leaf blades thickened and expanded, whereas the phloem and the xylem extensively developed. Spongy and palisade mesophyll tissues further developed and were tightly arranged. Lignin accumulation increased in the petioles and the mesophyll (palisade and spongy), and the xylem showed strong lignification. Lignin accumulation in different tissues and at different stages of celery development coincides with the anatomic characteristics and transcript levels of genes involved in lignin biosynthesis. Identifying the genes that encode lignin biosynthesis-related enzymes accompanied by lignin distribution may help elucidate the regulatory mechanisms of lignin biosynthesis in celery.

  20. Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage

    Institute of Scientific and Technical Information of China (English)

    LONG Ji-rui; MA Guo-hui; WAN Yi-zheng; SONG Chun-fang; SUN Jian; QIN Rui-jun

    2013-01-01

    To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice,a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material.The photosynthetic electron transport rate (ETR),effective quantum yield (EQY),photochemical quenching coefficient (qp),and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading,full heading,10 d after full heading and 20 d after full heading stages.Results showed that the values of ETR,EQY and qp increased with rice development from initial heading to 20 d after full heading,whereas the NPQ decreased.During the measured stages,ETR,EQY and qp increased initially and then decreased as nitrogen application amount increased,but they peaked at different nitrogen fertilizer levels.The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N.In conclusion,the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.

  1. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    T N Singh; A K Verma; Tanmay Kumar; Avi Dutt

    2011-02-01

    Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed. Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of for shaly sandstone may be attributed to the fact that its surface had a greater number of pronounced asperities. Rubbing between the surfaces does not mean that surface becomes smoother. This is because of variation of friction between surfaces.

  2. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    Directory of Open Access Journals (Sweden)

    Barbara Dyki

    2013-12-01

    Full Text Available The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in comparision with control. The pores of stomata were always larger in leaves of control plants than in other objects.

  3. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  4. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture.

    Science.gov (United States)

    Casella, E; Ceulemans, R

    2002-12-01

    Spatial distributions of leaf characteristics relevant to photosynthesis were compared within high-density coppice canopies of Populus spp. of contrasting genetic origin. We studied three clones representative of the range in growth potential, leaf morphology, coppice and canopy structure: Clone Hoogvorst (Hoo) (Populus trichocarpa Torr. & Gray x Populus deltoides Bartr. & Marsh), Clone Fritzi Pauley (Fri) (Populus trichocarpa Torr. & Gray) and Clone Wolterson (Wol) (Populus nigra L.). Leaf area index ranged from 2.7 (Fri and Wol) to 3.8 (Hoo). The clones exhibited large vertical variation in leaf area density (0.02-1.42 m2 m-3). Leaf dry mass per unit leaf area (DM(A)) increased with increasing light in Clones Hoo and Fri, from about 56 g m-2 at the bottom of the canopy to 162 g m-2 at the top. In Clone Wol, DM(A) varied only from 65 to 100 g m-2, with no consistent relationship with respect to light. Conversely, nitrogen concentration on a mass basis was nearly constant (around 1.3-2.1%) within the canopies of Clones Hoo and Fri, but increased strongly with light in Clone Wol, from 1.4% at the bottom of the canopy to 4.1% at the top. As a result, nitrogen per unit leaf area (N(A)) increased with light in the canopies of all clones, from 0.9 g m-2 at the bottom to 2.9 g m-2 at the top. Although a single linear relationship described the dependence of maximum carboxylation rate (17-93 micromol CO2 m-2 s-1) or electron transport capacity (45-186 micromol electrons m-2 s-1) on N(A), for all clones, Clone Wol differed from Clones Hoo and Fri by exhibiting a higher dark respiration rate at low N(A) (1.8 versus 0.8 micromol CO2 m-2 s-1).

  5. Characteristics of tomato plants treated with leaf extracts of neem (Azadirachta indica A. Juss. (L.)) and mata-raton (Gliricidia sepium (Jacquin)): a greenhouse experiment.

    Science.gov (United States)

    Montes-Molina, Joaquín Adolfo; Nuricumbo-Zarate, Ibis Harumy; Hernández-Díaz, Javier; Gutiérrez-Miceli, Federico Antonio; Dendooven, Luc; Ruíz-Valdiviezo, Víctor Manuel

    2014-09-01

    Extracts of neem (Azadirachta indica A.) and mata-raton (Gliricidia sepium) leaves were used as insect repellent during organic cultivation of tomato plants (Solanum lycopersicum) and were compared with untreated plants or plants treated with lambda-cyhalothrin (chemical treatment). The best developed tomato plants were found in the Gliricidia treatment, while difference between other treatments were small. The number of different species of macrofauna found on tomato plants were similar in different treatments, except for corn rootworm (Diabrotica spp.) found in the Gliricidia treatment, but not in other treatments. It was found that leaf extract of G. sepium stimulated tomato growth and altered the leaf and fruit characteristics. This was most likely due to its action as a growth regulator and/or an inductor of changes in the tomato growth regulation, but not due to its action as an insect repellent. Consequently, leaf extract of G. sepium could be used to stimulate tomato development.

  6. BIOMONITORING OF URBAN AREA BY ANATOMICAL LEAF CHANGES

    Directory of Open Access Journals (Sweden)

    Elena IRIZA

    2012-01-01

    Full Text Available Plants play a vital role as indicators of pollution. The automobile emissions are high particularly at the traffic intersections. Plants growing under the stress of air pollution show differences in leaf surface characteristics. Light microscopic studies of leaf surface revealed an increase in the number of stomata and trichomes of polluted populations in comparison to control populations of Plantago major and Plantago lanceolata. These changes can be considered as indicators of environmental stress.

  7. Zero Cycles on Certain Surfaces in Arbitrary Characteristic

    Indian Academy of Sciences (India)

    G V Ravindra

    2006-02-01

    Let be a field of arbitrary characteristic. Let be a singular surface defined over with multiple rational curve singularities and suppose that the Chow group of zero cycles of its normalisation $\\overline{S}$ is finite dimensional. We give numerical conditions under which the Chow group of zero cycles of is finite dimensional.

  8. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum Oil: Process Optimization Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Mohammad I. Jahirul

    2014-08-01

    Full Text Available In recent years, the beauty leaf plant (Calophyllum Inophyllum is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME conversion from vegetable oil (triglycerides were studied using response surface methodology (RSM based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA. The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

  9. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  10. Effect of Source-Sink Manipulation on Photosynthetic Characteristics of Flag Leaf and the Remobilization of Dry Mass and Nitrogen in Vegetative Organs of Wheat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-hua; SUN Na-na; HONG Jia-pei; ZHANG Qi; WANG Chao; XUE Qing-wu; ZHOU Shun-li; HUANG Qin; WANG Zhi-min

    2014-01-01

    The photosynthetic characteristics of lfag leaf and the accumulation and remobilization of pre-anthesis dry mass (DM) and nitrogen (N) in vegetable organs in nine wheat cultivars under different source-sink manipulation treatments including defoliation (DF), spike shading (SS) and half spikelets removal (SR) were investigated. Results showed that the SS treatment increased the photosynthetic rate (Pn) of lfag leaf in source limited cultivar, but had no signiifcant effect on sink limited cultivar. The SR treatment decreased the Pn of lfag leaf. Grain DM accumulation was limited by source in some cultivars, in other cultivars, it was limited by sink. Grain N accumulation was mainly limited by source supply. The contribution of pre-anthesis dry mass to grain yield from high to low was stem, leaf and chaff, while the contribution of pre-anthesis N to grain N from high to low was leaf, stem and chaff. Cultivars S7221 and TA9818 can increase the contribution of remobilization of DM and N to grain at the maximum ratio under reducing source treatments, which may be the major reason for these cultivars having lower decrease in grain yield and N content under reducing source treatments.

  11. Low temperature wheat germplasm and its leaf photosynthetic traits and structure characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Songwu; MIAO Fang; WANG Changfa

    2004-01-01

    Low temperature germplasm with constant low plant temperature was found in the nature through a long-time observation on wheat canopy temperature and traits; correspondingly, high temperature germplasm with constant high plant temperature also exists. Compared with the high temperature germplasm, the chlorophyll content and the net photosynthetic rate of the three functional leaves on the top of the low temperature wheat germplasm are higher and the structure tends to be more complicated, which is characterized by smaller mesophyll cells and more closely arranged cell layers, more and denser chloroplasts with thick stroma, more granas and well developed grana lamellae, a larger vascular bundle area with smaller interspace. All these characteristics embody the consistency of structure and function and provide the theoretical bases for looking for and cultivating the new low temperature materials in agricultural practice.

  12. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    Science.gov (United States)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  13. Atmospheric CO2 from the late Oligocene to early Miocene reconstructed from photosynthesis data and leaf characteristics of fossil plants

    Science.gov (United States)

    Grein, Michaela; Oehm, Christoph; Konrad, Wilfried; Utescher, Torsten; Kunzmann, Lutz; Roth-Nebelsick, Anita

    2013-04-01

    In the Cenozoic era, global climate changed from greenhouse to icehouse conditions. During the Oligocene, the comparatively cool phase in the earlier part of the late Oligocene is followed by the Late Oligocene Warming and a major glaciation event at the Oligocene-Miocene transition (Mi-1). Various studies indicate that these climate events were coupled to changes in atmospheric CO2 levels. In this study, atmospheric CO2 from the late Oligocene to the early Miocene was reconstructed by using photosynthesis data and fossil leaf characteristics. We used plant material from various sites located in Germany and Austria comprising fossil leaves of four angiosperm plant species: Platanus neptuni (Platanaceae), Quercus rhenana, Q. praerhenana and Eotrigonobalanus furcinervis (all Fagaceae). A mechanistic-theoretical approach based on stomatal parameters, photosynthesis data and gas exchange parameters was applied to model palaeoatmospheric CO2 levels. Detailed climate data of the considered sites were reconstructed as well since the mechanistic-theoretical approach requires climate data as input parameters for calculating both assimilation rate and transpiration rate. Our results indicate a steady CO2 level of about 400 ppm for all sites and therefore suggest a decoupling of CO2 and cooling/warming events for the considered time slices.

  14. Characteristics of the Surface-Intrinsic Josephson Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XU Wei-wei; YE Su-li; GUO Da-yuan; YOU Li-xing; WU Pei-heng

    2006-01-01

    During the fabrication of intrinsic Josephson junctions (IJJs) with Bi2Sr2CaCu2O8+δ(BSCCO) single crystals,the superconductivity of the surface Cu-O layer is degraded because of a deposited metal film on top of the stack.Thus,the characteristics of the surface junction consisting of the surface Cu-O double layers remarkably differ from those of the junctions deep in the stack,which will be referred to as ordinary IJJs.The electrical transport characteristics of the surface junction,such as I-V,I'c-T,and R-T,show that the critical temperature T'c of the surface junction is always lower than that of ordinary IJJs,and that the change of its critical current I'c with temperature is different from that of ordinary IIJs.Furthermore,by shunting! the surface junction resistively,we are able to observe the AC Josephson effect at 3-mm waveband.

  15. 珍珠花潜叶细蛾生物学特性研究%Study on Biological Characteristics of Leaf Miner Acrocercops transecta in Lyonia ovalifolia

    Institute of Scientific and Technical Information of China (English)

    徐家生; 白海燕; 戴小华

    2013-01-01

    The biological characteristics of leaf miner Acrocercops transecta ( Lepidoptera: Gracillariidae) in Lyonia ovalifolia were systematically studied. Acrocercops transecta had three generations every year in south Jiangxi. Its generations overlapped and occurrence period varied with different latitudes. In addition, the mining tunnel characteristics, morphology and life history of Acrocercops transecta were described, and the photos of larvae, pupa, adult, leaf mines and male/female genital organs were given. This insect mined the leaves of Lyonia ovalifolia. Only hoar transparent leaf epidermis was left in the mined parts, thus leaf photosynthesis decreased significantly.%研究了珍珠花(Lyonia ovalifolia Drude)上一种潜叶细蛾——南烛尖细蛾(Acrocercops transecta Meyrick)(鳞翅目:细蛾科)的生物学特性,结果表明:南烛尖细蛾于江西南部一年发生3代,且有世代重叠现象,每年的发生时间因纬度而异;此外,还描述了南烛尖细蛾的潜道特征、形态结构及其生活史.该虫潜食珍珠花的叶片,叶片被取食部分仅留下很薄的灰白色透明的表皮,严重削弱了叶片光合作用.

  16. Anatomical characteristics of the cerebral surface in bulimia nervosa.

    Science.gov (United States)

    Marsh, Rachel; Stefan, Mihaela; Bansal, Ravi; Hao, Xuejun; Walsh, B Timothy; Peterson, Bradley S

    2015-04-01

    The aim of this study was to examine morphometric features of the cerebral surface in adolescent and adult female subjects with bulimia nervosa (BN). Anatomical magnetic resonance images were acquired from 34 adolescent and adult female subjects with BN and 34 healthy age-matched control subjects. We compared the groups in the morphological characteristics of their cerebral surfaces while controlling for age and illness duration. Significant reductions of local volumes on the brain surface were detected in frontal and temporoparietal areas in the BN compared with control participants. Reductions in inferior frontal regions correlated inversely with symptom severity, age, and Stroop interference scores in the BN group. These findings suggest that local volumes of inferior frontal regions are smaller in individuals with BN compared with healthy individuals. These reductions along the cerebral surface might contribute to functional deficits in self-regulation and to the persistence of these deficits over development in BN. © 2014 Society of Biological Psychiatry.

  17. Surface characteristics of carbon fibers modified by direct oxyfluorination.

    Science.gov (United States)

    Seo, Min-Kang; Park, Soo-Jin

    2009-02-01

    The effect of oxyfluorinated conditions on the surface characteristics of carbon fibers was investigated. Infrared (IR) spectroscopy results indicated that the oxyfluorinated carbon fibers showed carboxyl/ester groups (CO) at 1632 cm(-1) and hydroxyl groups (OH) at 3450 cm(-1) and had a higher OH peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results for the fibers also showed that oxyfluorination introduced a much higher oxygen concentration onto the fiber surfaces than fluorination with F(2) only. Additionally, contact-angle results showed that the surface was better wetted by following oxyfluorination and that the polarity of the surface was increased by increasing the oxyfluorination temperature.

  18. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  19. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants.

    Science.gov (United States)

    Sezin, M; Croharé, L; Ibañez, J C

    2016-01-01

    To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm(2) was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces..

  20. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  1. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water

    Science.gov (United States)

    Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W.

    2012-01-01

    The Namib grass Stipagrostis sabulicola relies, to a large degree, upon fog for its water supply and is able to guide collected water towards the plant base. This directed irrigation of the plant base allows an efficient and rapid uptake of the fog water by the shallow roots. In this contribution, the mechanisms for this directed water flow are analysed. Stipagrostis sabulicola has a highly irregular surface. Advancing contact angle is 98° ± 5° and the receding angle is 56° ± 9°, with a mean of both values of approximately 77°. The surface is thus not hydrophobic, shows a substantial contact angle hysteresis and therefore, allows the development of pinned drops of a substantial size. The key factor for the water conduction is the presence of grooves within the leaf surface that run parallel to the long axis of the plant. These grooves provide a guided downslide of drops that have exceeded the maximum size for attachment. It also leads to a minimum of inefficient drop scattering around the plant. The combination of these surface traits together with the tall and upright stature of S. sabulicola contributes to a highly efficient natural fog-collecting system that enables this species to thrive in a hyperarid environment. PMID:22356817

  2. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-09-01

    The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV-vis, Wide-angle X-ray diffraction and SEM methods.

  3. Reflection characteristics of a composite planar AMC surface

    Directory of Open Access Journals (Sweden)

    Ruey-Bing Hwang

    2012-03-01

    Full Text Available This study investigates the reflection characteristics of a composite Artificial Magnetic Conductor (AMC surface consisting of multiple orthogonal gradient AMC surfaces arranged in a two-dimensional periodic pattern. The gradient AMC surface in this study consists of square metal patches of variable size printed on a grounded dielectric substrate. Due to the orthogonal placement of the gradient AMC surface, the incident energy of a plane wave normally incident on the composite AMC surface will be reflected into four major lobes away from the impinging direction. To achieve a systematical design, a simple formula based on array antenna theory was developed to determine the reflection pattern of the gradient AMC surface illuminated by a normal incident plane wave. A time-domain full-wave simulation was also carried out to calculate the electromagnetic fields in the structure and the far-field patterns. The scattering patterns of the structure were measured in an electromagnetic anechoic chamber. Results confirm the design principle and procedures in this research. Since such a composite AMC surface can be easily fabricated using the standard printed circuit board technique without via-hole process, it may have potential applications in beam-steering and radar cross section reduction.

  4. Cell Surface Interactions between Bean Leaf Cells and Colletotrichum lindemuthianum 1

    Science.gov (United States)

    Benhamou, Nicole; Lafitte, Claude; Barthe, Jean-Paul; Esquerré-Tugayé, Marie-Thérèse

    1991-01-01

    After a brief period of biotrophic growth, the anthracnose fungus Colletotrichum lindemuthianum (Sacc. et Mgn.) Bri et Cav. develops extensively in bean leaf cells, causing severe wall alterations and death of the host protoplast. Aplysia gonad lectin, a polygalacturonic acid-binding agglutinin, was complexed to gold and used to study the extent of pectin breakdown during the necrotrophic phase of the infection process. In view of its specific binding properties for the endopolygalacturonase produced by C. lindemuthianum, a polygalacturonase-inhibiting protein isolated from bean cell walls was successfully tagged with gold particles and used for localizing the sites of enzyme accumulation in infected host tissues. The basal level of endopolygalacturonase produced by C. lindemuthianum grown in culture was found to increase severalfold when the fungus developed in host plant tissues. The enzyme was able to diffuse freely in the host cell wall, causing drastic degradation of the pectic material of primary walls and middle lamella matrices. The enzymatic alteration of plant cell walls was accompanied by the release of pectic fragments and by the accumulation of pectic molecules at specific sites, such as intercellular spaces and aggregated cytoplasm of infected host cells. The occurrence of pectic molecules at those sites where fungal growth is likely to be restricted is discussed in relation to their origin and their implication in the plant's defense system. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:16668376

  5. Anatomical structure and surface micromorphology of tomatillo leaf and flower (Physalis ixocarpa Brot., Solanaceae

    Directory of Open Access Journals (Sweden)

    Barbara Dyki

    2014-01-01

    Full Text Available Tomatillo (Physalis ixocarpa Brot. is a newly introduced cultivated plant in Poland. Its anatomy was investigated in light and scanning electron microscopes. Tomatillo adult leaf had one layer of palisade parenchyma. The 1-2 cell layers of spongy parenchyma situated just below the palisade parenchyma showed large, tightly packed cells with great druses. The remaining spongy parenchyma was built of cells showing several extensions. Peculiarity of the sepals were the stomata situated on columns or hills formed of many cells. The petals had a very loose mesophyl. Their adaxial epidermis was composed of papillate cells. Such structure of the petal epidermis probably contributes to light dispersion and prevents glittering. There were several types of trichomes on the leaves, sepals and petals, some of them glandular and some simple. The large, very ramified, dendritic trichomes situated on the petals at the entry to the ovary might eventually protect it against excessive drying. The pollen grain was spherical, three-colpate. The style had a hollow channel inside. The stigma was of a wet, pa-pillate type. Sometimes thorny trichomes were found among papillae.

  6. Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew

    OpenAIRE

    Boso Alonso, Susana; Alonso-Villaverde Iglesias, Virginia; Santiago Blanco, José Luis; Gago Montaña, Pilar; Dürrenberger, M.; Düggelin, M.; Kassemeyer, H. H.; Martínez Rodríguez, María del Carmen

    2010-01-01

    This work reports the leaf morphology of six grapevine genotypes, five belonging to Vitis vinifera and one to Vitis riparia. Earlier studies on these genotypes showed different levels of susceptibility to grapevine downy mildew (Plasmopara viticola). The aim of this work was to detect differences between the leaf morphology of these cultivars at the macro- and microscopic levels, and to characterize morphological traits which could be associated with susceptibility and resistance to downy ...

  7. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  8. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  9. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  10. Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach

    Science.gov (United States)

    Talesh Bahrami, H. R.; Ahmadi, B.; Saffari, H.

    2017-05-01

    A facile chemical etching process is developed to fabricate superhydrophobic copper surfaces. In the first step, cleaned copper surfaces immersed in ferric chloride (FeCl3) solutions with specific concentrations for different times. Etched surfaces exhibit the maximum contact angle of 140°. They have large sliding angle and water droplets stuck to the surface even if they were turned upside down which is well-known as rose petal effect. After stearic acid modification of etched surfaces, their contact angle slightly increased to above 150° and sliding angle decreased to smaller than 10° in some cases, which is same as lotus plant leaves property against water. Inspecting SEM images of etched surfaces reveals that many micro-nano structures forming blossom like buildings with curved petals of nanoscale thicknesses are formed. The micro-nano structures sizes and shapes affecting surface hydrophobicity are regulated by controlling reaction times and etchant solution concentrations. X-ray diffraction (XRD) analysis is done on a sample before and after of the etching process where patterns indicate that the same compositions present on the sample.

  11. Research of Characteristics of Leaf Epidermis for Apocynaceae%夹竹桃科植物叶表皮特征及其系统学研究

    Institute of Scientific and Technical Information of China (English)

    田建平; 胡远艳; 杨卫丽; 戴水平; 陈国良

    2013-01-01

    以萝藦科植物匙羹藤为对照,在扫描电镜下观察了传统上分属于夹竹桃科3亚科植物的叶下表皮特征.结果表明:(1)所观察的夹竹桃科25种植物叶下表皮特征具有一定程度的多样性,如少数物种具有表皮毛;部分角质层表面有丝状蜡质;叶下表皮纹饰有条纹状、脊状皱褶增厚、块状突起、花蕊形和较平滑等类型;气孔大小差异较大,气孔外拱盖和内缘形状分浅波状和较平滑2种类型,气孔保卫细胞极区有T型加厚和无T型加厚两种类型,气孔外拱盖与表皮细胞间分凹陷和连续两种类型等,这些叶表皮特征对夹竹桃科植物属内和属间类型的分类以及对疑难类群的划分具有重要的参考价值.(2)夹竹桃科25种植物的绝大部分种的叶表皮气孔类型、气孔外拱盖及其内缘形态基本一致,但叶表皮纹饰、气孔外缘角质层特征呈现出较高的多样性,在属内各种和属间有较大的差异.(3)萝藦科植物匙羹藤与夹竹桃科植物盆架树在气孔形状,叶片气孔外缘角质层特征、气孔外拱盖等叶表皮特征具有高度的相似性,推测这两种植物的亲缘关系可能较近,而且萝藦科与夹竹桃科中一些植物的系统位置需进一步的研究.(4)本研究结果支持仔榄树属应从山橙族中分离出来独立成族,海杧果属应从萝芙木族中独立出来的观点;但不支持新的分类方法中将糖胶树和盆架树同归属于鸡骨常山属的观点.%With Gymnema sylvestre (Retz.) Schult.as a control,we researched the characteristics of leaf lower epidermis for species which traditionally belonging to three subfamilies of Apocynaceae under SEM.(1)The characteristics of leaf lower epidermis were diverse in some degree for 25 species of Apocynaceae.Trichomes occurred in some species.Filamentous waxy occurred in cuticula surface of some species;Stomata size were different too;The shape of the outer and the inner stomata

  12. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Velayutham [Department of Chemistry, Periyar University, Salem 636011 (India); Kesavan, Devarayan [Department of Chemistry, Dhirajlal Gandhi College of Technology, Salem 636309 (India); Gopiraman, Mayakrishnan [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Viswanathamurthi, Periasamy, E-mail: viswanathamurthi72@gmail.com [Department of Chemistry, Periyar University, Salem 636011 (India); Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan [Department of Bio-Chemistry, Periyar University, Salem 636011 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E{sub a} and ΔH{sup *} point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods.

  13. Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2016-01-01

    -methane volatile organic compounds (NMVOC), NOx and N2O. This gas production, near or at the plant surface, is a new discovery and is normally not included in emission budgets (e.g. by the Intergovernmental Panel on Climate Change, IPCC) due to a lack of information with respect to validation and upscaling. For CH...

  14. Dynamic corona characteristics of water droplets on charged conductor surface

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  15. Full polarization scattering characteristics of sea fractal surface

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; He Yijun; Nan Chengfeng

    2006-01-01

    In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.

  16. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.

    Science.gov (United States)

    Syvertsen, J P; Goñi, C; Otero, A

    2003-09-01

    Five-year-old 'Spring' navel (Citrus sinensis (L.) Osbeck) orange trees were completely defruited, 50% defruited or left fully laden to study effects of fruit load on concentrations of nitrogen (N) and carbohydrate, net assimilation of CO2 (Ac) and stomatal conductance (gs) of mature leaves on clear winter days just before fruit harvest. Leaves on defruited trees were larger, had higher starch concentrations and greater leaf dry mass per area (LDMa) than leaves on fruited trees. Both Ac and gs were more than 40% lower in sunlit leaves on defruited trees than in sunlit leaves on trees with fruit. Leaves immediately adjacent to fruit were smaller, had lower leaf nitrogen and carbohydrate concentrations, lower LDMa and lower Ac than leaves on non-fruiting branches of the same trees. Removing half the crop increased individual fruit mass, but reduced fruit color development. Half the trees were shaded with 50% shade cloth for 4 months before harvest to determine the effects of lower leaf temperature (Tl) and leaf-to-air vapor pressure difference on leaf responses. On relatively warm days when sunlit Tl > 25 degrees C, shade increased Ac and gs, but had no effect on the ratio of internal to ambient CO2 (Ci/Ca) concentration in leaves, implying that high mesophyll temperatures in sunlit leaves were more important than gs in limiting Ac. Sunlit leaves were more photoinhibited than shaded leaves on cooler days when Tl fruit size, but shaded fruit developed better external color than sun-exposed fruit. Overall, the presence of a normal fruit crop resulted in lower foliar carbohydrate concentrations and higher Ac compared with defruited trees, except on warm days when Ac was reduced by high leaf temperatures.

  17. Magnetic Characteristics of Surface Sediments of Liaodong Bay, China

    Institute of Scientific and Technical Information of China (English)

    WANG ShuangP; WANG Yonghong; LIU Jian; YU Yiyong

    2015-01-01

    Analysis of magnetic properties of marine surface sediments has been gradually proved to be one of the effective means for researching the source of marine sediments. In this paper, samples from 39 sites in Liaodong Bay were collected to analyze the magnetic characteristics of the surface sediments. Magnetic study indicated that the surface sediments of the Liaodong Bay are char-acterized by magnetite. In the middle and eastern part and the southwest corner of the Bay, the main magnetic grains were coarse multi-domain and pseudo-single-domain particles, while in other areas single-domain and pseudo-single-domain particles constitute the majority. Based on grain size and environmental magnetism data, the content of magnetic minerals has a positive correlation with the hydrodynamic environment when the magnetic mineral domain is finer. However, the content of magnetic minerals is in a complex relationship with the hydrodynamic environment in the coarse magnetic domain of magnetic minerals found in central Liaodong Bay and places outside the Fuzhou Bay, implying that the strong hydrodynamic environment accelerates the sedimentation of coarse magnetic minerals. Based on geographic pattern of magnetic properties, it can be inferred that the main provenance of the surface sediments of the Liaodong Bay is the surrounding rivers, and the comparative analysis indicates that Yellow River substances maybe also exist in the bay.

  18. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    DEFF Research Database (Denmark)

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi

    2015-01-01

    -series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology......-surface parameter profiles from MODIS time-series reflectance data even if some of the reflectance data are contaminated by residual cloud or are missing and that the retrieved LAI, FAPAR, and surface albedo values are physically consistent. The root mean square errors of the retrieved LAI, FAPAR, and surface...

  19. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    Science.gov (United States)

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2 , H2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m(2) m(-2) . Both ET and Gs experienced a minimum in the LAI range 1-2 m(2) m(-2) caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m(2) m(-2) ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests. © 2016 John Wiley & Sons Ltd.

  20. The research of air pollution based on spectral features in leaf surface of Ficus microcarpa in Guangzhou, China.

    Science.gov (United States)

    Wang, Jie; Xu, Ruisong; Ma, Yueliang; Miao, Li; Cai, Rui; Chen, Yu

    2008-07-01

    Nowadays development of industry and traffic are the main contributor to city air pollution in the city of GuangZhou, China. Conventional methods for investigating atmosphere potentially harmful element pollution based on sampling and chemical analysis are time and labor consuming and relatively expensive. Reflectance spectroscopy within the visible-near-infrared region of vegetation in city has been widely used to predict atmosphere constituents due to its rapidity, convenience and accuracy. The objective of this study was to examine the possibility of using leaves reflectance spectra of vegetation as a rapid method to simultaneously assess pollutant (S, Cd, Cu, Hg, Pb, XCl, XF) in the atmosphere of the Guangzhou area. This article has studied the spectral features of polluted leaf surface of Ficus microcarpa in 1985 and 1998. According to the analysis, comprehensive assessment for the change of atmospheric condition and degrees of pollution were given. This conclusion was confirmed by the monitored data got from chemical analysis. Future study with real remote sensing data and field measurements were strongly recommended.

  1. Leaf surface lipophilic compounds as one of the factors of silver birch chemical defense against larvae of gypsy moth.

    Directory of Open Access Journals (Sweden)

    Vyacheslav V Martemyanov

    Full Text Available Plant chemical defense against herbivores is a complex process which involves a number of secondary compounds. It is known that the concentration of leaf surface lipophilic compounds (SLCs, particularly those of flavonoid aglycones are increased with the defoliation treatment of silver birch Betula pendula. In this study we investigated how the alteration of SLCs concentration in the food affects the fitness and innate immunity of the gypsy moth Lymantria dispar. We found that a low SLCs concentrations in consumed leaves led to a rapid larval development and increased females' pupae weight (= fecundity compared to larvae fed with leaves with high SLCs content. Inversely, increasing the compounds concentration in an artificial diet produced the reverse effects: decreases in both larval weight and larval survival. Low SLCs concentrations in tree leaves differently affected larval innate immunity parameters. For both sexes, total hemocytes count in the hemolymph increased, while the activity of plasma phenoloxidase decreased when larvae consume leaves with reduced content of SLCs. Our results clearly demonstrate that the concentration of SLCs in silver birch leaves affects not only gypsy moth fitness but also their innate immune status which might alter the potential resistance of insects against infections and/or parasitoids.

  2. Response surface optimization for removal of cadmium from aqueous solution by waste agricultural biosorbent psidium guvajava L. Leaf powder

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Karanam Srinivasa; Anand, Sashi; Rout, Kalyani [Institute of Minerals and Materials Technology, Bhubaneswar (India); Venkateswarlu, Paladugu [Department of Chemical Engineering, College of Engineering, Andhra University, Andhra Pradesh (India)

    2012-01-15

    Response surface methodology (RSM) was applied to study the combined effects of the various parameters namely, pH, biosorbent dosage, cadmium concentration and temperature, and to optimize the process conditions for the maximum removal of cadmium using Psidium guvajava L. leaf powder. In order to obtain the mutual interactions between the variables and to optimize these variables, a 2{sup 4} full factorial central composite design using RSM was employed. The analysis of variance (ANOVA) of the quadratic model demonstrates that the model was highly significant. The model was statistically tested and verified by experimentation. A maximum cadmium removal of 93.2% was obtained under the following optimum conditions: aqueous cadmium concentration 40.15 mg/L, adsorbent dosage 0.5 g/50 mL solution, pH 5.0, and temperature (35 C). The value of desirability factor obtained was 1. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Simulation Experiment about Transpiration Characteristics of Phragmites australis Leaf in Liaohe Estuary Wetlands%辽河口湿地芦苇叶片蒸腾及其与影响因子关系研究

    Institute of Scientific and Technical Information of China (English)

    张颖; 郑西来; 伍成成; 李琴

    2011-01-01

    The objective of this study is to analysis the transpiration characteristics of Phragmites australis leaf and the relationships between the leaf transpiration and influence factors at different water levels, and to improve plant water use efficient and provide a theoretical basis of ecological water requirement of plant. The simulation experiment was done by containers with Phragmites australis leaf in the field of Liaohe Estuary in August-October 2009.The water levels were controlled and the transpiration rate of Phragmites australis leaf was measured by a portable steady-state porometer (PM-5). The results showed that the diurnal courses of the transpiration rates of Phragmites australis leaf were different for different water depths. The diurnal courses of the leaf transpiration rate all displayed a single peak pattern when the water depth was 10 cm above soil surface, there was no noon break which was caused by the close of stoma. The peak of the leaf transpiration rate occurred at about 14100. The leaf transpiration rate decreased if Phragmites australis were submerged in water for a long time. When the levels of the grounder water were 5 cm, 20 cm, 40 cm and 60 cm under soil surface, the diurnal courses of the leaf transpiration rate displayed a double peak pattern, there were lower values at 11: 00-13:00 resulted from the close of stoma. At the same period there was a maximum value of the leaf transpiration rate when the water level was 20 cm under soil surface. There was a similarity in the variation curve of the leaf transpiration rate and stomatal conductance with good correlation in the study. The leaf transpiration rate of Phragmites australis was affected by photosynthetic active radiation and relative humidity, and the latter was the main factor at different ground water depths.%于2009年8~10月,在辽河口芦苇(Phragmites australis)沼泽地,采用野外培养箱土培模拟实验方法,人为控制水位,用PM-5型稳态气孔计测量了不

  4. Starvation-induced effects on bacterial surface characteristics.

    Science.gov (United States)

    Kjelleberg, S; Hermansson, M

    1984-09-01

    Changes in bacterial surface hydrophobicity, charge, and degree of irreversible binding to glass surfaces of seven marine isolates were followed during starvation. The degree of hydrophobicity was measured by hydrophobic interaction chromatography and by two-phase separation in a hexadecane-water system, whereas changes in charge were measured by electrostatic interaction chromatography. All isolates underwent the starvation-induced responses of fragmentation, which is defined as division without growth, and continuous size reduction, which results in populations with increased numbers of smaller cells. The latter process was also responsible for a significant proportion of the total drop in cell volume; this was observed by noting the biovolume (the average cell multiplied by the number of bacteria) of a population after various times of starvation. Four strains exhibited increases in both hydrophobicity and irreversible binding, initiated after different starvation times. The most hydrophilic and most hydrophobic isolates both showed a small increase in the degree of irreversible binding after only 5 h, followed by a small decrease after 22 h. Their hydrophobicity remained constant, however, throughout the entire starvation period. On the other hand, one strain, EF190, increased its hydrophobicity after 5 h of starvation, although the degree of irreversible binding remained constant. Charge effects could not be generally related to the increase in irreversible binding. Scanning electron micrographs showed a large increase in surface roughness throughout the starvation period for all strains that showed marked changes in physicochemical characteristics.

  5. Spectral Reflectance Characteristics of Different Snow and Snow-Covered Land Surface Objects and Mixed Spectrum Fitting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-hua; ZHOU Zheng-ming; WANG Pei-juan; YAO Feng-mei; Liming Yang

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area.The result showed that for a pure snow spectrum,the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength.Compared with fresh snow,the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1 300,1 700~1 800 and 2 200~2 300 nm,the lowest was from the compacted snow and frozen ice.For the vegetation and snow mixed spectral characteristics,it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background),due to the influence of snow background in the range of 350~1 300 nm.However,the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic.In the end,based on the spectrum analysis of snow,vegetation,and mixed snow/vegetation pixels,the mixed spectral fitting equations were established,and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 =0.950 9).

  6. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting.

    Science.gov (United States)

    Zhang, Jia-Hua; Zhou, Zheng-Ming; Wang, Pei-Juan; Yao, Feng-Mei; Liming, Yang

    2011-09-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300-1 300, 1 700-1 800 and 2 200-2 300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350-1 300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 = 0.950 9).

  7. Effect of Morinda citrifolia leaf as saponin sources on fermentation characteristic, protozoa defaunated, gas and methane production of ruminal fluid in vitro

    Directory of Open Access Journals (Sweden)

    Hendra Herdian

    2011-06-01

    Full Text Available Many studies have reported that the Morinda citrifolia (pace plant was a useful material for human health. However the exploration of this plant on rumen fermentation is still needed. Therefore, a research was done to study the effect of M. citrifolia leaf on fermentation characteristics of rumen fluid consisted of protozoa defaunated process, VFA composition, NH3 content, rumen microbial protein content, gas and methane production using in vitro techniques. Rumen fluid obtained from two fistulated Ongole crossbreed cattle fed with forage and concentrate feed ration (70 : 30. The fluid was incubated at 39ºC for 48 hours. The treatment on the rumen fluid consisted of control treatment: 100% (200 mg DM kolonjono forage substrate (Penisetum purpureum and M. citrifolia treatments: kolonjono forage plus M. citrifolia (equivalent saponin 3; 6; 9; and 12 mg DM, respectively. The treatment of M. citrifolia leaf addition showed declined patterns in the number of protozoa population (P 0.05. Microbial protein content in rumen fluid increased (P 0.05 compared to control, while M. citrifolia treatments reduced the methane gas production of (P < 0.05 compared to control. It was concluded that M. citrifolia leaf has potential as a limiting agent of protozoa population and methane gas production in rumen.

  8. Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Mitra, S; Sarkar, N; Barik, A

    2017-01-30

    The importance of leaf surface wax compounds from the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae) was determined in the flea beetle Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Extraction, thin layer chromatography and GC-MS and GC-FID analyses of surface waxes of young, mature and senescent leaves revealed 20, 19 and 19 n-alkanes between n-C15 and n-C35, respectively; whereas 14, 14 and 12 free fatty acids between C12:0 and C22:0 fatty acids were identified in young, mature and senescent leaves, respectively. Tricosane was predominant n-alkane in young and mature leaves, whilst eicosane predominated in senescent leaves. Heneicosanoic acid, palmitic acid and docosanoic acid were the most abundant free fatty acids in young, mature and senescent leaves, respectively. A. cyanea females showed attraction to 0.25 mature leaf equivalent surface waxes compared with young or senescent leaves in a short glass Y-tube olfactometer bioassay. The insects were attracted to a synthetic blend of 0.90, 1.86, 1.83, 1.95, 0.50 and 0.18 µg ml-1 petroleum ether of hexadecane, octadecane, eicosane, tricosane, palmitic acid and alpha-linolenic acid, respectively, comparable with the proportions as present in 0.25 mature leaf equivalent surface waxes. A. cyanea also laid eggs on a filter paper moistened with 0.25 mature leaf equivalent surface waxes or a synthetic blend of 0.90, 1.86, 1.83, 1.95, 0.50 and 0.18 µg ml-1 petroleum ether of hexadecane, octadecane, eicosane, tricosane, palmitic acid and alpha-linolenic acid, respectively. This finding could provide a basis for monitoring of the potential biocontrol agent in the field.

  9. Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology

    Directory of Open Access Journals (Sweden)

    Arrisa Ruangmee

    2013-08-01

    Full Text Available Response surface methodology with central composite design was applied to optimize alkali pretreatment of narrow-leafcattail (Typha angustifolia. Joint effects of three independent variables; NaOH concentration (1-5%, temperature (60-100 ºC,and reaction time (30-150 min, were investigated to evaluate the increase in and the improvement of cellulosic componentscontained in the raw material after pretreatment. The combined optimum condition based on the cellulosic content obtainedfrom this study is: a concentration of 5% NaOH, a reaction time of 120 min, and a temperature of 100 ºC. This result has beenanalyzed employing ANOVA with a second order polynomial equation. The model was found to be significant and was able topredict accurately the response of strength at less than 5% error. Under this combined optimal condition, the desirable cellulosic content in the sample increased from 38.5 to 68.3%, while the unfavorable hemicellulosic content decreased from 37.6 to7.3%.

  10. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    Science.gov (United States)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  11. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    Science.gov (United States)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  12. Characteristics of surface sterilization using electron cyclotron resonance plasma

    Science.gov (United States)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  13. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  14. The variability of leaf anatomical characteristics of Solanum nigrum L. (Solana-les, Solanaceae from different habitats

    Directory of Open Access Journals (Sweden)

    Krstić Lana N.

    2002-01-01

    Full Text Available In Europe on the whole as well as in Yugoslavia, the most widespread weed species from the genus Solanum is Solanum nigrum L. Since this species inhabits different habitats, it developed several ways of adaptation to environmental conditions. The influence of ecological factors on plant organism and resulting plant adaptations are most evident in leaf morphology and anatomy. Therefore, the anatomical structure of leaves and leaf epidermal tissue of S. nigrum was analyzed and compared among plants that originated from different habitats, in order to determine leaf structural adaptations. S. nigrum lamina has the mesomorphic structure with some xero-heliomorphic adaptations. The differences in stomata number, number of hairs, thickness of lamina, palisade and spongy tissue, as well as the size of mesophyll cells have been noticed. The highest values for most of the parameters have been recorded for the plants from cultivated soil. Largest variations of the examined characters were found for the leaves from ruderal habitats, where environmental conditions are most variable.

  15. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  16. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    -dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  17. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  18. Assimilation of leaf area index and surface soil moisture satellite observations into the SIM hydrological model over France

    Science.gov (United States)

    Fairbairn, David; Calvet, Jean-Christophe; Mahfouf, Jean-Francois; Barbu, Alina

    2016-04-01

    Hydrological models have a variety of uses, including flood and drought prediction and water management. The SAFRAN-ISBA-MODCOU (SIM) hydrological model consists of three stages: An atmospheric analysis (SAFRAN) over France, which forces a land surface model (ISBA-A-gs), which then provides drainage and runoff inputs to a hydrological model (MODCOU). The river discharge from MODCOU is validated using observed river discharge over France. Data assimilation (DA) combines a short model forecast from the past with observations to improve the estimate of the model state. The ISBA-A-gs representation of soil moisture and its influence by vegetation can be improved by assimilating surface soil moisture (SSM) and leaf area index (LAI) observations respectively. The Advanced Scatterometer (ASCAT) on board the MetOP satellite measures a low-frequency microwave signal, which is used to retrieve daily SSM over France. The SPOT-VGT sensor observes LAI over France at a temporal frequency of about 10 days. The Simplified Extended Kalman (SEKF) filter combines the model and observed variables by weighting them according to their respective accuracies. Although the SEKF makes incorrect linear assumptions, past experiments have shown that it improves on the model estimates of SSM and LAI. However, due to nonlinearities in the land surface model, improvements in SSM and LAI do not imply improved soil moisture fluxes (drainage, runoff and evapotranspiration). This study indirectly examines the impact of the SEKF on the soil moisture fluxes using the MODCOU hydrological model. The ISBA-A-gs model appears to underestimate the LAI for grasslands in winter and spring, which results in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess water flowing into the rivers and aquifers contributes to an overestimation of the MODCOU discharge. Assimilating LAI observations slightly increases the LAI analysis in winter and spring and therefore reduces the

  19. Analysis on Genetic Characteristics of Leaf Angle in Waxy Corn%糯玉米叶夹角遗传特性分析

    Institute of Scientific and Technical Information of China (English)

    陈趣; 曾慕衡; 蒋锋; 黄成威; 王晓明; 刘鹏飞

    2015-01-01

    The leaf angle in waxy corn is a significant trait for breeding corn with compact plant type, which is beneficial to improve yield. According to the Griffing method II, the GCA (general combining ability) and SCA (specific combining ability) of leaf angle trait in the 7 waxy corn inbred lines and 21 combinations were esti-mated, and the genetic characteristics of leaf angle in corn were also analyzed. The results showed that among the 7 inbred lines, the GCA values ranked as N22 >N8 > N28 > N7 > N23 > N27 > N4. The GCA of N27 showed great negative ef-fect, and the genetic variance of its SCA was lower. It suggested that the N27 can be used as an ideal parent for breeding excel ent combinations with smal leaf angle and compact plant type. The inheritance of leaf angle trait in waxy corn is in ac-cordance with the model of "additive - dominant - epistatic". The efficiency of leaf angle trait is control ed by recessive genes. The broad heritability of leaf angle trait in waxy corn is relative low (68.5%), but its narrow heritability is relatively high (72.62%). In the breeding practices, the early-generation selection is more suitable for the leaf angel trait.%按双列杂交 Griffing II估算了7个糯玉米自交系及21个组合叶夹角性状的配合力,并对玉米叶夹角遗传特性进行分析。结果表明:7个自交系叶夹角性状的 GCA值大小顺序为 N22>N8>N28>N7>N23>N27>N4, N27的 GCA值表现为较大的负效应,其特殊配合力遗传方差较小,说明 N27可作为培育叶夹角较小、株型紧凑的优良组合的理想亲本。糯玉米叶夹角性状的遗传符合"加性-显性-上位性"模型,叶夹角性状的增效受隐性基因控制,叶夹角性状的广义遗传率较低,为68.50%,狭义遗传率较高,为72.62%,在育种实践中,宜早代选择。

  20. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  1. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.

    Science.gov (United States)

    Watson, Gregory S; Green, David W; Cribb, Bronwen W; Brown, Christopher L; Meritt, Christopher R; Tobin, Mark J; Vongsvivut, Jitraporn; Sun, Mingxia; Liang, Ai-Ping; Watson, Jolanta A

    2017-07-19

    Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.

  2. Effect of mixing technique on surface characteristics of impression materials.

    Science.gov (United States)

    Lepe, X; Johnson, G H; Berg, J C; Aw, T C

    1998-05-01

    Previous studies have shown a relationship between the disinfection process, wettability, and mass change of impression materials. Hand-mixed high viscosity impression materials usually result in a material with numerous voids, which contribute to surface roughness and affect the surface characteristics of the material. This study evaluated the effect of mixing technique on advancing contact angle, receding contact angle, imbibition, and mass loss of various high and low viscosity polyether and polyvinyl siloxane materials. The null hypothesis tested was no differences exist between the different mixing systems. The Wilhelmy technique was used for deriving wetting properties of the materials used (Impregum F and Penta, Permadyne Syringe, Garant and Penta, Dimension Penta and Garant L, Aquasil). Conditions included no disinfection (0 hours) and 1, 5, and 18 hours of immersion disinfection in a full-strength solution of 2% acid glutaraldehyde disinfectant (Banicide). Weight changes before and after disinfection were measured to detect weight loss or mass increase over time. Weight loss in air was also measured to detect mass loss. Data were analyzed with a one-way analysis of variance at alpha = 0.05. All materials displayed some degree of imbibition of the disinfectant and experienced mass loss with polymerization, except the light viscosity polyvinyl that gained 0.18% at 5 hours. No significant differences were found in wettability among the polyether materials after 1 hour of disinfection. Less imbibition was observed for high viscosity mechanically mixed materials compared with the hand-mixed materials for both polyether and polyvinyl siloxane at 1-hour disinfection time. Polyether materials were more wettable than polyvinyl. Imbibition of high viscosity polyether and polyvinyl materials after 1 and 18 hours of disinfection were affected by the mixing system used.

  3. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].

    Science.gov (United States)

    Tao, Hui-rong; Zhang, Fu-min; Qu, Xing-hua

    2015-07-01

    For no cooperation target laser ranging, the backscattering properties of the long-range and real machined surfaces are uncertain which seriously affect the ranging accuracy. It is an important bottleneck restricting the development of no cooperation ranging technology. In this paper, the backscattering characteristics of three typical machining surfaces (vertidal milling processing method, horizontal milling processing method and plain grinding processing method) under the infrared laser irradiation with 1550 nm were measured. The relation between the surface nachining texture, incident azimuth, roughness and the backscattering distribution were analyzed and the reasons for different processing methods specific backscattering field formed were explored. The experimental results show that the distribution of backscattering spectra is greatly affected by the machined processing methods. Incident angle and roughness have regularity effect on the actual rough surface of each mode. To be able to get enough backscattering, knowing the surface texture direction and the roughness of machined metal is essential for the optimization of the non-contact measurement program in industry. On this basis, a method based on an artificial neural network (ANN) and genetic algorithm (GA), is proposed to retrieve the surface multi-parameters of the machined metal. The generalized regression neural network (GRNN) was investigated and used in this application for the backscattering modeling. A genetic algorithm was used to retrieve the multi-parameters of incident azimuth angle, roughness and processing methods of machined metal sur face. Another processing method of sample (planer processing method) was used to validate data. The final results demonstrated that the method presented was efficient in parameters retrieval tasks. This model can accurately distinguish processing methods and the relative error of incident azimuth and roughness is 1.21% and 1.03%, respectively. The inversion

  4. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  5. Superhydrophobicity of Lotus-leaf-like Fluorinated Ethylene Propylene Copolymer Surface%类荷叶结构聚全氟乙丙烯的超疏水性

    Institute of Scientific and Technical Information of China (English)

    刘传生; 蒋文曲; 管自生

    2011-01-01

    Superhydrophobic fluorinated ethylene propylene (FEP) copolymer surface with lotus-leaf-like structure was prepared by thermoforming FEP powder at the condition of 0.3 N/cm2, 280 ℃ and - O. 1 MPa vacuum on the polydimethylsiloxane(PDMS) templates, which replicated the lotus leaf surface. The SEM results indicate that the FEP surface shows great similar lotus-leaf-like structures with superhydrophobic, corresponding water contact angle and tilt angle are ( 168 ± 1 )° andd 2°, respectively. The superhydrophobic lotusleaf-like FEP surface also exhibits good stability in water, acohol, acid and alkaline solution after duration of 10 h immersion. Furthermore, once the hydrophobicity of FEP surface decreased, it is recoverable via an immersion process in piranha solution for 10 min. Differential scanning calorimetry( DSC ) results indicate the mass loss of the PDMS templates is very low, which means it can be used repeatedly during the thermoforming process. Therefore, the methods combine the very good acid resistant, alkaline resistant and corrosion resistant of the FEP with lotus-leaf-like structure to fabrication of superhydropobic surface may be applied in preparation of anti-adhension and serf-cleaning vessels, etc.%以聚二甲基硅氧烷(PDMS)复制的荷叶表面微结构为阴模模板,将聚全氟乙丙烯(FEP)粉体置于该阴模模板上,在压力约为0.3 N/cm,280℃和-0.1 MPa真空条件下,热压成型,制备了具有类荷叶结构的FEP表面.扫描电镜观察结果表明,FEP表面与荷叶表面微结构具有很大的相似性,该表面具有良好的超疏水性,与水的接触角达到(168±1)°,滚动角约为2°,而且具有良好的疏酸、疏碱、疏盐性能和稳定性,即使在溶液中长期浸泡而失去超疏水性能后,经Piranha洗液(体积分数为70%的浓硫酸和30%的HO)处理约10 min,其表面疏水、疏酸和疏碱性能可迅速恢复.热重分析结果表明,PDMS阴模在热压条件下失重极小,可重复使用.

  6. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice.

    Science.gov (United States)

    Yang, Jian; Sun, Jia; Du, Lin; Chen, Biwu; Zhang, Zhenbing; Shi, Shuo; Gong, Wei

    2017-02-20

    Paddy rice is one of the most significant food sources and an important part of the ecosystem. Thus, accurate monitoring of paddy rice growth is highly necessary. Leaf nitrogen content (LNC) serves as a crucial indicator of growth status of paddy rice and determines the dose of nitrogen (N) fertilizer to be used. This study aims to compare the predictive ability of the fluorescence spectra excited by different excitation wavelengths (EWs) combined with traditional multivariate analysis algorithms, such as principal component analysis (PCA), back-propagation neural network (BPNN), and support vector machine (SVM), for estimating paddy rice LNC from the leaf level with three different fluorescence characteristics as input variables. Then, six estimation models were proposed. Compared with the five other models, PCA-BPNN was the most suitable model for the estimation of LNC by improving R2 and reducing RMSE and RE. For 355, 460 and 556 nm EWs, R2 was 0.89, 0.80 and 0.88, respectively. Experimental results demonstrated that the fluorescence spectra excited by 355 and 556 nm EWs were superior to those excited by 460 nm for the estimation of LNC with different models. BPNN algorithm combined with PCA may provide a helpful exploratory and predictive tool for fluorescence spectra excited by appropriate EW based on practical application requirements for monitoring the N status of crops.

  7. Modeling spatial characteristics in the biological control of fungi at leaf scale: competitive substrate colonization by Botrytis cinerea and the saprophytic antagonist Ulocladium atrum

    NARCIS (Netherlands)

    Kessel, G.J.T.; Köhl, J.; Powell, J.A.; Rabbinge, R.; Werf, van der W.

    2005-01-01

    A spatially explicit model describing saprophytic colonization of dead cyclamen leaf tissue by the plant-pathogenic fungus Botrytis cinereo and the saprophytic fungal antagonist Ulocladium atrum was constructed. Both fungi explore the leaf and utilize the resources it provides. Leaf tissue is

  8. Performance and carcass characteristics of guinea fowl fed on dietary Neem (Azadirachta indica) leaf powder as a growth promoter.

    Science.gov (United States)

    Singh, M K; Singh, S K; Sharma, R K; Singh, B; Kumar, Sh; Joshi, S K; Kumar, S; Sathapathy, S

    2015-01-01

    The present work aimed at studying growth pattern and carcass traits in pearl grey guinea fowl fed on dietary Neem (Azadirachta indica) leaf powder (NLP) over a period of 12 weeks. Day old guinea fowl keets (n=120) were randomly assigned to four treatment groups, each with 3 replicates. The first treatment was designated as control (T0) in which no supplement was added to the feed, while in treatments T1, T2 and T3, NLP was provided as 1, 2 and 3 g per kg of feed, respectively. The results revealed a significant increase in body weight at 12 weeks; 1229.7 for T1, 1249.8 for T2, and 1266.2 g T3 compared to 1220.0 g for the control group (PNeem. A significant increase was also found in the feed conversion ratio (FCR) of the treated groups over the control, showing that feeding NLP to the treated groups has lowered their residual feed efficiency. The results of the study demonstrate the beneficial effects of supplementing NLP on body weight gain and dressed yield in the treated groups in guinea fowl. NLP is, therefore, suggested to be used as a feed supplement in guinea fowl for higher profitability.

  9. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  10. Interface Characteristics Between Colloidal Gold and Kaolinite Surface by XPS

    Institute of Scientific and Technical Information of China (English)

    HONG Hanlie; TIE Liyun; BIAN Qiujuan; ZHOU Yong

    2006-01-01

    The distribution of gold colloids in kaolinite and the interaction between gold and kaolinite surface were investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). There is strong interaction between the gold particles and the edge surfaces of kaolinite,in low pH solution,the edge surface of kaolinite is positively charged and electrostatic attractive force between colloide gold particles and the positive edge surface of kaolinite would facilitate the adsorption of colloidal gold particles onto the suface. TEM observation shows that the aggregate morphology of gold particles was dominated by particle-particle interaction and gold particles were adsorbed on the edge surface of kaolinite crystals, resulting from the electrostatic attractive force between colloidal gold particles and the positive surfaces of kaolinite. XPS data show that in Au4f electron spectra there are four energy peaks related to gold, 83.8 eV, 85.7 eV, 87.5 eV, and 89.4 eV, respectively, which suggests that in chemical states there are metallic gold and Au bonded to O, similar to the form of Au2O3, and composite Au2O3 is formed between the edge surface of kaolinite and colloidal gold surface.

  11. Characteristics of surface plasmon coupled quantum well infrared photodetectors

    Science.gov (United States)

    Hsu, Wei-Cheng; Ling, Hong-Shi; Wang, Shiang-Yu; Lee, Chien-Ping

    2017-06-01

    Quantum Well Infrared Photodetectors (QWIPs) with different structures were characterized for the study of surface plasmon wave coupling. Detailed comparisons between surface plasmon coupled and etched grating coupled devices were investigated. A bias dependence for the enhancement of the responsivity of surface plasmon coupled devices was found, especially for the samples with non-uniform quantum wells. The non-uniform QWIPs with surface plasmon coupling showed an asymmetric enhancement with respect to the bias directions. Stronger enhancements were shown under the biases when a higher effective electric field region is close to the collector. The change of the photocarrier escape probability due to the narrow coupling bandwidth of the surface plasmon wave is attributed to this unexpected bias dependence.

  12. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  13. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    Science.gov (United States)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  14. Local scaling characteristics of Antarctic surface layer turbulence

    Directory of Open Access Journals (Sweden)

    S. Basu

    2010-03-01

    Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.

  15. Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com [School of Environmental and Natural Resource Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Azahana, A., E-mail: bell-azahana@yahoo.com [Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang (Malaysia); Nordahlia, A. S., E-mail: nordahlia@frim.gov.my [Forest Research Institute of Malaysia, 52109 Kepong, Selangor (Malaysia)

    2015-09-25

    Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present in all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.

  16. Improving precipitation simulation from updated surface characteristics in South America

    Science.gov (United States)

    Pereira, Gabriel; Silva, Maria Elisa Siqueira; Moraes, Elisabete Caria; Chiquetto, Júlio Barboza; da Silva Cardozo, Francielle

    2017-07-01

    Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p < 0.05, Student's t test). Correspondingly, the simulations performed with adjustments in maximum fractional vegetation cover, in visible and shortwave infrared reflectance, and in the leaf area index, showed a good agreement for maximum and minimum temperature, with values closer to observed data. The changes in physical parameters and land use updating in BATS/RegCM4 reduced overestimation of simulated precipitation from 19 to 7 % (significant at p < 0.05, Student's t test). Regarding evapotranspiration and precipitation, the most significant differences due to land use updating were located (1) in the Amazon deforestation arc; (2) around the Brazil-Bolivia border (in the Brazilian Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the

  17. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  18. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  19. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-02-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13% of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5% in terms of rms error is obtained.

  20. Effect of nitride chemical passivation of the surface of GaAs photodiodes on their characteristics

    Science.gov (United States)

    Kontrosh, E. V.; Lebedeva, N. M.; Kalinovskiy, V. S.; Soldatenkov, F. Yu; Ulin, V. P.

    2016-11-01

    Characteristics of GaAs photodiodes have been studied before and after the chemical nitridation of their surface in hydrazine sulfide solutions, which leads to substitution of surface As atoms with N atoms to give a GaN monolayer. The resulting nitride coatings hinder the oxidation of GaAs in air and provide a decrease in the density of surface states involved in recombination processes. The device characteristics improved by nitridation are preserved during a long time.

  1. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    OpenAIRE

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2015-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autocla...

  2. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    OpenAIRE

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2015-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autocla...

  3. Tyre - Road Noise, Surface Characteristics and Material Properties

    NARCIS (Netherlands)

    Li, M.

    2013-01-01

    Noise levels due to road traffic have reached intolerable high levels in and around many urban areas all around the world. Because of health reasons and reasons of well- being these noise levels have to be reduced. The noise produced from the interaction between the rolling tyre and road surface is

  4. Angular characteristics of a multimode fiber surface plasmon resonance sensor

    CERN Document Server

    Tan, Zhixin; Li, Xuejin; Chen, Yuzhi; Hong, Xueming; Fan, Ping

    2015-01-01

    In this paper the angular characteristics of a multimode fiber SPR sensor are investigated theoretically. By separating the contributions of beams incident at different angles, a compact model is presented to predict the shift of the resonance wavelength with respect to the angle and the environmental refractive index. The result suggests that the performance of conventional fiber SPR sensors can be substantially improved by optimizing the incident angle.

  5. Effects of enhanced ultraviolet-B radiation on water use efficiency, stomatal conductance, leaf nitrogen content and morphological characteristics of Spiraea pubesoens in a warm-temperate deciduous broad-leaved forest

    Institute of Scientific and Technical Information of China (English)

    CHEN Lan; ZHANG Shouren

    2007-01-01

    Spiraeapubescens,a common shrub in the warm temperate deciduous forest zone which is distributed in the Dongling Mountain area of Beijing,was exposed to ambient and enhanced ultraviolet-B(UV-B,280-320 nm)radiation by artificially supplying a daily dose of 9.4 kJ/m2 for three growing seasons,a level that simulated a 17% depletion in stratospheric ozone.The objective of this study was to explore the effects of long-term UV-B enhancement on stomatal conductance,leaf tissue δ13C,leaf water content,and leaf area.Particular attention was paid to the effects of UV-B radiation on water use efficiency(WUE)and leaf total nitrogen content.Enhanced UV-B radiation significantly reduced leaf area (50.1%)but increased leaf total nitrogen content(102%).These changes were associated with a decrease in stomatal conductance(16.1%)and intercellular CO2 concentration/air CO2 concentration(C/Ca)(4.0%),and an increase in leaf tissue δ13C(20.5%),leaf water content(3.1%),specific leaf weight(SLW)(5.2%)and WUE(4.1%).The effects of UV-B on the plant were greatly affected by the water content of the deep soil(30-40 cm).During the dry season,differences in the stomatat conductance δ13C,and WUE between the control and UV-B treated shrubs were very small;whereas,differences became much greater when soil water stress disappeared.Furthermore,the effects of UV-B became much less significant as the treatment period progressed over the three growing seasons.Correlation analysis showed that enhanced UV-B radiation decreased the strength of the correlation between soil water content and leaf water content, δ13C,Ci/Ca,stomatal conductance,with the exception of WUE that had a significant correlation coefficient with soil water content.These results suggest that WUE would become more sensitive to soil water variation due to UV-B radiation.Based on this experiment,it was found that enhanced UV-B radiation had much more significant effects on morphological traits and growth of S.pubescens than hydro

  6. 桉树焦枯病菌(Calonectria pseudoreteaudii)生物学特性测定%Biological characteristics of Calonectria pseudoreteaudii associated with Cylindrocladium leaf blight

    Institute of Scientific and Technical Information of China (English)

    陈全助; 陈慧洁; 郭文硕; 叶小真; 沈金清

    2014-01-01

    丽赤壳属多数种是桉树焦枯病( Cylindrocladium leaf blight)重要致病菌,掌握病原菌生物学特性有助于从病原角度了解病害发生发展,科学指导防治。对桉树焦枯病致病菌株Calonectria pseudoreteaudii生物学特性进行测定。结果表明:该菌株菌丝生长以燕麦片琼脂培养基生长最快,最适温度为24-26℃,最适pH值为7.0,而光照条件不影响菌丝生长;菌株产孢最适温度为25℃,最适pH值为6.0,以光照、PDA培养基产孢量较高;分生孢子萌发与相对湿度成正相关,最适温度为28℃,最适pH值为6.0,黑暗有助于孢子萌发。%Absrt act:Calonectria spp., particularly in their Cylindrocladium anamorph form, are well-known pathogens associated with Cylin-drocladium leaf blight.For the purpose of understanding the biological characteristics of Ca.pseudoreteaudii YA5j2 and guiding how to control this disease, biological characteristics of this isolate were determined.The optimal conditions for mycelium growth were oatmeal agar medium with pH 7.0 cultivated at 24-26℃, and illuminance had no significant effect on hyphae growth.The suitable conditions for spore production were potato dextrose agar medium with pH 6.0 cultivated at 25℃in the light.Conidium germination had a positive correlation with relative humidity, and conidium under the circumstance with high humidity, pH 6.0, temperature at 28 ℃, and without illumination contributed to germination.

  7. Fractal Characteristics of Aerosols Deposition in the Fiber Surface

    Institute of Scientific and Technical Information of China (English)

    FU Hai-ming; ZHU Hui

    2010-01-01

    To study the effects of particle motion mechanism and size distribution on fractal dimension of dust cake structure,the process of aerosol particles deposition in fibrous filtration medium was simulated on basis of Diffusion-Limited Aggregation(DLA)improving model.In this study,effects of inertia movement and diffusion movement on particles depoition would be considered.In the mean while,ratio of inertia movement to diffusion movement was defined as Pe number.The results show that surface curve of dust cake becomes irregular with Pe reducing and fractal dimension of dust cake surface increased with Pe increasing.The more greater particles dispersion,the more greater dust cake porosity,the more uneven the distribution.The porosity,formed by Pulydisperse dust particles,is less than that formed by monodisperse particles.Stronger particle diffusion movement,more uniform the dust cakes was.

  8. Radar, visual and thermal characteristics of Mars - Rough planar surfaces

    Science.gov (United States)

    Schaber, G. G.

    1980-05-01

    High-resolution Viking Orbiter images contain significant information on Martian surface roughness at 25- to 100-m lateral scales, while earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns are qualitatively confirmed by the Viking image data. Large-scale, curvilinear ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.

  9. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1992-01-01

    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  10. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  11. The surface heat island of Rotterdam and its relationship with urban surface characteristics

    NARCIS (Netherlands)

    Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E.

    2012-01-01

    Thermal infrared high resolution satellite images from Landsat sensors were used to spatially quantify the surface heat island (SHI) of Rotterdam in the Netherlands. Based on surface temperature maps retrieved on 15 summer days since 1984, the average surface temperature of each district and neighbo

  12. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating.

    Science.gov (United States)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-09

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  13. Analysis on the Pollution Characteristics of Surface Runoff in Zhenjiang City

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to analyze the pollution characteristics of surface runoff in Zhenjiang City.[Method] On July 4 and August 16,2010,surface runoff samples were collected in different rainfall durations in Zhenjiang City,and the variation characteristics of suspended substance (SS),chemical oxygen demand (CODCr),ammonia nitrogen (NH3-N) and total phosphorus (TP) in surface runoff were analyzed.[Result] With the increase of rainfall duration,SS concentration in surface runoff of Zhenjiang City on July ...

  14. Nutrigenomic evaluation of garlic (Allium sativum) and holy basil (Ocimum sanctum) leaf powder supplementation on growth performance and immune characteristics in broilers

    Science.gov (United States)

    Sheoran, N.; Kumar, R.; Kumar, A.; Batra, K.; Sihag, S.; Maan, S.; Maan, N. S.

    2017-01-01

    Aim: In this study, a planned research work was conducted to investigate the nutrigenomic aspects of supplementation of Allium sativum (garlic) and Ocimum sanctum (holy basil) leaf powder on the growth performance and immune characteristics of broilers. Materials and Methods: A 6 weeks feeding trial was conducted with 280-day-old Ven Cobb broilers, distributed randomly into seven experimental groups. Each treatment had 4 replicates with 10 birds each. The birds of the control group (T1) were fed a basal diet formulated as per BIS standards. The broilers of treatment groups T2 and T3 were fed basal diet supplemented with the commercially available garlic powder (GP) at levels of 0.5% and 1.0% of the feed, respectively, while broilers in T4 and T5 were fed basal diet supplemented with commercial grade holy basil leaf powder (HBLP) at levels 0.5% and 1.0% of the feed, respectively. Birds in the T6 were fed with 0.5% GP and 0.5% HBLP, whereas T7 was fed with 1.0% GP and 1.0% HBLP. At the end of the feeding trial (6th week), blood samples were collected and analyzed for relative mRNA expression of toll-like receptors (TLR) 2, TLR 4 and TLR 7 using real-time polymerase chain reaction. Results: The mean body weight gain and feed conversion efficiency were improved (p<0.05) in broilers fed the GP and HBLP incorporated diets compared with the control group. The relative mRNA expression levels of TLR 2, TLR 4 and TLR 7 in the peripheral blood of the broilers were found to be increased (p<0.05) in the birds supplemented with graded levels of the GP and HBLP as compared to the untreated group. Conclusion: The present work concludes that the inclusion of GP and HBLP could enhance the production performance and immune status of birds by augmenting the T-cell mediated immune response and thereby protects them from disease without decreasing growth traits as a possible substitution to conventional antimicrobials. PMID:28246456

  15. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf.

    Science.gov (United States)

    Balakrishnan, Preetha; Sreekala, M S; Kunaver, Matjaž; Huskić, Miroslav; Thomas, Sabu

    2017-08-01

    Eco-friendly "green" nano composites were fabricated from potato starch and cellulose nanofibers from pineapple leaf. Nanocomposites of starch/cellulose nanofibers were prepared by solution mixing followed by casting. The investigation of the viscoelastic properties confirms starch macromolecular chain confinement around the nano scale cellulose surface, superior dispersion and very good interaction between thermoplastic starch and cellulose nanofibers. The degree of chain confinement was quantified. The chain confinement was associated with the immobilization of the starch macromolecular chains in the network formed by the nano-scale cellulose fibers as a result of hydrogen boding interactions. From the results, it was assumed that the starch glycerol system exhibits a heterogenous nature and cellulose nanofibers tend to move towards glycerol rich starch phase. Barrier properties also improved with the addition of nanofiller up to 3wt.% but further addition depreciated properties due to possible fiber agglomeration. The kinetics of diffusion was investigated and typical kinetic parameters were determined and found that the nanocomposites follow pseudo fickian behaviour. The outcome of the work confirms that the prepared nanocomposites films can be used as a swap for packaging applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  17. Cell Surface Interactions between Bean Leaf Cells and Colletotrichum lindemuthianum: Cytochemical Aspects of Pectin Breakdown and Fungal Endopolygalacturonase Accumulation.

    Science.gov (United States)

    Benhamou, N; Lafitte, C; Barthe, J P; Esquerré-Tugayé, M T

    1991-09-01

    After a brief period of biotrophic growth, the anthracnose fungus Colletotrichum lindemuthianum (Sacc. et Mgn.) Bri et Cav. develops extensively in bean leaf cells, causing severe wall alterations and death of the host protoplast. Aplysia gonad lectin, a polygalacturonic acid-binding agglutinin, was complexed to gold and used to study the extent of pectin breakdown during the necrotrophic phase of the infection process. In view of its specific binding properties for the endopolygalacturonase produced by C. lindemuthianum, a polygalacturonase-inhibiting protein isolated from bean cell walls was successfully tagged with gold particles and used for localizing the sites of enzyme accumulation in infected host tissues. The basal level of endopolygalacturonase produced by C. lindemuthianum grown in culture was found to increase severalfold when the fungus developed in host plant tissues. The enzyme was able to diffuse freely in the host cell wall, causing drastic degradation of the pectic material of primary walls and middle lamella matrices. The enzymatic alteration of plant cell walls was accompanied by the release of pectic fragments and by the accumulation of pectic molecules at specific sites, such as intercellular spaces and aggregated cytoplasm of infected host cells. The occurrence of pectic molecules at those sites where fungal growth is likely to be restricted is discussed in relation to their origin and their implication in the plant's defense system.

  18. Surface characteristics and bioactivity of a novel natural HA/Zircon nanocomposite coated on dental implants

    NARCIS (Netherlands)

    Karamian, E.; Khandan, A.; Motamedi, M.R.K.; Mirmohammadi, H.

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel na

  19. Effects of drying temperature and surface characteristics of vegetable on the survival of salmonella.

    Science.gov (United States)

    Hawaree, N; Chiewchan, N; Devahastin, S

    2009-01-01

    The heat resistance of Salmonella Anatum inoculated on the surface of a model vegetable as affected by hot-air drying temperature (50 to 70 degrees C) and surface characteristics was determined in this study. Cabbage was selected as a model vegetable to demonstrate the effect of topographical feature of vegetable surface on the Salmonella attachment ability. An image analysis technique was developed to monitor the change of cabbage surface during drying and the specific surface characteristics were described in terms of the roughness factor (R). It was found that the water activity of the vegetable decreased while R-value increased with longer drying time and higher drying temperature. However, the changes of both parameters during drying did not show a significant effect on the susceptibility of Salmonella attached on the cabbage surface. Drying temperature was found to be a major factor influencing the heat resistance of Salmonella during drying.

  20. Dependence of leaf surface potential response of a plant (Ficus Elastica) to light irradiation on room temperature; Shokubutsu (gomunoki) hamen den`i no hikari shosha oto no shitsuon izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    In order to clarify plant body potential information, study was made on a leaf surface potential response to light irradiation. The leaf surface potential change, total transpiration and transpiration rate of Ficus Elastica were measured using light irradiation period and room temperature as parameters. The leaf surface potential change shows a positive peak after the start of light irradiation, while a negative peak after its end. Arrival time to both peaks is constant regardless of the light irradiation period, while decrease with an increase in room temperature. Although the total transpiration increases with room temperature, this tendency disappears with an increase in light irradiation period. The transpiration rate shows its peak after the start of light irradiation. Arrival time to the peak is saturated with the light irradiation period of 60min, while decreases with an increase in room temperature. These results suggest that opening of stomata becomes active with an increase in room temperature, and the peak of the leaf surface potential after the start of light irradiation relates to the opening. 3 refs., 11 figs.

  1. LEAF MICROMOPHOMETRY OF PALICOUREA RIGIDA KUNTH. (RUBIACEAE FROM BRAZILIAN CERRADO AND CAMPO RUPESTRE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Manuel Losada Gavilanes

    2016-06-01

    Full Text Available The objective of this work was to evaluate qualitative and quantitative leaf anatomical traits of Palicourea rigida Kunth. (Rubiaceae species occurring in the Brazilian Cerrado and Campo Rupestre ecosystems. Anatomical analysis was performed in fresh or fixed leaves processed with usual plant microtechnique. Leaves showed uniseriate epidermis in petiole and leaf blade which contains uniseriate nonglandular tricomes (tector type occurring only over the vascular bundles. Likewise, paracytic stomata were found only in abaxial side of the leaf surface. The mesophyll contains uniseriate palisade parenchyma and multiseriate spongy parenchyma (nine layers which showed cells with different morphology and size. Crystal idoblasts of different types were observed in both the petiole and leaf blade. Collateral vascular bundles were found both in the petiole and leaf blade. Leaf venation type was pinnate, campylodromous or brochydodromous. The micromorphometric analysis showed significant differences from plants of different environments for all leaf characteristics and Cerrado plants showed higher means for all evaluated traits. Therefore, the influence of environments may had modulated morphological responses in P. rigida, since no difference was found in the type or distribution of leaf tissues in Cerrado or Campo Rupestre.

  2. 3类观赏百合试管苗叶片结构及水分特性%Comparative Study on the Structural and Moisture Characteristics of Leaf from the Plantlets of Three Types of Ornamental Lilium brownii

    Institute of Scientific and Technical Information of China (English)

    唐蓉; 龚维红; 史文秀; 韦梅芹

    2009-01-01

    [Objective] The study was to compare the structural and moisture characteristics of leaf from the plantlets of three types of ornamental lily(Lilium brownii). [Method] The paraffin sections of leaves of tested lily varieties were prepared and then observed under microscope, and the stomatal characteristics and moisture characteristics of tested lily varieties were measured. [Result] All the three ornamental lily varieties show isobilateral leaf, single layer of epicuticula and lower epidermis, and no obvious differentiation of palisade tissue and spongy tissue; their stomata distribute in lower epidermis, and the guard cells are dumbbell-shaped; all of these materials present high moisture. For the leaf sickness, midrib sickness and mesophyll tissue sickness, the order was determined to be oriental lily>Lilium longiflorum>Asian lily; of the three types of ornamental lily, Lilium longiflorum has the largest stomatal aperture and Asian lily has the smallest; focusing the water potential and moisture, the turn was Asian lily> oriental lily> Lilium longiflorum. [Conclusion] The study may facilitate the artificial regulation of the growth conditions of the plantlets of ornamental lily.

  3. 菊花黄绿叶突变体的光合与类囊体膜光谱%Characteristics of Photosynthesis and Spectra Properties of Thylakoid Membranes in the Yellow-Green Leaf Mutant of Chrysanthemum

    Institute of Scientific and Technical Information of China (English)

    常青山; 张利霞; 陈煜; 陈素梅; 刘兆磊; 房伟民; 陈发棣

    2013-01-01

    In order to study photosynthetic mechanism of the yellow-green leaf mutant- 'Jinglingguozi ' of chrysanthemum, the characteristics of photosynthesis and the spectra properties of thylakoid membrane in the green and yellow leaf tissue of the mutant were studied. We measured the photosynthesis, stomatal characteristics, room temperature absorption spectra, chlorophyll emission fluorescence spectra of thylakoid membrane. The results that compared to the green leaf tissue of the mutant, the yellow leaf tissue had lower net photosynthetic rate ( Pn ) , light saturation point (LSP) , dark respiration rate (Rd) , apparent quantum yield (AQY) , but higher light compensation point (LCP). The yellow leaf tissue had lower stomata limit value ( Ls ) , but higher non-stomata limit value. There was no significant difference in the characteristics of stomatal microstructure between the green leaf and yellow leaf tissue. The absorption spectra and fluorescence spectra significantly decreased in the yellow leaf tissue. The yellow leaf tissue had significantly lower capacity of the capture and excitation of light energy and lower the photosynthetic capacity than the green leaf tissue did, which was caused by non-stomata factors, such as a decrease of the function of thylakoid membrane.%以菊花‘金陵国紫’黄绿叶突变体为试验材料,研究该突变体黄绿叶的绿叶与黄叶组织光合与类囊体膜光谱特性.对突变体黄绿叶中绿叶与黄叶组织的光合速率、光响应曲线、气孔特征与类囊体膜光谱特性进行测定与分析.结果表明:与绿叶组织相比,突变体黄叶组织的净光合速率、光饱和点、暗呼吸速率、表观量子效率均显著低于绿叶组织,而光补偿点则显著高于绿叶组织;黄叶组织的气孔限制值低于绿叶组织,非气孔限制值则显著高于绿叶组织,而黄叶与绿叶组织的气孔特征并无显著性差异.突变体黄叶组织类囊体膜叶绿素捕光能力与受激

  4. Superfície foliar da videira 'Folha de Figo' e 'Niagara Rosada' conduzida em diferentes sistemas de condução Surface leaf of the vine 'Leaf of Fig' and 'Rosy Niagara' grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Paulo Márcio Norberto

    2008-12-01

    Full Text Available Os efeitos da interação entre a forma do dossel vegetal e os fatores ambientais locais resultam no microclima que determinará alguns aspectos fisiológicos da videira, podendo afetar significativamente o crescimento vegetativo da videira, a produtividade do vinhedo, bem como a qualidade da uva e do vinho. O trabalho foi desenvolvido na Estação de Viticultura e Enologia de Caldas EPAMIG, Caldas, MG, com o objetivo de avaliar o efeito do sistema de condução sobre a superfície foliar da videira (Vitis labrusca L., durante as safras 2003, 2004 e 2005. As variedades produtoras utilizadas no experimento foram 'Niágara Rosada' para mesa e 'Folha de Figo' para produção de vinhos; como porta - enxerto utilizou-se o '420-A'. O delineamento experimental foi DIC em fatorial 4x2 e os sistemas adotados foram cordão simples, latada, espaldeira e lira. Determinaram-se as seguintes variáveis: superfície foliar primária, secundária, total e superfície foliar exposta (SFE.Verificou-se que o sistema cordão simples conferiu a menor superfície foliar total em ambas as variedades, em todas safras avaliadas. Tanto o sistema espaldeira quanto o cordão simples conferiram à menor superfície foliar exposta em ambas as variedades e os sistemas latada e lira, os maiores valores de (SFE.The effects of the interaction between the form of the vegetable canopy and the environmental factors places result in the microclima that will determine some physiologic aspects of the vine, and may affect significantly the vegetative growth of the vine, the productivity of the vineyard, as well as the quality of the grape and wine. The work was developed in the Station of Viticulture and Enologia of Caldas EPAMIG, Caldas, MG, with the aim of evaluating the effect of the Training system on the foliar surface of the vine (Vitis labrusca L. during the crops 2003, 2004 and 2005. The producing varieties used in the experiment were ' Niágara Rosy' for table and ' Leaf of

  5. Dosimetry characteristics of multi-leaf collimator field for TrueBeam%TrueBeam加速器多叶准直器射野剂量学特性

    Institute of Scientific and Technical Information of China (English)

    熊绮丽; 石勇; 徐刚; 顾强

    2015-01-01

    医用电子直线加速器未均整射束的剂量学特征和优势早已被证明,但是随着三维适形和调强放射治疗技术的发展,临床治疗的射野(Field)主要是由多叶准直器射野形成,而有关未均整射束的多叶准直器射野剂量特征的研究很少。本文研究TrueBeam加速器6 MV-X未均整射束的多叶准直器射野剂量特征。利用蒙特卡罗(Monte Carlo, MC)模拟和三维剂量扫描系统临床测量,对比和分析射野离轴比曲线剂量特征。结果表明:蒙特卡罗模拟和临床测量未均整射束下多叶准直器叶片到位精度、X和Y方向的漏射量、射野半影、叶片间凹凸结构对射野剂量的影响大体一致。多叶准直器形成不规则射野的几何学、蒙特卡罗模拟和临床测量的不符合度(MC 或临床测量50%等剂量曲线的面积与射野几何面积的差值相对于射野实际面积的百分数)分别为3.629%、3.2626%和2.0394%。圆形射野、具有凹凸边界射野几何学和蒙特卡罗模拟的不符合度分别为0.8662%、0.8794%和0.2314%、0.8170%。为未均整射束条件下多叶准直器的临床合理使用提供可靠的依据。%Background: The dose distribution of the Flatting-Filter-Free (FFF) of medical linear accelerator (LINACS) has been proved to have its advantages in clinical use. With the recent development of three-dimensional conformal radiotherapy and intensity-modulated radiation therapy, field of clinical treatment is mainly achieved by using Multi-leaf Collimator (MLC). Because of the rare researches on dosimetry characteristics of MLC field under FFF beam, it is interesting to note the importance of its further development.Purpose:For the TureBeam accelerator of 6 MV-X, the dose characteristics of the MLC are studied in the presence of the FFF beam.Methods:The off-axis dose curve characteristics are analyzed by using the Monte Carlo (MC) method, combined with three-dimensional dose scanning data

  6. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste.

    Science.gov (United States)

    Valenzuela Melendres, M; Camou, J P; Torrentera Olivera, N G; Alvarez Almora, E; González Mendoza, D; Avendaño Reyes, L; González Ríos, H

    2014-05-01

    Response surface methodology was used to study the effect of flaxseed flour (FS) and tomato paste (TP) addition, from 0 to 10% and 0 to 20% respectively, on beef patty quality characteristics. The assessed quality characteristics were color (L, a, and b), pH and texture profile analysis (TPA). Also, sensory analysis was performed for the assessment of color, juiciness, firmness, and general acceptance. FS addition reduced L and a values and decreased weight loss of cooked products (Psensory characteristics of the cooked product (Psensory characteristics evaluated had an acceptable score (>5.6). Thus FS and TP are ingredients that can be used in beef patty preparation.

  7. Inverse modeling of soil characteristics from surface soil moisture observations: potential and limitations

    Directory of Open Access Journals (Sweden)

    A. Loew

    2008-01-01

    Full Text Available Land surface models (LSM are widely used as scientific and operational tools to simulate mass and energy fluxes within the soil vegetation atmosphere continuum for numerous applications in meteorology, hydrology or for geobiochemistry studies. A reliable parameterization of these models is important to improve the simulation skills. Soil moisture is a key variable, linking the water and energy fluxes at the land surface. An appropriate parameterisation of soil hydraulic properties is crucial to obtain reliable simulation of soil water content from a LSM scheme. Parameter inversion techniques have been developed for that purpose to infer model parameters from soil moisture measurements at the local scale. On the other hand, remote sensing methods provide a unique opportunity to estimate surface soil moisture content at different spatial scales and with different temporal frequencies and accuracies. The present paper investigates the potential to use surface soil moisture information to infer soil hydraulic characteristics using uncertain observations. Different approaches to retrieve soil characteristics from surface soil moisture observations is evaluated and the impact on the accuracy of the model predictions is quantified. The results indicate that there is in general potential to improve land surface model parameterisations by assimilating surface soil moisture observations. However, a high accuracy in surface soil moisture estimates is required to obtain reliable estimates of soil characteristics.

  8. Laser treatment of a neodymium magnet and analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  9. 茶树不同叶位叶片功能性状与光合特性研究%Leaf Functional and Photosynthetic Characteristics in Different Leaves Positions of Tea Plant

    Institute of Scientific and Technical Information of China (English)

    王峰; 陈玉真; 王秀萍; 尤志明; 陈常颂

    2016-01-01

    以5个茶树品种(系)为研究对象,分析了茶树新梢不同叶位叶片的叶面积(LA)、叶形指数(LI)、比叶面积(SLA)、干物质含量(LDMC)、叶绿素 a(Chla)、叶绿素 b(Chlb)、叶绿素总量(Chl)、类胡萝卜素(Car)及光合特性,并研究了叶片功能性状和光合特性之间的相关性。结果表明,不同叶位叶片的LA、LMDC、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)由第1叶至第6叶基本呈现先增加后降低趋势,新梢中部3~4叶达到峰值,第1叶和第6叶显著降低(P<0.05);不同叶位叶片 LI 和 SLA 基本呈现随着叶位增加而增加的趋势,第6叶的 SLA 均显著高于其他叶位(P<0.05);第1~4叶的 Chla、Chlb 和 Chl 含量较高,第6叶 Chla、Chlb 和 Chl 含量显著低于其他叶位(P<0.05),Car 变化趋势不明显。LA 与 LI、LDMC、Chla、Chlb、Chl 和 Car 之间存在显著或极显著正相关,与胞间 CO2浓度(Ci)之间呈显著负相关,与其他指标相关性不显著;LI 与其他指标不相关(LA 除外);SLA 与 LDMC、Chla、Chlb、Chl、Car 和 Pn 之间存在显著或极显著负相关,与 Ci 之间呈极显著正相关,与其他指标相关性不显著;LDMC 与 Chla、Chl 和 Pn 之间存在显著或极显著正相关;Chla、Chlb、Chl 和 Car 两两之间均存在极显著正相关,且均与 Pn 存在显著或极显著正相关;Gs 和 Tr 与叶片功能性状不相关。分析以上结果可以得出,茶树新梢第3~4叶具有相对较大的 LA和较强的光合能力,LDMC 积累较大,可以作为表征茶树光合能力的供试叶片;SLA、LDMC 和光合色素含量与 Pn 存在密切相关性,可作为评价茶树光合能力的指标。%Taking 5 breeding lines tea as test material, the leaf functional and photosynthetic characteristics of the leaves at different positions were monitored, and correlations between the leaf

  10. 3D Interest Point Detection using Local Surface Characteristics with Application in Action Recognition

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft

    2014-01-01

    . The proposed Difference-of-Normals (DoN) 3D IP detector operates on the surface mesh, and evaluates the surface structure (curvature) locally (per vertex) in the mesh data. We present an exam- ple of application in action recognition from a sequence of 3-dimensional geometrical data, where local 3D motion de......In this paper we address the problem of detecting 3D inter- est points (IPs) using local surface characteristics. We con- tribute to this field by introducing a novel approach for detec- tion of 3D IPs directly on a surface mesh without any require- ments of additional image/video information...

  11. Enhancing the representation of subgrid land surface characteristics in land surface models

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2013-03-01

    Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid Plant Functional Types (PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0° with three maximum-allowed total number of classes Nclass of 24, 18 and 12 representing different computational burdens over the North America (NA continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational

  12. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    Science.gov (United States)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  13. Biochar production from coffee residues: Optimization of surface characteristics and sorptive behavior

    Science.gov (United States)

    Fotopoulou, Kalliopi; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2015-04-01

    Biochar with high surface area is a promising sorbent for environmental remediation and is produced by heating biomass in an oxygen-limited environment. Knowing the surface characteristics increases our understanding of biochar interactions with pollutants. The hypothesis of the present study is that by controlling pyrolysis conditions, the surface characteristics and subsequently the sorption behavior of produced biochars can be optimized. Coffee residues were dried overnight at 50oC and then pyrolized into a gradient furnace at 850oC. Different solid/oxygen ratios during pyrolysis were tested as well as the up scaling of the process. The biochars produced were systematically characterized for their surface characteristics such as BET surface area, open surface area, pore and micropore volume, and average pore size. The effect of pyrolysis on the biochar suspension pH was examined with the mass addition technique that involves the addition of increasing amounts of the biochar to bottles containing 0.1 M NaNO3. FTIR analysis was used in order to determine the functional groups of the coffee residue and of the biochars. The macrostructure of the biochars was visualized by Scanning Electron Microscopy (SEM). Total Carbon (TC) in the samples was determined by Carlo Erba Elemental Analyzer CHNS, EO 1108 after calibration with standard samples. The sorption behavior of produced biochars was tested with two different pollutants (Hg(II), phenanthrene) using batch reactors with the same initial single-compound solution and the same mass of coffee residue and different biochars. The biochars produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area due to macropores from 21 to 65 m2/g. This suggests that the surface area in the biochars with high surface area results from the formation of pores. Actually for the biochar with the highest surface area, it was calculated that up to 90

  14. The Research on Friction Characteristics of Non Smooth Bionic Mesoscopic Surface

    Directory of Open Access Journals (Sweden)

    Su Chunjian

    2014-12-01

    Full Text Available The application of using friction to transmit power and prevent slippage is very widely used, many animals have very strong adhesion climbing ability, and it has important theoretical significance and wide application prospect to research and the prepare bionic surface to increase transmission friction using the bionic technology. In recent years, the research of foot structure of climbing animals shows that their surface morphology has both macro and micro scale features, and only study from the macro to the micro scale surface structure can be better elucidate the mechanism of increasing-friction of climbing animal. This paper will study bionic surface structure on mesoscopic scale from micron to millimeter level, research the influence of foot structure of climbing animal under mesoscopic scale on characteristics of increasing friction using bionic technology, prepare the bionic non-smooth surface of convex or concave using bionic manufacturing technology, establish the friction model of non-smooth surface, investigate the increasing-friction mechanism of the bionic surface morphology on mesoscopic scales, reveals the influence of surface morphology, layout, size and material properties on the friction characteristics, provide the design of bionic friction surface and calculation method of friction coefficient and provide reliable theoretical basis for engineering application.

  15. Comparative morphology of leaf epidermis in eight populations of Atlas Pistachio (Pistacia atlantica Desf., Anacardiaceae).

    Science.gov (United States)

    Belhadj, Safia; Derridj, Arezki; Aigouy, Thierry; Gers, Charles; Gauquelin, Thierry; Mevy, Jean-Philippe

    2007-10-01

    A comparative analysis was undertaken to conduct a micromorphological study of Pistacia atlantica leaves by comparing different populations grown under different climatic conditions. Leaf epidermis of eight wild populations was investigated under scanning electron microscope. Micromorphological characteristics (epidermis ornament, stomata type, waxes as well as trichomes) of the adaxial and abaxial leaf surfaces were examined. The epidermis ornament varied among populations and leaf surface, the abaxial leaf surface is reticulate with a striate surface. Messaad site shows a smooth uneven surface. The adaxial leaf surface is smooth but several ornamentations can be seen. The leaflet is amphistomatic; the stomata appeared to be slightly sunken. A variety of stomatal types were recorded; actinocytic and anomocytic types are the most frequent. The indumentum consisted of glandular and nonglandular trichomes. Unicellular glandular trichomes are recorded for P. atlantica leaves in this study. Their density is higher in Oued safene site, located at the highest altitude in comparison with the other populations. The wax occurred in all the sites and its pattern varied according to the populations studied, particularly between Berriane and Messaad. The morphological variability exhibited by the eight populations of P. atlantica may be interpreted as relevant to the ecological plasticity and the physiological mechanisms involved are discussed in this report.

  16. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  17. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed.An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported.It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first,then it transforms into a jet wave.The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases.The results of the investigation can be used to understand the acoustic characteristics of bubble bursting.

  18. The Characteristics of the Surface Topography of Excimer Laser Processed Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    LIUYing; WENShi-zhu

    2004-01-01

    Surface of Al2O3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of thesystem(MEMS). It is indicated that the statistic pararueters of surface topography processed by the excimer laser have an obvioas regularity. The arithmeticmean value Ro and the root-mean square value Rq change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them. A simplified nuuIel is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore, the surfaces processed by excimer laser are greatly fiat. Skewness root-mean-square value Zq changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing.

  19. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  20. 3D Characteristic Diagram of Acoustically Induced Surface Vibration with Different Landmines Buried

    Institute of Scientific and Technical Information of China (English)

    吴智强; 张燕丽; 王驰; 朱俊; 徐文文; 袁志文

    2016-01-01

    The 3Dcharacteristic diagram of acoustically induced surface vibration was employed to study the influence of different buried landmines on the acoustic detection signal. By using the vehicular experimental system for acoustic landmine detection and the method of scanning detection, the 3D characteristic diagrams of surface vibration were measured when different objects were buried underground, including big plastic landmine, small plastic landmine, big metal landmine and bricks. The results show that, under the given conditions, the surface vi-bration amplitudes of big plastic landmine, big metal landmine, small plastic landmine and bricks decrease in turn. The 3D characteristic diagrams of surface vibration can be used to further identify the locations of buried land-mines.

  1. Topographical Parameter Characteristics of Dry Sliding Surfaces of Particle-Reinforced Aluminum Composites

    Institute of Scientific and Technical Information of China (English)

    陈跃; 上官宝; 张永振; 孙乐民; 铁喜顺; 夏跃虹

    2004-01-01

    Generally, friction and wear occur on the surface of the materials.It is necessary to investigate the dry sliding friction and wear behavior of surface.In this paper, 3-D topographical parameters were used to investigate the topographical characteristics of dry sliding surfaces for particle-reinforced aluminum composites on semi-metallic friction material.The experimental results indicate that the surface topography of the particle-reinforced aluminum composites can be divided into two types, the flaking-off pit type and the groove type.The composites whose surface topography is the flaking-off pit type possess superior heat conductivity and bearing area, lower wear rate, and higher friction coefficient than the groove type.Consequently, the flaking-off pit type surface topography is much better than the groove type for particle-reinforced aluminum composites on semi-metallic friction materials in dry sliding.

  2. Surface characteristics of aluminum 6061 T6 subjected to Nd:YAG pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young; Shin, Wan Soon [Hanyang University, Seoul (Korea, Republic of)

    2012-07-15

    The objective of this study was to investigate the surface characteristics of an aluminum 6061 T6 alloy subjected to Nd:YAG pulsedlaser irradiation. The test specimens were prepared by a mechanical polishing process using diamond paste and emery polishing paper to obtain different levels of initial surface roughness. After ten pulsed laser shots, the surface morphology was observed via optical microscopy (OM) and scanning electron microscopy (SEM). Nano indentation hardness testing was also conducted on the irradiated surface. The diameter of the melted zone increased with surface roughness because of the multiple reflection and absorption of the laser beam. The relative absorbance was measured as a function of the diameter of the melted zone with varied surface roughness.

  3. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    Science.gov (United States)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  4. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface

    Science.gov (United States)

    Li, Yufeng; Jin, Haiyun; Nie, Shichao; Zhang, Peng; Gao, Naikui

    2017-05-01

    In this paper, a superhydrophobic surface is used to increase the flashover voltage when water droplets are present on a silicone rubber surface. The dynamic behavior of a water droplet and the associated flashover characteristics are studied on common and superhydrophobic silicone rubber surfaces under a high DC voltage. On common silicone rubber, the droplet elongates and the flashover voltage decreases with increasing droplet volume and conductivity. In contrast, the droplet slides off the superhydrophobic surface, leading to an increased flashover voltage. This droplet sliding is due to the low adhesion of the superhydrophobic surface and a sufficiently high electrostatic force provided by the DC voltage. Experimental results show that a superhydrophobic surface is effective at inhibiting flashover.

  5. Fractal Characteristics and Fractal Dimension Measurement on Broken Surfaces of Aluminum Electric Porcelain

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiyuan; ZHOU Anning

    2005-01-01

    The characteristics of broken surfaces were researched by a scanning electron microscope (SEM) and a reflection microscope, and the fractal dimensions of broken surfaces were measured by the Slit Island method. The experimental results indicate that the broken surface of aluminum electric porcelain is a fractal body in statistics, and the fractal dimensions of broken surfaces are different with the different amplification multiple value.In all of measured fractal dimensions,both of values measured in 100× under reflection microscope and in 500× under SEM are maximum, whereas the values measured in 63× under reflection microscope and in 2000× under SEM are obviously minimum. The fractal dimensions of broken surfaces are also affected by the degrees of gray comparison and the kinds of measuring methods. The relationships between the fractal dimensions of broken surfaces and porcelain bend strengths are that they are in positive correlation on the low multiples and in negative correlation on the high multiples.

  6. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites.

    Science.gov (United States)

    Ikeda, Masaomi; Matin, Khairul; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2007-11-01

    The purpose of this study was to evaluate the adherence of biofilms to the surfaces of two indirect resin composites, Estenia C&B and Gradia. Slabs were prepared from the materials, and then either ground with 800-grit silicon carbide paper or polished with diamond pastes up to 1 microm. Artificial biofilms of Streptococcus mutans were grown on the composite slabs in an artificial mouth system for 20 hours. Thereafter, the amounts of retained biofilm on the surfaces were measured after sonication. Surface characteristics of the resins--such as surface roughness, amount of residual monomers, and distribution of filler particles--were examined. Two-way ANOVA revealed that the amount of retained biofilm varied (pcomposition and surface roughness of the material. In particular, biofilm adherence was lowest on Estenia C&B slabs when polished with diamond pastes up to 1 microm. It was thus concluded that the surface roughness and composition of a resin composite influenced biofilm adherence.

  7. Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments.

    Science.gov (United States)

    Bertinetti, Luca; Drouet, Christophe; Combes, Christele; Rey, Christian; Tampieri, Anna; Coluccia, Salvatore; Martra, Gianmario

    2009-05-19

    The incorporation of foreign ions, such as Mg2+, exhibiting a biological activity for bone regeneration is presently considered as a promising route for increasing the bioactivity of bone-engineering scaffolds. In this work, the morphology, structure, and surface hydration of biomimetic nanocrystalline apatites were investigated before and after surface exchange with such Mg2+ ions, by combining chemical alterations (ion exchange, H2O-D2O exchanges) and physical examinations (Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM)). HRTEM data suggested that the Mg2+/Ca2+ exchange process did not affect the morphology and surface topology of the apatite nanocrystals significantly, while a new phase, likely a hydrated calcium and/or magnesium phosphate, was formed in small amount for high Mg concentrations. Near-infrared (NIR) and medium-infrared (MIR) spectroscopies indicated that the samples enriched with Mg2+ were found to retain more water at their surface than the Mg-free sample, both at the level of H2O coordinated to cations and adsorbed in the form of multilayers. Additionally, the H-bonding network in defective subsurface layers was also noticeably modified, indicating that the Mg2+/Ca2+ exchange involved was not limited to the surface. This work is intended to widen the present knowledge on Mg-enriched calcium phosphate-based bioactive materials intended for bone repair applications.

  8. Investigation on the adsorption characteristics of anserine on the surface of colloidal silver nanoparticles.

    Science.gov (United States)

    Thomas, S; Maiti, N; Mukherjee, T; Kapoor, S

    2013-08-01

    The surface-enhanced Raman scattering (SERS) studies of anserine (beta-alanyl-N-methylhistidine) was carried out on colloidal silver nanoparticles to understand its adsorption characteristics. The experimentally observed Raman bands were assigned based on the results of DFT calculations. The studies suggest that the interaction of anserine is primarily through the carboxylate group with the imidazole ring in an upright position with respect to the silver surface. Concentration dependent SERS studies suggest a change in orientation at sub-monolayer concentration.

  9. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.

  10. Cell surface characteristics enable encrustation-free survival of neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Saini, G.; Chan, C. S.

    2011-12-01

    Microbial growth in mineralizing environments depends on the cells' ability to evade surface precipitation. Cell-mineral interactions may be required for metabolism, but if unmoderated, cells could become encrusted, which would limit diffusion of nutrients and waste across cell walls. A combination of cell surface charge and hydrophobicity could enable the survival of microbes in such environments by inhibiting mineral attachment. To investigate this mechanism, we characterized the surfaces of two neutrophilic iron-oxidizing bacteria (FeOB): Mariprofundus ferrooxydans, a Zetaproteobacterium from Fe(II)-rich submarine hydrothermal vents and a Betaproteobacterium Gallionellales strain R-1, recently isolated from a ferrous groundwater seep. Both bacteria produce iron oxyhydroxides, yet successfully escape surface encrustation while inhabiting milieu where iron minerals are also produced by abiotic processes. SEM-EDX and TEM-EELS analyses of cultured bacteria revealed no iron on the cell surfaces. Zeta potential measurements showed that these bacteria have very small negative surface charge (0 to -4 mV) over a pH range of 4-9, indicating near-neutrally charged surfaces. Water contact angle measurements and thermodynamic calculations demonstrate that both bacteria and abiotically-formed Fe oxhydroxides are hydrophilic. Extended-DLVO calculations showed that hydrophilic repulsion between cells and minerals dominates over electrostatic and Lifshitz-van der Waals interactions. This leads to overall repulsion between microbes and minerals, thus preventing surface encrustation. Low surface charge and hydrophilicity (determined by microbial adhesion to hydrocarbon assay) were common features for both live and azide-inhibited cells, which shows that surface characteristics do not depend on active metabolism. It is remarkable that these two phylogenetically-distant bacteria from different environments employ similar adaptations to prevent surface mineralization. Our results

  11. Study on Biological Characteristics and Anatomical Structure of Leaf and Stem of Dictamnus dasycarpus Turcz%北药白鲜生物学特征及茎叶解剖结构观察

    Institute of Scientific and Technical Information of China (English)

    王立凤; 纪春艳; 李然红; 于爽; 柴军红; 陈子沅

    2012-01-01

    [Objective] To study the biological characteristics and anatomical structure of leaf and stem of Dictamnus dasycarpus Turcz. [ Method] The anatomical structure of leaf and steam of D, dasycarpus was studied by the method of paraffin sectioning. [ Result] The stem of Dictamnus dasycarpus Turcz consisted of epidermis, cortex and vascular cylinder. The cortex was composed by collenchyma and parenchyma tissue. The vascular cylinder was arranged as a ring, which from outside to inside were phloem and xylem. The leaf was typical bifacial leaf which consisted of epidermis, mesophyll and vascular cylinder. The epidermal cells were arranged regularly. The mesophyll consisted of palisade tissue and spongy tissue differentiation. [Conclusion] The method well studied the biological characteristics of Dictamnus dasycarpus Turcz and observed their anatomical structure.%[目的]研究北药白鲜的生物学特征并观察其茎叶的解剖结构.[方法]采用石蜡制片的方法研究北药白鲜的茎叶解剖结构特征.[结果]白鲜的茎由表皮、皮层和维管柱3部分组成,皮层由厚角组织和薄壁组织构成,维管束环状排列,由外到内依次是韧皮部和木质部.叶片为典型的异叶面,由表皮、叶肉及维管束构成,表皮细胞排列规则,叶肉分为栅栏组织和海绵组织,分化明显.[结论]该方法研究了北药白鲜的生物学特征,并观察其茎叶的解剖结构,效果良好.

  12. Correlation between Surface Roughness Characteristics in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2012-12-01

    Full Text Available CO2 laser oxygen cutting of mild steel is widely used industrial application. Cut surface quality is a very important characteristic of laser cutting that ensures an advantage over other contour cutting processes. In this paper mathematical models for estimating characteristics of surface quality such as average surface roughness and ten-point mean roughness in CO2 laser cutting of mild steel based on laser cutting parameters were developed. Empirical models were developed using artificial neural networks and experimental data collected. Taguchi’s orthogonal array was implemented for experimental plan. From the analysis of the developed mathematical models it was observed that functional dependence between laser cutting parameters, their interactions and surface roughness characteristics is complex and non-linear. It was also observed that there exist region of minimal average surface roughness to ten-point mean roughness ratio. The relationship between average surface roughness and ten-point mean roughness was found to be nonlinear and can be expressed with a second degree polynomial.

  13. Experimental Study on Surface Characteristics of Laser Cladding Layer Regulated by High-Frequency Microforging

    Science.gov (United States)

    Fan, Xiang Fang; Zhou, Ju; Qiu, Chang Jun; He, Bin; Ye, Jiang; Yuan, Bo; Pi, Zhengqing

    2011-03-01

    High-frequency microforging technology is used to produce micrometer-scale plastic deformation on the surface of material out of the vibration impact of a forging punch, and the cumulative effect of its various frequencies on micrometer-scale plastic deformation can cause changes of surface microstructure and mechanical properties. This study used (1) a self-made machine to treat NiCrBSi alloy, (2) a mechanical comparator and optical microscopy (OM) to study the geometric characteristics of plastic deformation, (3) OM and scanning electric microscopy (SEM) to observe influence on surface microstructure and cracking behavior of the laser cladding layer under microforging, (4) x-ray diffractometer (XRD) to measure the surface residual stress of laser cladding layer before and after forging, and (5) microhardness tester and wearing experimental machine to study changes of microhardness, friction coefficient, and wear characteristics of laser cladding layer after microforging. The results have shown that high-frequency microforging could produce plastic deformation about 150 μm deep on the surface of NiCrBSi alloy clad by laser. Regular dendrite and eutectic crystallization microstructure, which is a peculiar characteristic of the laser cladding layer, was broken into pieces and formed residual compression residual stress on the surface. Resistance to cracking of laser cladding layer improved greatly, microhardness and wearability increased, and the friction coefficient did not under go a noticeable change.

  14. Utilization of satellite-derived estimates of meteorological and land surface characteristics in the Land Surface Model for vast agricultural region territory

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena

    2015-04-01

    The method has been elaborated to evaluate the water and heat regime characteristics of the territory on a regional scale for the vegetation season based on a physical-mathematical model of water and heat exchange between vegetation covered land surface and atmosphere (LSM, Land Surface Model) appropriate for using satellite information on land surface and meteorological conditions. The developed model is intended for calculating soil water content, evapotranspiration (evaporation from bare soil and transpiration by vegetation), vertical water and heat fluxes as well as land surface and vegetation cover temperatures and vertical distributions of temperature and moisture in the active soil layer. Parameters of the model are soil and vegetation characteristics and input variables are meteorological characteristics. Their values have been obtained from ground-based observations at agricultural meteorological stations and satellite-based measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua and SEVIRI (geostationary satellites Meteosat-9, -10). The AVHRR data have been used to build the estimates of three types of land surface temperature (LST): land skin temperature Tsg, air temperature at a level of vegetation cover Ta and efficient radiation temperature Tseff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, and precipitation. The set of estimates derived from MODIS data has comprised values of LST Tls, E, NDVI and LAI. The SEVIRI-based retrievals have included Tls, Ta, Е at daylight and nighttime, LAI (daily) and precipitation. The case study has been carried out for agricultural Central Black Earth region of the European Russia of 227,300 sq.km containing 7 regions of the Russian Federation for years 2009-2013 vegetation seasons. Estimates of described characteristics have been built with the help of the developed original and improved pre-existing methods and technologies of thematic processing

  15. Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology.

    Science.gov (United States)

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula; Konteles, Spyros J

    2012-07-15

    Impact of steam, hot water blanching and UV-C irradiation as pre-treatments on extraction of oleuropein and related biophenols from olive leaves (OLs), was investigated. Moreover, particle size effect of olive leaves and steam blanching duration were selected as independent variables to optimise steam blanching process in terms of oleuropein content (OC) and antioxidant activity (AC) of ethanolic extracts, by using response surface methodology. Optimum conditions for OC and AC were 10 min steam blanching of 20-11 and 3-1mm olive leaf fraction, respectively. Depending on the extraction procedure, at optimum conditions of steaming the results indicate that steam blanching of OL prior to extraction can significantly increase oleuropein yield from 25 to 35 times compared to non-steam blanched sample, whereas the antioxidant activity increased from 4 to 13 times. No significant UV-C effect was observed in OC and AC, while hot water blanched samples showed significantly higher oleuropein yields and antioxidant activity compared to untreated samples.

  16. STATISTICAL OPTIMIZATION OF AQUEOUS LEAF EXTRACT OF AERVA LANATA FOR CITRININ AND FUNGAL BIOMASS REDUCTION IN SUBMERGED FERMENTATION BY ASPERGILLUS NIGER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ajaz Ahmad

    2013-12-01

    Full Text Available Citrinin, a nephrotoxic mycotoxin produced by several fungal strains belonging to the genera Penicillium, Aspergillus, and Monascus. Generally found in stored grains and after their harvest. The objective of the present investigation was to study the antimicrobial activity (anti-fungal of aqueous leaf extract of Aerva lanata and to optimize its conditions for the maximum inhibition of citrinin and fungal biomass by Aspergillus niger. Optimization of culture conditions was carried out using Box-Behnken method of response surface methodology. Extent of inhibition of citrinin was carried out using HPLC and reduction in fungal biomass was carried out using dry cell weight after comparing with controls. Optimized culture conditions as per the point prediction tool were found to be 11.27 mg/L for concentration of Aerva lanata extract, nine and half days of incubation period and temperature of 25.5 °C resulted in maximum inhibition of citrinin. These optimized values of tested parameters were and compared with control citrinin production (243.28 mg/L and dry cell weight production (362.28mg.An average of 87.77±1.21% inhibition of citrinin and 80.02±1.42% of dry cell weight was obtained in an optimized medium at 9.5th d of fermentation with 97.82 % and 96.21% validity, respectively.

  17. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-07-01

    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  18. Cedar leaf oil poisoning

    Science.gov (United States)

    Cedar leaf oil is made from some types of cedar trees. Cedar leaf oil poisoning occurs when someone swallows this substance. ... The substance in cedar leaf oil that can be harmful is thujone (a hydrocarbon).

  19. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    Science.gov (United States)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  20. Age dependent alterations in photosystem II acceptor side in Cucumis sativus cotyledonary leaf thylakoids: analysis of binding characteristics of herbicide [14C]-atrazine.

    Science.gov (United States)

    Prakash, J S; Baig, M A; Mohanty, P

    1999-02-01

    Senescence induced temporal changes in photosystems can be conveniently studied in cotyledonary leaves. We monitored the protein, chlorophyll and electron transport activities in Cucumis sativus cv Poinsette cotyledonary leaves and observed that by 20th day, there was a 50%, 41% and 30-33% decline in the chlorophyll, protein and photosystem II activity respectively when compared to 6th day cotyledonary leaves taken as control. We investigated the changes in photosystem II activity (O2 evolution) as a function of light intensity. The photosystem II functional antenna decreased by 27% and the functional photosystem II units decreased by 30% in 20-day old cotyledonary leaf thylakoids. The herbicide [14C]-atrazine binding assay to monitor specific binding of the herbicide to the acceptor side of photosystem II reaction centre protein, D1, showed an increase in the affinity for atrazine towards D1 protein and decrease in the QB binding sites in 20th day leaf thylakoids when compared to 6th day leaf thylakoids. The western blot analysis also suggested a decrease in steady state levels of D1 protein in 20th day cotyledonary leaf thylakoids as compared to 6th day sample which is in agreement with [14C]-atrazine binding assay and light saturation kinetics.

  1. Venation Skeleton-Based Modeling Plant Leaf Wilting

    Directory of Open Access Journals (Sweden)

    Shenglian Lu

    2009-01-01

    Full Text Available A venation skeleton-driven method for modeling and animating plant leaf wilting is presented. The proposed method includes five principal processes. Firstly, a three-dimensional leaf skeleton is constructed from a leaf image, and the leaf skeleton is further used to generate a detailed mesh for the leaf surface. Then a venation skeleton is generated interactively from the leaf skeleton. Each vein in the venation skeleton consists of a segmented vertices string. Thirdly, each vertex in the leaf mesh is banded to the nearest vertex in the venation skeleton. We then deform the venation skeleton by controlling the movement of each vertex in the venation skeleton by rotating it around a fixed vector. Finally, the leaf mesh is mapped to the deformed venation skeleton, as such the deformation of the mesh follows the deformation of the venation skeleton. The proposed techniques have been applied to simulate plant leaf surface deformation resulted from biological responses of plant wilting.

  2. Recovery and Behaviour of Stressed Escherichia coli O157:H7 Cells on Rocket Leaf Surfaces Inoculated by Different Methods

    Directory of Open Access Journals (Sweden)

    ANAS A. AL-NABULSI

    2016-03-01

    Full Text Available E. coli O157:H7 is an emerging public health concern worldwide because of its low infectious dose and ability to survive under adverse conditions. Tests were conducted to determine the abilityof unstressed E. coli O157:H7 cells or those stressed by acid, cold, salt exposure or starvation to survive on the surfaces of rocket leaves after contamination by three methods (dip, spray or spot inoculation and following storage at 10 or 25ºC. E. coli O157:H7 numbers recovered from rocket leaves contaminated by the different techniques were in the order of dip > spot > spray inoculation.Numbers of stressed E. coli O157:H7 recovered after inoculation by all three methods increased significantly over 7d storage at 10 or 25ºC, while unstressed E. coli O157:H7 only grew following dip inoculation. Exposure to adverse environmental conditions may increase the risk of E. coli O157:H7 survival and spread on leafy green vegetables.

  3. Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic

    Institute of Scientific and Technical Information of China (English)

    WANG HuiJuan; LIU Bin; WU JianLiang; WANG Bing

    2014-01-01

    Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic.In this paper,it is proved that the total chromatic number of G is △(G)+1 if △(G)9,where △(G)is the maximum degree of G.

  4. An investigation on the effect of surface characteristics on adhesion between polymer melts and replication tools

    DEFF Research Database (Denmark)

    Delaney, Kevin D.; Kennedy, Jonathan David; Bissacco, Giuliano

    2012-01-01

    Understanding interfacial characteristics between a polymer and its associated tool surface is critical to successful optimization of processes such as injection moulding, embossing and extrusion used to produce polymer parts. One of the factors characterizing the strength of the polymer-tool int...

  5. CHARACTERISTICS OF MOVEMENT OF SURFACE POINT IN DYNAMIC SUBSIDENCE BASIN AND ITS DEFORMATION CALCULATION

    Institute of Scientific and Technical Information of China (English)

    WANGShidao; HUANGPeizhu

    1995-01-01

    Along with underground mining, movement and deformation of overburden gradually extends in all directions and up to the ground surface and finally forms a surface subsidence basin. The surface movement progressively stabilizes until coal mining is completed and forms a stable movement basin. Two types of basins, i.e. static and dynamic subsidence basins are distinguished in the paper, a classification of the basins and a description of their characteristics are presented. Based on the analysis of measured data by Yanzhou Coal Mining Bureau, during mining operation, the movement characteristics of surface point, subsidence equation, subsidence rate equation and the law of distribution of movement parameters of surface point relative to principal section of movement basin are addressed in this paper. Moreover the calculating formula of the movement parameters for an arbitrary surface point and the expression for calculating the maximum subsidence rate are also proposed. On the basis of the findings, the movement deformation formula for an arbitrary surface point in any directions during mining operation is highlighted.

  6. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  7. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  8. Leaf Collection Posting Log

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains leaf collection dates for area and subarea where leaf collection service is provided by Montgomery County Department of Transportation. Update...

  9. Comparison characteristics of surface acoustic waves propagating on LGT and quartz substrates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guowei; SHI Wenkang; JI Xiaojun; HAN Tao

    2004-01-01

    For comprehending the propagation characteristics of surface acoustic waves (SAW) on novel piezoelectric crystal Langatate (LGT), the numerical analysis of the most important propagation characteristics of surface acoustic waves (SAW) on LGT are presented and compared with that of quartz. The results are that the phase velocity on LGT is generally about 1000 m/s slower than that on quartz; there are zero temperature cuts and pure mode directions on LGT; the electromechanical coupling coefficient (K2) of LGT is larger than that of quartz. The results show that LGT has lower propagation velocity, higher electromechanical coupling coefficient, good temperature stability and other good characteristic. The results also show that there are somewhat deviations with different material constants, especially, the temperature coefficient of frequency.

  10. Euphorbia L. subsect. Esula (Boiss. in DC. Pax in the Iberian Peninsula. Leaf surface, chromosome numbers and taxonomic treatment

    Directory of Open Access Journals (Sweden)

    Molero, Julià

    1992-12-01

    Full Text Available We present a taxonomic study of the representatives or Euphorbia subsect. Esula in the Iberian Peninsula. Prior to this, a first section is included on the study of the leaf surface and a second section on chromosome numbers.
    The section on leaf surface is based on a study of the leaves or 45 populations of Iberian and European taxa of the subsections using a light microscope and SEM. The characters analyzed are cell shape, morphology of the cells and stomata (primary and secondary sculpture and epicuticular waxes (tertiary sculpture. Some microcharacters of the leaf surface proved particularly usefu1for taxonomical purposes. Thus the basic type of stoma and the distribution model of the stomata on the two sides of the leaf are characters which make it possible to separate taxa as closely related as E. esula L. subsp. esula and E. esula L. subsp orientalis (Boiss. in DC. Molero & Rovira. The morphological type of the epicuticular waxes also enables us to differentiate between E.graminifolia Vill. and E. esula aggr. And to distinguish subsp. bolosii Molero & Rovira from the remaining subespecies in E. nevadensis Boiss. & Reuter.
    Cytogenetic investigation reveals the presence of only the diploid cytotype (2n=10 in E. cyparissias L. and E. esula L. subsp. esula in the Iberian Peninsula. We describe for the first time in E. nevadensis s.1. a polyploidy complex with a base of x= 10 in which the diploid level (2n=20 is present in all subspecies; the tetraploid level (2n=40 is present in E. nevadensis subsp. nevadensis and the hexaploid level (2n=60 is found in E. nevadensis subsp. bolosii. Chromosome number is not a parameter that can be used for taxonomic purposes. In E. nevadensis, cytogenetic differentiation has followed its own course, with no apparent relationship to the process of morphological

  11. Evaluation of the depth of surface deterioration for concrete structure using dispersion characteristics of surface wave

    Science.gov (United States)

    Hsu, Keng-Tsang; Cheng, Chia-Chi; Tao, Hung-Yu; Chiang, Chih-Hung

    2017-02-01

    Surface waves generated by an impact are used to assess depth of deterioration for concrete plate. The proposed method uses one receiver positioned away from the impacting source. The spectrogram of the group velocity obtained from the signal recorded from the receiver is calculated by Short-Time Fourier Transform and the reassignment technique. Experiments were conduct on the concrete plate with top mortar layer to simulate concrete with serious aggregate segregation and bleeding. In the experiment, the responses corresponding to different source-receiver distance were explored. The results were shown by both slowness spectrogram and velocity profile. In the slowness spectrogram, substantial increase of velocity at low frequency domain is found. The velocity profile shows the change of wave speed is at the wave length about 1.2 times the mortar thickness. The results also show the lower velocity corresponding to the weak layer may be identified for source-receiver distance as short as 0.5 m but the wave speed may be underestimated.

  12. Surface Structures Involved in Plant Stomata and Leaf Colonization by Shiga-Toxigenic Escherichia Coli O157:H7

    Science.gov (United States)

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A.

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection. PMID:21887151

  13. Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2014-01-01

    Full Text Available The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM and leaf area index (LAI. This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs land surface model within the the externalised surface model (SURFEX modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function matching technique. A multivariate multi-scale land data assimilation system (LDAS based on the extended Kalman Filter (EKF is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011. The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil

  14. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    I. Obernosterer

    2008-05-01

    Full Text Available The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold and nitrogen (1.4 to 7-fold, and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m. The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76% to those in surface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in surface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers.

  15. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    Science.gov (United States)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  16. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    Directory of Open Access Journals (Sweden)

    P. Biber

    2013-03-01

    Full Text Available Based on a wide range of empirical data we investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany in the years 2008–2011. We scrutinized three different hypotheses concerning (1 the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2 the effects of the latter on the occurrence of grouped plant species, and (3 vegetation density effects on terrain surface change. Our data comprise annual vegetation monitoring results, terrestrial laser scans twice a year, annual groundwater levels, and initially measured soil characteristics. Using Generalized Linear Models (GLMM and Generalized Additive Mixed Models (GAMM we can mostly confirm our hypotheses, revealing statistically significant relations that partly reflect object or period specific effects but also more general processes which mark the transition from a geo-hydro towards a bio-geo-hydro system, where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  17. Electrochemical Characteristics of Titanium for Dental Implants in Case of the Electroless Surface Modification

    Directory of Open Access Journals (Sweden)

    Klimecka-Tatar D.

    2016-06-01

    Full Text Available In the paper the results of research under effect of electroless phosphate coating of titanium dental implants on potentiokinetic polarization characteristic obtained in artificial saliva were presented. On the basis of electrochemical studies it was concluded that the electroless process of phosphating beneficialy effect on corrosion characteristic of titanium determined in solution simulating the oral cavity. Furthermore, the proposed technique of chemical treatment of titanium surface is conducive to the homogeneous development of the surface, which is extremely important from the point of view of titanium implants biointegration. Phosphating treatment affect on the development of surface geometry, resulting in a slight increase in roughness parameters (Ra, Rz and Rmax. The temperature increase of electroless phosphating treatment promotes the rate of conversion layer formation, whereas the effect of temperature of the chemical treatment efficiency is secondary important at longer exposure times (e.g. 45 minutes.

  18. Effect of random surface errors on radiation characteristics of the side-fed offset Cassegrain antenna

    Institute of Scientific and Technical Information of China (English)

    LIU Shao-dong; JIAO Yong-chang; ZHANG Fu-shun

    2006-01-01

    In this paper the average power pattern of the side-fed offset Cassegrain (SFOC) dual reflector antenna is analyzed,and the effect of the random surface error on radiation characteristics of the antenna is introduced.Here,the random surface error is defined as the error of the standard reflector in its normal direction and the errors in a small zone of the reflector are considered as equal.We also assume that the phase error on the aperture led by the random surface error obeys a Gaussian distribution with zero mean,under which the expression of the average power pattern is deduced.Finally,the data related to the radiation characteristics of the antenna are calculated and the corresponding curves are presented.The obtained results can be used for the user to determine the manufacturing accuracy of the reflector of the SFOC antennas.

  19. On the characteristics of ion implanted metallic surfaces inducing dropwise condensation of steam.

    Science.gov (United States)

    Rausch, Michael H; Leipertz, Alfred; Fröba, Andreas P

    2010-04-20

    The present work provides new information on the characteristics of ion implanted metallic surfaces responsible for the adjustment of stable dropwise condensation (DWC) of steam. The results are based on condensation experiments and surface analyses via contact angle (CA) and surface free energy (SFE) measurements as well as scanning electron microscopy (SEM). For studying possible influences of the base material and the implanted ion species, commercially pure titanium grade 1, aluminum alloy Al 6951, and stainless steel AISI 321 were treated with N(+), C(+), O(+), or Ar(+) using ion beam implantation technology. The studies suggest that chemically inhomogeneous surfaces are instrumental in inducing DWC. As this inhomogeneity is apparently caused by particulate precipitates bonded to the metal surface, the resulting nanoscale surface roughness may also influence the condensation form. On such surfaces nucleation mechanisms seem to be capable of maintaining DWC even when CA and SFE measurements indicate increased wettability. The precipitates are probably formed due to the supersaturation of ion implanted metal surfaces with doping elements. For high-alloyed materials like AISI 321 or Hastelloy C-276, oxidation stimulated by the condensation process obviously tends to produce similar surfaces suitable for DWC.

  20. Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure

    Science.gov (United States)

    Xie, Qing; Liu, Xiong; Zhang, Cheng; Wang, Ruixue; Rao, Zhangquan; Shao, Tao

    2016-03-01

    Research on aging characteristics of epoxy resin (EP) under repetitive microsecond pulses is important for the design of insulating materials in high power apparatus. It is because that very fast transient overvoltage always occurs in a power system, which causes flashover and is one of the main factors causing aging effects of EP materials. Therefore, it is essential to obtain a better understanding of the aging effect on an EP surface resulting from flashover. In this work, aging effects on an EP surface were investigated by surface flashover discharge under repetitive microsecond pulses in atmospheric pressure. The investigations of parameters such as the surface micro-morphology and chemical composition of the insulation material under different degrees of aging were conducted with the aid of measurement methods such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with the accumulation of aging energy on the material surface, the particles formed on the material surface increased both in number and size, leading to the growth of surface roughness and a reduction in the water contact angle; the surface also became more absorbent. Furthermore, in the aging process, the molecular chains of EP on the surface were broken, resulting in oxidation and carbonisation. supported by the Natural Science Foundation of Hebei Province (No. E2015502081), National Natural Science Foundation of China (Nos. 51222701, 51307060), and the National Basic Research Program of China (No. 2014CB239505-3)

  1. Leaf Characteristics of Ligustrum Quihoui Carr. under Different Evapotranspiration Condition%不同蒸散量下小叶女贞的叶片特性

    Institute of Scientific and Technical Information of China (English)

    于金丹; 王勇; 郑翠娟; 李兴

    2012-01-01

    为了定量研究绿化灌木蒸散量与叶片性状参数的关系,探索评价绿化灌木耗水效率的准则和指标,为绿化灌木节水灌溉制度的制定提供参考。以北方常见绿化灌林-小叶女贞(Ligustrum quihoui Carr)为试材,进行了盆栽试验。结果表明:随着蒸散量的增加,小叶女贞总叶面积、单叶面积、叶长和叶宽均呈先增加后减小的趋势,苗木刚移植第一年(2010年)的变化明显比移植后第二年的变化剧烈。2010年,土壤含水率保持在65%~100%(FC)时4项指标值最大;2011年在55%~100%(FC)时总叶面积最大,65%~75%(FC)时单叶面积、叶长和叶宽最大。2010年比叶面积和水分利用效率(WUE)随蒸散量的增加呈先增加后减小趋势,2011年均呈减小的趋势。叶片失水速率随蒸散量增大而减小,在24h后变化趋于平缓。%In order to quantitatively study the relation between the evapotranspiration of the greening shrubs and the traits parameters of the leaves, the standards and indicators for evaluating the efficiency of water consumption of the greening shrubs were explored to provide a reference for formulating the water-saving irrigation scheme of the greening shrubs. The Ligustrum quihoui Cart, which is a kind of common greening shrubbery in the north, are used as the test material to conduct the pot-planted experiments. The results showed that with the increase of the evapotranspiration, the total leaf area, the single leaf area, the leaf length and the leaf width all increased firstly and then decreased, and the change in the first year after the nursery stock implanting (2010) was obviously more significant than that in the second year after the implanting. In 2010, the values of the four indicators were maximum when the soil water content was kept between 65 %-100% (FC). While in 2011, the value of the total leaf area was maximum when the soil water content was kept between 55 %-100%

  2. Influence of skin surface roughness degree on energy characteristics of light scattered by a biological tissue

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2017-05-01

    We present the results of modelling of photometric characteristics of light in soft tissues illuminated by a parallel beam along the normal to the surface, obtained with allowance for the skin roughness parameters and the angular structure of radiation approaching the surface from within the tissue. The depth structure of the fluence rate and the spectra of the diffuse reflection of light by the tissue in the interval of wavelengths 300 - 1000 nm are considered. We discuss the influence of the tilt angle variance of rough surface microelements and light refraction on the studied characteristics. It is shown that these factors lead to the reduction of the radiation flux only in the near-surface tissue layer and practically do not affect the depth of light penetration into the tissue. On the other hand, the degree of the surface roughness and the conditions of its illumination from within the tissue essentially affect the coefficient of diffuse reflection of light and lead to its considerable growth compared to the cases of a smooth interface and completely diffuse illumination, often considered to simplify the theoretical problem solution. The role of the roughness of skin surface is assessed in application to the solution of different direct and inverse problems of biomedical optics.

  3. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    Science.gov (United States)

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (Pautoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  4. Application of target partial least squares for analysis of Fourier transform infrared-attenuated total reflection hyperspectral images for characterization of the distribution of crop protection products on the leaf surface.

    Science.gov (United States)

    Budevska, Boiana O

    2009-09-01

    Target partial least squares (PLS) is applied to Fourier transform infrared-attenuated total reflection (FT-IR-ATR) hyperspectral images of plant leaf surface treated with crop protection products. Detection of active ingredient is demonstrated at application rates of 50 g active ingredient per hectare. This sensitivity could not be achieved without the application of multivariate analysis. Quantitative information appears to be easily recovered through analysis of combined images with known and unknown amounts of active ingredient.

  5. 5个榕树品种叶表面微形态结构与滞尘能力比较%Leaf surface microstructures of five Ficus species and comparison of their dust detaining capabilities

    Institute of Scientific and Technical Information of China (English)

    陈雪华

    2011-01-01

    [目的]测定不同榕树品种的滞尘能力,为正确选用榕树作为城市绿化树种提供科学依据.[方法]以细叶榕(Ficus microcarpa)、柳叶榕(Ficus heteropleura)、对叶榕(Ficus hispida)、高山榕(Ficus altissima)、黄褐榕(Ficus virens)等5个榕树品种的成熟叶片为试验材料,应用扫描电子显微镜和滤纸恒重法观察叶片表面微形态结构,测定叶片滞尘量,并进行5个榕树品种滞尘能力比较.[结果]5个榕树品种的叶表面在表皮细胞、表皮纤毛、气孔等微形态结构上存在明显差异,对叶榕叶表面结构粗糙,具有蜂窝状的凹坑组织和表皮纤毛;细叶榕有不规则的岛状表皮细胞突起和大小不等的坑状组织,没有表皮纤毛;黄褐榕叶表面支脉细胞突起形成一个个的网格结构,无表皮纤毛;柳叶榕和高山榕叶表面较光滑,均无表皮纤毛.5个榕树品种因叶表面结构不同,滞尘能力也表现出明显差异.[结论]榕树叶片的形态特征是决定榕树叶片滞尘量的关键,5种榕树品种滞尘能力大小依次为:对叶榕>细叶榕>黄褐榕>高山榕>柳叶榕.%[Objective]The present study was conducted to determine the dust detaining capabilities of different Ficus species in order to screen some suitable urban greening Ficus species.[Method]Mature leaves of five Ficus species, viz., Ficus microcarpa, Ficus heteropleura, Ficus hispida, Ficus altissitna and Ficus virens were collected from Haikou City (Hainan, China). Scanning electronic microscope and filter paper constant weight methods were used to observe the leaf surface micro-morphological structures of the five Ficus species, and their dust detaining capabilities were compared.[Result ]The microscopic photos showed significantly different leaf surface micro-morphological structures of the five Ficus species. The leaf surface structure of Ficus hispida was coarse, with honeycomb-like pit tissues and concentrated threadlike cilia. Ficus

  6. Leaf Histology--Two Modern Methods.

    Science.gov (United States)

    Freeman, H. E.

    1984-01-01

    Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)

  7. Derivation of elastic stiffness formula for leaf type HDS and conceptual design of leaf type HDS of SMART FA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok

    1997-12-01

    Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.

  8. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    Science.gov (United States)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  9. Wintertime land surface characteristics in climatic simulations over the western Himalayas

    Indian Academy of Sciences (India)

    A P Dimri

    2012-04-01

    Wintertime regional climate studies over the western Himalayas with ICTP-RegCM3 simulations through 22 years has shown systematic biases in precipitation and temperature fields. The model simulated precipitation shows systematically wet bias. In surface temperature simulations, positive and negative biases of 2°–4°C occurred. Experiment without (CONT) and with subBATS (SUB) shows that later scheme performs better, especially for precipitation. Apart from the role of topography and model internal variability, land surface characteristics also have profound impact on these climatic variables. Therefore, in the present study, impacts of land surface characteristics are investigated through cool/wet and warm/dry winter climate by CONT and SUB simulations to assess systematic biases. Since SUB experiment uses detailed land-use classification, systematic positive biases in temperature over higher elevation peaks are markedly reduced. The change has shown reduced excessive precipitation as well. Most of the surface characteristics show that major interplay between topography and western disturbances (WDs) takes place along the foothills rather than over the higher peaks of the western Himalayas.

  10. Surface accuracy and radiation pattern characteristics of mesh deployable refector antennas

    Science.gov (United States)

    Ueno, Miyoshi; Ebisui, Takashi; Okamato, Teruki; Orikasa, Teruaki; Sugimoto, Toshio; Iso, Akio

    To facilitate the growth of mobile satellite communications, both an increase in the Equivalent Isotropically Radiated Power (EIRP) of satellites and improved frequency reuse are required to achiveve compact size, low cost terminal usage, and high channel capacity. High gain and low sidelobe antenna technology are very important for high EIRP and frequency reuse, respectively. These requirements are expected to be met by using a large deployable mesh reflector antenna, which is the key technology for future multibeam moble communications systems. In this paper, surface accruracy and related electrical characteristics are studied using a TETRUS-(Tetra Trigonal Prism Truss) type deployable mesh reflector antenna. Surface accuracy and related electrical characteristics of reflector antennas becaue any distortion of the ideal paraboloidal configuration causes antenna patterns to deteriorate, thereby reducing reflector aperture efficiency and increasing sidelobe and grating lobe levels. The sidelobe and grating lobe characteristics are especially important in frequency reuse. First, we show the problem with the radiation pattern characteristics of TETUS antenna. We then propose a new antenna configuration called the 'HYBRID TETRUS' that improves these characteristics. The mechanical performances of two partial deployable models are also described. Mechanical testing results reveal agreement between the calculated and measured values and high rigidities.

  11. Design of Rotary Atomizer Using Characteristics of Thin Film Flow on Solid Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Boo Seong; Kim, Bo Hung [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2013-12-15

    A disc-type rotary atomizer affords advantages such as superior paint transfer efficiency, uniformity of paint pattern and particle size, and less consumption of compressed air compared to a spray-gun-type atomizer. Furthermore, it can be applied to all types of painting materials, and it is suitable for large-scale processes such as car painting. The painting quality, which is closely related to the atomizer performance, is determined by the uniformity and droplet size in accordance with the design of the bell disc surface. This study establishes the basics of how to design a surface by modeling the operating bell disc's RPM, diameter, surface angle, and film thickness considering dye characteristics such as the viscosity, density, and surface affinity.

  12. Analysis of Wetting Characteristics on Microstructured Hydrophobic Surfaces for the Passive Containment Cooling System

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2015-01-01

    Full Text Available As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC of steel containment vessel (CV must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.

  13. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Science.gov (United States)

    2010-01-01

    ... of maturity, more open leaf structure in relation to the B Group, and a material amount of injury characteristic of very ripe leaf tobacco. Grades, Grade Names, Minimum Specifications, and Tolerances H3F—Good... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists...

  14. Temperature characteristics of InGaAs/GaAs vertical cavity surface emitting laser

    Institute of Scientific and Technical Information of China (English)

    QU Hong-wei; GUO Xia; DONG Li-min; WANG Hong-hang; DENG Jun; LIAN Peng; ZHOU De-shu; SHEN Guang-di

    2005-01-01

    The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD2002C5 test system.In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures,the measurement results have been analyzed.In addition,the dependence of device size on temperature characteristics is discussed.The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.

  15. Influence of Fine Metal Particles on Surface Discharge Characteristics of Outdoor Insulators

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2016-01-01

    Full Text Available Focusing on the influence of fine metal particles on the insulation characteristics of outdoor insulators, spherical micrometer-level iron powders were used to represent fine metal particles of different parameters on a polymer insulator specimen surface. Dynamic movement and lift-off behavior of fine particles, as well as the triggered surface discharges under AC voltage were investigated in a uniform electric field under different experimental conditions. The results reveal that the inception, propagation and intensity of surface discharges are significantly affected by the particle parameters, including particle size, amount and distributing characteristic. Based on the measurement of light emission during the flashover process using a high-speed camera, the process of surface discharge to flashover triggered by the fine metal particles were investigated to obtain a relationship between flashover voltage, discharge light intensity and particle parameters. It is suggested that particle size smaller than 28 µm and particle amount more than 40 mg in contact with the non-uniform distribution can cause a significant distortion and intensification of the electric field resulting in a higher risk of surface discharges leading to flashover. Such investigations can enhance the operating reliability of outdoor insulators subjected to these conditions.

  16. Investigation of dynamic characteristics of a rotor system with surface coatings

    Science.gov (United States)

    Yang, Yang; Cao, Dengqing; Wang, Deyou

    2017-02-01

    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  17. Thermal Characteristics of a Primary Surface Heat Exchanger with Corrugated Channels

    OpenAIRE

    2015-01-01

    This paper presents the heat transfer and pressure drop characteristics of a primary surface heat exchanger (PSHE) with corrugated surfaces. The PSHE was experimentally investigated for a Reynolds number range of 156–921 under various flow conditions on the hot and cold sides. The inlet temperature of the hot side was maintained at 40 °C, while that of the cold side was maintained at 20 °C. A counterflow was used as it has a higher temperature proximity in comparison with a parallel flow. The...

  18. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    Science.gov (United States)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  19. Fractal characteristics investigation on electromagnetic scattering from 2-D Weierstrass fractal dielectric rough surface

    Institute of Scientific and Technical Information of China (English)

    Ren Xin-Cheng; Guo Li-Xin

    2008-01-01

    A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scat-tering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing.

  20. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant

    Institute of Scientific and Technical Information of China (English)

    FENG RuYong; YU JianPing

    2008-01-01

    In this paper,we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure.We improve the classical result on Wronskian determinant,which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field.Based on Wronskian determinant,we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.

  1. 巨桉凋落叶分解对菊苣生长及光合特性的影响%Effects of Eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Cichorium intybus

    Institute of Scientific and Technical Information of China (English)

    吴秀华; 胡庭兴; 杨万勤; 陈洪; 胡红玲; 涂利华; 泮永祥; 曾凡明

    2012-01-01

    A pot experiment was conducted to study the effects of Eucalyptus grandis leaf litter during its early stage decomposition on the growth and the photosynthesis of Ckhorium intybus. Each pot contained 12 kg soil mixed with different amounts of E. grandis leaf litter (30 g · pot-1, A1; 60 g · pot-1, A2; 90 g · pot-1, A3; and 0 g · pot-1, CK) , and sowed with C. intybus. The growth indicators and the photosynthetic characteristics of C. intybus were measured after the third leaf of C. intybus seedlings fully expanded in treatment A,. At the early stage of leaf litter decomposition , the C. intybus biomass accumulation, leaf area growth, and synthesis of photosynthetic pigments were inhibited significantly, and the inhibition effect was getting stronger with the increasing amount of the leaf litter addition. The intercellular CO2 concentration of C. intybus was increased by litter addition, while the net photosynthetic rate, stomatal conductance, and transpiration rate were significantly lower than those of the control. With the increase of leaf litter addition, all the parameters of C. intybus light response and CO2 response except CO2 compensation point showed an obvious downward trend, and there existed significant differences between the treatments of litter additions and the control. It was suggested that during the decomposition of E. grandis leaf litter, its al-lelopathic substances released gradually and acted on receptor plants, inhibited the synthesis of photosynthetic pigments and the photosynthesis of the receptors, decreased the receptors environmental adaptation ability, and accordingly, inhibited the growth of C. intybus.%采用盆栽试验,研究了巨桉凋落叶分解初期对菊苣幼苗生长和光合生理特性的影响,试验设置A1(30 g·pot-1)、A2(60 g·pot-1)、A3 (90 g·pot-1)和对照(CK)4个凋落叶水平,将各处理的凋落叶分别与12 kg土壤混合后装盆,播种菊苣.待A3处理植株的第3片真叶完全展开后测定

  2. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.

    Science.gov (United States)

    Pawlak, Zenon; Petelska, Aneta D; Urbaniak, Wieslaw; Yusuf, Kehinde Q; Oloyede, Adekunle

    2013-04-01

    The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid-base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.

  3. The influence of surface characteristics, topography, and continentality on mountain permafrost in British Columbia

    Directory of Open Access Journals (Sweden)

    A. Hasler

    2014-09-01

    Full Text Available Thermal offset and surface offset are terms that describe the deviation of the mean annual ground temperature from the mean annual air temperature. These offsets are controlled by surface characteristics and topo-climatic factors on a micro- and meso-scales. Macro-climatic conditions may, however, influence the effectiveness of the responsible processes. Existing knowledge on surface- and topography-specific offsets is not easily transferable and limits the applicability of empirical permafrost distribution models over large areas with macro-climatic gradients. In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are (i a surprisingly small variation of the surface offsets between different surface types and small thermal offsets in general (excluding wetlands and peat, (ii a clear influence of the micro-topography at wind exposed sites (snow cover erosion, (iii a north–south difference of the surface offset of 4 °C in near-vertical bedrock and of 1.5–3 °C on open (no canopy gentle slopes, (iv only small macro-climatic differences caused by the reverse influence of snow cover thickness and annual air temperature amplitude. These findings suggest, that empirical permafrost models based on topo-climatic variables may be applicable across regions with significant macro-climatic differences.

  4. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  5. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    Science.gov (United States)

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  6. Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.

  7. The Porpoising Characteristics of a Planing Surface Representing the Forebody of a Flying-Boat Hull

    Science.gov (United States)

    Benson, James M.

    1942-01-01

    Porpoising characteristics were observed on V-body fitted with tail surfaces for different combinations of load, speed, moment of inertia, location of pivot, elevator setting, and tail area. A critical trim was found which was unaltered by elevator setting or tail area. Critical trim was lowered by moving pivot either forward or down or increasing radius or gyration. Increase in mass and moment of inertia increased amplitude of oscillations. Complete results are tabulated and shown graphically.

  8. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander

    2017-04-01

    vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some

  9. 佳木斯市榆紫叶甲生物学特性及其防治对策%Biological Characteristics and Its Control Countermeasures of Purple Elm Leaf Beetle in Jiamusi

    Institute of Scientific and Technical Information of China (English)

    刘钦玲

    2012-01-01

    对佳木斯危害园林植物的榆紫叶甲进行调查,它是一种典型单食性昆虫,专一食取榆树,近年来在黑龙江发生猖獗,对园林景区、生态公益环境造成一定程度危害,化学防治难以达到效果。因此阐述了榆紫叶甲的形态特征,生物学特性,并根据其发生规律,生活习性提出了实用技术防治措施。%The survey on Jiamusi harm garden plants purple elm leaf beetle was conducted, it is a typical singlefeeding insects,specific food take elm,it rampant occurred recent years in Heilongjiang,the garden area and the ecological environment were public hazards to a certain extent,chemical prevention was difficult to achieve the desired effect. So, the morphological characteristics and biological characteristics of elm leaf beetle purple were described. Then according to its occurrence and habits, practical technique for the control was put forward.

  10. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    I. Obernosterer

    2007-08-01

    Full Text Available The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold and nitrogen (1.4 to 7, and POC:PON ratios were consistently higher in the surface microlayer as compared to subsurface waters (5 m. The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76% to those in subsurface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation was consistently lower in the surface microlayer than in subsurface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in subsurface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. However, even short time periods in the surface microlayer result in differences in bacterial groups accounting for leucine incorporation, probably as a response to the differences in the physical and chemical nature of the two layers.

  11. Effect of radiation light characteristics on surface hardness of paint-on resin for shade modification.

    Science.gov (United States)

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji

    2005-12-01

    The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.

  12. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall

    Institute of Scientific and Technical Information of China (English)

    Ying-chien CHUNG; Ya-ping SU; Chiing-chang CHEN; Guang JIA; Huey-lan WANG; J C Gaston WU; Jaung-geng LIN

    2004-01-01

    AIM: Five representative waterborne pathogens were used to illustrate the relationship between chitosan's antibacterial activity and the surface characteristics of the bacterial cell wall. METHODS: Chitosan was prepared with averaged 75 % or 95 % deacetylated degree to examine its antibacterial activity against waterborne pathogens.Fresh microbial inoculants for the antibacterial assessment were prepared on nutrient agar at 37 °C for 24 h. The evaluation items of antibacterial mechanism included hydrophilicity and negative charge analysis of cell surface, and adsorptive characteristics of chitosan to bacterial cell. All the experiments were applied in triplicate tests at least.RESULTS: Although cell wall hydrophilicity was similar among Gram-negative bacteria, the distribution of negative charge on their cell surfaces was quite different. More negatively charged cell surfaces had a greater interaction with chitosan, a phenomenon further confirmed by transmission electron micrography (TEM). CONCLUSION:Results showed the hydrophilicity in Gram-negative bacteria was much higher than in Gram-positive ones. The correlation coefficient 0.988 between the amount of absorbed chitosan and its inhibition efficiency indicated a close relationship.

  13. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus

    Science.gov (United States)

    Xiang, Du; Han, Cheng; Wu, Jing; Zhong, Shu; Liu, Yiyang; Lin, Jiadan; Zhang, Xue-Ao; Ping Hu, Wen; Özyilmaz, Barbaros; Neto, A. H. Castro; Wee, Andrew Thye Shen; Chen, Wei

    2015-03-01

    Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm2 V-1 s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

  14. [Residue characteristics and distributions of perfluorinated compounds in surface seawater along Shenzhen coastline].

    Science.gov (United States)

    Chen, Qing-Wu; Zhang, Hong; Chai, Zhi-Fang; Shen, Jin-Can; Yang, Bo

    2012-06-01

    In order to explore the residue characteristics and distributions of 15 perfluorinated compounds (PFCs) in 18 surface seawater samples along Shenzhen coastline, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) combined with solid phase extraction enrichment was applied in this research. The results indicated that residue level of PFCs in coastal surface seawater samples was significantly affected by human activities. Sigma PFCs residue levels in surface seawater from Shenzhen west coast, which locates below the estuary of Pearl River and Donghao River, are much higher than those from the east coast, which has low development and sparse population (P<0.05). Under natural conditions, sigma PFCs residue levels in coastal surface seawater samples from Shenzhen Bays are higher than those out of bays. The major residue species in surface seawater samples along Shenzhen coast were medium- and short-chain PFCs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanoic acid and perfluoropentanoic acid. Their similar environmental behavior (P<0.05, P<0.01) is likely associated with the production process of PFCs-related products. Furthermore, cluster analysis results show that PFOS (R2 = 0.4092) level can be used as a representative parameter for evaluating PFCs contamination status in surface seawater along Shenzhen coast.

  15. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-12-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  16. Characteristics of free-surface wave on high-speed liquid lithium jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura@stu.nucl.eng.osaka-u.ac.jp [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Yoshihashi-Suzuki, Sachiko [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kondo, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sugiura, Hirokazu; Yamaoka, Nobuo [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ida, Mizuho; Nakamura, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Matsushita, Izuru [Mitsubishi Heavy Industries Mechatronics Systems, Ltd., 1-16 5-chome, Komatsu-dori, Hyogo-ku, Kobe, Hyogo 652-0865 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-10-01

    The characteristics of the surface waves on a high-speed liquid lithium wall jet were examined in a Li circulation loop at Osaka University for the International Fusion Materials Irradiation Facility (IFMIF). Surface fluctuations were measured by a contact-type liquid level sensor at 175 mm downstream from the nozzle exit, which corresponds to the deuteron beam's axis in the IFMIF, and observed with a high-speed video (HSV) camera. Both the observation and measurement results indicated that the surface fluctuations were composed of various scale turbulent fluctuations. The measurement results especially showed good agreement with the log-normal distribution which is one of the turbulent intermittency theories. The dominant wavelength was found to be shorter with increase in the flow velocity, and reached approximately 4 mm at the velocity of 15 m/s, which gave close agreement with the visually observed wavelength.

  17. Thermal Characteristics of a Primary Surface Heat Exchanger with Corrugated Channels

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-12-01

    Full Text Available This paper presents the heat transfer and pressure drop characteristics of a primary surface heat exchanger (PSHE with corrugated surfaces. The PSHE was experimentally investigated for a Reynolds number range of 156–921 under various flow conditions on the hot and cold sides. The inlet temperature of the hot side was maintained at 40 °C, while that of the cold side was maintained at 20 °C. A counterflow was used as it has a higher temperature proximity in comparison with a parallel flow. The heat transfer rate and pressure drop were measured for various Reynolds numbers on both the hot and cold sides of the PSHE, with the heat transfer coefficients for both sides computed using a modified Wilson plot method. Based on the results of the experiment, both Nusselt number and friction factor correlations were suggested for a PSHE with corrugated surfaces.

  18. Distribution and Pollution Characteristics Analysis of Heavy Metals in Surface Sediment in Bi River

    Science.gov (United States)

    Huang, Qianrui; Danek, Tomas; Cheng, Xianfeng; Dong, Tao; Qi, Wufu; Zou, Liling; Zhao, Xueqiong; Zhao, Xinliang; Xiang, Yungang

    2016-10-01

    The author analyzes distribution characteristics of heavy metals’ content in surface sediments of Bi River (Cu, Zn, As and Cd) and evaluates the potential ecological harm of heavy metal pollution in surface sediment by index method of potential ecological harm. Results show that heavy metals, such as Cu, Zn, As, Pb and Cd in surface sediments of Bi River are badly out of limitation. Especially, the heavy metals’ content in Jinding mining area is far higher than the national first class standard. The content of heavy metal is still high in the intersection of Bi River and Lancang River, which have certain influence on the Lancang River sediment and its water system. And, Pb and Cd, as the main pollutants, should be regarded as a key research subject.

  19. Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei

    2008-01-01

    Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.

  20. Euler characteristics of Hilbert schemes of points on surfaces with simple singularities

    CERN Document Server

    Gyenge, Ádám; Szendrői, Balázs

    2015-01-01

    This is an announcement of conjectures and results concerning the generating series of Euler characteristics of Hilbert schemes of points on surfaces with simple (Kleinian) singularities. For a quotient surface C^2/G with G a finite subgroup of SL(2, C), we conjecture a formula for this generating series in terms of Lie-theoretic data, which is compatible with existing results for type A singularities. We announce a proof of our conjecture for singularities of type D. The generating series in our conjecture can be seen as a specialized character of the basic representation of the corresponding (extended) affine Lie algebra; we discuss possible representation-theoretic consequences of this fact. Our results, respectively conjectures, imply the modularity of the generating function for surfaces with type A and type D, respectively arbitrary, simple singularities, confirming predictions of S-duality.

  1. Carcass and meat quality characteristics of Arsi-Bale goats supplemented with different levels of air-dried Moringa stenopetala leaf

    OpenAIRE

    Aberra Melesse; Sandip Banerjee; Degnet H/Meskel; Aster Abebe; Amsalu Sisay

    2016-01-01

    This study was conducted to assess the effect of air-dried Moringa stenopetala leaf (MSL) supplementation on carcass components and meat quality in Arsi-Bale goats. A total of 24 yearling goats with initial body weight of 13.6+/-0.25 kg were randomly divided into four treatments with six goats each. All goats received a basal diet of natural grass hay ad libitum and 340 g head^(−1) d^(−1) concentrate. The treatment diets contain a control diet without supplementation (T1) and diets supplement...

  2. Seasonal transition of precipitation characteristics associated with land surface conditions in and around Bangladesh

    Science.gov (United States)

    Ono, M.; Takahashi, H. G.

    2016-10-01

    This study examined the seasonal transition of precipitation characteristics and its association with land surface conditions in and around Bangladesh, where land surface conditions are predominantly wet. Hourly rain rate data from the Global Satellite Mapping of Precipitation Microwave-Infrared Combined Product and 10 day soil moisture data from the Advanced Microwave Scanning Radiometer Earth Observing System were used over the 7 years from 2003 to 2009. Area mean values of soil moisture, and precipitation amount, frequency, and intensity were calculated for each 10 day period. Results showed that higher precipitation amount and frequency were observed over the wet soil conditions, which indicates that soil moisture was influenced by previous precipitation events. However, the soil moisture could also control the precipitation characteristics. The seasonal and interannual variations in all regions suggested that precipitation amount and frequency increased in moist soil conditions, which is associated with an increase of water vapor supplied from the moist land surface. Over a flat plain (87°E-91°E, 23°N-25°N), a higher afternoon precipitation intensity was observed over drier land surfaces. This relationship was observed on seasonal and interannual variations. This suggests that the land surface conditions in this region can affect the afternoon precipitation intensity to some extent, although changes of atmospheric conditions can be a major factor particularly for the seasonal changes. However, this relationship was not observed in mountainous regions. This can be explained by other factors, such as thermally induced local circulations by the surrounding topography, being stronger than the impact of land surface conditions.

  3. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    Science.gov (United States)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  4. A Comparative Study on the Leaf Characteristics and Root Vigor of Bowl Lotus under Hydroponics and Soil Culture%水培与土培碗莲叶片特性与根系活力的比较

    Institute of Scientific and Technical Information of China (English)

    张云峰; 李文玲; 孟伟芳; 孔德政

    2013-01-01

    [目的]研究水培和土培碗莲的生长特性。[方法]以碗莲品种'红霞'为试验材料,设置了水培和土培2个处理,测定其光合指标、叶绿素含量和根系活力,观察叶片组织结构和气孔特性。[结果]水培碗莲与土培碗莲的叶片生理指标没有差异;水培碗莲叶片气孔大且数目多,同时,栅栏组织与海绵组织厚度比值小,叶片组织结构疏松;水培碗莲的根系活力提早达到峰值,然后下降,而土培碗莲根系活力持续增长,生长旺盛。[结论]水培碗莲可以快速地很好地适应水培环境,但是,进入衰老期较快,生长周期较短。%[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the ex-perimental material. Two treatments, hydroponics and soil culture were set to mea-sure their photosynthetic indices, chlorophyl content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus un-der hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is smal , and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-cul-ture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indi-cated that hydroponic bowl lotus can adapt to the aquatic-culture environment wel and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.

  5. Micromorphology and histochemistry of leaf trichomes of Salvia aegyptiaca (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Janošević Dušica

    2016-01-01

    Full Text Available We performed a comprehensive study of trichomes considering the medicinal importance of the essential oils produced in glandular trichomes of Salvia aegyptiaca L. and lack of data about leaf trichome characteristics. Micromorphological and histochemical analyses of the trichomes of S. aegyptiaca were carried out using light and scanning electron microscopy. We report that the leaves contained abundant non-glandular unbranched trichomes and two types of glandular trichomes, peltate and capitate, on both leaf surfaces. The abaxial leaf side was covered with numerous peltate and capitate trichomes, while capitate trichomes were more abundant on the adaxial leaf side, where peltate trichomes were rarely observed. The non-glandular trichomes were unicellular papillae and multicellular, uniseriate, two-to-six-celled, erect or slightly leaning toward the epidermis. Peltate trichomes were composed of a basal cell, a short cylindrical stalk cell and a broad head of eight secretory cells arranged in a single circle. Capitate trichomes consisted of a one-celled glandular head, subtended by a stalk of variable length, and classified into two types: capitate trichomes type I (or short-stalked glandular trichomes and capitate trichomes type II (or long-stalked glandular trichomes. Histochemical tests showed that the secreted material in all types of S. aegyptiaca glandular trichomes was of a complex nature. Positive reactions to lipids for both types of glandular trichomes were obtained, with especially abundant secretion observed in peltate and capitate trichomes type II. [Projekat Ministarstva nauke Republike Srbije, br. 173015 i br. 173029

  6. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    Science.gov (United States)

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  7. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    Science.gov (United States)

    Gao, Baojiao; Bi, Concon; Fan, Li

    2015-03-01

    Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of "pre-graft polymerizing and post-imprinting". The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO2. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO2. The adsorption of cytisine on SAS-PGMA/SiO2 particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO2 particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO2. The binding and recognition characteristics of MIP-SASP/SiO2 towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO2 has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO2 particles for cytisine relative to matrine and oxymatrine, which were used as two contrast alkaloids, are 9.5 and 6.5, respectively.

  8. Surface characteristics and cell adhesion: a comparative study of four commercial dental implants.

    Science.gov (United States)

    Liu, Ruohong; Lei, Tianhua; Dusevich, Vladimir; Yao, Xiamei; Liu, Ying; Walker, Mary P; Wang, Yong; Ye, Ling

    2013-12-01

    the surface characteristics and different cell adhesion on the osseointegration between implant and bone. © 2013 by the American College of Prosthodontists.

  9. Why so strong for the lotus leaf?

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2008-11-01

    The authors discussed the potential reasons why the lotus leaf is so strong by means of scanning electron microscopy (SEM). The results showed that the good mechanical properties of lotus leaf should be attributed to its architecture, such as paralleled microtubes structure, umbrellalike structure, and hierarchically layered hexagon structure. The important observation from this work is that the surface of the rear face of the lotus leaf seems to be constituted by the layers of hexagons whose hierarchical pilling up of size decreases as we go deeper from surface. This is a typical fractal-like phenomenon.

  10. INFLUENCE OF MIXING PARAMETERS ON THE RHEOLOGICAL AND SURFACE APPEARANCE CHARACTERISTICS OF RUBBER COMPOUNDS UNSHAPED PROFILES

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2014-01-01

    Full Text Available Influence the degree of dispersion of the carbon black on the rheological characteristics of the surface appearance and rubber mixtures based on ethylene-propylene rubber EPDM-50 was investigated. Effect of mixing time on the degree of dispersion of the carbon black elastic-viscous and extrusion characteristics of rubber compounds were found. Component tangent of the angle of mechanical losses tgδ to evaluate the rheological and technological properties of the rubber compounds used. Relationship changes tgδ valuesand properties of rubber compounds in the preparation of the compositions of rubber with carbon black was shown. On the curves of the length of the mixing tgδ rubber filler identified three main areas of change in the rheological and techno-logical properties of rubber compounds. This allows you to monitor and make adjustments to the mode of preparation of the compositions in the real world of production. evaluation of the quality of mixing in surface appearance characteristics unshaped profiles was conducted. The resulting patterns formed the basis for the development of recommendations for the selection of optimal blending modes in the production and quality control of production of rubber compounds.

  11. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  12. 叶面施肥和遮光对孔雀草生理特性的影响%Effects of Leaf Fertilization and Shading on Physiological Characteristics of Tagetes patula

    Institute of Scientific and Technical Information of China (English)

    周志凯; 任旭琴; 沙颖

    2011-01-01

    The effects of leaf fertilization and shading on the physiological characteristics of Tagetes patula L. were analyzed.The results showed that the contents of MDA, amino acid and Pro were decreased and the POD activity was intensified under shading. The chlorophyll content was increased, and the contents of MDA, amino acid and Pro were reduced after using leaf fertilizer, while the POD activity was weakened. The leaf fertilization and shading had an interactional effect on the physiological metabolizing of T. patula. That means both of good shading and sufficient fertilizer were important growth condition for T. patula.%通过对孔雀草(Tagetes patula L.)进行叶面施肥和遮光处理,研究了施肥和遮光对孔雀草生理指标的影响.结果表明,遮光使孔雀草叶片的丙二醛(MDA)、游离氨基酸、游离脯氨酸(Pro)含量和过氧化物酶(POD)活性显著增加;叶面施肥使孔雀草叶片中的叶绿素含量显著增加,使叶片的MDA、游离氨基酸、Pro含量下降,POD活性减弱;叶面施肥和遮光对孔雀草的生理代谢存在一定的交互效应,说明充足施肥和光照是保证孔雀草生长良好的重要因素.

  13. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Bi, Concon [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Fan, Li [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China)

    2015-03-30

    Highlights: • An elaborate molecular design was well done for molecule surface-imprinting. • The new method of “pre-graft polymerizing and post-imprinting” was used. • Cytisine molecule surface-imprinted material was prepared. • Cytisine surface-imprinting depends on electrostatic interaction between host–guest. • The imprinted material has special recognition selectivity for template cytisine. - Abstract: Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of “pre-graft polymerizing and post-imprinting”. The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO{sub 2}. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO{sub 2}. The adsorption of cytisine on SAS-PGMA/SiO{sub 2} particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO{sub 2} particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO{sub 2}. The binding and recognition characteristics of MIP-SASP/SiO{sub 2} towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO{sub 2} has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO{sub 2} particles for cytisine relative to matrine and oxymatrine, which

  14. Relationship of Leaf Photosynthetic Characteristics and Root Physiological Traits with Grain Yield in Super Rice%超级稻叶片光合特性和根系生理性状与产量的关系

    Institute of Scientific and Technical Information of China (English)

    付景; 陈露; 黄钻华; 王志琴; 杨建昌

    2012-01-01

    为阐明超级稻产量形成机制,以4个超级稻品种[两优培九和Ⅱ优084(杂交籼稻)、淮稻9号和武粳15(粳稻)]为材料,2个高产品种[汕优63(杂交籼稻)和扬辐粳8号(粳稻)]为对照,观测了不同生育时期叶片光合性状和根系生理性状的变化特点.结果表明,4个超级稻品种的平均总颖花量和产量较两个对照品种分别高出43.5%和16.1%,但超级稻的结实率较对照品种低15.3个百分点.超级稻品种在生育前期叶片中叶绿素a含量、叶绿素b含量、总叶绿索含量、类胡萝卜素含量、光合速率、蒸腾速率、气孔导度和根系中单位干重根系活力、每株根系活力、总根系吸收面积、活跃吸收面积和比表面积均高于对照品种,而在生育后期以上性状指标下降速率大于各自对照品种,直至齐穗后20 d前以上性状指标均小于各自对照品种.说明超级稻强大的产量库容与其生育前中期较强的叶片光合能力和较好的根系生理性状密切相关,生育后期叶片光合能力和根系生理活性下降快导致其结实率下降,从而限制了其产量潜力的发挥.提高生育后期特别是结实后期根系生理活性是进一步提高超级稻产量的重要途径.%The success in super rice breeding has been considered as a great progress in rice production in China. This study aimed to understand the mechanism underlying the yield formation of super rice. Four super rice cultivars, Liangyoupeijiu and Ilyou 084 (indica hybrids), Huaidao 9 and Wujing 15 (japonica), and two elite check cultivars, Shanyou 63 (Mica hybrids) and Yangfujing 8 (japonica), were grown in field. Leaf photosynthetic characteristics and root physiological traits were investigated at different growth stages. The results showed that average total spilcelet number and grain yield of the four super rice cultivars were 43.5% and 16.1%, respectively, more than those of two elite check cultivars, but the seed

  15. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train

    Science.gov (United States)

    Dong, Lei; Gao, Guoqiang; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-07-01

    High-speed railway today has become an indispensable means of transportation due to its remarkable advantages, including comfortability, convenience and less pollution. The increase in velocity makes the air drag become the main source of energy consumption, leading to receiving more and more concerns. The surface dielectric barrier discharge has shown some unique characteristics in terms of active airflow control. In this paper, the influences of surface dielectric barrier discharge on the aerodynamic characteristics of a scaled train model have been studied. Aspects of the discharge power consumption, the temperature distribution, the velocity of induced flow and the airflow field around the train model were considered. The applied AC voltage was set in the range of 20 kV to 28 kV, with a fixed frequency of 9 kHz. Results indicated that the discharge power consumption, the maximum temperature and the induced flow velocity increased with increasing applied voltage. Mechanisms of applied voltage influencing these key parameters were discussed from the point of the equivalent circuit. The airflow field around the train model with different applied voltages was observed by the smoke visualization experiment. Finally, the effects of surface dielectric barrier discharge on the train drag reduction with different applied voltages were analyzed.

  16. Surface chemical structure and doping characteristics of boron-doped Si nanowires fabricated by plasma doping

    Science.gov (United States)

    Oh, Seung-Hoon; Ma, Jin-Won; Bae, Jung Min; Kang, Yu-seon; Ahn, Jae-Pyung; Kang, Hang-Kyu; Chae, Jimin; Suh, Dongchan; Song, Woobin; Kim, Sunjung; Cho, Mann-Ho

    2017-10-01

    We investigated the conduction characteristics of plasma-doped Si nanowires (NWs) after various rapid thermal annealing (RTA) times. The plasma doping (PD) process developed a highly-deposited B layer at the NW surface. RTA process controls electrical conductivity by mediating the dopant diffusion from the surface layer. The surface chemical and substitutional states of the B plasma-doped Si NWs were analyzed by x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. To elucidate the detailed structure of the NWs, we analyzed the change in the optical phonon mode caused by the incorporated B atoms. For this purpose, we examined Fano resonance by the investigation of the asymmetry, line-width, and phonon wavenumber in Raman spectra. The changes in symmetry level of the Raman peak, phonon lifetime, and internal strain were closely related to the number of electrically activated borons, which was drastically increased with RTA time. The change in electrical and optical characterizations related to the doping characteristics of the NWs was investigated using a 4-point probe and terahertz time-domain spectroscopy (THz-TDS). The resistivity of the NWs was 3000 times lower after the annealing process compared to that before the annealing process, which is well consistent with the optical conductivity data. The data provide the potential utility of PD in conformal doping for three-dimensional nanodevices.

  17. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    Science.gov (United States)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  18. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.

    Science.gov (United States)

    Akiyama, Haruhiko; Yamamoto, Koji; Kaneuji, Ayumi; Matsumoto, Tadami; Nakamura, Takashi

    2013-01-01

    In cemented total hip arthroplasty (THA), a polished tapered femoral stem with a design based on the taper-slip concept enables extremely reliable and durable fixation. In contrast, cemented femoral stems made from titanium alloys are not favored because of reports describing insufficient clinical outcomes. However, we have reported excellent clinical and radiological outcomes for cemented titanium stems made using the composite-beam concept. This study examines the characteristics of cemented titanium femoral stems with a smooth surface. The bonding strength between titanium alloys with different surface finishes and bone cement was evaluated by use of push-out and detachment tests. Torsional stability tests were performed to evaluate the initiation and propagation of disruption of the fixation of cemented stems at the cement-implant interface. The wear resistance was investigated by use of wear-friction tests performed using a multidirectional pin-on-disc machine. The bone strain loaded on to the femoral cortex was measured by use of an implanted Sawbone and analyzed by use of the finite element method. The push-out and detachment tests revealed increasing cement adhesion strength with increasing degree of roughness of the metal surface. The torsional stability tests indicated that a load >1,000 N led to progressive debonding between the cement and the implant with a smooth surface finish. Interestingly, wear-friction tests revealed the wear rate for polished titanium surfaces was clearly higher than for smooth surfaces. In addition, the greater elasticity of titanium stems compared with cobalt-chromium stems transmitted the external load to the proximal side of the femur more effectively. The smooth surface finish of the stems is an important factor for the satisfactory clinical and radiological outcomes of cemented titanium femoral stems. The greater elasticity of a titanium stem effectively transmits the external load to the medial side of the femur.

  19. Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wang, Tongqing; Jiang, Liang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn

    2015-10-01

    Highlights: • The Ru surface chemical and mechanical property varies with KIO{sub 4} slurry pH. • In alkaline slurry, the corrosion proceeds uniformly like a direct dissolution. • In neutral and acidic slurries, Ru exhibits passivation behavior. • MRR is highest in neutral slurry due to inhomogeneous RuO{sub 2}·2H{sub 2}O/RuO{sub 3} passivation. • Weak alkaline slurry is preferred to get good MRR and avoid toxic RuO{sub 4} formation. - Abstract: When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO{sub 4}-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO{sub 2}·2H{sub 2}O/RuO{sub 3} inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO{sub 4}.

  20. Characteristics and Relationships of Foliar Water and Leaf Functional Traits of Desert Plants%荒漠植物叶片水分和功能性状特征及其相互关系

    Institute of Scientific and Technical Information of China (English)

    李善家; 苏培玺; 张海娜; 周紫鹃; 解婷婷

    2013-01-01

    Selected 14 dominant desert plant species in the middle reaches of Heihe River Basin, and 8 foliar water and leaf functional traits including stable carbon isotope composition (δ13C), total water content (TWO), relative water content (RWC), dry weight water content (DWWC), leaf dry matter content (LDMC), leaf water potential (LWP), specific leaf area (SLA) and specific leaf volume (SLV) were measured, studying on the characteristics and relationships of leaf functional traits of desert plants, and finding typical and crucial leaf functional traits which reflect plant adaptations to the harsh environment. The present results showed that foliar δ13C values of C4 plants ranged from -18%~15‰, including Salsola passerina, Haloxylon ammodendron and Calligo-num mongolicum, and foliar δ13C values of the other C3 plants ranged from -29‰~24‰. Among them, δ13C values of Hedysarum scoparium and Reaumuria soongorica exhibited the minimum and maximum values of -28.34‰and -24.63‰, respectively. The relationship between the traits obtained from C3 plants revealed that SLV was significantly negatively correlated with LDMC (P<0.0l), and positively correlated with TWC and DWWC (P<0.01). SLA was negatively correlated with LDMC (P=0.02), and δ13C was negatively correlated with LWP (P<0.01). SLV may serve as a key index of the characteristics of leaf traits of desert plants. Both the characteristics of leaf water content and functional traits and the responses to habitats demonstrate ecological strategies and adaptive ways of desert plants.%选取黑河流域中游荒漠区14种优势植物,测定了8个叶片水分与功能性状指标:稳定碳同位素组成(δ13C)、总含水量(TWC)、相对含水量(RWC)、干重含水量(DWWC)、叶干物质含量(LDMC)、叶片水势(LWP)、比叶面积(SLA)、比叶体积(SLV),探讨荒漠植物叶片水分与功能性状的特征以及相互之间的内在联系,探寻反映荒漠植物适应严酷环境的典型

  1. Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteris-tics of the resultant calli

    Institute of Scientific and Technical Information of China (English)

    Shashita JAYARAMAN; Nurul Hazwani DAUD; Rasmina HALIS; Rozi MOHAMED

    2014-01-01

    The endangered tropical tree, Aquilaria malaccensis, produces agarwood for use in fragrance and medicines. Efforts are currently un-derway to produce valuable agarwood compoundsn tissue culture. The purpose of this study was to develop an optimal growth medium, specif-ically, the best hormone combination for callus suspension culture. Using nursery-grown A. malaccensis, sterilized leaf explants were first incu-bated on basic Murashige and Skoog (MS) gel medium containing 15g/L sucrose and at pH 5.7. Different auxin types including 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-butyric acid (IBA), were tested at various concentrations (0.55, 1.1 and 1.65 µM) using the basic medium. Leaf explants were incubated for 30 days in the dark. Callus induced by 1.1 µM NAA had the highest biomass dry weight (DW) of 17.3 mg;however the callus was of a compact type. This auxin concentration was then combined with either 6-benzylaminopurine (BAP) or kinetin at 0.55, 1.1, 2.2 or 3.3 µM to induce growth of friable callus. The 1.1µM NAA+2.2µM BAP com-bination produced friable callus with the highest biomass (93.3mg DW). When testing the different carbon sources and pHs, sucrose at 15g/L and pH at 5.7 yielded highest biomasses at 87.7mg and 83mg DW, respec-tively. Microscopic observations revealed the arrangement of the friable cells as loosely packed with relatively large cells, while for the compact callus, the cells were small and densely packed. We concluded that MS medium containing 15 g/L sucrose, 1.1 µM NAA + 2.2 µM BAP hor-mone combination, and a pH of 5.7 was highly effective for inducing friable callus from leaf explants of A. malaccensis for the purpose of establishing cell suspension culture.

  2. Radiation Characteristic Improvement of X-Band Slot Antenna Using New Multiband Frequency-Selective Surface

    Directory of Open Access Journals (Sweden)

    Elham Moharamzadeh

    2014-01-01

    Full Text Available A new configuration of frequency-selective surfaces (FSSs is designed and presented with multiresonance characteristics which covers all of the frequency domain of X-band from 8 to 12 GHz. The proposed FSS comprises three conductor-based split ring resonators, connected together. In this design, two unit cells of the FSS with different lengths are employed side by side to design the FSS. The FSS is used to enhance the gain of the new designed triangle slot antenna at X-band. The proposed FSS is analyzed by using reflected-wave unit-cell box method. The single, double, and array of the FSS cells are studied. Next, the designed FSS along with the antenna is analyzed. The measurement and simulated results of the impedance and radiation characteristics, especially the increment of the gain, are presented.

  3. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  4. Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen.

    Science.gov (United States)

    Wagner, Diane; DeFoliart, Linda; Doak, Patricia; Schneiderheinze, Jenny

    2008-08-01

    The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant damage during outbreaks. We studied the effect of epidermal mining on aspen growth and physiology during an outbreak of P. populiella in the boreal forest of interior Alaska. Experimental reduction of leaf miner density across two sites and 3 years significantly increased annual aspen growth rates relative to naturally mined controls. Leaf mining damage was negatively related to leaf longevity. Leaves with heavy mining damage abscised 4 weeks earlier, on average, than leaves with minimal mining damage. Mining damage to the top and bottom surfaces of leaves had different effects on physiology. Mining on the top surface of the leaf had no significant effect on photosynthesis or conductance and was unrelated to leaf stable C isotope ratio (delta(13)C). Mining damage to the bottom leaf surface, where stomata are located, had significant negative effects on net photosynthesis and water vapor conductance. Percent bottom mining was positively related to leaf delta(13)C. Taken together, the data suggest that the primary mechanism for the reduction of photosynthesis by epidermal leaf mining by P. populiella is the failure of stomata to open normally on bottom-mined leaves.

  5. Relationship between the leaf stomatal characteristics of Eucalyptus and their resistance to diebick%桉树叶片的气孔特征与其对焦枯病抗性的关系

    Institute of Scientific and Technical Information of China (English)

    冯丽贞; 黄榕辉; 郭文硕

    2009-01-01

    Study on the relationship between stomatal characteristics of different resistance types of Eucalyptus and their resistance to diebick showed that the stoma densities of upper leaf epidermis of high resistant cultivars were clearly greater than that of lower epidermis. The stoma densities of upper leaf epidermis of all the 11 cultivars were greater than that of lower epidermis. The sizes and stoma densities of lower epidermis were not related to their resistance.%对不同抗病类型桉树叶片的气孔特征与其对焦枯病抗性的关系的研究表明,桉树抗病种系上表皮气孔密度明显高于其它种系,各种系下表皮气孔密度明显高于上表皮,下表皮不同抗感种系在气孔大小和气孔密度上与桉树对焦枯病的抗性间不呈规律变化,表明气孔大小、密度与抗病性无关.

  6. 天女木兰叶斑病病菌生物学特性研究%Research on Leaf Spot Pathogen Biological Characteristics of Magnolia sieboldii

    Institute of Scientific and Technical Information of China (English)

    刘波

    2016-01-01

    Using Magnolia sieboldii leaf spot pathogen as the test materials of different carbon and nitrogen sources on Magnolia leaf spot pathogen growth;the results show that:lactose and glucose is the carbon source for mycelial growth and ammonium nitrate is the nitrogen source;glucose is the most suitable carbon source for spore germination and ammonium nitrate is the nitrogen source;The suitable temperature for mycelial growth is 25℃ and for spore germination is 20~25℃;all-optical conditions suitable for mycelial growth and spore germination;the pH values for the mycelium growth and spore germination are 8 and 7,respectively.%以天女木兰叶斑病病菌为试材,研究不同碳、氮源对天女木兰叶斑病病菌生长的影响;试验结果表明:适合菌丝生长碳源是乳糖与葡萄糖;适合菌丝生长的氮源是硝酸铵;最适合孢子萌发的碳源是葡萄糖;适合孢子萌发的氮源是硝酸铵;25益适宜菌丝的生长,适宜孢子萌发的温度是20~25益;全光适宜菌丝的生长和孢子萌发。适合菌丝的生长和孢子萌发PH8与PH7。

  7. Anisotropy Characteristics of Magnetostatic Surface Wave Propagating in YIG/Dielectric/Metal Layered Structure

    Institute of Scientific and Technical Information of China (English)

    Qing-Hui Yang; Huai-Wu Zhang; Ying-Li Liu

    2007-01-01

    The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG/dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix (G). From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained.The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.

  8. Determination of the statistical characteristics of the specular points of 3 dimensional Gaussian sea surface

    Science.gov (United States)

    Gardashov, G. R.; Gardashova, T. G.

    2009-10-01

    The inverse problem in the form of Fredholm integral equation of the first kind for determining the distribution density of the number of specular points of 3-D Gaussian sea surface is formulated and solved. The kernel of this equation is determined by the characteristic function of the distribution of radii of curvature at the specular points. On the basis of numerical experiments, and also by using images of the Sun glitters it is shown that on the known distribution density of the intensity of reflected light it is possible to define the distribution densities of both the number of specular points and the radii of curvature at the specular points.

  9. Surface electromyographic characteristics of swallowing in dysphagia secondary to brainstem stroke.

    Science.gov (United States)

    Crary, M A; Baldwin, B O

    1997-01-01

    Surface electromyography (SEMG) provides an noninvasive avenue for evaluating swallowing physiology. This report describes SEMG characteristics associated with swallow attempts in 6 dysphagic patients who had suffered brainstem stroke compared with 6 age and gender-matched controls. Results indicated that patients with dysphagia secondary to brainstem stroke differed in both amplitude and timing aspects of swallowing attempts from asymptomatic controls. Specifically, the results indicated that during swallow attempts, dysphagic patients produced more muscle activity over a shorter duration and with less coordination than controls. Potential physiological mechanisms of these results are discussed.

  10. High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris

    Science.gov (United States)

    1977-07-29

    theoretically and experimentally. Oil drums, logs, and aluminum-covered plastic gallon milk bottles were considered and measured. A comparison of the echoing...covered plastic bottle ,38 N R tEPO R1 8 131 0 DBSM L LJ v ’ da) B 6 GH1 0 DSM -- DBSM ib) 9.2 GHz Ils Fig. 29 - Vertically polarized return from wave...j2 ’ NRL Report 8131 (~High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris B. L. LEWIS. J. P. HANSEN. 1

  11. Dispersion states and surface characteristics of physically blended polyhedral oligomeric silsesquioxane/polymer hybrid nanocomposites

    Science.gov (United States)

    Misra, Rahul

    nanoscale tribomechanical characteristics in relation to the POSS structures. Chapter 5 probes the molecular miscibility, solution and solid-state chain dynamics in polystyrene solution blended with Oib- and Tsp-POSS based on classical thermodynamic principles. Chapter 6 extends the learnings from chapter 5 to utilize POSS as a dispersion aid to disperse TiO2 nanoparticles in polypropylene. Chapter 7 explores the surface properties of fluorinated and non-fluorinated POSS coated fabrics. Finally, chapter 8 explores a nature-inspired route to modify polymer surfaces utilizing hydrophobin proteins and their impact on surface morphology and nanotribological characteristics.

  12. CHARACTERISTICS OF FATIGUE SURFACE MICROCRACK GROWTH IN VICINAL INCLUSION FOR POWDER METALLURGY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    WangXishu; LiYongqiang

    2003-01-01

    Inclusion flaw is one of the worst flaws of powder metallurgy. The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts, especially fatigue failure. In this paper, an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope (SEM). It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion. According to the SEM images, the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail. The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method (FEM).

  13. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  14. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    Science.gov (United States)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  15. Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity

    Science.gov (United States)

    Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo

    2012-12-01

    We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  16. Discharge Characteristics in Atmospheric Pressure Glow Surface Discharge in Helium Gas

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; WANG Long

    2005-01-01

    @@ Atmospheric pressure glow discharge is observed for the first time in a surface discharge generator in flowing helium. Electrical and optical methods are used to measure the characteristics of atmospheric pressure glow discharge for different voltages. The results show that discharge current waveforms are asymmetric for the different polarities of the applied voltage. A continuous discharge profile with a width of several microseconds appears for per half cycle of the applied voltage when the voltage is increased to a certain value. The short-pulsed discharge and the continuous current would result from the Townsend breakdown and glow discharge mechanisms respectively. The properties of surface discharge in stagnant helium are completely different from that in flowing helium.

  17. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  18. Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum%Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum

    Institute of Scientific and Technical Information of China (English)

    郑楠; 黄学增; 穆海宝; 张冠军

    2011-01-01

    For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.

  19. The leaf characteristic comparison between the diploid plants and the tetraploid plants of Forsythia suspensa%连翘二倍体与四倍体叶片特征比较

    Institute of Scientific and Technical Information of China (English)

    周玉丽; 张丛哲; 任士福

    2011-01-01

    In 2009,using colchicine growing point of the mutagenic solution tretment method and the number of shoot - tip cell chromosome ploidy detection method as the determination identification methods bred the tetraploid Forsythia suspensaplants the first time. Cytological studies on the variation of plants were found that somatic chromosone number of 2n = 56 article the original diploid chromosome number of 2n = 28 article, therefore, variation plants (2n = 56). Ploidy analysis by flow cytometry verified, Forsythia suspensa relative content of tetraploid somatic cell is diploid DNA twice. In this experiment, Comparisons the leaf characteristics between diploid and Tetraploid plants. The results showed that: the leaf thickness of tetraploid plants of Forsythia suspensa was significantly greater than that of diploid plants of Forsythia suspensa. The leaf chlorophyll content in tetraploids was significantly higher than that of diploids.The leaf water content of tetraploids and diploids were not significantly differant.%2009年采用秋水仙素溶液处理生长点的诱变方法和茎尖细胞染色体计数检测及流式细胞仪倍性鉴定方法首次诱导出连翘多倍体.经茎尖细胞染色体计数检测,变异植株茎尖细胞染色体数目为2n=6条,而原二倍体的染色体数目为2n= 28条,因此,变异植株(2n= 56)为四倍体.经流式细胞仪倍性分析验证,连翘四倍体体细胞DNA相对含量是二倍体的二倍.本文对诱导出的四倍体连翘植株叶片特征与二倍体连翘做出比较,结果表明:连翘四倍体叶片厚度极显著高于连翘二倍体叶片厚度,连翘四倍体叶片叶绿素含量极显著高于连翘二倍体连翘叶片;连翘四倍体叶片和二倍体叶片含水量差异不显著.

  20. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  1. Optimization of burnishing parameters and determination of select surface characteristics in engineering materials

    Indian Academy of Sciences (India)

    P Ravindra Babu; K Ankamma; T Siva Prasad; A V S Raju; N Eswara Prasad

    2012-08-01

    The present study is aimed at filling the gaps in scientific understanding of the burnishing process, and also to aid and arrive at technological solutions for the surface modifications based on burnishing of some of the commonly employed engineering materials. The effects of various burnishing parameters on the surface characteristics, surface microstructure, micro hardness are evaluated, reported and discussed in the case of EN Series steels (EN 8, EN 24 and EN 31), Aluminum alloy (AA6061) and Alpha-beta brass. The burnishing parameters considered for studies principally are burnishing speed, burnishing force, burnishing feed and number of passes. Taguchi technique is employed in the present investigation to identify the most influencing parameters on surface roughness. Effort is also made to identify the optimal burnishing parameters and the factors for scientific basis of such optimization. Finally, a brief attempt is made to construct the Burnishing maps with respect to strength level (in this case, average micro hardness of unburnished material).

  2. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Sylvia Dundeková

    2015-05-01

    Full Text Available Stainless steels from 316 group are very often and successfully uses for medical applications where the good mechanical and chemical properties in combination with non-toxicity of the material assure its safe and long term usage. Corrosion properties of AISI 361L stainless steel are strongly influenced by surface roughness and treatment of the engineering parts (specimens and testing temperature. Electrochemical characteristics of ground, mechanically polished and passivated AISI 316L stainless steel specimens were examined with the aim to identify the polarization resistance evolution due to the surface roughness decrease. Results obtained on mechanically prepared specimens where only natural oxide layer created due to the exposure of the material to the corrosion environment was protecting the materials were compared to the passivated specimens with artificial oxide layer. Also the influence of temperature and stabilization time before measurement were taken into account when discussing the obtained results. Positive influence of decreasing surface roughness was obtained as well as increase of polarization resistance due to the chemical passivation of the surface. Increase of the testing temperature and short stabilization time of the specimen in the corrosion environment were observed negatively influencing corrosion resistance of AISI 316L stainless steel.

  3. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  4. Comparison of surface ultrastructure of stem and leaf in 4 varieties of Vitis vinifera%4个葡萄品种茎叶表面微结构的比较

    Institute of Scientific and Technical Information of China (English)

    邵邻相; 李美; 徐玲玲

    2012-01-01

    It was studied the differences of stem and leaf surface ultrastructure of 4 varieties of Vitis vinifera: Superfujiminori, Fujiminori, Izunishiki, Pioneer. Fresh stems and leaves of 4 varieties of Vitis vinifera were observed by scanning electronic microscope (SEM). There were differences on the surface ultrastructure of leaf, stem, tendril, the main vein and each grape had some special ultrastructures. There were sunk stoma on main vein of Pioneer; the epidermic cells of Fujiminori had inerratic dents j the bristles of Izunishiki were thick and strong; the cord-like ornamentation of Superfujiminori were wavy-looking. Compared with Fujiminori, the surface ultrastructure of leaf, stem, tendril of Superfujiminori were different. Surface ultrastructure of stem and leaf would offer more morphological evidences for distinguishing different varieties of Vitis vinifera.%用扫描电镜观察比较了超藤、藤稔、伊豆锦和先锋4个品种葡萄的新鲜茎叶表面细微结构的差异.4个品种葡萄的叶、茎、卷须和叶主脉的表面细微结构不同,各自具有独特的细微构造:先锋叶上表面主脉具有凹陷型的气孔;藤稔茎表皮细胞表面具有规则的凹陷;伊豆锦刚毛粗壮;超藤卷须表面的索条状纹饰呈波状.新品种超藤的叶、茎和卷须表面的微结构与其母本藤稔有着较显著的区别.4个品种葡萄茎叶表面细微结构存在的明显差异,为葡萄品种鉴别提供了更多的形态学依据.

  5. Leaf Photosynthetic Characteristics of Mid-season Indica Rice Varieties Applied at Different Decades%不同年代中籼水稻品种的叶片光合性状

    Institute of Scientific and Technical Information of China (English)

    剧成欣; 陶进; 钱希旸; 顾骏飞; 张耗; 赵步洪; 刘立军; 王志琴; 杨建昌

    2016-01-01

    旨在探明中熟籼稻在品种改良过程中籽粒产量和叶片光合性能的变化特点。以江苏省近70年来不同年代在生产上应用的12个代表性中籼水稻品种(含杂交稻组合)为材料,依据应用年代将其分为20世纪50—60年代、60—70年代、80—90年代和21世纪00—10年代(超级稻)4种类型,研究其产量、冠层结构及叶片光合特性的变化。结果表明,随品种的改良,中籼水稻品种的产量不断提高。群体总颖花量、面积指数和粒叶比显著增加,叶基角减小,群体透光率、光合势(绿叶面积持续期)、抽穗期剑叶光合速率、气孔导度、蒸腾速率和 PSII 最大和实际光化学效率以及荧光与非荧光淬灭系数增加。最大叶面积指数和全生育期总光合势与籽粒产量呈极显著正相关。灌浆期剑叶光合速率、气孔导度、PSII 最大和实际光化学量子效率以及荧光和非荧光淬灭系数与结实率或粒重呈显著相关。表明在品种改良过程中,株型和叶片光合性能的改善是中籼水稻产量提高的重要原因。%The objective of this study was to investigate the changes in grain yield and leaf photosynthetic characteristics of mid-season indica rice varieties during their improvement. Twelve typical indica varieties (including hybrid combinations) applied in the production in Jiangsu Province during the last 70 years were used, and classified into four types of 1950–1960s, 1960–1970s, 1980–1990s, and 2000–2010s (super rice) according to their application decades. The grain yield, canopy structure and leaf photosynthetic characteristics were determined. The results showed that the grain yield was progressively increased with the improvement of varieties. With the process of improvement of varieties, the total number of spikelets, leaf area index and grain-leaf ratio were markedly increased, while the leaf base angel was decreased. The improvement of varieties

  6. 巨桉凋落叶分解对假俭草生长及光合特性的影响%Effects of Eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Eremochola ophiuroides

    Institute of Scientific and Technical Information of China (English)

    李羿桥; 李西; 胡庭兴

    2013-01-01

    植物生长的本质是由光能驱动的复杂生理学过程,90%~95%干物质的积累来源于光合产物.本研究采用盆栽试验探讨了巨桉凋落叶分解对假俭草生长及光合特性的影响.4个添加不同凋落叶量的试验组被设置,包括了T1(30 g/盆),T2(60 g/盆),T3(90 g/盆)以及CK(0 g/盆);同时,以添加去除化感物质凋落叶的处理为空白试验.选取晴天测定假俭草光合参数以及在30,60,90 d时的生长指标.结果表明,分解中的巨桉凋落叶明显抑制假俭草的生长、生物量的积累以及光合色素的合成,且随凋落叶含量的增加抑制作用加大;处理组叶片的气孔导度及其对环境中光照和CO2改变的适应能力与对照组相比显著降低(P<0.05).综上,巨桉凋落叶化感作用减弱了假俭草叶片的光合作用,并抑制假俭草的生长.%The essence of crop production is a complex system that is driven by light energy.The accumulation of 90% of the dry matter comes from the production of photosynthesis.In this study,we investigated the effect of Eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Eremochola ophiuroides.Four treatments with different amounts of leaf litter were designed,including T1 (30 g/pot),T2 (60 g/pot),T3 (90 g/pot) and control (0 g/pot,CK),and the blank experiment groups with distilled fallen leaves were set as the above.The growth indexes were measured at 30,60 and 90 d after sowing,and the photosynthetic characteristics were tested on the mature leaf in the middle of stolon.The test results showed that increasing amounts of E.grandis leaf litter significantly inhibited the accumulation of biomass,growth,synthesis of photosynthetic pigments of E.ophiuroides seedlings (P<0.05).Meanwhile,the stomatal conductance and the adaptation capacity to the change of light and CO2 in the environment of CK were significantly lower than which of treatments.This demonstrated that the

  7. Importance of surface characteristics of QUARTZ DQ 12 for acute inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C.; Becher, A.; Scins, R.P.F.; Hoehr, D.; Unfried, K.; Knaapen, A.M.; Borm, P.J.A. [Institut fuer medizinische Forschung (IUF), Duesseldorf (Germany)

    2004-07-01

    Although quartz is known to induce inflammation in rat lungs, mechanisms are not yet fully understood. The importance of particle surface characteristics was investigated in vivo after intratracheal instillation of different preparations of quartz in rat lungs. Three days after instillation of 2 mg DQ12 quartz, or DQ12 coated with polyvinylpyridine-N-oxide (PVNO) or Aluminium lactate (AL), lungs of female Wistar rats were lavaged in situ to determine markers of inflammation. Control rats received saline or the coating substances alone. DQ12 induced a marked inflammatory response, as indicated by a significant increase in the number of neutrophils and macrophages, as well as in the levels of b-glucuronidase and myeloperoxidase. None of these inflammatory markers was increased for both coated quartz preparations, with the exception of neutrophil influx which was also increased after treatment with AL quartz. Our results indicate that surface characteristics are important in the onset of quartz-induced lung inflammation which could imply a different development of persistent inflammation. This will be investigated in later follow-up time points of the same animal study. (orig.)

  8. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-06-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  9. Determination of thermal/dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry

    2016-04-01

    Rapid development of ground based thermal cameras, drones and satellite data allows getting repeated thermal images of the surface of the lava flow. Available instrumentation allows getting a large amount of data during a single lava flow eruption. These data require development of appropriate quantitative techniques to link subsurface dynamics with observations. We present a new approach to assimilation of thermal measurements at lava's surface to the bottom of the lava flow to determine lava's thermal and dynamic characteristics. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. Using an adjoint method we develop a numerical approach to the mathematical problem based on the determination of the missing boundary condition and lava flow characteristics. Numerical results show that in the case of smooth input data lava temperature and velocity can be determined with a high accuracy. A noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. The proposed approach to assimilate measured data brings an opportunity to estimate thermal budget of the lava flow.

  10. Electrophysical characteristics of Azospirillum brasilense Sp245 during interaction with antibodies to various cell surface epitopes.

    Science.gov (United States)

    Guliy, Olga I; Matora, Larisa Y; Burygin, Gennady L; Dykman, Lev A; Ostudin, Nikolai A; Bunin, Viktor D; Ignatov, Vladimir V; Ignatov, Oleg V

    2007-11-15

    This work was undertaken to examine the electrooptical characteristics of cells of Azospirillum brasilense Sp245 during their interaction with antibodies developed to various cell surface epitopes. We used the dependences of the cell suspension optical density changes induced by electroorientation on the orienting field frequency (740, 1000, 1450, 2000, and 2800kHz). Cell interactions with homologous strain-specific antibodies to the A. brasilense Sp245 O antigen and with homologous antibodies to whole bacterial cells brought about considerable changes in the electrooptical properties of the bacterial suspension. When genus-specific antibodies to the flagellin of the Azospirillum sheathed flagellum and antibodies to the serologically distinct O antigen of A. brasilense Sp7 were included in the A. brasilense Sp245 suspension, the changes caused in the electrooptical signal were slight and had values close to those for the above changes. These findings agree well with the immunochemical characteristics of the Azospirillum O antigens and with the data on the topographical distribution of the Azospirillum major cell surface antigens. The obtained results can serve as a basis for the development of a rapid test for the intraspecies detection of microorganisms.

  11. Geochemical characteristics and zones of surface snow on east Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    KANG Jiancheng; LIU Leibao; QIN Dahe; WANG Dali; WEN Jiahong; TAN Dejun; LI Zhongqin; LI Jun; ZHANG Xiaowei

    2004-01-01

    The surface-snow geochemical characteristics are discussed on the East Antarctic Ice Sheet, depending on the stable isotopes ratios of oxygen and hydrogen, concentration of impurities (soluble-ions and insoluble micro-particle) in surface snow collected on the ice sheet. The purpose is to study geochemical zones on the East Antarctic Ice Sheet and to research sources and transportation route of the water vapor and the impurities in surface snow. It has been found that the ratio coefficients, as S1, d1 in the equation δD = S1δ18O + d1, are changed near the elevation 2000 m on the ice sheet. The weight ratio of Cl(-)/Na+ at the area below the elevation of 2000 m is close to the ratio in the sea salt; but it is about 2 times that of the sea salt, at the inland area up to the elevation of 2000 m. The concentrations of non-sea-salt Ca2+ ion (nssCa2+) and fine-particle increase at the interior up to the elevation 2000 m. At the region below the elevation of 2000 m, the impurity concentration is decreasing with the elevation increasing. Near coastal region, the surface snow has a high concentration of impurity, where the elevation is below 800 m. Combining the translating processes of water-vapor and impurities, it suggests that the region up to the elevation 2000 m is affected by large-scale circulation with longitude-direction, and that water-vapor and impurities in surface snow come from long sources. The region below the elevation 2000 m is affected by some strong cyclones acting at peripheral region of the ice sheet, and the sources of water and impurities could be at high latitude sea and coast. The area below elevation 800 m is affected by local coastal cyclones.

  12. Leaf water absorption and desorption functions for three turfgrasses

    Science.gov (United States)

    Liang, Xi; Su, Derong; Yin, Shuxia; Wang, Zhi

    2009-09-01

    SummaryPlant leaf can absorb water when the leaf is in contact with water. This happens when the rainfall is intercepted by plant leaves, where the intercepted part of rain remains on the leaf surface. When the intercepted water is either absorbed or subsequently evaporated into the atmosphere, the plant leaves can dissipate water through the desorption process until the plant is dry or rewatered. In this paper, two symptomatic models in the form of exponential functions for leaf water absorption and leaf water desorption were derived and validated by experimental data using leaves of three turfgrasses (Tall fescue, Perennial ryegrass and Kentucky bluegrass). Both the models and measured data showed that the rate of leaf water absorption was high at the low initial leaf water content and then gradually leveled off toward the saturated leaf water content. The rate of leaf water desorption was high at the high initial leaf water content then decreased drastically over time toward zero. The different plant leaves showed different exponents and other parameters of the functions which indicate the difference of plant species. Both the absorption and desorption rates were relatively higher for the Kentucky bluegrass and lower for the Tall fescue and Perennial ryegrass. The concept of specific leaf area ( SLA) was used to understand the saturated leaf water content ( C s) of the three turfgrasses. Linear relationships were found between C s and SLA. The leaf water absorption and desorption functions are useful for deriving physiological parameters of the plant such as permanent wilting leaf water content, naturally irreducible leaf water content, exponential leaf water absorption coefficient, and exponential leaf desorption coefficient, as well as for evaluating the effects of rainfall interception on plant growth and water use efficiency.

  13. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    Science.gov (United States)

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  14. Sensitivity of tropical cyclone characteristics to the radial distribution of sea surface temperature

    Indian Academy of Sciences (India)

    Deepika Rai; S Pattnaik; P V Rajesh

    2016-06-01

    Sea Surface Temperature (SST) is crucial for the development and maintenance of a tropical cyclone(TC) particularly below the storm core region. However, storm data below the core region is the mostdifficult to obtain, hence it is not clear yet that how sensitive the radial distribution of the SST impactthe storm characteristic features such as its inner-core structures, translational speed, track, rainfalland intensity particularly over the Bay of Bengal. To explore the effects of radial SST distributionon the TC characteristics, a series of numerical experiments were carried out by modifying the SSTat different radial extents using two-way interactive, triply-nested, nonhydrostatic Advanced WeatherResearch and Forecast (WRF-ARW) model. It is found that not only the SST under the eyewall (coreregion) contribute significantly to modulate storm track, translational speed and intensity, but also thoseoutside the eyewall region (i.e., 2–2.5 times the radius of maximum wind (RMW)) play a vital role indefining the storm’s characteristics and structure. Out of all the simulated experiments, storm wherethe positive radial change of SST inducted within the 75 km of the storm core (i.e., P75) produced thestrongest storm. In addition, N300 (negative radial changes at 300 km) produced the weakest storm.Further, it is found that SST, stronger within 2–2.5 times of the RMW for P75 experiment, plays adominant role in maintaining 10 m wind speed (WS10), surface entropy flux (SEF) and upward verticalvelocity (w) within the eyewall with warmer air temperature (T) and equivalent potential temperature(θe) within the storm’s eye compared to other experiments.

  15. Identification and Biological Characteristics of Fusarium verticillioides (Saccardo)Nirenberg Causing Leaf Blight on TiPlant(Cordvline fruticosa Chevalier)%朱蕉叶枯病菌的鉴定及生物学特性

    Institute of Scientific and Technical Information of China (English)

    童依婷; 晏冬华; 彭文煊; 黄静华; 黄洪滨; 易润华

    2016-01-01

    通过致病性测定、形态学特性和系统发育分析,确定引起朱蕉叶枯病的病原菌为轮状镰刀菌 Fusarium verticillioides(Saccardo) Nirenberg。研究表明,在测试的7种培养基中,PDA最有利于病原菌生长,PSCA最有利于产孢。以蜂蜜为碳源的培养基上生长最快,产孢量最大,而以柠檬酸钠作碳源时生长最慢,产孢量最小;以蛋白胨为氮源时生长最快,而以酵母膏为氮源时产孢量最大。病原菌的最适生长和产孢的温度为25℃,在pH值为8时生长速率最快,pH值为7时产孢量最大。光照对病原菌生长影响差异显著,对产孢量影响差异不显著。%The pathogen of leaf blight on ti plant(Cordyline fruticosa Chevalier)was recognized as Fusarium verticillioides(Saccardo)Nirenberg according to thepathogenicity tests,the biological characteristics and phylogenetic analysis.The results of biological characteristics showed that among the seven tested media, the pathogen grew fastest and sporulated richest on potato dextrose agar(PDA) medium and potatosugarCordyline fruticosa leaf agar(PSCA);the Czapek–Dox medium(CDM) with equal quality of honey to substitute as carbon source was most favorable for the mycelial growth and sporulation ofF. verticillioides, while with sodium citrate was most unfavorable among the eleven tested carbon sources;thebestnitrogen source for the mycelial growth and sporulation were peptone and yeast extract respectively among the tested nitrogen sources;thetemperature25℃wasoptimumfor the mycelial growth and sporulation;the mycelial growth was encouraged by pH 8.0 and the sporulation was by pH 7.0;light treatments had no significant effect onthe sporulation butit hadsignificant onthe mycelial growth of the pathogen of leaf blight on ti plant.

  16. Nonlinear friction characteristics between silica surfaces in high pH solution.

    Science.gov (United States)

    Taran, Elena; Kanda, Yoichi; Vakarelski, Ivan U; Higashitani, Ko

    2007-03-15

    Molecular-scale characteristics of friction forces between silica particles and silica wafers in aqueous solutions of the normal (pH 5.6) and high pH (pH 10.6) are investigated, using the lateral force measuring procedure of the atomic force microscope (AFM). Various significant differences of friction characteristics between solutions of normal and high pH's are found. In the case of solutions of normal pH, the friction force increases linearly with increasing loading force, as the Amonton's law for solid bodies indicates. However, in the case of high pH solutions, the increasing rate with the loading force is considerably reduced in the low loading region, but the value increases abruptly above a critical loading force to overcome the magnitude of friction force of normal pH above the region of very high loading. It is very interesting to know that this nonlinear force curve at high pH is independent of the atomic-scale roughness of surfaces, although the magnitude of friction is greatly influenced by the roughness in the case of normal pH. The reason why the friction at high pH is independent of the surface roughness is postulated to be due to the hairy-like layer formed on the silica surface. The existence of hairy-like layers at high pH is proven directly by the dynamic method of normal force measurements with AFM and the thickness is estimated to be at least ca. 1.3 nm.

  17. Effects of shading on seedling growth and leaf anatomical characteristics of Aquilaria sinensis%遮阴处理对土沉香幼苗生长和叶片解剖特征的影响

    Institute of Scientific and Technical Information of China (English)

    原慧芳; 魏丽萍; 田耀华; 岳海

    2013-01-01

    In order to understand the light requirement and adaptabihty of Aquilaria sinensis (Lour.) Spreng,seedlings morphology and leaf anatomical characteristics of Aquilaria sinensis seedlings under different light treatments (100%,50%,25% and 5% natural light) were studied.The results showed that different shade treatments had different effects on the leaf anatomical structure and seedling growth parameters of three Aquilaria sinensis provenances (Dabai,Dahuang and Yunnan).For all the three provenances,with the weakening of light intensity,the main veins,leaf thickness,palisade tissue thickness and leaf epidermal cells were generally decreased significantly (P < 0.05),the thickness of spongy tissue increased,and the lower leaf epidermis cell thickness showed varying change degrees.With the decrease of light intensity,leaf area ratio and leaf area increased in all the three provenances.For Yunnan provenance,the total biomass and absolute growth rate decreased as light intensity decreased,but for Dabai and Dahuang,growth parameter values under 50% and 25% light intensity were higher than that under 100% and 5% light intensity.The specific leaf weight and root weight ratio generally showed decrease trends with the decrease of light intensity in all the three provenances,except that the specific leaf weight of Dahuang in 50% light intensity was higher than other light treatments.In short,the seedlings of three Aquilaria sinensis provenances could make a series of changes in morphology to adapt to the light environment; Yunnan provenance had the best growth in natural light (100%),while Dabai and Dahuang were more suitable in moderate light intensity(50%).%研究不同光处理(100%,50%,25%和5%自然光)对土沉香幼苗形态和解剖特征的影响,以了解土沉香幼苗叶片形态结构对光的适应规律.结果表明,不同光强对3个土沉香种源(大白、大黄和云南)的解剖结构和生长参数有不同程度

  18. Spatial Aggregation of Land Surface Characteristics: Impact of resolution of remote sensing data on land surface modelling

    NARCIS (Netherlands)

    Pelgrum, H.

    2000-01-01

    Land surface models describe the exchange of heat, moisture and momentum between the land surface and the atmosphere. These models can be solved regionally using remote sensing measurements as input. Input variables which can be derived from remote sensing measurements are surface albedo, surface te

  19. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis

    Directory of Open Access Journals (Sweden)

    Saccucci Matteo

    2012-05-01

    Full Text Available Abstract Objective The purpose of this study was to determine the condylar volume in subjects with different mandibular divergence and skeletal class using cone-beam computed tomography (CBCT and analysis software. Materials and methods For 94 patients (46 females and 48 males; mean age 24.3 ± 6.5 years, resultant rendering reconstructions of the left and right temporal mandibular joints (TMJs were obtained. Subjects were then classified on the base of ANB angle the GoGn-SN angle in three classes (I, II, III . The data of the different classes were compared. Results No significant difference was observed in the whole sample between the right and the left sides in condylar volume. The analysis of mean volume among low, normal and high mandibular plane angles revealed a significantly higher volume and surface in low angle subjects (p  Class III subjects also tended to show a higher condylar volume and surface than class I and class II subjects, although the difference was not significant. Conclusions Higher condylar volume was a common characteristic of low angle subjects compared to normal and high mandibular plane angle subjects. Skeletal class also appears to be associated to condylar volume and surface.

  20. Aerodynamic characteristics of a large-scale hybrid upper surface blown flap model having four engines

    Science.gov (United States)

    Carros, R. J.; Boissevain, A. G.; Aoyagi, K.

    1975-01-01

    Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.

  1. Comparison of Flow Characteristics of Different Sphere Geometries Under the Free Surface Effect

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available Comparison of the experimental results of turbulent flow structures between a smooth sphere and a sphere with a vent hole, roughened, and o-ring is presented in the presence of a free-surface. Dye visualization and particle image velocimetry (PIV techniques were performed to examine effects of passive control methods on the sphere wake for Reynolds number Re = 5000 based on the sphere diameter with a 42.5mm in an open water channel. Instantaneous and time-averaged flow patterns in the wake region of the sphere were examined from point of flow physics for the different sphere locations in the range of 0≤h/D≤2.0 where h was the space between the top point of the sphere and the free surface. The ratio of ventilation hole to sphere diameter was 0.15, o-ring was located at 55° with a 2 mm from front stagnation point of the sphere and roughened surface was formed by means of totally 410 circular holes with a 3 mm diameter and around 2 mm depth in an equilateral triangle arrangement. The flow characteristics of instantaneous velocity vectors, vorticity contours, time-averaged streamline patterns, Reynolds stress correlations and streamwise and cross-stream velocity fluctuations for both the smooth and passively controlled sphere were interpreted.

  2. Comparison of Flow Characteristics of Different Sphere Geometries Under the Free Surface Effect

    Science.gov (United States)

    Ozgoren, M.; Dogan, S.; Okbaz, A.; Aksoy, M. H.; Sahin, B.; Akıllı, H.

    2013-04-01

    Comparison of the experimental results of turbulent flow structures between a smooth sphere and a sphere with a vent hole, roughened, and o-ring is presented in the presence of a free-surface. Dye visualization and particle image velocimetry (PIV) techniques were performed to examine effects of passive control methods on the sphere wake for Reynolds number Re = 5000 based on the sphere diameter with a 42.5mm in an open water channel. Instantaneous and time-averaged flow patterns in the wake region of the sphere were examined from point of flow physics for the different sphere locations in the range of 0≤h/D≤2.0 where h was the space between the top point of the sphere and the free surface. The ratio of ventilation hole to sphere diameter was 0.15, o-ring was located at 55° with a 2 mm from front stagnation point of the sphere and roughened surface was formed by means of totally 410 circular holes with a 3 mm diameter and around 2 mm depth in an equilateral triangle arrangement. The flow characteristics of instantaneous velocity vectors, vorticity contours, time-averaged streamline patterns, Reynolds stress correlations and streamwise and cross-stream velocity fluctuations for both the smooth and passively controlled sphere were interpreted.

  3. Trends of urban surface temperature and heat island characteristics in the Mediterranean

    Science.gov (United States)

    Benas, Nikolaos; Chrysoulakis, Nektarios; Cartalis, Constantinos

    2016-09-01

    Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001-2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade-1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade-1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.

  4. Rarefied flow and heat transfer characteristics over a vertical stretched surface

    Directory of Open Access Journals (Sweden)

    Wael Al-Kouz

    2016-08-01

    Full Text Available Similarity solution for the steady-state two-dimensional laminar natural convection heat transfer for a rarefied flow over a linearly vertical stretched surface is being proposed. Similarity conditions are obtained for the boundary layer equations for the vertical flat plate subjected to power law for the temperature variations. It is found that the similarity solution exists for linear temperature variation and linear stretching surface. The study shows that there are three different parameters affecting the flow and heat transfer characteristics for the rarefied flow over a vertical linearly stretched surface. These parameters represent the effects of the velocity slip (K1, temperature jump (K2, and the Prandtl number (Pr. The effects of these parameters are presented. It is found that the velocity slip parameter affects both the hydrodynamic and thermal behaviors of such flows. Correlations for the skin friction as well as Nusselt number are being proposed in terms of Grashof number (Grx, the slip velocity parameter (K1, and the temperature jump parameter (K2.

  5. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Tzong-Horng, E-mail: thliou@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taipei 24301, Taiwan (China); Yang, Chun-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taipei 24301, Taiwan (China)

    2011-04-25

    Rice husk is a form of agricultural biomass that provides an abundant silicon source. This study used rice husk as a raw material to prepare nanosilica without adding an extra surfactant. This work investigated a dissolution-precipitation technique as a function of acid treatment, sodium silicate concentration, gelation pH, aging temperature, and aging time to establish optimum conditions for preparing silica nanoparticles. Experimental results showed that silica produced by hydrochloric acid possesses higher surface area than that of sulfuric, oxalic, and citric acids. Surface characteristics of the sample depend mainly upon gelation pH. The highest surface area and pore volume of silica samples were 634 m{sup 2}/g and 0.811 cm{sup 3}/g. Pore diameters were controllable from 3 to 9 nm by adjusting the solution pH value. Particles had a uniform size of 5-30 nm. The objective of this study was to develop a method of nanosilica preparation that enhances the economic benefits of re-using rice husk waste.

  6. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments

    Science.gov (United States)

    Asatourian, Armen; Garcia-Godoy, Franklin; Sheibani, Nader

    2016-01-01

    Background Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. Material and Methods An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Results Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Conclusions Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging. Key words:Angiogenesis, dental implant, osseointergration. PMID:27031073

  7. Molecular characteristics and evolution of the mitochondrial control region in three genera (Hipposideridae: Hipposideros Aselliscus and Coelops) of leaf-nosed bats.

    Science.gov (United States)

    Sun, Keping; Luo, Li; Zhang, Zhenzhen; Liu, Sen; Feng, Jiang

    2013-08-01

    The mitochondrial control region (CR) was sequenced for three genera of Hipposideridae to give a detailed overview of its features. The CR of leaf-nosed bats (1288-1560 bp) was divided into three domains like that of other mammals. In addition to the common conserved blocks (ETAS1, ETAS2, F-B boxes, CSB1, CSB2, and CSB3) found in all species, a CSB1-like element was also detected in the conserved sequence blocks (CSB). Repeated motifs were examined in the ETAS of Aselliscus stoliczkanus (26 bp) and Hipposideros bicolor (80 bp) and were present in the CSB of all individuals (6, 8, 16, and 20 bp). Phylogenetic reconstructions using the CR sequences indicated that the phylogenetic relationships among Hipposideros species were consistent with the results of other molecular and phenetic analyses. Aselliscus and Coelops had a closer relationship. But the central domain could not be used for phylogenetic analyses at family and genus levels due to its high conservation.

  8. Residual stress and electromagnetic characteristics in loop type frequency selective surface embedded hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Mi; Seo, Yun Seok; Chun, Heoung Jae [Yonsei University, Seoul (Korea, Republic of); Hong, Ik Pyo [Kongju National University, Cheonan (Korea, Republic of); Park, Yong Bae [Ajoo University, Suwon (Korea, Republic of); Kim, Yoon Jae [Agency for defense development, Daejeon (Korea, Republic of)

    2015-01-15

    Residual stresses occur in frequency-selective surface (FSS)-embedded composite structures after co-curing due to differences between the coefficients of thermal expansion between composite skins and FSSs. Furthermore, the electromagnetic characteristics may be affected by the deformation of the FSS pattern by residual stresses. Therefore, we studied the changes in electromagnetic characteristics due to the deformation of FSS, using residual stresses to deform loop-type FSS-embedded hybrid composites. We considered the effects of loop-type FSS patterns of equal dimension as well as the stacking sequences of composite laminates on the electromagnetic characteristics of FSSs: Square loop, triangular loop and circular loop. The stacking sequences of composite laminates considered in this study were [0]{sub 8}, [0/90]{sub 4}, [+-45]{sub 4} and [0/+-45/90]{sub 2}. The FSS was located between composite laminates in the middle plane. To determine the residual stresses and deformations in the FSS embedded laminate structures, the thermal loading condition in the finite element analysis was induced by cooling the hybrid structures from 125 .deg. C to 20 .deg. C based on the cure cycle of the composite. Also, the electromagnetic reflection characteristics of the hybrid structures were predicted using deformed models by residual stresses, considering the effects of stacking sequence of composite laminates. The results showed that the maximum residual stresses and deformations were produced in the [0]{sub 8} composites with all three loop-types of FSS pattern. However, the maximum resonance frequency shifts occurred in the square and triangle loop-types with stacking sequence of [0]{sub 8} , while the maximum resonance frequency shift occurred in the circular loop-type with stacking sequence of [0/+-45/90]{sub 2}.

  9. Temporal and spatial characteristics of surface ozone depletion events from measurements over the Arctic Ocean

    Science.gov (United States)

    Halfacre, J. W.; Knepp, T. N.; Stephens, C. R.; Pratt, K. A.; Shepson, P.; Simpson, W. R.; Peterson, P. K.; Walsh, S. J.; Matrai, P. A.; Bottenheim, J. W.; Netcheva, S.; Perovich, D. K.; Richter, A.

    2012-12-01

    Arctic tropospheric ozone depletion events (ODEs) have been studied primarily from coastal sites since the mid 1980s with only a few studies occurring over the Arctic Ocean, the hypothesized site of initiation. Despite a multitude of studies, some basic characteristics of ODEs remain poorly defined, including their temporal, spatial, and meteorological characteristics. Several deployments of autonomous, ice-tethered buoys (O-Buoys) were used to elucidate such characteristics from both the Arctic Ocean and coastal sites. The apparent first order decays imply an ozone lifetime (median of 11 hours) that would correspond to a very large BrO concentration, relative to BrO observations obtained from the buoys. These results suggest that ODEs involve a large, unaccounted for source of bromine atoms, that there is a significant contribution from other mechanisms possibly not involving bromine, or that the majority of observed ODEs represent advection of previously-depleted air to the buoy site, even in the Arctic Ocean. Using backward air mass trajectories, the spatial scales for ODEs (defined by time periods with O3 ≤ 15 nmol/mol) were estimated to be ~1800 km (mode), suggesting that most of the lower troposphere above the Arctic Ocean is frequently, at least partially, depleted of ozone. Using the same method, areas estimated to be highly depleted of O3 (ice-tethered O-Buoys provide unique data to study the characteristics of ODEs; however, more remote and simultaneous surface observations over the Arctic Ocean are necessary to enable study of both the site(s) and mechanism(s) of ODE initiation.

  10. PENGARUH PERENDAMAN DAGING PRA KYURING DALAM JUS DAUN SIRIH TERHADAP KETENGIKAN DAN SIFAT ORGANOLEPTIK DENDENG SAPI SELAMA PENYIMPANAN [The Effect of Soaking of Beef in Betle (Piper betle L Leaf Juice Prior to Curing on Rancidity and Sensory Characteristics of Beef “Dendeng” During Storage

    Directory of Open Access Journals (Sweden)

    Yuli Rohidayah 2

    2002-04-01

    Full Text Available The research was carried out to determine the effect of soaking of beef in betle (Piper betle L leaf juice prior to curing on peroxide level, thiobarbituric acid (TBA score, and sensory characteristics of beef “dendeng” during 1-3 months storage. The result in showed that soaking in 10% of betle leaf juice resulted in “dendeng” with peroxide level of 8.69 meq/kg which was significantly lower than that of “dendeng” without soaking. TBA scores of “dendeng” soaked in 10% betle leaf juice after 1, 2, and 3 months storage were 0.0131, 0.0159, and 0.0168 μ mole MA/kg, respectively. These scores were lower than that of threshold score of food rancidity (18 μ mole MA/kg. Sensory characteristics (color, taste, and aroma of “dendeng” during storage were accepted well by the panellists.

  11. The spatial geochemical characteristics of groundwater and surface in the Tuul River basin, Ulaanbatar, Mongolia

    Science.gov (United States)

    Batdelger, Odsuren; Tsujimura, Maki; Zorigt, Byambasuren; Togtokh, Enkhjargal

    2017-04-01

    The capital city, Ulaanbaatar, is located along the Tuul River and its water supply totally dependent on the groundwater, which comes from the aquifer of the Tuul River. Due to the rapid growth of the population and the increasing human pressures in this basin, water quality has been deteriorating and has become a crucial issue for sustainable environmental and socio-economic development. Hydro-chemical and stable isotope tracing approaches were applied into the groundwater and surface water in order to study geochemical characteristics and groundwater and surface water interaction. The Tuul River water was mostly characterized by the Ca-HCO3 type, spatially variable and it changed into Ca-Na-HCO3 type in the downstream of the city after wastewater (WW) meets the river. Also, electrical conductivity (EC) values of Tuul River are increasing gradually with distance and it increased more than 2 times after WW meets the stream, therefore anthropogenic activities influence to the downstream of the river. The dominant hydro-chemical facies of groundwater were the Ca-HCO3 type, which represents 83% of the total analyzed samples, while Ca- HCO3-Cl-NO3, Na-HCO3, Ca-HCO3-SO4 each represent 4%, and Ca-mixed and Ca-Mg-HCO3 each represent 2% of the total samples. This suggests that groundwater chemistry is controlled by rock-water interaction and anthropogenic pollution. The floodplain groundwater chemical characteristics were similar to Tuul River water and showing lowest EC values. Groundwater far from floodplain showed higher EC (mean value of 498 μs/cm) values than river waters and floodplain groundwater. Also, different kinds of hydro-chemical facies were observed. The stable isotopic compositions revealed less evaporation effect on the groundwater and surface water, as well as an altitude effect in the river water. The similarity of stable isotopes and chemical characteristics of floodplain groundwater and river water suggests that alluvial groundwater is recharged by

  12. The artificial leaf.

    Science.gov (United States)

    Nocera, Daniel G

    2012-05-15

    corner-sharing, head-to-tail dimer. The ability to perform the oxygen-evolving reaction in water at neutral or near-neutral conditions has several consequences for the construction of the artificial leaf. The NiMoZn alloy may be used in place of Pt to generate hydrogen. To stabilize silicon in water, its surface is coated with a conducting metal oxide onto which the Co-OEC may be deposited. The net result is that immersing a triple-junction Si wafer coated with NiMoZn and Co-OEC in water and holding it up to sunlight can effect direct solar energy conversion via water splitting. By constructing a simple, stand-alone device composed of earth-abundant materials, the artificial leaf provides a means for an inexpensive and highly distributed solar-to-fuels system that employs low-cost systems engineering and manufacturing. Through this type of system, solar energy can become a viable energy supply to those in the non-legacy world.

  13. The role of current characteristics of the arc evaporator in formation of the surface metal-coating composite

    Science.gov (United States)

    Plikhunov, V. V.; Petrov, L. M.; Grigorovich, K. V.

    2016-07-01

    The influence of current characteristics of the vacuum arc evaporator on the interaction process of plasma streams with the surface under treatment during generation of the physicochemical properties of the formed metal-coating composite is considered. It is shown that the interaction of plasma streams with the processed surface provides surface heating, defects elimination, change in energy properties, and mass transfer of plasma stream elements activating surface diffusion processes whose intensity is evaluated by the arc current magnitude and location of the processed surface relative to the cathode axis.

  14. Characteristics of Speed Line Cutter and Fringe Analysis of Workpiece Surface

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2014-02-01

    Full Text Available Easy to operate, speed line cutter has a high machining cost performance, so is very popular among the majority of users. The precision of guide rails, screws and nuts used in most of the machines is not high, and the machine control cannot compensate for the screw pitch error, clearance during the transmission and machining error due to electrode wear. Furthermore, control signal may also be lost in control process. The development of speed line cutter focuses on the quality and machining stability of CNC speed line cutter. This article makes an analysis about the impact of machine’s inherent characteristics on machining workpiece surface, and concludes that analysis shall be made on the irregular fringe, therefore to heighten the machining precision.

  15. Tailoring odorant-binding protein coatings characteristics for surface acoustic wave biosensor development

    Science.gov (United States)

    Di Pietrantonio, F.; Benetti, M.; Dinca, V.; Cannatà, D.; Verona, E.; D'Auria, S.; Dinescu, M.

    2014-05-01

    In this study, wild type bovine odorant-binding proteins (wtbOBPs) were deposited by matrix-assisted pulsed laser evaporation (MAPLE) and utilized as active material on surface acoustic wave (SAW) biosensors. Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) were used to determine the chemical, morphological characteristics of the protein thin films. The FTIR data demonstrates that the functional groups of wtbOBPs do not suffer significant changes in the MAPLE-deposited films when compared to the reference one. The topographical studies show that the homogeneity, density and the roughness of the coatings are related mainly to the laser parameters (fluence and number of pulses). SAW biosensor responses to different concentrations of R-(-)-1-octen-3-ol (octenol) and R-(-)-carvone (carvone) were evaluated. The obtained sensitivities, achieved through the optimization of deposition parameters, demonstrated that MAPLE is a promising deposition technique for SAW biosensor implementation.

  16. Influence of substrate process tolerances on transmission characteristics of frequency-selective surface

    Institute of Scientific and Technical Information of China (English)

    He Zhang; Jun Lu; Guancheng Sun; Hongliang Xiao

    2008-01-01

    Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its thickness and dielectric constant suffer process tolerances. This may induce the center frequency of the FSS to shift, and consequently influence its characteristics. In this paper, a bandpass FSS structure is designed. The units are the Jerusalem crosses arranged squarely. The mode-matching technique is used for simulation. The influence of the tolerances of the substrate's thickness and dielectric constant on the center frequency is analyzed. Results show that the tolerances of thickness and dielectric constant have different influences on the center frequency of the FSS. It is necessary to ensure the process tolerance of the dielectric constant in the design and manufacturing of the substrate in order to stabilize the center frequency.

  17. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    Science.gov (United States)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  18. Improvement in characteristics of natural rubber nanocomposite by surface modification of multi-walled carbon nanotubes

    Science.gov (United States)

    Takeuchi, Kenji; Noguchi, Toru; Ueki, Hiroyuki; Niihara, Ken-ichi; Sugiura, Tomoyoshi; Inukai, Shigeki; Fujishige, Masatsugu

    2015-05-01

    We aim to develop high-level applications of NR through the innovative use of multi-walled carbon nanotubes (MWCNTs) to improve reinforcing performance and thermal resistance. In this study, we examined the structures and characteristics of composite materials in which NR was the matrix and MWCNTs were the fillers. We studied the properties of composites containing surface-activated MWCNTs with three different diameters. The results show that the reinforcing performance improves as MWCNT diameter decreases, while thermal resistance improves as we decrease the heat-treatment temperature. The latter occurs because adherence between MWCNTs and NR becomes stronger at lower heat-treatment temperatures. We also found that for practical applications, we need to control active sites on MWCNTs to balance adhesion against thermal resistance.

  19. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  20. Characteristics of high power diode laser removal of multilayer chlorinated rubber coatings from concrete surfaces

    Science.gov (United States)

    Schmidt, Marc J. J.; Li, Lin; Spencer, Julian T.

    1999-08-01

    This paper reports the technical feasibility and process characteristics of removing chlorinated rubber (CR) coatings from concrete surfaces utilising a 60 W continuous wave (cw) diode laser operating at 810 nm wavelength. Coating layers of various thickness have been removed under an oxygen shroud-gas, as well as Ar and N 2. Optical microscopy and energy dispersive analysis of X-rays (EDX) have been utilised to verify this. The reflectivity properties of the CR material from the visible to the near infrared wavelengths, as well as their behaviour under high temperatures have been examined with a normal incidence spectrometer and a differential thermal analysis/thermal gravimetric analysis (DTA/TGA) system. The resulting drop in reflectivity explains the possibility of sustaining the combustion, even though the reflection coefficient of white CR at 810 nm is almost 100%.

  1. Linear coloring of graphs embeddable in a surface of nonnegative characteristic

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = Δ(2G )+ 1 if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies Δ(G) Δ and g(G) g.

  2. Linear coloring of graphs embeddable in a surface of nonnegative characteristic

    Institute of Scientific and Technical Information of China (English)

    WANG WeiFan; LI Chao

    2009-01-01

    A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree △(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = 「△(G)/2」+ 1 if there is a pair (△,g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies △(G) ≥ △ and g(G) ≥ g.

  3. Tailoring odorant-binding protein coatings characteristics for surface acoustic wave biosensor development

    Energy Technology Data Exchange (ETDEWEB)

    Di Pietrantonio, F., E-mail: fabio.dp@idasc.cnr.it [Institute of Acoustics and Sensors “O. M. Corbino”, National Research Council of Italy, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Benetti, M. [Institute of Acoustics and Sensors “O. M. Corbino”, National Research Council of Italy, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Dinca, V. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele (Romania); Cannatà, D. [Institute of Acoustics and Sensors “O. M. Corbino”, National Research Council of Italy, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Verona, E. [Institute for Photonics and Nanotechnologies, National Research Council of Italy, Via del Cineto Romano 42, 00156 Rome (Italy); D’Auria, S. [Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples (Italy); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele (Romania)

    2014-05-01

    In this study, wild type bovine odorant-binding proteins (wtbOBPs) were deposited by matrix-assisted pulsed laser evaporation (MAPLE) and utilized as active material on surface acoustic wave (SAW) biosensors. Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) were used to determine the chemical, morphological characteristics of the protein thin films. The FTIR data demonstrates that the functional groups of wtbOBPs do not suffer significant changes in the MAPLE-deposited films when compared to the reference one. The topographical studies show that the homogeneity, density and the roughness of the coatings are related mainly to the laser parameters (fluence and number of pulses). SAW biosensor responses to different concentrations of R-(–)-1-octen-3-ol (octenol) and R-(–)-carvone (carvone) were evaluated. The obtained sensitivities, achieved through the optimization of deposition parameters, demonstrated that MAPLE is a promising deposition technique for SAW biosensor implementation.

  4. Radiation characteristics of input power from surface wave sustained plasma antenna

    Science.gov (United States)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-09-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  5. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  6. Biosystematic Relationships and Leaf Anatomical Characteristics of Three Sects' Plants in Elymus (Poaceae)%披碱草属3组植物叶片解剖特征及其系统关系

    Institute of Scientific and Technical Information of China (English)

    苏旭; 刘玉萍; 吴学明

    2012-01-01

    采用石蜡切片法对披碱草属中小颖组、宽颖组和长颖组主要代表种的叶片横切面形态学特征进行观察.结果显示:(1)披碱草属3个组植物的叶片均为等面叶,由表皮、叶肉和维管束三部分构成,表现为典型的狐茅型,即表皮细胞形状、大小和排列不均,叶肉无栅栏组织和海绵组织之分,具有双层维管束鞘,周围叶肉细胞呈不规则排列,厚壁组织与表皮相接;但3个组植物在上表皮细胞形状、大小、沟的深浅,以及大型导管数目等叶片横切面特征上存在明显差异.(2)根据3个组植物叶片横切面性状的演化趋势,对各组的演化关系和系统位置分析表明,小颖组最原始,宽颖组较进化,长颖组最高级;小颖组可能直接派生了较进化的宽颖组,并在宽颖组的基础上进而产生了最高级的长颖组;小颖组、宽颖组和长颖组的这一系统关系与利用外部形态特征所获得的演化趋势基本一致.%The transverse sections of leaf blades of the major species of sect. Elymus, sect. Turczaninovia and sect. Macrolepis in Elymus were examined. The results showed that: (l)The leaf blade consists of epidermis, mesophyll and vascular bundle, which is isobilateral leaf. It belongs to the typical festucoid type. Namely,shape,magnitude and arrangement of epidermises are asymmetric. The mesophyll is not distinguished into palisade tissue and spongy tissue. They have double layer bundle sheath. The ambient mesophyll cells arranged irregularly and sclerenchyma is joined to epidermis. There are also obvious differences existing on the transverse section characteristics of leaf blades including shape.magnitude and depth of furrows in upper epidermises,number of large vessels,etc. (2) According to the evolutionary trends of transverse section characteristics of three sects,their evolutionary positions and relationships were inferred. The results show that the sect. Elymus is the most primitive one

  7. Biosystematic Relationships and Leaf Anatomical Characteristics of Plants of Three Genera in Hordeinae (Poaceae)%大麦亚族3属植物的叶片解剖特征及其系统关系

    Institute of Scientific and Technical Information of China (English)

    苏旭; 刘玉萍; 陈克龙

    2013-01-01

    The transverse sections of leaf blades of the major species of Psathyrostachys,Critesion and Hordelymus in Hordeinae were examined.The result shows:(1) The leaf blade consists of epidermis,mesophyll and vascular bundle,which is isobilateral leaf.It belongs to the typical festucoid type.Namely,shape,magnitude and arrangement of lower epidermises are symmetrical,while those of upper epidermises are asymmetric.The mesophyll is not distinguished into palisade tissue and spongy tissue.They have double layer bundle sheath.The ambient mesophyll cells arranged irregularly and sclerenchyma is joined to epidermis.There are also obvious differences existing on the transverse section characteristics of leaf blades including protuberant extent of upper epidermises,thickness of cell-walls in lower epidermises,thickness between the strands in middle part of mesophyll,number of vascular bundles,midrib diameter in horizontal,etc.(2) According to the evolutionary trends of transverse section characteristics of three genera,their evolutionary positions and relationships were inferred.The results show that Psathyrostachys is the most primitive one among these three genera,Critesion is slightly more advanced than the former,and Hordelymus is the most advanced of them; Psathyrostachys might produce immediately Critesion,whereas Hordelymus might derive immediately form Critesion.The biosystematic relationships of these three genera are corroborated by the evolutionary trend of external morphology.%采用石蜡切片法对大麦亚族中新麦草属、芒麦草属和三柄麦属主要代表种的叶片横切面形态学特征进行观察.结果显示:(1)大麦亚族3属植物的叶片均为等面叶,由表皮、叶肉和维管束三部分构成,表现为典型的狐茅型,即下表皮细胞形状、大小和排列均匀,上表皮细胞形状、大小和排列不均,叶肉无栅栏组织和海绵组织之分,具有双层维管束鞘,周围叶肉细胞呈不规

  8. 早熟桃夏季叶色转红过程中的光化学响应特征%Photochemical Response Characteristics of Early-Maturing Peach during Leaf Color Turned to Be Red in Summer

    Institute of Scientific and Technical Information of China (English)

    谢智华; 姜卫兵; 韩键; 彭丽丽; 张斌斌; 马瑞娟

    2012-01-01

    Taking two early-maturing peach cultivars 'Zaomei' and 'Chunlei' as materials, the changes of solar utilization and chlorophyll fluorescence characteristics of photosystem II were studied during leaf discoloration period in summer. The results showed that, early-maturing peach had great changes in photosynthetic and chlorophyll fluorescence characteristics despite the strong differences in leaf pigment composition. Net photosynthetic rate (Pn), PSII maximal photochemical efficiency (Fv/Fm) and PSII actual photochemical efficiency (φPSII) of early-maturing peach increased, and there was no significantly photosynthetic inhibition during the experiment. While green leaf control 'Honghuabitao' showed obvious photo inhibition in July, electron transport rate (ETR), FJFm and φPSII values decreased. 'Zaomei', which was more intensely colored, was more adaptive to high temperature and strong light in summer than 'Chunlei' and control. Chlorophyll fluorescence quenching analysis indicate that leaf anthocyanin accumulation lead to a transitory increase of relative share of photochemical reaction (P) and heat dissipation (D) from antenna pigment absorbed light. The reddened leaves had higher photochemical quenching coefficient (qP) than green leaves, and more effective PSII photochemical reactions. However, the lower non-photochemical quenching coefficient (NPQ) values shown by reddened leaves probably indicate a lower ability to dissipate safely excess photon energy than that of green leaves.%比较研究了‘早美’和‘春蕾’2个早熟桃品种夏季叶色转红对太阳光能的利用和光系统Ⅱ的叶绿素荧光特征的影响.结果表明:早熟桃叶片色素组成的变化会显著影响其光合和叶绿素荧光特性.叶色转红后,早熟桃净光合速率(Pn)日均值、PSⅡ最大光化学效率(Fv/Fm)、PSII实际光化学效率(ΦPSⅡ)均上升,无显著光抑制,而绿叶对照‘红花碧桃’的电子传递速率(ETR)、Fv

  9. 土壤水分和光照对西葫芦生长和生理特性的影响%Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash

    Institute of Scientific and Technical Information of China (English)

    杜社妮; 白岗栓; 梁银丽

    2011-01-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions. 30% shading promoted the growth of "Jingyingyihao" , with the highest yield at 70% -80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits. no economic yield produced. In all treatments. there was a similar water consumption trend. i. e. , both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content.Among all treatments. 30% shading and 70%-80% soil relative moisture contents had the highest water use efficiency (2.36 kg ·mm-1 · hm-2) and water output rate (1. 57 kg · mm-1 · hm-2).The net photosynthetic rate, transpiration rate. stomatal conductance. and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading,and the leaf MAD content decreased in the order of 70% shading, natural radiation. and 30%shading. Under the three light intensities. the change characteristics of squash leaf photosynthesis,protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.%以西葫芦"晶莹一号"为试材,采用盆栽和人工遮光的方法研究土壤水分和光照强度对西葫芦生长发育和生理特性的影响.结果表明:遮光30%条件下各处理的植株生长较好,其中遮光30%和土壤相对含水量为70%~80%的处理植株生长最好,产量最高.遮光70%条件下,各处理的植株生长受到严重抑制,只开花,不结果,没有经济产量形成.不同处理西葫芦的耗水趋势一致,日耗水量和总耗水量都随遮光程度

  10. The surface discharge and breakdown characteristics of HTS DC cable and stop joint box

    Science.gov (United States)

    Kim, W. J.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2014-09-01

    A high temperature superconducting (HTS) DC cable system consists of a HTS cable and cable joint. The HTS DC cable should be electrically connected in joint boxes because of the unit length of HTS cable is limited to several-hundred meters. In particular, the stop joint box (SJB) must be developed for a compact cooling system. Polypropylene laminated paper (PPLP) and epoxy maybe used as insulating materials for HTS DC cable and SJB. To develop a HTS DC cable, it is necessary to develop the cryogenic insulation technology, materials and the joint methods. In this paper, we will mainly discuss on the DC and impulse characteristics of epoxy and PPLP in liquid nitrogen (LN2). The surface discharge characteristics of epoxy included fillers, PPLP and epoxy with PPLP composite (epoxy + PPLP) were measured under 0.4 MPa. Also, the PPLP-insulated mini-model cable was fabricated and then DC, impulse and DC polarity reversal breakdown strength of mini-model cable under 0.4 MPa were investigated.

  11. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    Science.gov (United States)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  12. Effects of muscle fibre shortening on the characteristics of surface motor unit potentials.

    Science.gov (United States)

    Rodriguez-Falces, Javier; Place, Nicolas

    2014-02-01

    Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

  13. Frequency characteristic of response of surface air pressure to changes in flux of cosmic rays

    Science.gov (United States)

    Bogdanov, M. B.

    2014-11-01

    We compare the series of daily-average values of the surface air pressure for De Bilt and Lugano meteorological stations with subtracted linear trends and seasonal harmonics, as well as the series of the flux of galactic cosmic rays (GCRs) at Jungfraujoch station with subtracted moving average over 200 days. Using the method of superposed epochs, we show that the Forbush decreases at both stations are accompanied by increased pressure. Spectral analysis allows us to conclude that the analyzed series are characterized by nonzero coherence in almost the entire frequency range: from 0.02 day-1 day up to the Nyquist frequency of 0.5 day-1. Using changes in the GCR flux as a probing signal, we obtain amplitude-frequency characteristics of the pressure reaction. For both stations, these characteristics are in qualitative agreement with each other and indicate that the atmospheric response can be described by a second-order linear dynamic system that has wide resonance with a maximum at a frequency of 0.15 day-1.

  14. 牛角瓜与几种阔叶树光响应特征的对比%The Comparison of the Photo Response Characteristics Between Calotropis gigantea L. and Some Other Broad-Leaf Plants

    Institute of Scientific and Technical Information of China (English)

    蒙好生; 严理; 冯娇银; 秦武明

    2016-01-01

    To clear the photosynthetic characteristics of the new high-value economic plants Calotropis gigantea L.,is was compared with some broad-leaf plants in Guangxi(Bauhinia variegata,Lindera megaphylla Hemsl.,Tsoongiodendron odorum)by measuring the photo response. Results showed that C. gigantea Pn was 23.12 umol/(m2·s),much larger than the other three species of broad-leaf plants. Higher saturation point and average photosynthetic rate showed that C. gigantea was a typical sun plant. As the light intensity increased,C. gigantea on stomatal conductance and transpiration rate adjustments had excellent environmental adaptability. The integrated light use efficiency and water use efficiency of C. gigantea has obvious advantages,compared to other broad-leaf plants.%为明确牛角瓜这一新兴高价值经济植物的光合特性,将牛角瓜与广西几种常见的阔叶植物(宫粉紫荆、黑壳楠、观光木)进行对比,测定其光响应过程.结果发现,牛角瓜的净光合速率达到23.12 umol/(m2·s),远大于其他3种阔叶植物;较高的光饱和点和平均光合速率表明牛角瓜为典型的喜光植物;随着光强的增加,牛角瓜对气孔导度及蒸腾速率的调节都表现出优良的环境适应性.综合光能利用效率和水分利用效率可以判断牛角瓜相较于一般阔叶植物具有明显的优势.

  15. Large eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    Directory of Open Access Journals (Sweden)

    K. D. Maurer

    2014-11-01

    parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than models with temporally fixed parameters.

  16. Characteristics of surface layer proteins from two new and native strains of Lactobacillus brevis.

    Science.gov (United States)

    Mobarak Qamsari, Elahe; Kasra Kermanshahi, Rouha; Erfan, Mohammad; Ghadam, Parinaz; Sardari, Soroush; Eslami, Neda

    2017-02-01

    In this work, some important characteristics of surface layer (S-layer) proteins extracted from two new and native Lactobacillus strains, L.brevis KM3 and L.brevis KM7, were investigated. The presence of S-layer on the external surface of L.brevis KM3 was displayed by thin sectioning and negative staining. SDS-PAGE analysis were shown same dominant protein bands approximately around 48kDa for both S-layer proteins. Moreover, the S-layer reappeared when LiCl treated cells were allowed to grow again. Protein secondary structure and thermal behavior were evaluated by using circular dichroism (CD) and differential scanning calorimetry (DSC), respectively. Both S-layer proteins had high content of β-sheet and low amount of α-helix. The thermograms of lyophilized S-layer proteins of L.brevis KM3 and L.brevis KM7 showed one transition peak at 67.9°C and 59.14°C, respectively. To determine monodispersity of extracted S-layer proteins, dynamic light scattering (DLS) was used. The results indicated that the main population of S-layer molecules in two tested lactobacillus strains were composed of monomer with an expected diameter close to 10nm. Furthermore, Zeta potential measurements were showed positive potential for both S-layer proteins, as expected. Our results could be used as the basis for biotechnological applications of these two new S-layer proteins.

  17. The characteristic of unsaturated polyester resin wettability toward glass fiber orientation, density and surface treatment

    Directory of Open Access Journals (Sweden)

    Saputra Asep H.

    2017-01-01

    Full Text Available Wettability of composite is one of key to increase mechanical properties of composite that affected by structure of reinforcement and type of resin used. Therefore, this research focused on the effect of orientation, density and surface treatment on fiber to the characteristic of composite’s wettability, which is observed by contact angle and wetting time. The fiber used in this research is fiberglass, and the method for contact angle measurement is direct observation from the camera recorder and the data record will be processed and analyzed by using image processing method. The result for those variations can be obtained from the relation of variations toward contact angle and wetting time. According to result of research, fiber with orientation 45°/45° gives lower contact angle but longer wetting time than fiber with orientation 0°/90°. For orientation 45°/45°, the differences in wetting time is 15 second longer than orientation 0°/90°. In case of fiber density, the sheet with fiber density of 900 has 7 second faster for wetting time than sheet with fiber density of 1250. The surface treatment with NaOH 5% can accelerate the wetting time until 10 second.

  18. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2007-01-01

    The influence of particle size and surface mannose modification on the uptake of liposomes by alveolar macrophages (AMs) was investigated in-vitro and in-vivo. Non-modified liposomes of five different particle sizes (100, 200, 400, 1000 and 2000 nm) and mannosylated liposomes with 4-aminophenyl-alpha-D-mannopyranoside (particle size 1000 nm) were prepared, and the uptake characteristics by rat AMs in-vitro and in-vivo were examined. The uptake of non-modified liposomes by rat AMs in-vitro increased with an increase in particle size over the range of 100-1000 nm, and became constant at over 1000 nm. The uptake of non-modified liposomes by AMs after pulmonary administration to rats in-vivo increased with an increase in particle size in the range 100-2000 nm. The uptake of mannosylated liposomes (particle size 1000 nm) by rat AMs both in-vitro and in-vivo was significantly greater than that of non-modified liposomes (particle size 1000 nm). The results indicate that the uptake of liposomes by rat AMs is dependent on particle size and is increased by surface mannose modification.

  19. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region.

    Science.gov (United States)

    Chae, Doo-Hyeon; Kim, In-Sung; Kim, Seung-Kyu; Song, Young Kyoung; Shim, Won Joon

    2015-10-01

    Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region.

  20. Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface

    Science.gov (United States)

    Liu, Wenzheng; Li, Chuanhui

    2014-01-01

    A new contact glow discharge electrode on the surface of water was designed and employed in this study. Because of the strong field strength in the small air gap formed by the electrode and the water surface, glow discharge plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D® simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.

  1. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high. At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  2. Characteristics of the near-surface atmosphere over the Ross Ice Shelf, Antarctica

    Science.gov (United States)

    Cassano, John J.; Nigro, Melissa A.; Lazzara, Matthew A.

    2016-04-01

    Two years of data from a 30 m instrumented tower are used to characterize the near-surface atmospheric state over the Ross Ice Shelf, Antarctica. Stable stratification dominates the surface layer at this site, occurring 83% of the time. The strongest inversions occur for wind speeds less than 4 m s-1 and the inversion strength decreases rapidly as wind speed increases above 4 m s-1. In summer unstable stratification occurs 50% of the time and unstable conditions are observed in every season. A novel aspect of this work is the use of an artificial neural network pattern identification technique, known as self-organizing maps, to objectively identify characteristic potential temperature profiles that span the range of profiles present in the 2 year study period. The self-organizing map clustering technique allows the more than 100,000 observed potential temperature profiles to be represented by just 30 patterns. The pattern-averaged winds show distinct and physically consistent relationships with the potential temperature profiles. The strongest winds occur for the nearly well mixed but slightly stable patterns and the weakest winds occur for the strongest inversion patterns. The weakest wind shear over the depth of the tower occurs for slightly unstable profiles and the largest wind shear occurs for moderately strong inversions. Pattern-averaged log wind profiles are consistent with theoretical expectations. The log wind profiles exhibit a kinked profile for the strongest inversion cases indicative of decoupling of the winds between the bottom and top of the tower.

  3. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    GEShulan; SHIXuefa; HANYibing

    2003-01-01

    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high.At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  4. Formation and characteristics of biomimetic mineralo-organic particles in natural surface water

    Science.gov (United States)

    Wu, Cheng-Yeu; Martel, Jan; Wong, Tsui-Yin; Young, David; Liu, Chien-Chun; Lin, Cheng-Wei; Young, John D.

    2016-06-01

    Recent studies have shown that nanoparticles exist in environmental water but the formation, characteristics and fate of such particles remain incompletely understood. We show here that surface water obtained from various sources (ocean, hot springs, and soil) produces mineralo-organic particles that gradually increase in size and number during incubation. Seawater produces mineralo-organic particles following several cycles of filtration and incubation, indicating that this water possesses high particle-seeding potential. Electron microscopy observations reveal round, bacteria-like mineral particles with diameters of 20 to 800 nm, which may coalesce and aggregate to form mineralized biofilm-like structures. Chemical analysis of the particles shows the presence of a wide range of chemical elements that form mixed mineral phases dominated by calcium and iron sulfates, silicon and aluminum oxides, sodium carbonate, and iron sulfide. Proteomic analysis indicates that the particles bind to proteins of bacterial, plant and animal origins. When observed under dark-field microscopy, mineral particles derived from soil-water show biomimetic morphologies, including large, round structures similar to cells undergoing division. These findings have important implications not only for the recognition of biosignatures and fossils of small microorganisms in the environment but also for the geochemical cycling of elements, ions and organic matter in surface water.

  5. Residues and Characteristics of Organochlorine Pesticides in the Surface Water in the Suburb of Beijing

    Science.gov (United States)

    CHEN, Jiawei; LIU, Chen; YANG, Zhongfang; WANG, Jiyuan

    Organochlorine Pesticides (OCPs), such as DDT and HCH, have stable chemical properties and less biodegradability. As a kind of persistent organic pollutants, they have high risk to the environment and human health. Although DDT and HCH have been prohibited in China since 1983, they are still found in some soil and water nowadays. Water resource is very important in natural environment and essential for agriculture. The existence of OCPs in some surface water in Beijing has been detected with different levels according to previous investigations. In recent years, many measures have been taken to control the pollution and to monitor the environment, and more attention has been paid to the status of surface water today. In this study, the water samples were collected from the Wenyu, Beiyun, Yanqing, Fangshan, Changping, and Shunyi Rivers in the suburb of Beijing, and the residues and characteristics of DDT and HCH were studied. The results showed that the contents of DDTs and HCHs were ND-13.98 ng/L and 3.87-146.42 ng/L, respectively. According to the indicators of the ratio values of (DDD+DDE)/DDT and α-HCH/γ-HCH, the source of pollution and its potential risk are also discussed in this article.

  6. Investigations on surface quality characteristics with multi-response parametric optimization and correlations

    Directory of Open Access Journals (Sweden)

    Amlana Panda

    2016-06-01

    Full Text Available This paper presents the parametric optimization on surface quality characteristics (Ra, Rz and Rt in hard turning of EN31 steel using multilayer coated carbide insert (TiN/TiCN/Al2O3 and also finds correlations. The experiments have been conducted based on Taguchi’s L9 orthogonal array. Multiple linear regression analysis has been utilized to find the correlations. The integrated multi-response optimization approach using CQL concept in WPCA coupled with Taguchi technique has been implemented. Based on the S/N ratio, the optimal process parameters for surface roughness i.e. Ra and Rz are the depth of cut at level 3 (0.5 mm, the cutting speed at level 3 (140 m/min, and the feed at level 1 (0.04 mm/rev. The optimal process parameters for Rt are found to be the depth of cut at level 3 (0.5 mm, the cutting speed at level 2 (100 m/min, and the feed at level 1 (0.04 mm/rev. Feed and depth of cut are found to be the significant cutting parameters affecting the responses at 95% confidence limit from ANOVA study. The first order model presented high correlation coefficient between the experimental and predicted values. The optimal parametric combination for multi-response (Ra, Rz and Rt becomes d3–v3–f1 and is greatly improved.

  7. Surface Characteristics and Electrochemical Impedance Investigation of Spark-Anodized Ti-6Al-4V Alloy

    Science.gov (United States)

    Garsivaz jazi, M. R.; Golozar, M. A.; Raeissi, K.; Fazel, M.

    2014-04-01

    In this study, the surface characteristic of oxide films on Ti-6Al-4V alloy formed by an anodic oxidation treatment in H2SO4/H3PO4 electrolyte at potentials higher than the breakdown voltage was evaluated. Morphology of the surface layers was studied by scanning electron microscope. The results indicated that the diameter of pores and porosity of oxide layer increase by increasing the anodizing voltage. The thickness measurement of the oxide layers showed a linear increase of thickness with increasing the anodizing voltage. The EDS analysis of oxide films formed in H2SO4/H3PO4 at potentials higher than breakdown voltage demonstrated precipitation of sulfur and phosphor elements from electrolyte into the oxide layer. X-ray diffraction was employed to exhibit the effect of anodizing voltage on the oxide layer structure. Roughness measurements of oxide layer showed that in spark anodizing, the Ra and Rz parameters would increase by increasing the anodizing voltage. The structure and Corrosion properties of oxide layers were studied using electrochemical impedance spectroscopy (EIS) techniques, in 0.9 wt.% NaCl solution. The obtained EIS spectra and their interpretation in terms of an equivalent circuit with the circuit elements indicated that the detailed impedance behavior is affected by three regions of the interface: the space charge region, the inner compact layer, and outer porous layer.

  8. Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean

    Indian Academy of Sciences (India)

    M Mohapatra; Monica Sharma

    2015-10-01

    Tropical cyclone (TC) wind field monitoring and forecast are important for mariners, ships on sea and modelling group for creation of synthetic vortex, and storm surge and coastal inundation forecasting. Among others, a multi-platform satellite surface wind analysis developed by Co-operative Institute for Research in the Atmosphere (CIRA), USA for the TCs are referred by India Meteorological Department for surface wind field monitoring of TC. Hence, a study has been undertaken to analyze the characteristics of surface wind distribution and hence the structure of TC based on the real time data available from CIRA during 2007–2013. The study includes 19 TCs over the Bay of Bengal (BOB) and six over Arabian Sea (AS). The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms−1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for analysis. The objective is to develop a reference surface wind structure of TC and examine its validity with respect to physical processes. The size of outer core (34(17) knot (ms−1) wind radial extension) as well as inner core (50(26) and 64(33) knot (ms−1) wind radial extension) increases significantly with increase in intensification of TC over BOB during both pre-monsoon and post-monsoon seasons and over AS during pre-monsoon season. The outer core of winds in TCs over the BOB is asymmetric in both pre-monsoon and post-monsoon seasons and for all categories of intensity of TCs. On the other hand, the asymmetry in inner core winds is significantly less. There is also no asymmetry in radial wind extension over the AS during both the seasons, except in case of outer core wind radial extension of VSCS during pre-monsoon season. The low level environment like enhanced cross equatorial flow, lower/middle level relative humidity, vertical wind shear and proximity of TC to the land surface are the determining

  9. Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region

    Science.gov (United States)

    Wang, Yinjun; Xu, Xiangde; Liu, Huizhi; Li, Yueqing; Li, Yaohui; Hu, Zeyong; Gao, Xiaoqing; Ma, Yaoming; Sun, Jihua; Lenschow, Donald H.; Zhong, Shiyuan; Zhou, Mingyu; Bian, Xindi; Zhao, Ping

    2016-08-01

    Based on the results from 11 flux sites during the third Tibetan Plateau (TP) Experiment (TIPEX III), land surface parameters and the turbulence characteristics of the atmospheric surface layer over the TP and surrounding region are analyzed. Monin-Obukhov similarity theory has been used to calculate the aerodynamic roughness length z0m and the excess resistance to heat transfer kB- 1 = ln(z0m/z0h), and the factors that cause variations of z0m and kB- 1 are investigated. The main drivers for the diurnal variations of surface albedo (α) at different sites are solar elevation, solar radiation, and soil moisture. The eddy correlation method is utilized to inversely calculate bulk transfer coefficients for momentum (CD) and heat (CH) at different sites. The relationships between CD and CH and the wind speed at 10 m follow a power law for unstable stratification. For stable stratification, both CD and CH increase with increasing wind speed when wind speed is less than 5 m/s. Diurnal variations of turbulent fluxes are compared at different sites, and the relationships between turbulent fluxes and other variables are analyzed. Wind speed variance normalized by the friction velocity (σu/u*, σv/u*, σw/u*) for neutral stratification (Cu1, Cv1, Cw1), and temperature and humidity variance normalized by a temperature and humidity scale (σT/T*, σq/q*) under free convection (z/L < -0.1) (CT, Cq) are fitted with similarity relations. The differences in similarity constants (Cu1, Cv1, Cw1, CT, Cq) at different sites are discussed. For stable stratification, cases are divided into weakly stable conditions and intermittent turbulence, and the critical values for these two states are determined. Shear and buoyancy terms in the turbulence kinetic energy equation for different stratifications are analyzed.

  10. 两个水稻叶色突变体的光合特性研究%Characteristics of Photosynthesis in Two Leaf Color Mutants of Rice

    Institute of Scientific and Technical Information of China (English)

    吕典华; 宗学凤; 王三根; 凌英华; 桑贤春; 何光华

    2009-01-01

    Two leaf color mutants, ygl5 and pygl1, were identified from the progeny of Jinhui 10 treated with EMS, and Jinhui 10 was an excellent restorer line bred in the Rice Research Institute of Southwest University. This paper reported their photosynthetic parameters and ultra-structure of chloroplast. Compared with the original parent, both mutants had a decline content of chlorophylls significantly, especially in total chlorophylls for ygl5 and in chlorophyll b for the pygl1. Photosynthetic and chlorophyll fluorescence parameters were determined by L1-6400, the results showed that the net photosynthetic rate (P_n), transpiration rate (T_r) and stomatal conductance (G_s) were higher in the mutants, with higher light compensation point (LCP) and lower light saturation point (LSP) as well as lower CO_2 compensation point (CCP) and CO_2 saturation point (CSP). Compared with Jinhui 10, the mutants displayed less chloroplast grana and higher optional maximal photochemical efficiency of PS II (F_v/F_m)> actual photochemical efficiency of PSII (Φ_(PSII)), and photochemical quenching (q_P), suggesting that the mutants have higher light energy capture and conversion efficiencies as well as the electron transport efficiency.%以恢复系缙恢10号为对照,对它的两个叶色突变体ygl5和pygl1在孕穗期的光合、荧光特性和叶绿体超微结构进行了研究.结果表明,两个突变体叶绿体内基粒数量明显少于对照,叶绿素含量也大幅下降,其中ygl5表现为叶绿索总体缺乏,pygl1表现为叶绿素b严重缺乏;ygl5和pygl1的P_n、光饱和点、光补偿点、暗呼吸速率、表观量子效率和羧化效率都显著高于对照,而CO_2饱和点、CO_2补偿点和光呼吸速率则低于对照;其F_v/F_m、Φ_(PSII)和q_P均显著高于对照,表明突变体ygl5和pygl1具有较高的光能捕获效率和转换效率.

  11. Carcass and meat quality characteristics of Arsi-Bale goats supplemented with different levels of air-dried Moringa stenopetala leaf

    Directory of Open Access Journals (Sweden)

    Aberra Melesse

    2016-10-01

    Full Text Available This study was conducted to assess the effect of air-dried Moringa stenopetala leaf (MSL supplementation on carcass components and meat quality in Arsi-Bale goats. A total of 24 yearling goats with initial body weight of 13.6+/-0.25 kg were randomly divided into four treatments with six goats each. All goats received a basal diet of natural grass hay ad libitum and 340 g head^(−1 d^(−1 concentrate. The treatment diets contain a control diet without supplementation (T1 and diets supplemented with MSL at a rate of 120 g head^(−1 d^(−1 (T2, 170 g head^(−1 d^(−1 (T3 and 220 g head^(−1 d^(−1 (T4. The results indicated that the average slaughter weight of goats reared on T3 and T4 was 18.2 and 18.3 kg, respectively, being (P<0.05 higher than those of T1 (15.8 kg and T2 (16.5 kg. Goats fed on T3 and T4 diets had higher (P<0.05 daily weight gain compared with those of T1 and T2. The hot carcass weight in goats reared on T3 and T4 diets was 6.40 and 7.30 kg, respectively, being (P<0.05 higher than those of T1 (4.81 kg and T2 (5.06 kg. Goats reared on T4 had higher (P<0.05 dressing percentage than those reared in other treatment diets. The rib-eye area in goats reared on T2, T3 and T4 diets was higher (P<0.05 than those of T1. The protein content of the meat in goats reared on T3 and T4 was 24.0 and 26.4%, respectively being significantly higher than those of T1 (19.1% and T2 (20.1%. In conclusion, the supplementation of MSL to natural grass hay improved the weight gain and carcass parts of Arsi-Bale goats indicating Moringa leaves as alternative protein supplements to poor quality forages.

  12. Quantitative anatomy of grapevine (Vitis L. leaf blade

    Directory of Open Access Journals (Sweden)

    Valentine S. Codreanu

    2013-04-01

    Full Text Available Current investigations were conducted to clarify the features of grapevine which are adaptive to drought and can be used in selection and introduction of VitisL. There are determined biometric values of 21 morpho-anatomic characters of leaf blade for 10 species of grapevine, 10 cultivars of V. viniferaL. and 10 distant hybrids V. vinifera× Muscadinia rotundifoliaMichx. As a result of this study 6 leaf blade quantitative characters which determine relative grapevine drought resistance were described. The most drought resistant species, sorts and hybrids of grapevine are that which have: a greater average thickness of leaf blade; b smaller surface (average area of leaf blade; c less ratio between average area and average volume of dried leaf blade; d greater mass of dried leaf blade; e higher degrees of the leaf succulence and sclerophylly.

  13. Wing surface-jet interaction characteristics of an upper-surface blown model with rectangular exhaust nozzles and a radius flap

    Science.gov (United States)

    Bloom, A. M.; Hohlweg, W. C.; Sleeman, W. C., Jr.

    1976-01-01

    The wing surface jet interaction characteristics of an upper surface blown transport configuration were investigated in the Langley V/STOL tunnel. Velocity profiles at the inboard engine center line were measured for several chordwise locations, and chordwise pressure distributions on the flap were obtained. The model represented a four engine arrangement having relatively high aspect ratio rectangular spread, exhaust nozzles and a simple trailing edge radius flap.

  14. Correlation Between Red Edge Characteristic Parameters and Leaf Nitrogen Accumulation and Leaf Area Indices of Processing Tomato%加工番茄红边特征参数与叶片氮积累量和叶面积指数的关系

    Institute of Scientific and Technical Information of China (English)

    黄春燕; 王登伟; 黄鼎程; 马云

    2012-01-01

    本文分析了加工番茄两品种四氮素水平关键生育时期的冠层红边特征.红边参数与其冠层叶片氮积累量(LNA)和叶面积指数(LAI)的相关性.结果表明:加工番茄的红边曲线具有双峰现象,在开花期、盛花期、坐果期,红边位置(λr)向长波方向移动了2~11 nm波段,红边曲线峰值(Dr)较大,LNA和LAI较高.到红果期红边位置向短波方向移动了5~10 nm波段,红边曲线峰值也较低,LNA和LAI最低,双峰现象在红果期随着施氮量的减少而减弱,说明红边位置的变化可以指示加工番茄生育时期的氮索营养状况.加工番茄2个品种冠层的λr、红边斜率(Dr)和红边面积(SDr)分别与其冠层LNA和LAI的相关性均达到了1%极显著水平,其中里格尔87-5的Dr与LNA的线性相关和SDr与LAI的指数相关最高(rD-LNA=0.8181**,rSD-LAI =0.9136**,n=23,α=1%),说明利用红边参数可以实时快速地获取加工番茄冠层LNA和LAI的信息,可有效监测加工番茄的氮素营养状况.%This paper analyzed of the characteristics of red edge of two varieties of processing tomatoes in four nitrogen fertilization treatments at key growing stage, the correlation between three red edge parameters and their corresponding leaf nitrogen accumulation (LNA) ,leaf area indices (LAI). respectively. The results showed that red edge curve of processing tomato had double peaks; red edge position(Ar) shifted towards long wavelengths range 2~11 nm at its flower stage, full bloom stage and fruit setting stage ,com pared with seedling stage;the peak value of red edge curve (Dr) was higher than the other three stages, and LNA and LAI were also higher.λr shifted towards short wavelengths range 5~10 nm at its red fruit stagesthe peak value of red edge curve reached lower; LNA and LAI were both the lowest .double peaks were weakened with the reduction of nitrogen fertilizer rate at red fruit stage;The shift of the red edge position indicated nitrogen

  15. Modeling leaf venation morphogenesis

    CERN Document Server

    Laguna, M F; Jagla, E A

    2007-01-01

    We explore the possibility that the formation of leaf venation patterns is driven by mechanical instabilities in the growing leaf. In contrast to the prevalent canalization hypothesis based on polar auxin transport, mechanical instabilities lead very naturally to hierarchical patterns with an abundant number of closed loops as they exists in almost every leaf venation. We propose a continuum model where the vein formation is driven by a mechanical collapse of the mesophyll layer in the growing leaf, and present a numerical study of this model using a phase field approach. The results show the same qualitative features as real venation patterns and, furthermore, have the same statistical properties.

  16. Genetic control of leaf curl in maize.

    Science.gov (United States)

    Entringer, G C; Guedes, F L; Oliveira, A A; Nascimento, J P; Souza, J C

    2014-03-17

    Among the many implications of climatic change on agriculture, drought is expected to continue to have a major impact on agribusinesses. Leaf curling is an anatomical characteristic that might be potentially used to enhance plant tolerance to water deficit. Hence, we aimed to study the genetic control of leaf curl in maize. From 2 contrasting inbred lines for the trait, generations F1, F2, and the backcrosses were obtained. All of these generations were evaluated in a randomized block design with 2 replicates. Leaf curl samples were collected from 3 leaves above the first ear at the tasseling stage, and quantified by dividing the width of the leaf blade with natural curling against its extended width. The mean and variance components were estimated by the weighted least square method. It was found that the trait studied has predominance of the additive effects, with genetic control being attributed to few genes that favor selection and exhibit minimal influence from the environment.

  17. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study.

    Science.gov (United States)

    Ercan, Esra; Arin, Tuna; Kara, Levent; Çandirli, Celal; Uysal, Cihan

    2014-05-01

    Lasers are used to modify the surfaces of dental implants or to decontaminate exposed implant surfaces. However, research is lacking on whether the laser causes any change on the surfaces of titanium implants. We aimed to determine the effects of laser treatment on the surface characteristics of titanium discs. Nine discs were fabricated using grade-V titanium with resorbable blast texturing surface characteristics. The discs were irradiated with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser under different experimental conditions (R1-9). Scanning electron microscopy was used to evaluate implant surface topography qualitatively, and a mechanical contact profilometer was used to evaluate surface roughness. The R3 and R5 parameters caused no measurable change. Minor cracks and grooves were observed in discs treated with the R1, R2, R4, R7 and R9 parameters. Major changes, such as melting, flattening and deep crack formation, were observed in discs subjected to R6 (2 W, 30 Hz, 2 mm. distance, 30 s) and R8 (3 W, 25 Hz, 2 mm. distance, 45 s) parameters. The lowest surface roughness value was obtained with the R8 parameter. Irradiation distance, duration, frequency and power were the most significant factors affecting surface roughness. Parameters such as wavelength, output power, energy, dose and duration should be considered during irradiation. The results of this study indicate that the distance between the laser tip and the irradiated surface should also be considered.

  18. [Responses of wheat seedlings root growth and leaf photosynthesis to drought stress].

    Science.gov (United States)

    Ma, Fu-Ju; Li, Dan-Dan; Cai, Jian; Jiang, Dong; Cao, Wei-Xing; Dai, Ting-Bo

    2012-03-01

    Taking drought-sensitive wheat cultivar Wangshuibai and drought-tolerance cultivar Luohan 7 as test materials, a hydroponic experiment was conducted to study the effects of drought stress on root system morphology, physiological characteristics and leaf photosynthesis of wheat seedlings, aimed to elucidate the adaptation mechanisms to drought stress. Under drought stress, the root vitality of the cultivars increased markedly, but the root number and root surface area decreased. Drought stress decreased relative water content and increased the ratio of bound water to free water in leaves of Wangshuibai, but had less effects on Luohan 7. Drought stress decreased, the leaf chlorophyll content, Pn g(s), Ci, and transpiration rate of the two cultivars, but had no significant effects on leaf chlorophyll content and Pn of Luohan 7. Drought stress decreased the leaf area of the two cultivars and the root biomass, shoot biomass, and plant biomass of Wangshuibai, but had no significant effects on Luohan 7. The results indicated that under drought stress, drought-tolerant wheat cultivar was able to compensate decreased root absorption area and retain higher root water uptake capability via enhancing root vitality and maintaining higher root biomass, and further, to keep higher leaf photosynthetic area and Pn to mitigate the inhibition of drought on wheat seedlings growth.

  19. Leaf Morpho–physiology and Leaf-Fe Content of Selected Quince Genotypes from Different Parts of Iran

    Directory of Open Access Journals (Sweden)

    Mitra Mirabdulbaghi

    2014-10-01

    Full Text Available The objectives of this study were to compare genotype variability of leaf morphophysiology and leaf-Fe content, as well as to select quince genotypes possessing desirable characteristics for possible use in breeding projects. Leaves were sampled from 28 quince genotypes that were selected from different parts of Iran. Selected genotypes were grown under the same environmental conditions in nursery of Seed and Plant Improvement Institute. The results suggest that estimated variations of studied leaf chlorophyll fluorescence parameters were slight, but statistically significant. The highest variability was estimated for the leaf area, and somewhat lower for the specific leaf area. The leaves of genotype KM1 had the smallest amount of leaf area and leaf laminar length. Leaf chlorophyll (SPAD-Values and leaf laminar petiole were the highest for the genotype NB2. The genotype SHAI had the highest minimum chlorophyll fluorescence (F0. The highest value of fluorescence variable (FV and chlorophyll fluorescence (FM belonged to Moghavem2. The lowest minimum chlorophyll fluorescence (F0 and the highest value of photochemical capacity of photosystem 2 (FV/FM belonged to the Khosro. The highest amount of leaf laminar width, leaf dry weight and leaf area belonged to sahelborgmoghavem. The leaves of genotype KVD1 had the highest amount of specific leaf area. Simple correlation analysis showed significant negative and positive correlations for some important characteristics. Factor analysis revealed that chlorophyll fluorescence (FM, fluorescence variable (FV, minimum chlorophyll fluorescence (F0 and leaf area were related to the main factor components. Cluster analysis for selective factors divided quince genotypes to five main groups.

  20. 水稻孕穗期剑叶形态和蒸腾特性与耐盐性的关系%Relationship of Sword Leaf Morphology and Transpiration Characteristic at Booting Stage with Salt Tolerance

    Institute of Scientific and Technical Information of China (English)

    孙健; 赵宏伟; 王敬国; 刘化龙; 谢冬微; 刘忠良; 郭丽颖; 邹德堂

    2012-01-01

    The objective of our study was making clear the salt tolerance mechanism during booting stage and providing theoretical basis for selecting the salt tolerant index. 6 rice varieties were used as experimental materials. Salt stress was performed under field growth condition for irrigating water solution prepared with NaCl. Sword leaves were sampled at booting stage to analyze the uptaking rule of Na+ ,K+ ,Ca2+ and morphology and transpiration characteristic, the relationship between salt tolerance and them was also analyzed. The result showed that the salt tolerance of 6 varieties were Longdao 5 > Changbai 10 > Songjing 12 > Dongnong 425 > Mudanjiang 26 > Mudanjiang 30 in order based on the salt tolerance coefficient. Na +content in rice was increased, K + content decreased after salt stress. For salt tolerant varieties, the accumulation of Na + in aerial part was less than in root, K + in aerial part was more and having no obvious difference in root. Ca2 + concentrated mainly in root and had no obvious variance for salt tolerant varieties after salt stress,but decreased obviously for sensitive varieties. The difference of sword leaf length, sword leaf width and sword leaf area between treatment and control were significant and very significant, and the damage of sword leaf for salt tolerant varieties was slight. The sword leaf of some varieties tend to curl after stress and some tend to unfold from curling, the curling dimension of salt tolerant varieties was leas that of salt sensitive varieties. Chlorophyll content degraded gradually following with the decreasing of variety's salt tolerance, had the significant or very significant difference. Salt tolerant varieties had the high transpiration rate and stomatal conduct-ance after salt stress,but canopy temperature stepped up following with the decreasing of variety's salt tolerance. The relative value of K+ content in aerial part, sword leaf's width,canopy temperature, Na + content in root.Ca2

  1. Leaf Photosynthesis and Senescence Characteristics of japonica Rice Cultivars with High Yield and High N-efficiency%高产氮高效型粳稻品种的叶片光合及衰老特性研究

    Institute of Scientific and Technical Information of China (English)

    李敏; 张洪程; 杨雄; 葛梦婕; 魏海燕; 戴其根; 霍中洋; 许轲

    2013-01-01

    The difference in leaf photosynthesis and senescence characteristics of low-yielding and lew N-efficiency, high-yielding and medium N-efficiency, high-yielding and high N-efficiency rice cultivars was investigated using six representative japonica varieties under their optimum N levels, respectively. The results were as follow: compared with low-yielding varieties, the high-yielding ones showed higher population leaf area index (LAI), higher leaf area rates of productive tillers and top 3 leaves, higher flag leaf chlorophyll content (SPAD value)and net photosynthetic rate, and slower senescence of leaves. Among high-yielding varieties, as the nitrogen efficiency increased, the population leaf area index (LAI) reduced at the early and middle growth stages (N-n, jointing, and full heading), and increased at maturing. Though with no significant changes during early grain filling stage (0-10 days after full heading), the net photo synthetic rate remarkably increased in middle and late grain filling stages (20 - 40 days after full heading), which could mainly be attributed to the less breaking-down of chlorophyll, ensuring the higher CO2 assimilation capacity of leaves, the higher SOD activity providing strong antioxidant capacity of the plant, and the lower MDA content implying the less damage degree of membrane lipid. It could be one promising method for further improvement in nitrogen efficiency of high-yielding rice varieties to reasonably control the growth of non-productive and inefficient leaf area before heading, thus properly reducing population leaf area scale before heading and effectively delaying leaves senescence after heading to ensure sustained higher chlorophyll content and net photosynthetic rate of leaves.%选用6个具代表性的低产氮低效型、高产氮中效型和高产氮高效型粳稻品种,在各自最适氮素水平下,研究了叶片光合、衰老特性的差异及其与氮效率的关系.结果表明,高

  2. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    Science.gov (United States)

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  3. Comparative Evaluation of Frictional Properties, Load Deflection Rate and Surface Characteristics of Different Coloured TMA Archwires - An Invitro Study.

    Science.gov (United States)

    Aloysius, Arul Pradeep; Vijayalakshmi, Devaki; Deepika; Soundararajan, Nagachandran Kandasamy; Manohar, Vijaykumar Neelam; Khan, Nayeemullah

    2015-12-01

    During tooth movement the success of sliding mechanics is dependent upon various factors which include frictional resistance at bracket-archwire interface, surface roughness of archwire materials and elastic properties of archwires. Ion implantation techniques reduce the frictional force and allow better tooth movement clinically. The main objective of this study was to evaluate and compare the frictional properties, load deflection rate and surface characteristics of Honey dew and Purple coloured (Ion implanted) TMA wires with uncoated TMA wires. Fifteen archwire samples were divided into three groups comprising of five samples in each group namely, Group I - Uncoated TMA wires (Control), Group II - Purple coloured TMA wires and Group III- Honey dew TMA wires. Friction and load deflection rate testing were performed with the Instron Universal testing machine and the surface characteristics of the wires were evaluated before and after sliding using Scanning Electron Microscope. The mean frictional characteristics and surface roughness for Honey dew TMA wires was lesser than Purple coloured TMA wires which was statistically significant. Both the coloured TMA wires showed low frictional characteristics and less surface roughness than uncoated TMA wires (the control). The mean load deflection rate was low for both coloured ion implanted TMA wires when compared to uncoated TMA wires which was statistically significant. Coloured ion implanted TMA wires, especially Honey dew TMA wires have low friction, low load deflection rate and improved surface finish. Hence they can be used in frictionless as well as sliding mechanics, where uncoated TMA wires are inefficient.

  4. Spatial and temporal distribution characteristics of near-surface CO2 concentration over China based on GOSAT data

    Science.gov (United States)

    Zhao, Jing; Cui, Weihong; Sun, Yunhua

    2014-11-01

    To study the spatial and temporal distribution characteristics of near-surface CO2 concentration over China, the data of GOSAT L4B and auxiliary data of Mt Waliguan background observations, population density, total energy consumption (coal) and GDP in 2009 were applied to this study. The ArcGIS Geostatistical Analytical Method was used. The ground-based validation was processed by comparing GOSAT data with Mt Waliguan background observations. The variation characteristics of the near-surface CO2 concentration over China was analysed spatially and temporally. The results show that: GOSAT retrieved near-surface products are consistent with Mt Waliguan ground-based measurement; Near-surface CO2 concentration over China is relatively concentrated, and has significant differences between the East and the West, with a overall characteristic that CO2 concentration in the east of China is high and in the west is low; Near-surface CO2 concentration over China has a significant seasonal variation characteristic, and the monthly average concentration rise to the highest value of 396.512 ppmv in April (spring), which is significantly higher than other seasons, decline to the lowest value of 382.781 ppmv in July (summer); All relationships illustrate a big uncertainty, resulting a conclusion that the reasons causing the spatial distribution of near-surface CO2 concentration may be varied, could not be easily determined as anthropogenic or natural ressons, which need further study.