WorldWideScience

Sample records for leaf nitrogen content

  1. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  2. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  3. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels

    Science.gov (United States)

    Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D.

    2013-12-01

    Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780-800 nm) and either green (540-560 nm) or red-edge (730-750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.

  4. RELATIONSHIP BETWEEN EUROPEAN CORN BORER FEEDING ACTIVITY AND NITROGEN LEAF CONTENT UNDER DIFFERENT AGRICULTURAL PRACTICES

    Directory of Open Access Journals (Sweden)

    Ankica Sarajlić

    2015-06-01

    Full Text Available One of the most destructive maize pest in Croatia is European corn borer (Ostrinia nubilalis Hübner (ECB. The aim of this study was to determine the influence of irrigation, nitrogen fertilization, different maize genotypes and nitrogen leaf content on ECB feeding activity. The experiment was set up in Osijek, Croatia under field conditions during 2012-2013 vegetation season. Experiment treatments were as follows: three irrigation levels (A1 - control, A2 from 60% to 80% field water capacity - FWC and A3 from 80% to100% FWC, three nitrogen fertilizer levels (B1 - 0, B2 - 100 and B3 - 200 kg N/ha and four different genotypes (C1 - OSSK 596; C2 - OSSK 617; C3 - OSSK 602 and C4 - OSSK 552. Ear weight, number of larvae in stem and shank, tunnel length and nitrogen leaf content were evaluated. Genotype C1 was the most susceptible for following the tested variables of ECB feeding: tunnel length (TL, larvae in stalk (LS and total number of larvae (TNL at P<0.05 probability level. By raising the level of irrigation, European corn borer feeding activity was reduced while by raising the level of nitrogen fertilization feeding activity was increased. These results suggest that good production practices can significantly affect the susceptibility of maize to European corn borer.

  5. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  6. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  7. Using a Chlorophyll Meter to Evaluate the Nitrogen Leaf Content in Flue-Cured Tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Fabio Castelli

    2009-06-01

    Full Text Available In flue-cured tobacco N fertilizer is commonly applied during pre-planting, and very often applied again later as a growth-starter. It is generally held that the efficiency of N-fertilizer use can be improved by evaluating the leaf Nstatus after transplanting and until flowering stage. N use efficiency in this context does not refer merely to the yield but also to the quality, in the meanwhile minimizing the negative effects on the environment. To investigate these aspects, we evaluated the capacity of a Minolta model SPAD-502 chlorophyll meter to estimate the N-status in flue-cured tobacco. The aims was to verify if a relationship exists between SPAD readings and leaf N content, and if a single leaf, in a well defined stalk position, could represent the nitrogen content of the whole plant. During the years 1995 and 1996, a pot experiment was conducted using two flue-cured tobacco varieties. SPAD values, total chlorophyll, total N contents and leaf area were measured throughout the growing season, on each odd leaf stalk position. SPAD values were well-correlated with both total chlorophyll and total N leaf concentration, and the regression coefficients were higher when relationships were calculated on a leaf-area basis. For both relationships, SPAD-total chlorophyll and SPAD-total N, the best fittings were obtained with quadratic equations. One leaf stalk position alone is able to monitor the N-status of the whole plant during the first six weeks after transplanting, without distinction of year and variety effects. The SPAD measurement of one leaf per plant, throughout the vegetative growing season, is therefore a valid tool to test the N-status of the crop in a period when a required N supply is still effective.

  8. Estimate of Leaf Chlorophyll and Nitrogen Content in Asian Pear (Pyrus serotina Rehd. by CCM-200

    Directory of Open Access Journals (Sweden)

    Mostafa GHASEMI

    2011-03-01

    Full Text Available In many cases evaluation of chlorophyll and nitrogen content in plants need to destructive methods, more time and organic solvents. Application of chlorophyll meters save time and resources. The aim of this study was estimating of chlorophyll and nitrogen content in Asian pear leaves using non-destructive method and rapid quantification of chlorophyll by chlorophyll content meter (CCM-200. This study was conducted on 8 years old Asian pear trees during June 2008 in Tehran, Iran. To develop our regression model, the chlorophyll meter data were correlated with extracted chlorophyll and nitrogen content data obtained from DMSO and Kejeldal methods, respectively. The results showed that, there was positive and linear correlation between CCM-200 data and chlorophyll a (R�=0.7183, chlorophyll b (R�=0.8523, total chlorophyll (R�=0.90, and total nitrogen content (R�=0.76 in Asian pear leaves. Thus, it can be concluded that, CCM-200 can be used in order to predict both chlorophyll and nitrogen content in Asian pear leaves.

  9. Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis).

    Science.gov (United States)

    Damour, Gaëlle; Vandame, Marc; Urban, Laurent

    2008-09-08

    Drought has dramatic negative effects on plants' growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity-nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwaï Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (J(max)) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (N(a)) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while J(max) and the ratio J(max)/N(a) decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling

  10. WAVELENGTH SELECTION OF HYPERSPECTRAL LIDAR BASED ON FEATURE WEIGHTING FOR ESTIMATION OF LEAF NITROGEN CONTENT IN RICE

    Directory of Open Access Journals (Sweden)

    L. Du

    2016-06-01

    Full Text Available Hyperspectral LiDAR (HSL is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS and support vector machines (SVMs based on calibration and validation datasets respectively. The results indicate that I wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II The chosen wavelength has a high correlation with rice LNC

  11. Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

    Directory of Open Access Journals (Sweden)

    Travis Goron

    2017-06-01

    Full Text Available After uptake in cereal crops, nitrogen (N is rapidly assimilated into glutamine (Gln and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha−1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development and NDVI (Normalized Difference Vegetation Index measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

  12. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    Science.gov (United States)

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  13. Effects of canopy light distribution characteristics and leaf nitrogen content on efficiency of radiation use in dry matter accumulation of soybean [Glycine max] cultivars

    International Nuclear Information System (INIS)

    Shiraiwa, T.; Hashikawa, U.; Taka, S.; Sakai, A.

    1994-01-01

    The amount of dry matter produced per photosynthetically active radiation (PAR) intercepted by the canopy (EPAR) and factors which might affect EPAR were determined for various soybean cultivars, and their relationships were also analyzed in two field experiments. In 1989 and 1990, 11 cultivars and 27 cultivars respectively, were grown on an experimental field in shiga Prefectural Junior College. Changes of intercepted PAR, top dry matter weight, light extinction coefficient (KPAR), nitrogen content per leaf area (SLN) and nitrogen accumulation in the top (1990 only) were measured. EPAR averaged for all the cultivars was 2.48g MJ(-1) in both years and its coefficient of variance among cultivars was +- 9% in 1989 and +- 17% in 1990. In general, recent cultivars showed greater EPAR than older ones. The correlation coefficients between SLN and EPAR were 0.548 in 1989 and 0.651-- in 1990, while there was no correlation between KPAR and EPAR. Since SLN showed close correlation with SLW (r = 0.954 in 1989, r = 0.170-- in 1990), the difference in EPAR between old and new cultivars was considered to be attributable mainly to the improved leaf morphological trait and consequently greater leaf photosynthesis of newer cultivars. SLN further correlated with total top nitrogen content (r = 0.736-- in 1990) thus seemed to be limited by nitrogen accumulation

  14. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  15. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    Science.gov (United States)

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  17. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  18. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  19. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  20. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  2. Predicting soil nitrogen content using narrow-band indices from ...

    African Journals Online (AJOL)

    Optimal fertiliser applications for sustainable forest stand productivity management, whilst protecting the environment, is vital. This study estimated soil nitrogen content using leaf-level narrow-band vegetation indices derived from a hand-held 350–2 500 nm spectroradiometer. Leaf-level spectral data were collected and ...

  3. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content in the leaf in different parts of the crambe plant, depending on the doses of nitrogen applied to the canopy. Randomized block design in a split plot experimental design was used. The plots ...

  4. Comparison of leaf color chart observations with digital photographs and spectral measurements for estimating maize leaf chlorophyll content

    Science.gov (United States)

    Crop nitrogen management is important world-wide, as much for small fields as it is for large operations. Developed as a non-destructive aid for estimating nitrogen content in rice crops, leaf color charts (LCC) are a numbered series of plastic panels that range from yellowgreen to dark green. By vi...

  5. The effects of different nitrogen doses on yield, quality and leaf ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... The effects of different nitrogen doses on yield, quality and leaf nitrogen content of some early grape cultivars. (V. vinifera L.) grown in greenhouse. Hatice Bilir Ekbic1, Gultekin Ozdemir2, Ali Sabir3* and Semih Tangolar1. 1Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, ...

  6. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  7. Seasonal and inter-annual photosynthetic response of representative C4 species to soil water content and leaf nitrogen concentration across a tropical seasonal floodplain

    NARCIS (Netherlands)

    Mantlana, K.B.; Arneth, A.; Veenendaal, E.M.; Wohland, P.; Wolski, P.; Kolle, O.; Lloyd, J.

    2008-01-01

    We examined the seasonal and inter-annual variation of leaf-level photosynthetic characteristics of three C4 perennial species, Cyperus articulatus, Panicum repens and Imperata cylindrica, and their response to environmental variables, to determine comparative physiological responses of plants

  8. Apple wine processing with different nitrogen contents

    Directory of Open Access Journals (Sweden)

    Aline Alberti

    2011-06-01

    Full Text Available The aim of this work was to evaluate the nitrogen content in different varieties of apple musts and to study the effect of different nitrogen concentrations in apple wine fermentation. The average total nitrogen content in 51 different apples juices was 155.81 mg/L, with 86.28 % of the values above 100 mg/L. The apple must with 59.0, 122.0 and 163.0 mg/L of total nitrogen content showed the maximum population of 2.05x 10(7; 4.42 x 10(7 and 8.66 x 10(7 cell/mL, respectively. Therefore, the maximum fermentation rates were dependent on the initial nitrogen level, corresponding to 1.4, 5.1 and 9.2 g/L.day, respectively. The nitrogen content in the apple musts was an important factor of growth and fermentation velocity.

  9. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    Science.gov (United States)

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  10. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Impact of Temporary Nitrogen Deprivation on Tomato Leaf Phenolics

    Directory of Open Access Journals (Sweden)

    Hélène Gautier

    2011-11-01

    Full Text Available Reducing the use of pesticides represents a major challenge of modern agriculture. Plants synthesize secondary metabolites such as polyphenols that participate in the resistance to parasites. The aim of this study was to test: (1 the impact of nitrogen deficiency on tomato (Solanum lycopersicum leaf composition and more particularly on two phenolic molecules (chlorogenic acid and rutin as well as on the general plant biomass; and (2 whether this effect continued after a return to normal nitrogen nutrition. Our results showed that plants deprived of nitrogen for 10 or 19 days contained higher levels of chlorogenic acid and rutin than control plants. In addition, this difference persisted when the plants were once again cultivated on a nitrogen-rich medium. These findings offer interesting perspectives on the use of a short period of deprivation to modulate the levels of compounds of interest in a plant.

  12. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  13. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  14. Mineral, protein and nitrate contents in leaves of Pereskia aculeata subjected to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Maria Regina de Miranda Souza

    2016-03-01

    Full Text Available Considering that nitrogen is directly related to leaf protein content, the nitrogen fertilization in Pereskia aculeata plants may affect the protein content and increase its nutritional potential. This study aimed at assessing the effect of nitrogen fertilization on mineral, protein and nitrate contents, as well as the yield of P. aculeata leaves. A randomized blocks design was used, with three replications and five treatments, consisting of increasing topdressing nitrogen doses (0-400 kg ha-1, in soil with organic matter content of 4.0 dag kg-1. Three harvests were performed for leaf analysis. No significant effect was observed for mineral and protein content or leaf fresh mass yield. The mean values for mineral composition were: 3.52 dag kg-1 of N, 0.47 dag kg-1 of P, 4.65 dag kg-1 of Ca, 0.71 dag kg-1 of Mg, 0.25 dag kg-1 of S, 36.64 mg kg-1 of Zn and 174.13 mg kg-1 of Fe. The mean content for protein was 21.86 % and the leaf fresh mass yield was 0.971 kg plant-1. K levels decreased from 50 kg ha-1 of N. Nitrate increased linearly with the nitrogen fertilization, reaching a maximum value of 78.2 mg kg-1 of fresh mass, well below the health risk threshold. It was concluded that a soil with high organic matter content does not require nitrogen fertilization. However, doses up to 400 kg ha-1 of nitrogen ensure adequate leaf yield and protein and mineral contents within the desired range for the species, being a food rich in proteins, iron and calcium.

  15. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    Science.gov (United States)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  16. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    Science.gov (United States)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the

  17. [Diagnosis of nitrogen content in upper and lower corn leaves based on hyperspectral data].

    Science.gov (United States)

    Jin, Liang; Hu, Ke-Lin; Tian, Ming-Ming; Wei, Dan; Li, Hong; Bai, You-Lu; Zhang, Jun-Zheng

    2013-04-01

    Based on the spectral characters of corn leaf nitrogen content in the space, the spectral models for rapid estimating crop nitrogen content were set up, which is practically meaningful to effectively providing the guidance in fertilization. Spectral technology was applied to explore corn leaves nitrogen content distribution regularity and the relationship between the nitrogen content and plant index was analysed and then the estimation models were built. The results showed N content in upper leaves is higher than that in lower leaves in four growing stages; lower leaves at tassel emerge stage are sensitive to nitrogen losses, which could be used in guiding fertilization in grain production; optimum estimation models were built atjointing stage, the full-grown stage and tasseling stage, The research results provided the proof of crop nutrient analysis and rational fertilization.

  18. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents.

    Science.gov (United States)

    Rowland, Lucy; Zaragoza-Castells, Joana; Bloomfield, Keith J; Turnbull, Matthew H; Bonal, Damien; Burban, Benoit; Salinas, Norma; Cosio, Eric; Metcalfe, Daniel J; Ford, Andrew; Phillips, Oliver L; Atkin, Owen K; Meir, Patrick

    2017-05-01

    Leaf dark respiration (R dark ) represents an important component controlling the carbon balance in tropical forests. Here, we test how nitrogen (N) and phosphorus (P) affect R dark and its relationship with photosynthesis using three widely separated tropical forests which differ in soil fertility. R dark was measured on 431 rainforest canopy trees, from 182 species, in French Guiana, Peru and Australia. The variation in R dark was examined in relation to leaf N and P content, leaf structure and maximum photosynthetic rates at ambient and saturating atmospheric CO 2 concentration. We found that the site with the lowest fertility (French Guiana) exhibited greater rates of R dark per unit leaf N, P and photosynthesis. The data from Australia, for which there were no phylogenetic overlaps with the samples from the South American sites, yielded the most distinct relationships of R dark with the measured leaf traits. Our data indicate that no single universal scaling relationship accounts for variation in R dark across this large biogeographical space. Variability between sites in the absolute rates of R dark and the R dark  : photosynthesis ratio were driven by variations in N- and P-use efficiency, which were related to both taxonomic and environmental variability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Nitrogen Fertilization for Optimizing the Quality and Yield of Shade Grown Cuban Cigar Tobacco: Required Nitrogen Amounts, Application Schedules, Adequate Leaf Nitrogen Levels, and Early Season Diagnostic Tests

    Directory of Open Access Journals (Sweden)

    Borges A

    2014-12-01

    Full Text Available Nitrogen (N fertilizers have a decisive influence on the yield and quality of tobacco. Yield, percentage of plant N, wrapper leaf quality, and nicotine content are all important quality characteristics in tobacco growing. This work is an attempt to provide a tool for optimizing mineral N nutrition for Cuban cigar tobacco, using a strategy that links N supply with leaf N concentration and wrapper yield. Similar approaches developed worldwide have mainly involved Virginia and Burley tobacco types but not Cuban cigar tobacco. The objective of the current work is to identify the effects of fertilizer N levels and timing of application on each of the mentioned quality factors for shade grown Cuban cigar tobacco. Another purpose is to explore the usefulness of a quick method of assessing the N status of plants based on measuring leaf transmission at two different wavelengths (650 and 940 nm. The experiments were done in the main tobacco growing area of Cuba (Vueltabajo. In each experiment, nine separate treatments were used covering different levels and times of fertilizer N application. The same experiment was carried out in three different years (2005-2006, 2006-2007, 2007-2008 but as the results were similar only one set of data is described (2006-2007. The patterns of response to N fertilizer of all four quality measurements, including yield and wrapper leaf quality, were similar in the different replications of the experiments. The optimal fertilizer level was 140-190 kg N/ha (40% applied on days 8-10 after transplanting and 60% on days 18-20 after transplanting. The optimal N concentration of leaves taken at the central foliar level of the middle stalk position was 4.3-4.7% at harvest time. Leaf transmission measurements by means of the SPAD-502 Chlorophyll Meter in the early stages of growth were correlated with leaf chlorophyll and N concentration and provide an excellent guide for predicting Cuban cigar tobacco wrapper leaf yield.

  20. A meta-analysis of leaf nitrogen distribution within plant canopies

    NARCIS (Netherlands)

    Hikosaka, Kouki; Anten, Niels P.R.; Borjigidai, Almaz; Kamiyama, Chiho; Sakai, Hidemitsu; Hasegawa, Toshihiro; Oikawa, Shimpei; Iio, Atsuhiro; Watanabe, Makoto; Koike, Takayoshi; Nishina, Kazuya; Ito, Akihiko

    2016-01-01

    Background and aims Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown.

  1. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  2. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    Science.gov (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  3. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    Science.gov (United States)

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient

  4. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    Science.gov (United States)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  5. Genetic diversity of flavonoid content in leaf of hawthorn resources

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, G.; Liu, Z.

    2014-01-01

    Hawthorn (Cratageus spp.) are important medicinal plants. Flavonoids are the main active ingredient in hawthorn. With the help of hawthorn leaf flavonoids efficient detection system, vitexin, rhamnosylvitexin, hyperin, rutin and quercetin of 122 hawthorn resources was precisely measured.The flavonoid contents of 10 hawthorn species were explicited. The comparation of flavonoids revealed the abundant genetic diversity of hawthorn flavones. Large variable coefficient has been observed among 5 flavonoid monomer traits. The coefficients of variation were 44.17%, 132.2%, 157.08%, 113.91% and 31.05 for Vitexin, Rhamnosylvitexin, Hyperoside, Rutin and Quercetin respectively. The sum of these 5 flavonoid monomer contents represented the total flavonoids in hawthorn. The total coefficients of variation was 44.01%. Some high-content-flavone and valuable leaf resources were found. This research could provide accurate date for further production, breeding and the effective use of medicinal resources. (author)

  6. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  7. Produção, composição da uva e teores de nitrogênio na folha e no pecíolo em videiras submetidas à adubação nitrogenada Grapes yield, composition and nitrogen content in leaf and leaf petioles in grapevine with nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-12-01

    , especially nitrogen (N ones, which affects the productivity and the composition of the grapes. Its nutritional state can be evaluated by the N content in the foliar lamina and petiole. Two experiments were carried out in 2006/07 to evaluate the effect of the N fertilization in the N content of the foliar lamina and petiole, which is used for the N recommendation, yield and grape composition of vine, at Haplumbrept soil in Southern Brazil, Planalto city. Bordô vines of the experiment 1 and Couderc 13 ones of the experiment 2 were submitted to applications of 0, 30, 60 and 90kg ha-1 of N as follow: 50% was applied after the beginning of bud burst, 25% during bud burst and 25% during the flowering. Samples of the foliar lamina and petiole were collected in the flowering and verasion. The samples were dried, grinded and prepared to the total N analysis. By the time of the grape maturation, five bunches were collected randomly in the center and in the external part of the plant, which were weighted and submitted to length and wide measurements. Sequentially, 100 grapes were taken from these bunches, weighted and reserved. Following, the other bunches were collected and weighted, in order to determine the yield per plant and per hectare. Berries reserved were triturated and N-total, P and K were evaluated. The results clearly showed that the samples of foliar lamina collected in the flowering of the 'Bordô' and 'Courdec 13' cultivars were suitable to evaluate the availability of N in the plant. The N fertilization had increased the yield of grape in the Bordô cultivar and the total N in the grapes of both cultivars.

  8. Silicon Promotes Growth of Brassica napus L. and Delays Leaf Senescence Induced by Nitrogen Starvation

    Directory of Open Access Journals (Sweden)

    Cylia Haddad

    2018-04-01

    Full Text Available Silicon (Si is the second most abundant element in soil and has several beneficial effects, especially in plants subjected to stress conditions. However, the effect of Si in preventing nitrogen (N starvation in plants is poorly documented. The aim of this work was to study the effect of a short Si supply duration (7 days on growth, N uptake, photosynthetic activity, and leaf senescence progression in rapeseed subjected (or not to N starvation. Our results showed that after 1 week of Si supply, Si improves biomass and increases N uptake and root expression of a nitrate transporter gene. After 12 days of N starvation, compared to -Si plants, mature leaf from +Si plants showed a high chlorophyll content, a maintain of net photosynthetic activity, a decrease of oxidative stress markers [hydrogen peroxide (H2O2 and malondialdehyde (MDA] and a significant delay in senescence. When N-deprived plants were resupplied with N, a greening again associated with an increase of photosynthetic activity was observed in mature leaves of plants pretreated with Si. Moreover, during the duration of N resupply, an increase of N uptake and nitrate transporter gene expression were observed in plants pretreated with Si. In conclusion, this study has shown a beneficial role of Si to alleviate damage associated with N starvation and more especially its role in delaying of leaf senescence.

  9. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  10. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.

    Directory of Open Access Journals (Sweden)

    Hu Yang

    Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.

  11. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

    Science.gov (United States)

    Niklas, Karl J

    2006-02-01

    Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.

  12. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo; Christopher B. Field; Peter B. Reich; Peter S. Curtis; Kevin L. Griffin; Carla S Gunderson; Richard J. Norby; David T. Tissue; Manfred Forstreuter; Ana Rey; Christoph S. Vogel; CMEAL collaboration

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10 C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.

  13. Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    Science.gov (United States)

    Dong, Ning; Prentice, Iain Colin; Evans, Bradley J.; Caddy-Retalic, Stefan; Lowe, Andrew J.; Wright, Ian J.

    2017-01-01

    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north-south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon-nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca - themselves in part environmentally determined - with Rubisco activity

  14. Nitrogen fertilization of Cabernet Sauvignon grapevines: yield, total nitrogen content in the leaves and must composition

    Directory of Open Access Journals (Sweden)

    Felipe Lorensini

    2015-08-01

    Full Text Available Grapevines grown on sandy soils are subjected to the application of supplemental nitrogen (N; however, there is little information available regarding the impact of these applications on yield, plant nutritional state and must composition. The aim of this study was to evaluate the yield, nutritional state and must composition of grapevines subjected to N fertilization. Cabernet Sauvignon grapevines were subjected to annual applications of 0, 10, 15, 20, 40, 80 and 120 kg N ha-1 in 2008, 2009 and 2010. During the 2008/09, 2009/10 and 2010/11 harvest seasons, leaves were collected during full flowering and when the berries changed color, and the total N content was analyzed. The grape yield and the enological characteristics of the must were evaluated. The response to applied N was low, and the highest Cabernet Sauvignon grape yield was obtained in response to an application of 20 kg N ha-1 year-1. The application of N increased the nutrient content in the leaf collected at full flowering, but it had little effect on the total nutrient content in the must, and it did not affect the enological characteristics of the must, such as soluble solids, pH, total acidity, malic acid and tartaric acid.

  15. Leaf nitrogen remobilisation for plant development and grain filling.

    Science.gov (United States)

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  16. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.; Houborg, Rasmus; Bienkowski, J.; Braban, C.F.; Dalgaard, T.; Van, Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di, Tommasi, P.; Vitale, L.; Theobald, M.R.; Cellier, P.; Sutton, M.A.

    2013-01-01

    as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse Combining double low line 0.76), 46% of measured canopy chlorophyll contents (rmse Combining double low line 719 mg m-2) and 51% of measured canopy nitrogen contents (rmse Combining double low line 2.7 g m-2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km-2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatiooral resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl. Author(s) 2013. CC Attribution 3.0 License.

  17. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.

    2013-10-07

    as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse Combining double low line 0.76), 46% of measured canopy chlorophyll contents (rmse Combining double low line 719 mg m-2) and 51% of measured canopy nitrogen contents (rmse Combining double low line 2.7 g m-2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km-2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatiooral resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl. Author(s) 2013. CC Attribution 3.0 License.

  18. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Xia Yao

    2015-11-01

    Full Text Available The rapid and non-destructive monitoring of the canopy leaf nitrogen concentration (LNC in crops is important for precise nitrogen (N management. Nowadays, there is an urgent need to identify next-generation bio-physical variable retrieval algorithms that can be incorporated into an operational processing chain for hyperspectral satellite missions. We assessed six retrieval algorithms for estimating LNC from canopy reflectance of winter wheat in eight field experiments. These experiments represented variations in the N application rates, planting densities, ecological sites and cultivars and yielded a total of 821 samples from various places in Jiangsu, China over nine consecutive years. Based on the reflectance spectra and their first derivatives, six methods using different numbers of wavelengths were applied to construct predictive models for estimating wheat LNC, including continuum removal (CR, vegetation indices (VIs, stepwise multiple linear regression (SMLR, partial least squares regression (PLSR, artificial neural networks (ANNs, and support vector machines (SVMs. To assess the performance of these six methods, we provided a systematic evaluation of the estimation accuracies using the six metrics that were the coefficients of determination for the calibration (R2C and validation (R2V sets, the root mean square errors of prediction (RMSEP for the calibration and validation sets, the ratio of prediction to deviation (RPD, the computational efficiency (CE and the complexity level (CL. The following results were obtained: (1 For the VIs method, SAVI(R1200, R705 produced a more accurate estimation of the LNC than other indices, with R²C, R²V, RMSEP, RPD and CE values of 0.844, 0.795, 0.384, 2.005 and 0.10 min, respectively; (2 For the SMLR, PLSR, ANNs and SVMs methods, the SVMs using the first derivative canopy spectra (SVM-FDS offered the best accuracy in terms of R²C, R²V, RMSEP, RPD, and CE, at 0.96, 0.78, 0.37, 2.02, and 21

  19. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  20. Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2016-01-01

    Leaf dry matter content (LDMC) and specific leaf area (SLA) are two important traits in measuring biodiversity. To use remote sensing for the estimation of these traits, it is essential to understand the underlying factors that influence their relationships with canopy reflectance. The effect of

  1. [Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves].

    Science.gov (United States)

    Shangguan, Zhou-Ping

    2007-07-01

    In this paper, the effects of different nitrogen application rates on the nitrate reductase (NR) activity, nitric oxide (NO) content and gas exchange parameters in winter wheat (Triticum aestivum L.) leaves from tillering stage to heading stage and on grain yield were studied. The results showed that the photosynthetic rate (P(n)), transpiration rate (T(r)) and instantaneous water use efficiency (IWUE) of leaves as well as the grain yield were increased with increasing nitrogen application rate first but decreased then, with the values of all these parameters reached the highest in treatment N180. The NR activity increased with increasing nitrogen application rate, and there was a significant linear correlation between NR activity and NO content at tillering and jointing stages (R2 > or = 0.68, n = 15). NO content had a quadratic positive correlation with stomatal conductance (G(s)) (R2 > or = 0.43, n = 15). The lower NO content produced by lower NR activity under lower nitrogen application rate promoted the stoma opened, while the higher NO content produced by higher NR activity under higher nitrogen application rate induced the stoma closed. Although the leaf NO content had a quadratic positive correlation with stomatal conductance (R2 > or = 0.36, n = 15), no remarkable correlation was observed between NR activity and NO content at heading stage, suggesting that nitrogen fertilization could not affect leaf NO content through promoting NR activity, and further more, regulate the stomatal action. Under appropriate nitrogen application the leaf NR activity and NO content were lower, G(s), T(r) and IWUE were higher, and thus, the crop had a better drought-resistant ability, higher P(n), and higher grain yield.

  2. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  3. Growth, gas exchange, foliar nitrogen content, and water use of subirrigated and overhead irrigated Populus tremuloides Michx. seedlings

    Science.gov (United States)

    Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal

    2011-01-01

    Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...

  4. Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis.

    Science.gov (United States)

    Lee, Marissa R; Bernhardt, Emily S; van Bodegom, Peter M; Cornelissen, J Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P

    2017-01-01

    Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    Science.gov (United States)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  6. Measuring Leaf Water Content Using Multispectral Terrestrial Laser Scanning

    Science.gov (United States)

    Junttila, S.; Vastaranta, M.; Linnakoski, R.; Sugano, J.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, H.; Hyyppä, J.

    2017-10-01

    Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC) is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS). LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2) in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  7. MEASURING LEAF WATER CONTENT USING MULTISPECTRAL TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Junttila

    2017-10-01

    Full Text Available Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS. LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2 in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  8. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    Science.gov (United States)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  9. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    , we labelled the soil with 15N nitrate by injecting nitrate solution into the soil without strongly changing the water content for investigating nitrogen uptake and distribution along different compartments of the plant soil continuum. We observed a distinct difference in the carbon and nitrogen dynamics and allocation pattern between broad leaf and conifer seedlings. Broad leaf species showed a lower reduction of CO2 assimilation under drought and still allocated significant amounts of the new assimilates to the roots. Especially in maple and oak the belowground transfer of assimilates was kept at high levels even under severe drought stress, while there was a reduction in assimilation transport in beech. Instead, only small amounts of 13C labelled new assimilates arrived in the roots of conifers in the drought treatments. In the deciduous species 15N taken up the roots was more intensively allocated to aboveground tissues compared to conifers under control conditions, which retained the largest amounts within the fine roots. 15N uptake was reduced in the drought treatments in all species assessed. There was, however, no clear relation of this reduction to changes in 13C allocation to the roots. We thus cannot conclude that the reduction of nitrogen uptake is due to reduced transport of new assimilates belowground. We thus need to assume that carbon storage is sufficient to provide energy and carbon for nitrogen uptake and assimilation at least over the short-term. During longer drought periods, however, depletion of carbon stores might adversely affect the nutrient uptake and balance of trees.

  10. The fate of nitrogen mineralized from leaf litter — Initial evidence from 15N-labeled litter

    Science.gov (United States)

    Kathryn B. Piatek

    2011-01-01

    Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...

  11. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  12. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  13. Estimating Leaf Nitrogen of Eastern Cottonwood Trees with a Chlorophyll Meter

    Science.gov (United States)

    Benoit Moreau; Emile S. Gardiner; John A. Stanturf; Ronald K. Fisher

    2004-01-01

    The utility of the SPAD-502 chlorophyll meter for nondestructive and rapid field determination of leaf nitrogen (N) has been demonstrated in agricultural crops, but this technology has not yet been extended to woody crop applications. Upper canopy leaves from a 5-year-old plantation of two eastern cottonwood (Populus deltoides Bartr. ex Marsh.)...

  14. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous....... In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale....

  15. Does shoot water status limit leaf expansion of nitrogen-deprived barley?

    Science.gov (United States)

    Dodd, I C; Munns, Rana; Passioura, J B

    2002-08-01

    The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.

  16. [Development and test of a wheat chlorophyll, nitrogen and water content meter].

    Science.gov (United States)

    Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen

    2011-08-01

    A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.

  17. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  18. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  19. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  20. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH{sub 4}NO{sub 3} to the soil at rates from 0 to 200 kg N ha{sup −1} y{sup −1}, were individually exposed to 100 μl of artificial rainwater containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −} at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH{sub 4}{sup +} at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH{sub 4}{sup +} by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO{sub 3}{sup −} uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42–1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration. - Highlights: • Foliar uptake of dissolved inorganic nitrogen (N) by potted trees was studied. • Leaves were individually exposed to rainwater drops containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −}. • Foliar N uptake efficiency depended on

  1. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    Czech Academy of Sciences Publication Activity Database

    Koeslin-Findeklee, F.; Becker, M. A.; van der Graaff, E.; Roitsch, Thomas; Horst, W. J.

    2015-01-01

    Roč. 66, č. 13 (2015), s. 3669-3681 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Brassica napus * cytokinins * genotypic differences * leaf senescence * nitrogen efficiency * nitrogen starvation * reciprocal grafting * stay-green Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  2. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  3. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    Science.gov (United States)

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  4. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    DEFF Research Database (Denmark)

    Bøgh, Eva; Houborg, R; Bienkowski, J

    2013-01-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing data from satellites can be used to estimate leaf area index (LAI), leaf......). Predictabilities of SVIs and REGFLEC simulations generally improved when constrained to single land use categories (wheat, maize, barley, grass) across the European landscapes, reflecting sensitivity to canopy structures. Predictability further improved when constrained to local (10 × 10 km2) landscapes, thereby...

  5. Juvenile tree growth correlates with photosynthesis and leaf phosphorus content in central Amazonia

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Marenco

    2015-04-01

    Full Text Available Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04. Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K, the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003. At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

  6. Incorporation of leaf nitrogen observations for biochemical and environmental modeling of photosynthesis and evapotranspiration

    DEFF Research Database (Denmark)

    Bøgh, E.; Gjettermann, Birgitte; Abrahamsen, Per

    2007-01-01

    . While most canopy photosynthesis models assume an exponential vertical profile of leaf N contents in the canopy, the field measurements showed that well-fertilized fields may have a uniform or exponential profile, and senescent canopies have reduced levels of N contents in upper leaves. The sensitivity...

  7. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  8. Content of nitrogen in atmospheric precipitation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Angstroem, A; Hoegberg, L

    1952-01-01

    In the present paper an attempt is made to give a general idea of the geographical distribution of fixed nitrogen (NH/sub 4/-N) transferred to the soil through precipitation in Sweden. Further a map is given showing the distribution af alpha, a quantity proportional to the nitrogen concentration in the precipitation at the beginning of a rain and, it is assumed, representative for the content of fixed nitrogen in the atmosphere before the rain is falling. A discussion of different causes of the concentration of fixed nitrogen in precipitation is presented and a photochemical process is suggested, which would explain the almost constant ratio between NH/sub 4//sup -n/ and NO/sub 3//sup -n/ frequently found within the temperate zones. It is evident, however, that other causes also are at work, especially at lower latitudes. The need of laboratory experiments is emphasized.

  9. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized with ectomycorrhizal or litter decomposing basidiomycetes

    OpenAIRE

    COLPAERT, Jan; VAN TICHELEN, Katia

    1996-01-01

    The decomposition and the nitrogen and phosphorus mineralization of fresh beech (Fagus sylvatica L.) leaf litter are described. Leaves were buried for up to 6 months in plant containers in which Scots pine (Pinus sylvestris L.) seedlings were cultivated at a low rate of nutrient addition. The saprotrophic abilities of three ectomycorrhizal fungi, Thelephora terrestris Ehrh.: Fr., Suillus bovinus (L.: Fr.) O. Kuntze and Paxillus involutes (Batsch: Fr) Fr., were compared with the degradation ca...

  10. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    OpenAIRE

    Diallo, M. D.; Guisse, A.; Sall, S. N.; Dick, R. P.; Assigbetsé, Komi; Dieng, A. L.; Chotte, Jean-Luc

    2015-01-01

    Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB) community composition and nitrogen (N) availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C) and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. T...

  11. Study on the effect of different fertilizer on the stable nitrogen isotope of soil, leaf and cucumber

    International Nuclear Information System (INIS)

    Yuan Yuwei; Zhang Zhiheng; Xu Mingfei; Yang Guiling; Zheng Jici; Wang Qiang; Zhao Ming

    2010-01-01

    The effect of combined application of organic and chemical fertilizers on stable nitrogen isotope abundance (δ 15 N-%), nitrate and nitrate reductase active was studied for the soil, cucumber and leaf,respectively. The results showed that the δ 15 N of cucumber was with the trend of low, high and low as the application rate of organic manure decreased, and it was significantly different (P 0.05) for the other treatments. The δ 15 N of cucumber was not significantly different during different harvest time (P>0.05) for the same treatment. The correlation of δ 15 N between the cucumber and the leaf was 0.9836 for the different treatment, whose δ 15 N was more affected more by the fertilizer and less by the soil. The content of nitrate in cucumber was reducing with the rate of organic manure decreasing, which had a bad correlation (r=0.6568) with the δ 15 N of cucumber; however the active of nitrate reductase was increasing which had a positive correlation with the treatments of control treatment, 100%, 80% and 60% of organic manure applied (r=0.9187), and a negative correlation with the treatments of 60%, 40%, 20% of organic manure and 100% chemical fertilizer applied (r=-0.9773). To sum up, the δ 15 N can be used as marks to discriminate the cucumbers grown with organic manure and chemical fertilizer, but the pattern of fractionation and distribution of the stable nitrogen isotope should be further studied. (authors)

  12. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    Science.gov (United States)

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  13. Effects of nitrogen enrichment on heavy metals content of cattle ...

    African Journals Online (AJOL)

    The research was carried out at John Ker Nigeria Organo-Mineral Company site at Ikot Ekpene, Akwa Ibom State, Nigeria, to investigate the effect of nitrogen enrichment on contents of heavy metals in cattle dung/poultry manure compost and the growth of maize. Cattle dung was mixed with poultry manure in the ratio of 3:1 ...

  14. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Science.gov (United States)

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  15. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient

    Science.gov (United States)

    Richard V. Pouyat; Margaret M. Carreiro

    2003-01-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...

  16. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  17. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  18. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management

    Directory of Open Access Journals (Sweden)

    Asa Gholizadeh

    2017-12-01

    Full Text Available The optimum rate and application timing of Nitrogen (N fertilizer are crucial in achieving a high yield in rice cultivation; however, conventional laboratory testing of plant nutrients is time-consuming and expensive. To develop a site-specific spatial variable rate application method to overcome the limitations of traditional techniques, especially in fields under a double-cropping system, this study focused on the relationship between Soil Plant Analysis Development (SPAD chlorophyll meter readings and N content in leaves during different growth stages to introduce the most suitable stage for assessment of crop N and prediction of rice yield. The SPAD readings and leaf N content were measured on the uppermost fully expanded leaf at panicle formation and booting stages. Grain yield was also measured at the end of the season. The analysis of variance, variogram, and kriging were calculated to determine the variability of attributes and their relationship, and finally, variability maps were created. Significant linear relationships were observed between attributes, with the same trends in different sampling dates; however, accuracy of semivariance estimation reduces with the growth stage. Results of the study also implied that there was a better relationship between rice leaf N content (R2 = 0.93, as well as yield (R2 = 0.81, with SPAD readings at the panicle formation stage. Therefore, the SPAD-based evaluation of N status and prediction of rice yield is more reliable on this stage rather than at the booting stage. This study proved that the application of SPAD chlorophyll meter paves the way for real-time paddy N management and grain yield estimation. It can be reliably exploited in precision agriculture of paddy fields under double-cropping cultivation to understand and control spatial variations. Keywords: Spatial variability, Non-invasive measurement, Precision farming, Decision support

  19. Decomposition kinetics of expanded austenite with high nitrogen contents

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2......) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L...

  20. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-02-02

    Feb 2, 2012 ... characteristics, this study measured 33 groups of peach tree leaf ... spectral absorption values were obtained from a total of 33 groups of leaves .... using the trial and error method, based on the following empirical ... be used as indicators for evaluation of prediction models. .... Comparison of the methods of.

  1. Nitrogen concentration in dry matter of the fifth leaf during growth of greenhouse tomato plants

    Directory of Open Access Journals (Sweden)

    Rattin Jorge E.

    2002-01-01

    Full Text Available The nitrogen concentration in dry matter of the fifth leaf during growth of a greenhouse tomato crop was determined. Plants of hybrid Monte Carlo were grown in 4.5 L bags, using a commercial substrate, in a plant density of 3.3 plants m-2. A nutrient solution containing, in mmol L-1: KNO3, 4.0; K2SO4, 0.9; Ca(NO32, 3.75; KH2PO4, 1.5; MgSO4, 1.0; iron chelate 19. 10³, was used as reference. Microelements were added by a commercial mixture. The T3 treatment was equal to the reference nutrient solution, whereas in treatments T1, T2, T4 and T5 quantities of all nutrients from T3 were multiplied by 0.25, 0.50, 1.25 and 1.50, respectively. In each treatment, the volume of 1 L of nutrient solution was supplied to each plant once a week by fertigation. Periodically destructive measurements were made from anthesis to ripening of the first truss, to determine dry matter and N concentration in shoot and in fifth leaf tissues, counted from the apex to the bottom of the plant. Five dilution curves were fitted from data of N concentration in the fifth leaf and shoot dry matter accumulation during growth of plants. A general relationship was adjusted between actual N concentration in shoot (Nt and in the fifth leaf (Nf: Nt = 1.287 Nf (R² = 0.80. This relationship could be used to estimate the N status of plants by means of a nitrogen nutrition index (NNI, from analysis of the fifth leaf sap.

  2. Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing

    Science.gov (United States)

    Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian

    2017-04-01

    Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13

  3. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    Science.gov (United States)

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  4. Storage and recycling utilization of leaf-nitrogen of jujube tree

    International Nuclear Information System (INIS)

    Zeng Xiang; Hao Zhongning

    1991-01-01

    16 N-urea was foliarly applied on bearing or young jujube tree in autumn of 1987. The effects of leaf-nitrogen retranslocation in the trees, positions of the N stored, forms of reserved N, and reutilization of storage N in the next year were studied. The results were as follows: 15 N returned and stored in all parts of the tree following foliar application of 15 N-urea. Root could use the nitrogen not only absorbed from soil but also transported from leaves. The above-ground organs and roots of jujube tree played the same important roles on nitrogen storage in winter. The main forms of storage nitrogen were protein-N, which was 2-3 fold more than non-protein-N. The storage nitrogen existed in above-ground parts was used first in early spring, and that returned from leaves last year could be prior used for the developments of leaves, branchlets and infloresences. The relative distribution of nitrogen in floresence was more in bearing tree than in young tree. In the next year, 15 N was redistributed in branchlets, leaves, flowers, young fruits and perennial spurs in autumn. The 15 N transported out of the treated spurs reappeared in next spring and further transported to neighboring spurs. The local storage N was prior used for growth. There was 21.49% of fertilizer-N stored in the young jujube trees when treated foliarly with urea in autumn of 1987. After one years's use, there was still 18.91% of fertilizer-N existed in the trees, which indicated a characteristic of circulatory utilization of nitrogen for a long period and the reutilized nitrogen was mainly from jujube leaves and deciduous branchlets

  5. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  6. BOREAS TE-9 PAR and Leaf Nitrogen Data for NSA Species

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the relationship between photosynthetically active radiation (PAR) levels and foliage nitrogen in samples from six sites in the BOREAS Northern Study Area (NSA) collected during the three 1994 intensive field campaigns (IFCs). This information is useful for modeling the vertical distribution of carbon fixation for these different forest types in the boreal forest. The data were collected to quantify the relationship between PAR and leaf nitrogen of black spruce, jack pine, and aspen. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  8. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  9. Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content

    Directory of Open Access Journals (Sweden)

    Jan Rudolf Karl Lehmann

    2015-01-01

    Full Text Available The invasive shrub, Acacia longifolia, native to southeastern Australia, has a negative impact on vegetation and ecosystem functioning in Portuguese dune ecosystems. In order to spectrally discriminate A. longifolia from other non-native and native species, we developed a classification model based on leaf reflectance spectra (350–2500 nm and condensed leaf tannin content. High variation of leaf tannin content is common for Mediterranean shrub and tree species, in particular between N-fixing and non-N-fixing species, as well as within the genus, Acacia. However, variation in leaf tannin content has not been studied in coastal dune ecosystems in southwest Portugal. We hypothesized that condensed tannin concentration varies significantly across species, further allowing for distinguishing invasive, nitrogen-fixing A. longifolia from other vegetation based on leaf spectral reflectance data. Spectral field measurements were carried out using an ASD FieldSpec FR spectroradiometer attached to an ASD leaf clip in order to collect 750 in situ leaf reflectance spectra of seven frequent plant species at three study sites in southwest Portugal. We applied partial least squares (PLS regression to predict the obtained leaf reflectance spectra of A. longifolia individuals to their corresponding tannin concentration. A. longifolia had the lowest tannin concentration of all investigated species. Four wavelength regions (675–710 nm, 1060–1170 nm, 1360–1450 nm and 1630–1740 nm were identified as being highly correlated with tannin concentration. A spectra-based classification model of the different plant species was calculated using a principal component analysis-linear discriminant analysis (PCA-LDA. The best prediction of A. longifolia was achieved by using wavelength regions between 1360–1450 nm and 1630–1740 nm, resulting in a user’s accuracy of 98.9%. In comparison, selecting the entire wavelength range, the best user accuracy only reached 86

  10. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SOIL EXCHANGEABLE ALUMINUM INFLUENCING THE GROWTH AND LEAF TISSUE MACRONUTRIENTS CONTENT OF CASTOR PLANTS

    Directory of Open Access Journals (Sweden)

    ROSIANE DE LOURDES SILVA DE LIMA

    2014-01-01

    Full Text Available Three castor ( Ricinus communis genotypes were studied regarding tolerance to high exchange factorial distribution of five doses of exchangeable aluminum added to the soil (0, 0.15, 0.30, 0.60, and 1.20 cmol c dm - 3 and three castor genotypes (BRS Nordestina, BRS Paraguaçu, and Lyra. The plants were raised in pots in a greenhouse. At 53 days after emergence, data were taken on plant height, leaf area, dry mass of shoot and root, and leaf tissue content of macronutrients. The most sensitive genotype was the cv. BRS Nordestina, in which the shoot and root dry weight in the highest aluminum content were reduced to 12.9% and 16.2% of the control treatment, respectively. The most tolerant genotype was the hybrid Lyra, in which the shoot and root dry weight in the maximum content of aluminum were reduced to 43.5% and 42.7% of the control treatment, respectively.The increased exchangeable aluminum affected the leaf nutrient content, and the intensity of the response was different among cultivars. The aluminum toxicity increased N, Ca, and Mg contents and reduced on P, K, and S contents. The cv. BRS Nordestina had a drastic shoot dry weight reduction associated with an intense increment in the N leaf content. Thus, the N increment was caused by a concentration effect caused by the limited growth.

  12. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  13. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  14. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    International Nuclear Information System (INIS)

    Dreccer, M.F.; Schapendonk, H.C.M.; Oijen, M. van; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling work. Oilseed rape and wheat were grown at three levels of N supply, combined with two levels of plant density at high N supply. Canopy photosynthesis and daytime radiation use efficiency (RUE A ) were calculated with a model based on observed N-dependent leaf photosynthesis and observed canopy vertical distribution of light and leaf N. In oilseed rape, RUE A was higher than in wheat and, in contrast to wheat, the sensitivity to canopy leaf N content increased from the start to the end of the critical period. These results were partly explained by the higher leaf photosynthesis in oilseed rape vs wheat. In addition, oilseed rape leaves were increasingly shaded by the inflorescence. Thus, RUE A increased because more leaves were operating at non-saturating light levels. In both species, the vertical distribution of leaf N was close to that optimising canopy photosynthesis. The results are discussed in relation to possibilities for improvement of N productivity in these crops. (author)

  15. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Directory of Open Access Journals (Sweden)

    L. Wang

    2013-02-01

    Full Text Available Seasonal and spatial variations in foliar nitrogen (N parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L., Douglas fir (Pseudotsuga menziesii (Mirb. Franco and Scots pine (Pinus sylvestris L. growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech, higher foliage longevity (fir or both (boreal pine forest. In combination with data from a literature review, a general relationship of decreasing N re

  16. Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny

    International Nuclear Information System (INIS)

    Hall, A.J.; Connor, D.J.; Sadras, V.O.

    1995-01-01

    Loss of nitrogen from the leaves and a reduction in specific leaf nitrogen (SLN, g N m −2 ) is associated with grain filling in sunflower (Helianthus annuus L.). To explore the relationship between crop radiation-use efficiency (RUE, g MJ −1 ) and SLN, crop biomass accumulation and radiation interception were measured between the bud-visible and physiological-maturity stages in crops growing under combinations of two levels of applied nitrogen (0 and 5 g N m −2 ) and two population densities (2.4 and 4.8 plants m −2 ). Both nitrogen fertilization and density had significant (P = 0.05) effects on crop biomass yield, nitrogen uptake, leaf area index and SLN, but the nitrogen effects were more pronounced for these and other crop variables. Linear regressions of accumulated biomass (OCdwt, corrected for the energy costs of oil synthesis in the grain) on accumulated intercepted short-wave radiation between bud visible and early grain filling provided appropriate and significantly (P = 0.05) different estimates of RUE for the pooled 0 g N m −2 (1.01 g OCdwt MJ −1 ) and 5 g N m −2 (1.18 g OCdwt MJ −1 ) treatments. When calculated for each inter-harvest interval, crop RUE varied in a curvilinear fashion during the season, with a broad optimum from 40 to 70 days after emergence of the crops, and with lower values earlier and later in the season. The reduction in RUE toward physiological maturity was particularly marked. A plot of RUE against SLN revealed a reduction in RUE at small SLN values, but the relationship may be confounded by ontogenetic changes in other factors. A published model (Sinclair and Horie (1989), Crop Sci., 29: 90–98) was used to explore the RUE/SLN relationship. The model was unable to reproduce the decline in RUE during the second half of the grain-filling period. It is suggested that an important cause of this failure may be the partition, in the model, of a fixed, rather than a variable, fraction of crop gross photosynthesis to

  17. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  18. [Effects of nitrogen-supply levels on leaf senescence and characteristics of distribution and utilization of 13C and 15N in Fuji 3 apple grafted on different stocks].

    Science.gov (United States)

    Chen, Qian; Ding, Ning; Zhu, Zhan Ling; Peng, Ling; Ge, Shun Feng; Jiang, Yuan Mao

    2017-07-18

    Two-year-old potted Fuji 3 apple trees on different rootstocks [Fuji 3/M. micromalus Makin (joe), Fuji 3/M7 (semi-dwarf) and Fuji 3/M26/M. micromalus Makin (dwarf)] were used to study leaf morphology and photosynthesis and the characteristics of distribution and utilization of 13 C and 15 N at different nitrogen supply levels (0N, 25%N and 100%N, the N content in 100% N treatment was the same as that in Hoagland complete nutrient solution) under sand culture condition. The main results were as follows: At shoot growth cessation stage in autumn, the leaf chlorophyll content (SPAD), leaf nitrogen content and photosynthetic rate were found the highest in Fuji 3/M. micromalus Makin, followed by Fuji 3/M7, and the lowest was found in Fuji 3/M26/M. micromalus Makin under the same nitrogen stress treatments (0N and 25%N), however, under normal nitrogen treatment (100%N) Fuji 3/M26/M. micromalus Makin had the highest leaf SPAD value, photosynthetic rate and the nitrogen content, followed by Fuji 3/M7, and the lowest was found in Fuji 3/M. micromalus Makin. The leaf SOD and CAT activities showed Fuji 3/M. micromalus Makin > Fuji 3/M7 > Fuji 3/M26/M. micromalus Makin under the same nitrogen stress treatments, but showed Fuji 3/M26/M. micromalus Makin > Fuji 3/M7 > Fuji 3/M. micromalus Makin under the normal nitrogen treatment. There were significant differences in the distributions of 15 N and 13 C in root and leaf in the 3 scion-stock combinations, and the distribution rates of 15 N and 13 C in roots were the highest under nitrogen stress treatments and in the order of Fuji 3/M. micromalus Makin > Fuji 3/M7 > Fuji 3/M26/M. micromalus Makin. The distribution rates of 15 N and 13 C in leaves were the highest under the normal nitrogen treatment and in the order of Fuji 3/M26/M. micromalus Makin > Fuji 3/M7 > Fuji 3/M. micromalus Makin. The 15 N utilization ratio differed significantly among the 3 scion-stock combinations under different nitrogen application levels and was in

  19. Effect of liming on the molybdenum content in the root and leaf of ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... nitrogen uptake (Gupta and Lipsett, 1981; Kaiser et al.,. 2005). The lack of Mo in the plant leads to decreased activities of nitrate reductase and nitrogenase which results in reduced protein synthesis and increased content of amides and other soluble non-protein forms of nitrogen (Nicholas and Nason, ...

  20. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  1. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  2. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    Science.gov (United States)

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  3. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  4. Nitrogen-fixing cyanobacterium with a high phycoerythrin content.

    Science.gov (United States)

    Rodriguez, H; Rivas, J; Guerrero, M G; Losada, M

    1989-03-01

    The elemental and molecular composition, pigment content, and productivity of a phycoerythrin-rich nitrogen-fixing cyanobacterium-an Anabaena strain isolated from the coastal lagoon Albufera de Valencia, Spain-has been investigated. When compared with other heterocystous species, this strain exhibits similar chlorophyll a, carotene, and total phycobiliprotein contents but differs remarkably in the relative proportion of specific phycobiliproteins; the content of C-phycoerythrin amounts to 8.3% (versus about 1% in the other species) of cell dry weight. Absorption and fluorescence spectra of intact phycobilisomes isolated from this Anabaena sp. corroborate the marked contribution of phycoerythrin as an antenna pigment, a circumstance that is unusual for cyanobacteria capable of fixing N(2). The pigment content of cells is affected by variations in irradiance and cell density, these adaptive changes being more patent for C-phycoerythrin than for phycocyanins. The Anabaena strain is clumpy and capable of rapid flocculation. It exhibits outdoor productivities higher than 20 g (dry weight) m day during summer.

  5. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees

    Directory of Open Access Journals (Sweden)

    Lasse Tarvainen

    2016-07-01

    Full Text Available Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N availability. However, few studies have provided a detailed account of how carbon (C acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises

  6. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  7. Response of the leaf photosynthetic rate to available nitrogen in erect panicle-type rice (Oryza sativa L. cultivar, Shennong265

    Directory of Open Access Journals (Sweden)

    Chihiro Urairi

    2016-07-01

    Full Text Available Increasing the yield of rice per unit area is important because of the demand from the growing human population in Asia. A group of varieties called erect panicle-type rice (EP achieves very high yields under conditions of high nitrogen availability. Little is known, however, regarding the leaf photosynthetic capacity of EP, which may be one of the physiological causes of high yield. We analyzed the factors contributing to leaf photosynthetic rate (Pn and leaf mesophyll anatomy of Nipponbare, Takanari, and Shennong265 (a EP type rice cultivar varieties subjected to different nitrogen treatments. In the field experiment, Pn of Shennong265 was 33.8 μmol m−2 s−1 in the high-N treatment, and was higher than that of the other two cultivars because of its high leaf nitrogen content (LNC and a large number of mesophyll cells between the small vascular bundles per unit length. In Takanari, the relatively high value of Pn (31.5 μmol m−2 s−1 was caused by the high stomatal conductance (gs; .72 mol m−2 s−1 in the high-N treatment. In the pot experiment, the ratio of Pn/Ci to LNC, which may reflect mesophyll conductance (gm, was 20–30% higher in Nipponbare than in Takanari or Shennong265 in the high N availability treatment. The photosynthetic performance of Shennong265 might be improved by introducing the greater ratio of Pn/Ci to LNC found in Nipponbare and greater stomatal conductance found in Takanari.

  8. Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records

    Science.gov (United States)

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  9. Effect of liming on the molybdenum content in the root and leaf of ...

    African Journals Online (AJOL)

    Three liming treatments were employed (1, 3 and 4 t/ha CaCO3). The liming operation used on pseudogley induced a statistically significant increase in molybdenum ion absorption into the root system of tomato. Independently from the aforementioned, the values for the root and leaf molybdenum content of tomato in each ...

  10. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    KAUST Repository

    Houborg, Rasmus

    2015-01-19

    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy

  11. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  12. Effect of different transplanting leaf age on rice yield, nitrogen utilization efficiency and fate of 15N-fertilizer

    International Nuclear Information System (INIS)

    Fan Hongzhu; Lu Shihua; Zeng Xiangzhong

    2010-01-01

    Field experiments were conducted to study rice yield, N uptake and fate by using 15 N-urea at transplanting leaf age of 2-, 4-and 6-leaf, respectively. The results showed that rice yield significantly decreased with delay of transplanting leaf age, and 15 N-fertilizer uptake by grain and straw of rice, nitrogen utilization and residue also decreased, but loss of 15 N-fertilizer increased. Under different transplanting leaf age, N absorption by rice mainly came from the soil. Almost 1/3 of total N was supplied by fertilizer, and 2/3 came from soil. The efficiency of fertilizer was 20.8% ∼ 25.7%, 15 N-fertilizer residue ratio was 17.9% ∼ 32.2%, and 15 N-fertilizer loss was 42.1% ∼ 61.3%. 15 N-fertilizer residue mainly distributed in 0 ∼ 20 cm top soil under different treatments. The results indicated that transplanting young leaf age could increase rice yield and nitrogen utilization efficiency, and decrease loss of nitrogen fertilizer and pollution level on environment. (authors)

  13. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season.

    Science.gov (United States)

    Marin, Alicia; Ferreres, Federico; Barberá, Gonzalo G; Gil, María I

    2015-02-18

    The lack of consistency in homogeneous color throughout the season of pigmented baby leaf lettuce is a problem for growers because of the rejection of the product and consequently the economic loss. Changes in color as well as individual and total phenolic composition and content as a response to the climatic variables were studied following the analysis of three pigmented baby leaf lettuces over 16 consecutive weeks from February to May, which corresponded to the most important production season in winter in Europe. Color and phenolic content were significantly (P ≤ 0.001) affected by cultivar, harvest week, and climatic variables that occurred in the last week before harvest. Radiation and temperature showed positive correlations with the content of phenolic acids and flavonoids that increased in all three cultivars as the season progressed. Cyanidin-3-O-(6''-O-malonyl)-glucoside content showed positive correlations with temperature and radiation but only in Batavia cultivars whereas in red oak leaf the correlation was with cold temperatures. Regarding hue angle, a positive correlation was shown with the number of hours at temperatures lower than 7 °C. A relationship between hue angle and the content of anthocyanins was not possible to establish. These results suggest that the colorimetric measurement of color cannot be used as a good indicator of anthocyanin accumulation because other pigments such as chlorophylls and carotenoids may contribute as well to the leaf color of pigmented lettuce. This study provides information about the impact of genotype and environment interactions on the biosynthesis of phenolic compounds to explain the variability in the leaf color and product appearance.

  14. Effect of nitrogen and potassium fertilization on micronutrient content in grain maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Josef Maňásek

    2013-01-01

    Full Text Available A two-year small-plot field experiment with the grain maize hybrid KWS 2376 was conducted on heavy soil with a low supply of available nutrients incl. potassium (K at Otrokovice, Czech Republic, during 2010–2011. The experiment included 4 treatments: unfertilized control; nitrogen (N fertilisation with urea (120 kg N/ha alone or combined with two forms of K fertiliser (potassium chloride (KCl or potassium sulphate (K2SO4; 125 kg K2O/ha. Biomass samples for determination of Zn, Mn, Cu and Fe were taken as the whole aboveground biomass in the DC 32 (first node stage, the ear-leaf in the DC 61 (flowering stage and grain during the harvest.Between the two years the content of micronutrients in the individual treatments varied irregularly. In DC 32 and DC 61 the order of the content of micronutrients was as follows: Fe > Mn > Zn > Cu. The Fe content was significantly the highest in the unfertilised control and the Mn content after the application of N + K2SO4 in both samplings. In the grain the order was as follows: Zn > Fe > Mn > Cu (mg/kg DM: at the following contents: Zn: 19.20–23.19; Fe: 15.12–19.87; Mn: 0.85–3.60; Cu: 0.19–1.34. We can recommend fertilisation of maize with urea and with both potassium mineral fertilisers without any negative effects on the content of the micronutrients in the maize biomass.

  15. Fatty acid and sterol contents during methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was showed that JA-Me did not affect or only slightly affected the content of free and bound fatty acids in petioles and blades. ß-Sitosterol, campesterol and ß-amyrin were identified in petioles and blades of K. blossfeldiana; JA-Me decreased the content of campesterol in petioles and increased the content of ß-sitosterol in blades. In blades of plants treated with JA-Me disappearance of olean-12-one was indicated but appearance of 2H-cyclopropa[a]-naphthalen-2-one,l, la, 4, 5, 6, 7, 7a, 7b-octahydro-l, 1, 7, 7a-tetramethyl (aristolone was documented. The significance of these findings in leaf abscission induced by methyl jasmonate in K. blossfeldiana is discussed.

  16. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves da Silva

    2011-08-01

    Full Text Available The study was carried out for two years in maize in succession to the wheat using no tillage system in a distroferric Red Latosol (Hapludox. Methods of management nitrogen fertilizer (120 kg ha-1 with ammonium sulphate were studied; the fertilizer was applied in maize sowing or in maize topdressing, and N with previous application in wheat sowing. In addition, leaf chlorophyll reading was used as an indicator for the need for topdressed nitrogen fertilizer. Nitrogen supply index (NSI was shown to be effective at predicting need for topdressed nitrogen fertilizer for maize. The application of N improved the yield of the maize independent of the management system. The flowering stage was carried out at the appropriate time in order to estimate the nitrogen nutrition state and yield of maize using the relative chlorophyll level (RIC.

  17. Relationship between atmospheric ammonia concentration and nitrogen content in terricolous lichen (Cladonia portentosa)

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Andersen, Helle Vibeke; Strandberg, Morten Tune

    2014-01-01

    From April 2006 to April 2007, the geographical and seasonal variation in nitrogen content in terricolous lichen (Cladonia portentosa) and atmospheric ammonia concentrations were measured at five heathland sites. The seasonal variation in the nitrogen content of the lichen was small, even though...... there was a large seasonal variation in the air concentration of ammonia. A sizable local variation in the nitrogen content of the lichen was found even at the scale of a few kilometres. The nitrogen content in the lichen showed a high correlation to the yearly mean value of the measured ammonia concentration...

  18. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  19. Impacts of limestone and nitrogen top dressing application on the potassium content in the soil profile and marandu-grass leaf concentration Impactos da aplicação de calcário e nitrogênio em cobertura no teor de potássio no perfil do solo e na concentração foliar do capim-marandu

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2009-07-01

    Full Text Available The objective of this experiment was to evaluate the effects of nitrogen doses (0, 100, 200, 300, and 400 kg ha-1 year-1, with or without dolomitic lime covering application, on the potassium (K soil content at depths varying form 0 to 5, 5 to 10, and 10 to 20 cm, and the potassium concentration in the plant. The experiment was carried out in a rhodic ferralsol with a slightly rolling relief, in a 5 × 2 factorial arrangement, in a complete randomized block design, with four replications. Nitrogenated fertilization caused a linear increase in the potassium concentration in the plant and also in the mineral content in the 0-5 cm soil layer. An effect of competitive inhibition occurred between the potassium and calcium absorption, and potassium and magnesium absorption. Although a significant fraction of potassium returned to the soil surface layer through the forage residue due to the increase in dry matter production caused by nitrogenated fertilization, the increase in the potassium concentration in the plant due to the doses of nitrogen demonstrated the importance of considering the potassium supply to the plant, when the forage mass is intensified through nitrogenated fertilization.Objetivou-se avaliar os efeitos de nitrogênio (0, 100, 200, 300 e 400 kg/ha.ano, com ou sem aplicação de calcário dolomítico em cobertura, sobre o teor de potássio (K do solo nas profundidades de 0 a 5; 5 a 10; e 10 a 20 cm e a concentração de potássio na planta. O experimento foi realizado em Latossolo Vermelho distroférrico de relevo suavemente ondulado, disposto em esquema fatorial 5 × 2, em blocos casualizados, com quatro repetições. A adubação nitrogenada promoveu aumento linear na concentração de potássio na planta e no teor desse mineral na camada de 0 a 5 cm do solo. Ocorreu efeito de inibição competitiva entre a absorção de potássio e cálcio e entre potássio e magnésio. Embora uma fração significativa de potássio retorne

  20. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  1. Differential nitrogen cycling in semiarid sub-shrubs with contrasting leaf habit.

    Directory of Open Access Journals (Sweden)

    Sara Palacio

    Full Text Available Nitrogen (N is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental (15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.

  2. Antioxidant Capacity and Phenolic Content in Olive Leaf Tisane as Affected by Boiling Treatment

    Directory of Open Access Journals (Sweden)

    Fathia AOUIDI

    2016-06-01

    Full Text Available This paper investigated the effect of preparation method on the quality of olive leaf tisane. Secondly, it aimed at evaluating and understanding the effect of boiling treatment on phenolic compounds and antioxidant capacity of an aqueous extract of olive leaves. The Phenolic content was determined by Folin-Ciocalteu method. The antioxidant capacity was assessed by ABTS+ method. The Phenolic content and antioxidant capacity depended on extraction procedure of olive leaf tisane. It was found that boiling leads to a decrease in the phenolic content and a rise of antioxidant capacity of aqueous extract from olive leaves. The mass molecular distribution of the polymeric aromatic fraction was analyzed by gel filtration chromatography on Sephadex G50. Results suggested the hydrolysis of phenolic polymers following boiling. Moreover, HPLC analyses showed an increase in rutin, oleuropein and caffeic acid levels in treated sample. As a conclusion, thermal processing could be useful for enhancing the antioxidant capacity and the extractability of phenolic compounds in olive leaf tisane.

  3. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  4. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Science.gov (United States)

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  5. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  6. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  7. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Science.gov (United States)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2012-07-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results

  8. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    International Nuclear Information System (INIS)

    Burkey, Kent O.; Neufeld, Howard S.; Souza, Lara; Chappelka, Arthur H.; Davison, Alan W.

    2006-01-01

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 μmol g -1 fresh weight) than crown-beard (2-4 μmol g -1 fresh weight) or cutleaf coneflower (0.5-2 μmol g -1 fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g -1 fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity

  9. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Kent O. [Plant Science Research Unit, USDA-ARS and North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 (United States)]. E-mail: koburkey@unity.ncsu.edu; Neufeld, Howard S. [Appalachian State University, Boone, NC (United States); Souza, Lara [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN (United States); Chappelka, Arthur H. [Auburn University, Auburn, AL (United States); Davison, Alan W. [University of Newcastle, Newcastle, England (United Kingdom)

    2006-10-15

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 {mu}mol g{sup -1} fresh weight) than crown-beard (2-4 {mu}mol g{sup -1} fresh weight) or cutleaf coneflower (0.5-2 {mu}mol g{sup -1} fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g{sup -1} fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity.

  10. Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential.

    Science.gov (United States)

    Sapountzis, Panagiotis; Zhukova, Mariya; Hansen, Lars H; Sørensen, Søren J; Schiøtt, Morten; Boomsma, Jacobus J

    2015-08-15

    Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. [Effects of nitrogen application levels on yield and active composition content of Desmodium styracifolium].

    Science.gov (United States)

    Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi

    2010-06-01

    To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).

  12. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  13. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora

    OpenAIRE

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C. Berny Mier y; Mooney, Kailen A.; Moreira, Xoaquín

    2018-01-01

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any ...

  14. Use of an inexpensive chlorophyll meter to predict Nitrogen levels in leaf tissues of water hyacinth (Eichhornia crassipes (Mart.) Solms

    Science.gov (United States)

    Tissue nitrogen is also an important indicator of plant health and can be a useful predictor of plant vigor and susceptibility to disease and pests. Hence, knowing nitrogen content may aid in determining establishment success of plants used in restoration programs, including those destined for aqua...

  15. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  16. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Z.; Kalembasa, S.; Wyszkowski, M.; Rolka, E. [University of Warmia & Mazury Olsztyn, Olsztyn (Poland). Dept. of Environmental Chemistry

    2004-07-01

    The aim of this study was to determine the effect of cadmium (10, 20, 30 and 40 mg Cd/kg of soil) contamination in soil with the application of different substances (compost, brown coal, lime and bentonite) on the intake of nitrogen by some plants. The correlations between the nitrogen content in the plants and the cadmium concentration in the soil, as well as the plant yield and the content of micro- and macroelements in the plants were determined. Plant species and cadmium dose determined the effects of soil contamination with cadmium on the content of nitrogen. Large doses of cadmium caused an increase in nitrogen content in the Avena sativa straw and roots and in the Zea mays roots. Soil contamination with cadmium resulted in a decrease of nitrogen content in the Avena sativa grain, in above-ground parts and roots of the Lupinus luteus, in the above-ground parts of the Zea mays and in the above-ground parts and roots of Phacelia tanacaetifolia. Among the experimental different substances, the application of bentonite had the strongest and a usually negative effect on the nitrogen content in plants. The greatest effect of bentonite was on Avena sativa grain, above-ground parts Zea mays and Lupinus luteus and Phacelia tanacaetifolia. The content of nitrogen in the plants was generally positively correlated with the content of the macroelements and some of the microelements, regardless of the substances added to the soil.

  17. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  18. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.

    2012-01-01

    Plant stress is often expressed as a reduction in amount of biomass or leaf area index (LAI). In addition, stress may affect the plant pigment system, influencing the photosynthetic capacity of plants. Chlorophyll content is the main driver for this primary production. The chlorophyll content is

  19. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K; Zeevaart, J A

    1976-08-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  20. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    Science.gov (United States)

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  1. [Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat].

    Science.gov (United States)

    Yao, Xia; Zhu, Yan; Feng, Wei; Tian, Yong-Chao; Cao, Wei-Xing

    2009-08-01

    The objectives of the present study were to explore new sensitive spectral bands and ratio spectral indices based on precise analysis of ground-based hyperspectral information, and then develop regression model for estimating leaf N accumulation per unit soil area (LNA) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA tinder the various treatments. By adopting the method of reduced precise sampling, the detailed ratio spectral indices (RSI) within the range of 350-2 500 nm were constructed, and the quantitative relationships between LNA (gN m(-2)) and RSI (i, j) were analyzed. It was found that several key spectral bands and spectral indices were suitable for estimating LNA in wheat, and the spectral parameter RSI (990, 720) was the most reliable indicator for LNA in wheat. The regression model based on the best RSI was formulated as y = 5.095x - 6.040, with R2 of 0.814. From testing of the derived equations with independent experiment data, the model on RSI (990, 720) had R2 of 0.847 and RRMSE of 24.7%. Thus, it is concluded that the present hyperspectral parameter of RSI (990, 720) and derived regression model can be reliably used for estimating LNA in winter wheat. These results provide the feasible key bands and technical basis for developing the portable instrument of monitoring wheat nitrogen status and for extracting useful spectral information from remote sensing images.

  2. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available ; Hunt and Rock 1989; Sepulcre-Cantó et al. 2006). 45 Retrieving leaf water content using remote sensing data, has been widely investigated in the 46 visible near infrared (VNIR) and shortwave infrared (SWIR) spectra (Thomas et al. 1971; 47 Danson et..., USA: NASA / GSFC 400 Savitzky, A., & Golay, M.J.E. (1964). Smoothing and differentiation of data by simplified Least 401 squares procedures. Analytical Chemistry, 36, 1627-1639 402 Sepulcre-Cantó, G., Zarco-Tejada, P.J., Jiménez-Muñoz, J.C., Sobrino...

  3. Yielding ability and weed suppression of potato and wheat under organic nitrogen management

    NARCIS (Netherlands)

    Delden, van A.

    2001-01-01

    Keywords: chickweed, early growth, leaf area expansion, light interception, light use efficiency, manure, mineralisation, modelling, organic farming, organic matter, soil nitrogen content , Solanum tuberosum L., specific leaf area , Stellaria media

  4. Effect of packaging material on nitrate nitrogen content of irradiated potatoes

    International Nuclear Information System (INIS)

    Mondy, N.I.; Koushik, S.R.

    1990-01-01

    The effect of packaging materials on nitrate nitrogen content of irradiated potatoes was investigated. Tubers were irradiated at 10, 30 and 100 Krads and stored for 12 wk at 5 degrees C in paper or plastic bags. Nitrate nitrogen content was significantly (p 0.01) higher in tubers packaged in plastic as compared to those in paper bags. Irradiation significantly (p 0.01) increased nitrate nitrogen content between the lowest and highest levels of treatment in tubers stored in both paper and plastic bags

  5. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    Science.gov (United States)

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  6. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  7. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  8. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  9. The effects of nitrogen deficiencies on the lipid and protein contents ...

    African Journals Online (AJOL)

    Nitrogen deficiencies were studied in Spirulina platensis (Cyanophyceae) with the aim of determining the effects of the 50 and 100% deficient nitrogen on the lipid and protein contents of the cell under laboratory conditions. S. platensis cultures were grown in Spirulina medium and kept at the constant room temperature of ...

  10. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

    CSIR Research Space (South Africa)

    Cho, Moses A

    2013-10-01

    Full Text Available the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new...

  11. Plant Chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    Science.gov (United States)

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, although the measurement principles of both techniques a...

  12. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    DEFF Research Database (Denmark)

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient...... assimilation rate and nitrogen use efficiency resulting in higher grain yields and proper grain protein content in malting barley.......Split nitrogen applications are widely adopted to improve grain yield and enhance nitrogen use effective in crops. In a twoyear field experiment at two eco-sites, five fractions of topdressed nitrogen of 0%, 20%, 30%, 40% and 50% were implemented. Responses of radiation interception and leaf...

  13. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions.

    Science.gov (United States)

    Piljac-Zegarac, J; Belscak, A; Piljac, A

    2009-06-01

    Antioxidant capacity and polyphenolic content of leaf infusions prepared from six highbush blueberry cultivars (Vaccinium corymbosum L.), one wild lowbush blueberry cultivar (Vaccinium myrtillus L.), and one commercially available mix of genotypes were determined. In order to simulate household tea preparation conditions, infusions were prepared in water heated to 95 degrees C. The dynamics of extraction of polyphenolic antioxidants were monitored over the course of 30 minutes. Extraction efficiency, quantified in terms of the total phenol (TP) content, and antioxidant capacity of infusions, evaluated by the ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, were compared with cultivar type and extraction time. The 30-minute infusions exhibited the highest TP content and antioxidant capacity according to all three assays. Wild blueberry infusion had the highest TP content (1,879 mg/L gallic acid equivalents [GAE]) and FRAP values (20,050 microM). The range of TP values for 30-minute infusions was 394-1,879 mg/L GAE with a mean of 986 mg/L GAE across cultivars; FRAP values fell between 3,015 and 20,050 microM with a mean of 11,234 microM across cultivars. All 30-minute infusions exhibited significant scavenging capacity for DPPH(*) and ABTS(*+) radicals, comparable to different concentrations of catechin, gallic acid, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. Overall, tested infusions showed significant reducing capacity as well as radical scavenging potential, which places blueberry leaf tea high on the list of dietary sources of antioxidants.

  14. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, ?-Carotene and Xanthophylls

    OpenAIRE

    Becker, Christine; Urli?, Branimir; Juki? ?pika, Maja; Kl?ring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitr...

  15. Seasonal Difference in Antioxidant Capacity and Active Compounds Contents of Eucommia ulmoides Oliver Leaf

    Directory of Open Access Journals (Sweden)

    Jingfang Zhang

    2013-02-01

    Full Text Available Leaf of Eucommia ulmoides Oliver (EU is a Traditional Chinese Medicine and a functional food in China. Antioxidant contents of EU leaves, which were collected monthly during the period of May–October in three years, were determined. Samples’ antioxidant capacity was characterized by DPPH radical scavenging activity, hydroxyl radical scavenging activity, ferrous chelating ability, and antioxidant capacity in linoleic acid emulsion and in rapeseed oil assays. The results showed that contents of some active compounds and antioxidant activity were related to a certain time of the year. Samples collected in August showed high content of phenolics, and the samples collected in May contained higher amount of flavonoids than other samples. Leaves collected in May or June exhibited high contents of rutin, quercetin, geniposidic acid and aucubin. The August leaves showed stable and high DPPH radical scavenging activity, and ferrous chelating ability. May samples showed strong inhibitory effects on oxidation of rapeseed oil and linoleic acid. The DPPH radical scavenging activity was related to the total phenolics content. Flavonoids played an important role in the inhibitory effects on rapeseed oil and linoleic acid oxidation. Therefore, August and May were indicated as the best months to harvest EU leaves for industry.

  16. Effect of Exogenous _D-Alanine on _D-Alanyl-_D-alanine Content in Leaf Blades of Oryza australiensis Domin

    OpenAIRE

    Hisashi, Manabe; Aizu Junior College of Fukushima Prefecture

    1986-01-01

    In seedlings of Oryza australiensis Domin (W0008), most of the D-alanyl-D-alanine was distributed in the leaf blades. In excised leaf blades of W0008, exogenous D-alanine was incorporated into D-alanyl-D-alanine irrespective of the light condition as in Sasanishiki. With cultivation in D-alanine medium for several days, the D-alanyl-D-alanine content in W0008 leaf blades was found to increase, but no other D-alanine-containing dipeptides such as D-alanylglycine or D-alanyl-L-alanine were dete...

  17. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  18. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador.

    Science.gov (United States)

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.

  19. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador.

    Directory of Open Access Journals (Sweden)

    Paul Arellano

    Full Text Available In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.

  20. High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil.

    Science.gov (United States)

    Agathokleous, Evgenios; Paoletti, Elena; Manning, William J; Kitao, Mitsutoshi; Saitanis, Costas J; Koike, Takayoshi

    2018-01-01

    Ground-level ozone (O 3 ) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O 3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O 3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L -1 . Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m 2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (J max ) and ratio of intercellular to ambient CO 2 concentration (C i :C a ) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (F v /F m ), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Method to reduce the nitrogen oxide content of gaseous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klopp, G.; Sueto, J.; Szasz, K.; Szebenyi, I.; Winkler, G.; Machacs, M.; Palmai, G.

    1980-11-13

    The proposed process is suited for the denitrification of waste gases from nitric acid plants. It proceeds without an additional energy source with an integrated adsorption unit which guaranties the complete recirculation of the produced nitrogen oxides and allows the regeneration of the adsorbents by the use of the energy from the oxidation of nitrous oxide to nitric oxide. The desorption is carried out by the intermediate passage of the hot gases from the oxidizer through the adsorber.

  2. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  3. Amino Acid Content of the Gamma Irradiated Cotton Leaf-Worm, Spodoptera Littoralis (Boisd.)

    International Nuclear Information System (INIS)

    Sobeiha, A.K.; Sallam, H.A.; El-Shall, S.S.A.

    2000-01-01

    The effects of gamma irradiation on amino acid content of the cotton leaf worm Spodoptera Littoralis was studied.The identified amino acids in the total body tissue of male moths were Theronine, Serine, Glutamic, Glycine, Alanine, Valine, Cystine, Methionine, Isoleucine, Leucine, Tyrosine, Phenylalanine, Lysine, Histidine and Arginine. The irradiation of full grown male pupae with doses 100,200 and 300 Gy decreased the total quantity of amino acids and the amount of most individual amino acids in male moths of P 1 or F 1 generations with some exceptions for Threonine, Alanine, Glycine, Serine, Valine, Cystine and Methionine which were increased.The effect of irradiation on amino acid content of the reproductive system tissues for each male or female were also studied.The results indicated that irradiation decreased the total quantity of amino acid content of both sexes by increasing the dose and males were more radiosensitive than females. Also, irradiation decreased the amount of individual amino acids in both sexes with certain exceptions, e.g. Alanine, Methionine and Tyrosine which increased in the reproductive system of male, and Methionine which increased by more than four times as control.The amino acid content was determined as well in F 1 egg progeny, which was produced from irradiated males Irradiation doses (100, 200 and 300 Gy) decreased the total quantity of amino acids, and all individual ones except Cystine.The greatest reduction (54.9% was observed with Lysine at 300 Gy as compared to control

  4. DEPOSITION AND PROPERTY CHARACTERISATION OF TaN COATINGS DEPOSITED WITH DIFFERENT NITROGEN CONTENTS

    Directory of Open Access Journals (Sweden)

    Gilberto Bejarano Gaitán

    Full Text Available This study focused on the study of the influence of nitrogen content on the microstructure, chemical composition, mechanical and tribological properties of TaN coatings deposited on 420 stainless steel and silicon samples (100 using the magnetron sputtering technique. For the deposition of the TaN coatings an argon/nitrogen atmosphere was used, varying the nitrogen flux between 12% and 25%. For the coating characterization, scanning electron microscopy, energydispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction (XRD, micro-Raman spectroscopy, a microhardness tester, and a ball on disc tribometer were used. A refining of the columnar structure of the coatings, accompanied by a decrease in their thickness with the increased nitrogen content was observed. Initially, fcc-TaN (111 cubic phase growth was observed; this phase was changed to the fcc-TaN (200 above N2 12%. For contents greater than N2 18%, another nitrogen-rich phase was formed and the system tended towards amorphicity, particularly for a coating with N2 25% content. The TaN-1sample deposited with N2 12% in the gas mixture presented the highest micro-hardness value with 21.3GPa and the lowest friction coefficient and wear rate with 0.02 and 1.82x10-7 (mm³/Nm, respectively. From the obtained results, an important relationship between the microstructural, mechanical and tribological properties of the coated samples and their nitrogen content was observed.

  5. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  6. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits.

    Science.gov (United States)

    Zhang, Hongxia; Li, Weibin; Adams, Henry D; Wang, Anzhi; Wu, Jiabing; Jin, Changjie; Guan, Dexin; Yuan, Fenghui

    2018-01-01

    Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity ( P 50 , +21.5%; i.e., P 50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases

  8. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  9. Effect of nitrogen and Nitragin application on soybean yield and protein content

    Directory of Open Access Journals (Sweden)

    Đukić Vojin

    2010-01-01

    Full Text Available A three-year experiment was conducted to study the effect of different doses of nitrogen fertilizer applied under previous crop and seed inoculation with a microbial preparation NS Nitragin on soybean yield and protein content in grain. The experiment was set up in four replications at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops, Novi Sad. Presowing seed inoculation contributed to a statistically significant increase in yield and protein content in all three research years, while the highest nitrogen dose had a positive impact on soybean yield only in 2007 and on protein content in 2006 and 2007. .

  10. Nitrogen and in vitro fermentation of nitrogenous substrates in caecal contents of the pig

    Czech Academy of Sciences Publication Activity Database

    Marounek, Milan; Adamec, T.; Skřivanová, V.; Latsik, N.

    2002-01-01

    Roč. 71, - (2002), s. 429-433 ISSN 0001-7213 R&D Projects: GA AV ČR KSK5020115 Grant - others:GA NATO(XX) MO-99-04 Keywords : Pig * caecum * nitrogenous substances Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.370, year: 2002

  11. The effects of different nitrogen doses on yield, quality and leaf ...

    African Journals Online (AJOL)

    Nitrogen deficiency is a worldwide problem, causing restrictions in productivity of many horticultural produces. Particularly, the issue is compounded when the greenhouse production is employed. Therefore, reliable knowledge on proper application of nitrogen ensures not only satisfactory yield but also balanced vegetative ...

  12. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  13. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes.

    Science.gov (United States)

    Li, M-H; Cherubini, P; Dobbertin, M; Arend, M; Xiao, W-F; Rigling, A

    2013-01-01

    Global warming and shortage of water have been evidenced in the recent past and are predicted for the future. Climate change will inevitably have considerable impact on plant physiology, growth, productivity and forest ecosystem functions. The present study determined the effects of simulated daytime air warming (+1 to 1.5 °C during the growing season), drought (-40% and -57% of mean precipitation of 728 mm during the 2007 and 2008 growing season, respectively) and their combination, on leaf nitrogen (N) and non-structural carbohydrates (NSC) of two Quercus species (Q. robur and Q. petraea) and provenances (two provenances for each species) grown in two soil types in Switzerland across two treatment years, to test the hypothesis that leaf N and NSC in the more water-sensitive species (Q. robur) and provenances (originating from water-rich locations) will more strongly respond to global warming and water deficit, compared to those in the more drought-tolerant species (Q. petraea) or provenances. No species- and provenance-specific responses in leaf N and NSC to the climate treatment were found, indicating that the results failed to support our hypothesis. The between-species variation of leaf N and NSC concentrations mainly reflected differences in biology of the two species, and the between-provenance variation of N and NSC concentrations apparently mirrored the climate of their origins. Hence, we conclude that (i) the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and (ii) a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q. petraea. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. [Influence of simulated acid rain on nitrogen and phosphorus contents and their stoichiome-tric ratios of tea organs in a red soil region, China].

    Science.gov (United States)

    Zhang, Yu Fei; Fang, Xiang Min; Chen, Fu Sheng; Zong, Ying Ying; Gu, Han Jiao; Hu, Xiao Fei

    2017-04-18

    A 25-year-old tea plantation in a typical red soil region was selected for an in situ simulated acid rain experiment treated by pH 4.5, 3.5, 2.5 and water (control, CK). Roots with different functions, leaves and twigs with different ages were collected to measure nitrogen (N) and phosphorus (P) contents in the third year after simulated acid rain treatment. The N/P and acid rain sensitivity coefficient of tea plant organs were also calculated. The results indicated that with the increase of acid rain intensity, the soil pH, NO 3 - -N and available P decreased, while the absorption root N content increased. Compared with the control, the N content in absorption root was increased by 32.9% under the treatment of pH 2.5. The P content in storage root significantly decreased with enhanced acid rain intensity, and the acid rain treatment significantly enhanced N/P of absorption root. Young and mature leaf N, P contents were not sensitive to different intensities of acid rain, but the mature leaf N/P was significantly increased under pH 3.5 treatment compared with the control. The effects of acid rain treatments differed with tea twig ages. Compared with the control, low intensity acid treatment (pH 4.5) significantly increased young twig N content and N/P, while no signi-ficant differences in old twig N content and N/P were observed among four acid rain treatments. Acid rain sensitivity coefficients of absorption root, young leaf and twig N contents were higher than that of storage root, old leaf and twig, respectively. And the storage root and leaf P had higher acid rain sensitivity coefficient than other tea organs. In sum, tea organs N content was sensitive to acid rain treatment, and moderate acid rain could increase young organ N content and N/P, and change the cycle and balance of N and P in tea plantation.

  15. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  16. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    Science.gov (United States)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  17. Estimation of leaf water content from far infrared (2.5-14µm) spectra using continuous wavelet analysis

    NARCIS (Netherlands)

    Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M.

    2012-01-01

    The objective of this study was to estimate leaf water content based on continuous wavelet analysis from the far infrared (2.5 - 14.0 μm) spectra. The entire dataset comprised of 394 far infrared spectra which were divided into calibration (262 spectra) and validation (132 spectra) subsets. The far

  18. The effects of applied nitrogen fertilizer and leaf positions on levels ...

    African Journals Online (AJOL)

    Leaves were harvested at market maturity (vegetative phase) at three different leaf positions, basal (oldest), middle (younger) and upper (youngest) and were subjected to ... The concentration of β-carotene, vitamin C and Zn were significantly higher in the leaves in the middle part than in the basal and upper leaves.

  19. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  20. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition

    Science.gov (United States)

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we p...

  1. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Science.gov (United States)

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  2. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  3. Effect of Elevated Atmospheric CO2 and Temperature on Leaf Optical Properties and Chlorophyll Content in Acer saccharum (Marsh.)

    Science.gov (United States)

    Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.

    1999-01-01

    Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.

  4. Nitrogen availability, leaf life span and nitrogen conservation mechanisms in leaves of tropical trees Disponibilidade de nitrogênio, longevidade foliar e mecanismos de conservação de nitrogênio em folhas de espécies arbóreas tropicais

    Directory of Open Access Journals (Sweden)

    Guilherme Nascimento Corte

    2009-12-01

    Full Text Available Evergreen species of temperate regions are dominant in low-nutrient soils. This feature is attributed to more efficient mechanisms of nutrient economy. Nevertheless, the cashew (Anacardium occidentale- Anacardiaceae, a deciduous species, is native to regions in Brazil with sandy soil, whilst the annatto (Bixa orellana- Bixaceae, classified as an evergreen species native to tropical America, grows spontaneously in regions with more humid soils. Evergreens contain robust leaves that can resist adverse conditions for longer. The physical aspects of the leaves and mechanisms of nutrient economy between the two species were compared, in order to verify whether the deciduous species had more efficient mechanisms that might explain its occurrence in regions of low soil fertility. The mechanisms of nitrogen economy were also compared for the two species at available concentrations of this nutrient. The following were analysed: (i leaf life span, (ii physical leaf characteristics (leaf mass per area, and rupture strain, (iii nitrogenous compounds (nitrogen, chlorophyll, and protein, (iv nitrogen conservation mechanisms (nitrogen resorption efficiency, resorption proficiency, and use efficiency, and (v nitrogen conservation mechanisms under different availability of this mineral. The higher values of leaf mass per area and leaf rupture strain found in A. occidentale were related to its longer leaf life span. A. occidentale showed lower concentrations of nitrogen and protein in the leaves than B. orellana. Under lower nitrogen availability, A. occidentale had higher nitrogen resorption proficiency, nitrogen use efficiency and leaf life span than B. orellana. These characteristics may contribute to the adaptation of this species to sandy soils with low nitrogen content.Perenifólias de clima temperado são dominantes em solos pouco férteis. Essa característica é atribuída a mecanismos mais eficientes de economia de nutrientes. O cajueiro (Anacardium

  5. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  6. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  7. [Effect of UV-B radiation on release of nitrogen and phosphorus from leaf litter in subtropical region in China].

    Science.gov (United States)

    Song, Xin-Zhang; Zhang, Hui-Ling; Jiang, Hong; Yu, Shu-Quan

    2012-02-01

    The release of nitrogen and phosphorus from leaf litter of six representative species, Cunninghamia lanceolata, Pinus massoniana, Schima superba, Cinnamanun camphora, Cyclobalanopsis glauca and Castanopsis eyeri, was investigated with litterbag method under ambient and reduced UV-B radiation (22.1% below ambient) treatments in subtropical region. The results showed that, the N dynamics exhibited three patterns: immobilization, mineralization-immobilization and mineralization-immobilization-mineralization. P dynamics also exhibited three different patterns: mineralization, immobilization-mineralization-immobilization and no large change. Compared with ambient treatment, the reduced treatment significantly delayed the N release from C. eyeri and P release from both C. glanca and C. eyeri (Plitter decomposition. The C: P ratios can partly explain the P dynamics during decomposition. The more works need to be done to better understand the role of UV-B radiation in the forest ecosystem in humid subtropical China under global environment change.

  8. Assessment of nitrogen content in buffalo manure and land application costs

    Directory of Open Access Journals (Sweden)

    Salvatore Faugno

    2012-09-01

    Full Text Available Buffalo (Bubalus bubalis livestock for mozzarella cheese production plays a fundamental role in the economy of southern Italy. European and Italian regulations consider nitrogen content in buffalo manure to be the same as that of cattle manure. This study aimed to assess whether this assumption is true. The first aim of the study was to assess nitrogen content in buffalo manure. Samples were taken from 35 farms to analyse nitrogen and phosphorous concentration in the manure. Analysis confirmed a lower nitrogen concentration (2% in buffalo manure. A secondary aim of the study was to evaluate whether manure application techniques that are apparently less suitable, e.g. splash plate spreader, could be feasible. The cost of different methods of land application of manure and their characteristics were evaluated on the basis of one operational cycle. Considering losses for volatilisation, and taking into account cost assessment, the immediate incorporation of buffalo manure (nitrogen content 2% is a suitable method of ammonia volatilisation. However, it is expensive and involves high fuel consumption in relation to the environmental benefit.

  9. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  10. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  11. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  12. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  13. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  14. [Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan, China.

    Science.gov (United States)

    Jing, Yi Ran; Deng, Xiang Wen; Wei, Hui; Li, Yan Qiong; Deng, Dong Hua; Liu, Hao Jian; Xiang, Wen Hua

    2017-02-01

    In this paper, we took the leaves of shrubland plants in rocky desertification area in Southwestern Hunan as the research object to analyze the nitrogen (N) and phosphorus (P) stoichiometry characteristics for different functional groups and different grades of rocky desertification, i.e., light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). The results showed that the average contents of N and P were 12.89 and 1.19 g·kg -1 , respectively, and N/P was 11.24 in common shrubland plants in the study area, which indicated that the growth of most plants were mainly limited by N. The content of N was declined in order of deciduous shrubs > evergreen shrubs > annual herbs > perennial herbs. The content of P and N/P were higher in deciduous shrubs than in perennial herbs. Significant differences were found among the main families of plants in terms of the contents of N, P and N/P in the study sites. The plants of Gramineae had the lowest contents of N and P, andtheir growth was mostly restricted by N, while Leguminosae had the highest content of N and N/P, and their productivity was majorly controlled by P. The contents of N and P in the leaves were significantly higher in dicotyledon plants and C3 plants than in monocotyledon plants and C4 plants, but the N/P was not significantly diffe-rent between these two plant categories. The nitrogen-fixing plants had higher content of N and N/P than the non-nitrogen-fixing plants, but the P content was not significantly different between these two plant groups. There were significant correlations between contents of N and P, N/P and N in all study plots. No significant correlation was found between N/P and P content in the examined rocky desertification sites, except for that in MRD. There were no significant differences of the contents of N, P and N/P under different grades of rocky desertification.

  15. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    Science.gov (United States)

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  16. Nitrogen Fertilizer Factory Effects on the Amino Acid and Nitrogen Content in the Needles of Scots Pine

    Directory of Open Access Journals (Sweden)

    Eugenija Kupsinskiene

    2001-01-01

    Full Text Available The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p

  17. Electronic structure of copper nitrides as a function of nitrogen content

    International Nuclear Information System (INIS)

    Gordillo, N.; Gonzalez-Arrabal, R.; Diaz-Chao, P.; Ares, J.R.; Ferrer, I.J.; Yndurain, F.; Agulló-López, F.

    2013-01-01

    The nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu 3 N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10 −3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results. - Highlights: ► Electronic structure of N-rich Cu 3 N ► Stoichiometric films behave as an intrinsic semiconductor. ► N excess drives to the introduction of a narrow band at the Fermi level. ► Decrease of the Seebeck coefficient when increasing nitrogen content ► Increase of the electrical resistivity when increasing nitrogen content

  18. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Science.gov (United States)

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  19. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  20. Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components

    International Nuclear Information System (INIS)

    Akmal, M.; Hameed-urRehman; Farhatullah; Asim, M.; Akbar, H.

    2010-01-01

    An experiment was conducted at NWFP Agricultural University, Peshawar, to study maize varieties and Nitrogen (N) rates for growth, yield and yield components. Three varieties (Azam, Jalal and Sarhad white) and three N rates (90, 120, 150, kg N ha/sup -1/) were compared. Experiment was conducted in a Randomized Complete Block design; split plot arrangement with 4 replications. Uniform and recommended cultural practices were applied during the crop growth. The results revealed that maize variety 'Jalal' performed relatively better crop growth rate (CGR) and leaf area profile (LAP) at nodal position one to six as compared to the other two varieties (Sarhad white and Azam). This resulted higher radiation use efficiency by the crop canopy at vegetative stage of development and hence contributed higher assimilates towards biomass production. Heavier grains in number and weight were due to higher LAP and taller plants of Jalal which yielded higher in the climate. Nitrogen applications have shown that maize seed yield increase in quadratic fashion with increased N to a plateau level. Considering soil fertility status and cropping system, the 150 kg ha/sup -1/ N application to maize variety Jalal in Peshawar is required for maximum biological and seed production. (author)

  1. PIGMENT CONTENT AND COMPOSITION IN AUTOTROPHIC AND HETEROTROPHIC LEAF TISSUES OF AMARANTH SPECIES A. TRICOLOR L.

    Directory of Open Access Journals (Sweden)

    M. S. Gins

    2016-01-01

    Full Text Available At present there is numerous evidence of the antioxidant positive role in the defensive reaction that is capable to protect not only plants, but also humans against oxidative stress. Plant pigments such as natural dyes from leaves, flowers and fruits are known to have high antioxidant activity. Amaranth species A. tricolor L. cultivar ‘Early Splendor’ is a convenient model for the comparative studying of the formation processes of differently colored pigment composition in leaf tissues that differs in the ability to photosynthesize. Leaves of amaranth cultivar ‘Valentina’ were as a standard. The aim of the experiment was a comparative studying of the pigments content: amaranthine, chlorophyll a and b, carotenoids in the cauline leaves of amaranth cultivars ‘Valentina’ and ‘Early Splendor’, as well as in the red and green areas of the leaves. Analysis of the aqueous extract of red Early Splendor amaranth apical leaves showed the presence of betacyanin pigment - amaranthine, in the absorption spectrum in which peak was seen in the green region at 540 nm. In addition to the antioxidant amaranthine there are  also antioxidants which might be phenolic glycosides, and ascorbic acid in the extract, the total content of which is almost twice as small as in the leaves of amaranth cauline of this cultivar. Yellow fraction was found in the ethanolic extract of red leaves. Its absorption spectrum had peaks in the blue region at 445 nm and 472 nm and a shoulder at 422 nm that indicated the presence of betaxanthin, betalamic acid or carotenoids. Water-soluble antioxidants - amaranthine and ascorbic acid were found in  auline leaves of studied species. Their content in the leaves of Valentina cultivar was higher than in the leaves of cultivar ‘Early Splendor’, and the maximum level of photosynthetic pigments was found in ‘Early Splendor’ leaves. The obtained results showed that the amaranth is a promising source of pigments with the

  2. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  3. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... conclusion is that GERG-water must be used with caution outside its specified working range. For some selected natural gas mixtures the two models also perform very much alike. The water content of the mixtures decreases with increasing amount of heavier components, and it seems that both models slightly...

  4. Towards Estimating Water Stress through Leaf and Canopy Water Content Derived from Optical and Thermal Hyperspectral Data

    Science.gov (United States)

    Corbin, Amie; Timmermans, Joris; van der Tol, Christiaan; Verhoef, Wout

    2015-04-01

    A competition for available (drinkable) water has arisen. This competition originated due to increasing global population and the respective needs of this population. The water demand for human consumption and irrigation of food producing crops and biofuel related vegetation, has led to early indication of drought as a key issue in many studies. However, while drought monitoring systems might provide some reasonable predictions, at the time of visible symptoms of plant stress, a plant may already be critically affected. Consequently, pre-symptomatic non-destructive monitoring of plants is needed. In many studies of plant stress, this is performed by examining internal plant physiology through existing remote sensing techniques, with varying applications. However, a uniform remote sensing method for identifying early plant stress under drought conditions is still developing. In some instances, observations of vegetation water content are used to assess the impact of soil water deficit on the health of a plant or canopy. When considering water content as an indicator of water stress in a plant, this comments not only on the condition of the plant itself, but also provides indicators of photosynthetic activity and the susceptibility to drought. Several indices of canopy health currently exists (NDVI, DVI, SAVI, etc.) using optical and near infrared reflectance bands. However, these are considered inadequate for vegetation health investigations because such semi-empirical models result in less accuracy for canopy measurements. In response, a large amount of research has been conducted to estimate canopy health directly from considering the full spectral behaviour. In these studies , the canopy reflectance has been coupled to leaf parameters, by using coupling leaf radiative transfer models (RTM), such as PROSPECT, to a canopy RTM such as SAIL. The major shortcomings of these researches is that they have been conducted primarily for optical remote sensing. Recently

  5. Reducing the CP content in broiler feeds: impact on animal performance, meat quality and nitrogen utilization.

    Science.gov (United States)

    Belloir, P; Méda, B; Lambert, W; Corrent, E; Juin, H; Lessire, M; Tesseraud, S

    2017-11-01

    Reducing the dietary CP content is an efficient way to limit nitrogen excretion in broilers but, as reported in the literature, it often reduces performance, probably because of an inadequate provision in amino acids (AA). The aim of this study was to investigate the effect of decreasing the CP content in the diet on animal performance, meat quality and nitrogen utilization in growing-finishing broilers using an optimized dietary AA profile based on the ideal protein concept. Two experiments (1 and 2) were performed using 1-day-old PM3 Ross male broilers (1520 and 912 for experiments 1 and 2, respectively) using the minimum AA:Lys ratios proposed by Mack et al. with modifications for Thr and Arg. The digestible Thr (dThr): dLys ratio was increased from 63% to 68% and the dArg:dLys ratio was decreased from 112% to 108%. In experiment 1, the reduction of dietary CP from 19% to 15% (five treatments) did not alter feed intake or BW, but the feed conversion ratio was increased for the 16% and 15% CP diets (+2.4% and +3.6%, respectively), while in experiment 2 (three treatments: 19%, 17.5% and 16% CP) there was no effect of dietary CP on performance. In both experiments, dietary CP content did not affect breast meat yield. However, abdominal fat content (expressed as a percentage of BW) was increased by the decrease in CP content (up to +0.5 and +0.2 percentage point, in experiments 1 and 2, respectively). In experiment 2, meat quality traits responded to dietary CP content with a higher ultimate pH and lower lightness and drip loss values for the low CP diets. Nitrogen retention efficiency increased when reducing CP content in both experiments (+3.5 points/CP percentage point). The main consequence of this higher efficiency was a decrease in nitrogen excretion (-2.5 g N/kg BW gain) and volatilization (expressed as a percentage of excretion: -5 points/CP percentage point). In conclusion, this study demonstrates that with an adapted AA profile, it is possible to reduce

  6. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River.

    Science.gov (United States)

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.

  7. The correlation between plant growth and intercepted radiation: an interpretation in terms of optimal plant nitrogen content

    International Nuclear Information System (INIS)

    Dewar, R.C.

    1996-01-01

    Photosynthesis of leaves is commonly observed to have a saturating response to increases in their nitrogen (N) content, while the response of plant maintenance respiration is more nearly linear over the normal range of tissue N contents. Hence, for a given amount of foliage, net primary productivity (NPP) may have a maximum value with respect to variations in plant N content. Using a simple analytically-solvable model of NPP, this idea is formulated and its broad implications for plant growth are explored at the scale of a closed stand of vegetation. The maximum-NPP hypothesis implies that NPP is proportional to intercepted radiation, as commonly observed. The light utilization coefficient (ε), defined as the slope of this relationship, is predicted to be ε = αY g (1−λ) 2 , where α is the quantum yield, Y g is the biosynthetic efficiency, and λ is a dimensionless combination of physiological and environmental parameters of the model. The maximum-NPP hypothesis is also consistent with observations that whole-plant respiration (R) is an approximately constant proportion of gross canopy photosynthesis (A c ), and predicts their ratio to be R:A c = 1−Y g (1−λ). Using realistic parameter values, predicted values for ε and R:A c are typical of C 3 plants. ε is predicted to be independent of plant N supply, consistent with observations that long-term growth responses to N fertilization are dominated by increased light interception associated with increased growth allocation to leaf area. Observed acclimated responses of plants to atmospheric [CO 2 ], light and temperature are interpreted in terms of the model. (author)

  8. Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia

    Science.gov (United States)

    A. W. Schoettle; W. K. Smith

    1999-01-01

    Scaling leaf-level measurements to estimate carbon gain of entire leaf crowns or canopies requires an understanding of the distribution of photosynthetic capacity and corresponding light microenvironments within a crown. We have compared changes in the photosynthetic light response and nitrogen (N) content (per unit leaf area) of Pinus contorta Dougl. ssp. latifolia...

  9. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome.

    Science.gov (United States)

    Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; Veach, Allison; Ialonardi, Florencia; Iribarne, Oscar; Silliman, Brian

    2018-06-01

    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization. © 2018 by the Ecological Society of America.

  10. Combined effects of nitrogen content in media and Ochromonas sp. grazing on colony formation of cultured Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Zhou YANG

    2010-08-01

    Full Text Available To gain insight into the combined effects of nitrogen content in media and flagellate grazing on colony formation of Microcystis aeruginosa, we added Ochromonas sp. to M. aeruginosa cultured in different nitrogen content media for 7 days. Results showed that M. aeruginosa could be efficiently ingested by Ochromonas sp., no matter what nitrogen content media M. aeruginosa was cultured in. Colony formation was observed in M. aeruginosa in all Ochromonas sp. grazing treatments during the experiment. In contrast, M. aeruginosa populations in the controls were strongly dominated by unicellular and paired cell forms, and no colonies were observed. Among all Ochromonas sp. grazing treatments, the mean numbers of cells per particle of M. aeruginosa increased with decreased nitrogen concentration (except 0% N, therefore colony formation of M. aeruginosa can be enhanced under lower nitrogen conditions. This suggests that both nitrogen content and Ochromonas sp. grazing combine to affect M. aeruginosa colony formation. Three-way ANOVA showed a statistically significant interaction between time (day 1, 3, 5, and 7, treatment (with and without Ochromonas sp. grazing and N content (0%, 10%, 25%, and 100% N on the mean numbers of cells per particle, i.e. the extent of colony formation. At the end of the experiment, the influence of nitrogen content (except 0% N on the numbers of cells per particle followed a rectangular hyperbolic response. The experiments demonstrated that there exists a combined effect of nitrogen concentration and flagellate grazing on colony formation of M. aeruginosa under laboratory conditions.

  11. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  12. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.

    Directory of Open Access Journals (Sweden)

    John Hamblin

    Full Text Available Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.

  13. Radioactivation method for simultaneous determination of nitrogen, phosphorus and potassium content in plants and fertilizers

    International Nuclear Information System (INIS)

    Srapeniants, R.A.; Saveliev, I.B.; Kovtun, J.L.; Sidorov, A.V.; Tsagolov, K.S.; Miroshnikova, N.N.

    1982-01-01

    A radioactivation method for the simultaneous determination of the nitrogen, phosphorus and potassium content in plants and fertilizers is described. Samples to be analyzed and standard samples are exposed to neutron irradiation, and the spectra of gamma radiation induced in the samples are recorded. The samples laid aside for a period of time determined by the half-life of interfering isotopes, and the spectra of the samples and standards are recorded again. The first and second spectra are superposed and shifted relative to each other along the energy axis, and the content of the elements being analyzed is determined by comparing the spectra of the samples and standards

  14. Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.).

    Science.gov (United States)

    Vaya, Jacob; Mahmood, Saeed

    2006-01-01

    The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.

  15. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    Science.gov (United States)

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  16. Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L. growing

    Directory of Open Access Journals (Sweden)

    Zuzana PANAKOVA

    2016-12-01

    Full Text Available The objective of this research was to investigate the effect of nitrification inhibitors (dicyandiamide and 1,2,4 triazole on the content of nitrate and ammonium nitrogen in the soil and the effectiveness of nitrogen-sulphur nutrition of maize. The research was conducted in field small-plot experiment with maize on Haplic Luvisol with dominance of clay fraction in experimental years 2012 to 2015. The dose of nitrogen in all experimental treatments was 160 kg*ha-1 and was applied at one shot or split in three partial doses. Soil samples from all examined treatments were taken from three soil depths (0.0-0.3 m, 0.3-0.6 m and 0.6-0.9 m, respectively by probe rod in 4-5 week intervals. Achieved results indicate that on the average of four years and three depths of the soil profile, application of nitrification inhibitors contained in fertilizer ENSIN considerably reduced portion of nitrate nitrogen from the content of mineral nitrogen in the soil by 7-32 relative %. The application of fertilizer ENSIN considerably increased content of ammonium nitrogen in the soil by 10-59 relative %. A favourable effect on increase of ammonium nitrogen content and reduction of nitrate nitrogen content was found out in spite of the fact that in this treatment the total dose of fertilizer was applied at one shot.

  17. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa

    International Nuclear Information System (INIS)

    Wilson, D.; Stock, W.D.; Hedderson, T.

    2009-01-01

    Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar δ 15 N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha -1 a -1 since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems. - This study of bryophyte tissue nutrient contents shows a historical increase in N deposition rates to the low nutrient adapted plant biodiversity hotspot in the Western Cape, South Africa

  18. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa); Stock, W.D. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa); Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, Perth, WA 6027 (Australia)], E-mail: w.stock@ecu.edu.au; Hedderson, T. [Botany Department, University of Cape Town, Rondebosch 7701 (South Africa)

    2009-03-15

    Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar {delta}{sup 15}N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha{sup -1} a{sup -1} since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems. - This study of bryophyte tissue nutrient contents shows a historical increase in N deposition rates to the low nutrient adapted plant biodiversity hotspot in the Western Cape, South Africa.

  19. Contribution of Nitrogen Uptake and Retranslocation during Reproductive Growth to the Nitrogen Efficiency of Winter Oilseed-Rape Cultivars (Brassica napus L. Differing in Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Fabian Koeslin-Findeklee

    2016-01-01

    Full Text Available Genotypic variation in N efficiency defined as high grain yield under limited nitrogen (N supply of winter oilseed-rape line-cultivars has been predominantly attributed to N uptake efficiency (NUPT through maintained N uptake during reproductive growth related to functional stay-green. For investigating the role of stay-green, N retranslocation and N uptake during the reproductive phase for grain yield formation, two line cultivars differing in N starvation-induced leaf senescence were grown in a field experiment without mineral N (N0 and with 160 kg N·ha−1 (N160. Through frequent harvests from full flowering until maturity N uptake, N utilization and apparent N remobilization from vegetative plant parts to the pods could be calculated. NUPT proved being more important than N utilization efficiency (NUE for grain yield formation under N-limiting (N0 conditions. For cultivar differences in N efficiency, particularly N uptake during flowering (NUPT and biomass allocation efficiency (HI to the grains, were decisive. Both crop traits were related to delayed senescence of the older leaves. Remobilization of N particularly from stems and leaves was more important for pod N accumulation than N uptake after full flowering. Pod walls (high N concentrations and stems (high biomass mainly contributed to the crop-residue N at maturity. Decreasing the crop-inherent high N budget surplus of winter oilseed-rape requires increasing the low N remobilization efficiency particularly of pod-wall N to the grains. Addressing this conclusion, multi-year and -location field experiments with an extended range of cultivars including hybrids are desirable.

  20. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2018-03-01

    A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.

  1. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  2. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  3. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.

    Science.gov (United States)

    Mooshammer, Maria; Wanek, Wolfgang; Schnecker, Jörg; Wild, Birgit; Leitner, Sonja; Hofhansl, Florian; Blöchl, Andreas; Hämmerle, Ieda; Frank, Alexander H; Fuchslueger, Lucia; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2012-04-01

    Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.

  4. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  5. Failure of carnitine in improving hepatic nitrogen content in alcoholic and non-alcoholic malnourished rats

    Directory of Open Access Journals (Sweden)

    Luciana P. Rodrigues

    2010-01-01

    Full Text Available AIMS: To investigate the effect of carnitine supplementation on alcoholic malnourished rats' hepatic nitrogen content. METHODS: Malnourished rats, on 50% protein-calorie restriction with free access to water (malnutrition group and malnourished rats under the same conditions with free access to a 20% alcohol/water solution (alcohol group were studied. After the undernourishment period (4 weeks with or without alcohol, both groups were randomly divided into two subgroups, one of them nutritionally recovered for 28 days with free access to a normal diet and water (recovery groups and the other re-fed with free access to diet and water plus carnitine (0.1 g/g body weight/day by gavage (carnitine groups. No alcohol intake was allowed during the recovery period. RESULTS: The results showed: i no difference between the alcohol/no alcohol groups, with or without carnitine, regarding body weight gain, diet consumption, urinary nitrogen excretion, plasma free fatty acids, lysine, methionine, and glycine. ii Liver nitrogen content was highest in the carnitine recovery non-alcoholic group (from 1.7 to 3.3 g/100 g, P.05 was highest in the alcoholic animals. CONCLUSION: Carnitine supplementation did not induce better nutritional recovery.

  6. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    Science.gov (United States)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  7. Effects of Nitrogen Content on the HAZ Softening of Ti-Containing High Strength Steels Manufactured by Accelerated Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kook-soo; Jung, Ho-shin; Park, Chan [Pukyong National University, Busan (Korea, Republic of)

    2017-03-15

    The effects of nitrogen content on the HAZ softening of Ti-containing high strength steels manufactured by accelerating cooling were investigated and interpreted in terms of the microstructures in the softening zone. Regardless of their content, all of the steels investigated showed a softened zone 9-10 mm wide. The minimum hardness in the zone, however, was different, with lower hardness in the higher nitrogen content steel. Microstructural observations of the steel showed that the amount of soft ferrite was increased in the zone with an increase of nitrogen content of the steel, suggesting that microstructural evolution in the HAZ is influenced by the nitrogen content. Measurements of TiN particles showed that the degree of particles coarsening in the HAZ was lower in the higher nitrogen content steel. Therefore, it is believed that finer TiN particles in the HAZ inhibit austenite grain growth more effectively, and lead to an accelerated ferrite transformation in higher nitrogen content steel, resulting in a higher amount of soft ferrite microstructure in the softened zone.

  8. Long-term multifactorial climate change impacts on mesofaunal biomass and nitrogen content

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Dyrnum, Kristine; Michelsen, Anders

    2015-01-01

    increased at elevated CO2, or tended do so. In contrast, enchytraeid N content decreased at elevated CO2. Soil microbial biomass N pool and litter C:N ratio also increased with elevated CO2, which suggests that mite biomasses are more coupled to microbial biomass, whereas enchytraeid biomass to a larger...... extent is governed by litter nitrogen concentration, i.e. litter quality. Structural equation modelling confirmed the positive coupling between soil microbial N content and oribatid biomass and further between oribatid and mesostigmatic biomass. The SEM also revealed a negative relationship between...... microbial N content and enchytraeid biomass. The biomass of all mesofaunal groups was reduced by spring drought, especially when combined with warming. Enchytraeid and especially collembolan biomass suffered greater drought declines than mite biomasses. We conclude that under long-term elevated CO2 exposure...

  9. The preparation and characterization of CNx film with high nitrogen content by cathode electrodeposition

    International Nuclear Information System (INIS)

    Zhang, J.-T.; Cao, C.-B.; Lv Qiang; Li Chao; Zhu Hesun

    2003-01-01

    CN x thin film with high nitrogen content was prepared on ITO conductive glass substrates by cathode electrodeposition, using dicyandiamide (C 2 H 4 N 4 ) in acetone as precursors. The surface morphologies, atomic bonding state, and chemical composition were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. The CN x particles got nanometer level with the average size of 80 nm. The maximum value of the N/C atomic ratio was more than 1. Carbon and nitrogen existed mainly in the form of tetrahedral C-N bonds, with a few C-N bonds. From UV-Vis absorption spectrum, we found that during near-ultraviolet area the deposited CN x films appeared nonlinear optical absorption phenomena, and the ultraviolet light (200-280 nm) could be transmitted. The electrical resistivities of the films were in the range of 10 12 -10 16 Ω cm

  10. In-line estimation of sulfur and nitrogen contents during hydrotreating of middle distillates

    Directory of Open Access Journals (Sweden)

    M. E. Pacheco

    2009-12-01

    Full Text Available The main objective of this work is analyzing whether it is possible to develop an empirical correlation for in-line estimation of the sulfur and nitrogen contents of the middle distillates Hydrotreating (HDT products for control purposes. Correlations are based only on readily available in-line information of specific gravity variation between feedstock and products, without considering any piece of information about the kinetic behavior of the catalyst. Experimental data were obtained in pilot plants under operating conditions that are representative of refinery operations. Results indicate that the removal of nitrogen and sulfur compounds during middle distillates HDT can be monitored in-line in real time, based on the available measurements of specific gravity. This allows for development and implementation of advanced in-line procedures for monitoring and control of the HDT process in real time.

  11. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  12. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  13. Estimation of Spruce Needle-Leaf Chlorophyll Content Based on DART and PARAS Canopy Reflectance Models

    Czech Academy of Sciences Publication Activity Database

    Yáñez-Rausell, L.; Malenovský, Z.; Rautiainen, M.; Clevers, J G P W.; Lukeš, Petr; Hanuš, Jan; Schaepman, M. E.

    2015-01-01

    Roč. 8, č. 4 (2015), s. 1534-1544 ISSN 1939-1404 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Chlorophyll a plus b estimation * CHRIS-PROBA * coniferous forest * continuum removal * discrete anisotropic radiative transfer model (DART) * needle-leaf * Norway spruce * optical indices * PARAS * PROSPECT * radiative transfer * recollision probability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.145, year: 2015

  14. Calcium and potassium contents in nutrient solution on Phoma leaf spot intensity in coffee seedlings

    Directory of Open Access Journals (Sweden)

    Aricléia de Moraes Catarino

    Full Text Available ABSTRACT Coffee is one of the main export commodities of Brazilian agribusiness. Phoma leaf spot [Phoma tarda (Stewart Boerema & Bollen] is one of the most important coffee fungal diseases in Brazil. Therefore, this study aimed to evaluate the intensity of Phoma leaf spot in coffee seedlings supplied with different rates of Ca+2 and K+. The study was conducted under controlled conditions in a growth chamber, at the Department of Phytopathology - UFLA, from February 2010 to December 2011. The assay was repeated twice under the same conditions. The nutrient solutions consisted of five concentrations of K+ (3, 4, 5, 6, 7 mmol L-1 and Ca+2 (2, 4, 6, 8 and 10 mmol L-1. The experiment was arranged in a randomized block design, with 25 treatments and three replicates, with two plants per plot. The areas under incidence progress curve (AUIPC and severity (AUSPC were calculated. At the lowest rate of Ca2+ (2 mmol L-1 and highest K+ (6 and 7 mmol L-1, approximately, the AUIPC was the smallest. For the AUSPC, the lowest rates of Ca+2 and K+ resulted in the lowest severities. Supply of Ca+2 and K+ in nutrient solution reduced AUIPC and AUSPC of Phoma leaf spot, and these nutrients can be recommended for the management of the disease.

  15. Protein content of leaf-cutting ant queens before the nuptial flight and during the post-claustral phase

    Directory of Open Access Journals (Sweden)

    Edypo Jacob Silva

    2014-12-01

    Full Text Available Protein content of leaf-cutting ant queens before the nuptial flight and during the post-claustral phase. This study evaluated the crude protein content of queens of Atta sexdens before the nuptial flight and after the claustral phase in laboratory and field colonies. The hypothesis was that protein is used for survival of the queen and for early colony growth during the claustral phase. Additionally, the nest morphology, live biomass and adult population of field colonies were evaluated. Crude protein was determined by digestion of the organic material with sulfuric acid at high temperatures. The mean crude protein content was 123.23 ± 11.20 mg for females before the nuptial flight and 70.44 ± 12.21 mg for laboratory-reared queens after the claustral phase. The post-claustral crude protein content of field-collected queen was 55.90 ± 9.18 mg. With respect to the loss of crude protein as a function of duration of the claustral phase, laboratory-reared queens lost 52.79 mg and field-collected queens lost 67.33 mg compared to females before the nuptial flight. A positive linear correlation was observed between the weight of field-collected queens (256.4 ± 36.3 mg and colony biomass (13.02 ± 9.12 g, but there was no correlation between biomass and nest depth (13.11 ± 3.82 cm. As expected, the present results support the hypothesis that protein is used for survival of the queen and for early colony growth, as demonstrated by the reduction in crude protein content as a function of duration of the claustral phase. To our knowledge, this is the first study to provide data of the dynamics of protein reserves in leaf-cutting ant queens during the claustral phase.

  16. Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2006-06-01

    Full Text Available The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCl and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30 and extractable P (4.11 μg g-1, n = 30 in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11. Rev. Biol. Trop. 54(2: 357-361. Epub 2006 Jun 01.A través del cociente foliar N/P, se investigó la disponibilidad de nitrógeno y fósforo en una selva húmeda tropical con suelo fértil. Como hipótesis se esperaba encontrar una alta disponibilidad de N y P en el ecosistema debido a un suelo rico en N y P. Se determinó el N total y el P extraible en el suelo superficial (10 cm en tres sitios de la selva. El N total se analizó por el método Kjeldahl y el P por extracción con HCl y NH4F. El cociente foliar N/P se evaluó a partir de hojas seniles de 11 especies arbóreas dominantes de la selva madura. Se recolectaron muestras de 5 g de hojas recién caídas de tres árboles de cada especie. El nitrógeno se analizó por digestión microkjeldahl con ácido sulfúrico y destilación con ácido bórico, y el fósforo por digestión con ácido nítrico y ácido perclórico, y determinación con fotometría. Las concetraciones de N

  17. Brachiaria sp yield and nutrient contents after nitrogen and sulphur fertilization

    Directory of Open Access Journals (Sweden)

    Reges Heinrichs

    2013-08-01

    Full Text Available Among the production factors, adequate fertilization is an important tool to raise the productivity of pastoral systems and consequently increase the share of Brazil in the supply chain of primary agricultural products at the global level. The objective of this study was to evaluate the interaction of nitrogen and sulfur fertilization in BRACHIARIA DECUMBENS: Stapf. The experiment in pots with Dystrophic Oxisol was evaluated in a completely randomized design with four replications in a 5 x 3 factorial arrangement, involving five N doses (0, 100, 200, 400, and 800 mg dm-3 in the form of ammonium nitrate and three S doses (0, 20 and 80 mg dm-3 in the form of calcium sulfate, with a total of 15 treatments. In the treatments with low S dose, calcium was provided as calcium chloride, to ensure a homogeneous Ca supply in all treatments. The results showed that the tiller production and dry weight of green leaves and of stems + sheaths and total dry weight were favored by the combination of N and S fertilizer, while the proportion of dry leaves was reduced. Nitrogen fertilization raised the N contents in green leaves and stems + sheaths and reduced K contents in fresh and dry leaves. The response to S rates in the N content of green leaves was quadratic.

  18. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  19. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  20. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Directory of Open Access Journals (Sweden)

    Christine Becker

    Full Text Available Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM, either in full or reduced (-50% radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  1. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

    Science.gov (United States)

    Markelz, R J Cody; Lai, Lisa X; Vosseler, Lauren N; Leakey, Andrew D B

    2014-04-01

    Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response. © 2013 John Wiley & Sons Ltd.

  2. Utilization of 15N-labelled nitrogen fertilizer in dependence on organic manuring and carbon and nitrogen contents of loess chernozem profiles with different stratification

    International Nuclear Information System (INIS)

    Greilich, J.

    1988-01-01

    In an outdoor model experiment with different total C and N contents in five profile variants of loess chernozem, the utilization of 15 N-labelled mineral fertilizer N by maize was investigated over three years. The total nitrogen uptake in the variants correlated with the yields at nearly uniform nitrogen contents in dry matter. Total C and N contents of the profile variants and one organic manure application per year had no statistically significant effects on the 15 N-labelled fertilizer N proportion in total N content of biomass. As a result of the low yields obtained from the variants with low total C and N contents of soil, mineral fertilizer utilization was found to be lower, too, in most of these variants. Organic manuring had no essential effect on mineral fertilizer N utilization. (author)

  3. Remote sensing based mapping of leaf nitrogen and leaf area index in European landscapes using the REGularized canopy reFLECtance (REGFLEC) model

    DEFF Research Database (Denmark)

    Boegh, E.; Houborg, R.; Bienkowski, J.

    2011-01-01

    index (LAI) are important determinants of the maximum CO2 Methods/Approach uptake by plants and trees. In the EU project NitroEurope, high spatial resolution (10-20 m) remote sensing data from the HRG and HRVIR sensors onboard the SPOT satellites were acquired to derive maps of leaf N and LAI for 5...... European landscapes. The estimations of leaf N, Cab and LAI soil reflectance parameters and canopy parameters are discussed in relation to the prevailing soil types and vegetation characteristics of land cover classes across the 5 European landscapes....

  4. Effects of Sowing Date, Planting Pattern and Nitrogen Levels on Leaf and Flower Essential Oil, Yield and Component Yield Grain of Buckwheat (Fagopyroum esculentum Moench

    Directory of Open Access Journals (Sweden)

    M. R Sobhani

    2017-12-01

    Full Text Available Introduction Buckwheat which has been scientifically named Fagopyrum esculentum can be considered as a yearling broad-leaved plant belonging to the family of Polygonaceae which is known as false Cereal. Its seeds are in use as a nutritional and medicinal product that is due to the rutin content of them. As the population is rapidly increasing worldwide, a solution must be found to supply necessary food. What agriculture science is responsible for is to produce more products with better quality in order to meet this increasing population’s needs so that food poverty and starvation are more likely to be removed and keep food safety. Considering the fact that buckwheat is of a variety of medical, industrial and food applications and in our country and some other ones, it has not been seriously cultivated, this plant must be used as a new plant and it should be extensively applied in multiple planting systems (summer planting for commercial goals through producing seeds while its nutritional value is more than grain and it can be regarded as a rich source of high quality protein, amino acid necessary for lysine, high starch percent, minerals and vitamins for different applications involving cake flour, frumenty and soup and improving the optimal rate of rutin as a secondary metabolite having effective medical features concerning our country’s climatic conditions. Materials and Methods In order to investigate the effects of sowing date, planting patterns and nitrogen on leaf and flower rutin, yield and yield component of Buckwheat plant, a field study was conducted during 2010 and 2011 in Agricultural Research Institute of Arak, Iran. The experimental design was regarded as the randomized complete block design in the form of split plot factorial with three replications. Planting treatments as the fundamental elements may be implemented at two levels including the mounds with the width of 50 cm associated with two planting rows regarding the

  5. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area

    NARCIS (Netherlands)

    Meir, P.; Kruijt, B.; Broadmeadow, M.; Barbosa, E.; Kull, O.; Carswell, F.; Nobre, A.; Jarvis, P.G.

    2002-01-01

    The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil-vegetation-atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that

  6. Reference material certification of chinese cabbage composition for selenium, nitrogen, phosphorus and potassium content

    Directory of Open Access Journals (Sweden)

    D. A. Chupakhin

    2016-01-01

    Full Text Available Rationale. The reference material of composition with the established metrological characteristics including a certified value and an expanded uncertainty is necessary to ensure an effective accuracy and precision control of results of element composition determination in food ingredients and products. This paper represents the development of a reference material of food crop composition for selenium, nitrogen, phosphorus and potassium content. Methods. To identify the selenium the hybrid atomic absorption method was used, to identify the nitrogen and phosphorus the photometric method was used, to determine the potassium flame-photometric method was used. When determining the metrological characteristics of the reference material the Russian national instructions and recommendations MI 3174-2009 and P 50.2.058-2007 were applied. Results. Based on the research findings the reference material of Chinese cabbage composition with a certified value and an expanded uncertainty was developed: for selenium 0.044 ± 0.017 mg/kg; for nitrogen 4.09 ± 0.27 %; for phosphorus 0.69 ± 0.14 %; for potassium 2.87 ± 0.22 %.

  7. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  8. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    OpenAIRE

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we deve...

  9. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents.

    Science.gov (United States)

    Rébufa, Catherine; Pany, Inès; Bombarda, Isabelle

    2018-09-30

    A rapid methodology was developed to simultaneously predict water content and activity values (a w ) of Moringa oleifera leaf powders (MOLP) using near infrared (NIR) signatures and experimental sorption isotherms. NIR spectra of MOLP samples (n = 181) were recorded. A Partial Least Square Regression model (PLS2) was obtained with low standard errors of prediction (SEP of 1.8% and 0.07 for water content and a w respectively). Experimental sorption isotherms obtained at 20, 30 and 40 °C showed similar profiles. This result is particularly important to use MOLP in food industry. In fact, a temperature variation of the drying process will not affect their available water content (self-life). Nutrient contents based on protein and selected minerals (Ca, Fe, K) were also predicted from PLS1 models. Protein contents were well predicted (SEP of 2.3%). This methodology allowed for an improvement in MOLP safety, quality control and traceability. Published by Elsevier Ltd.

  10. Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Solga, A.; Burkhardt, J.; Zechmeister, H.G.; Frahm, J.-P.

    2005-01-01

    The suitability of the two pleurocarpous mosses Pleurozium schreberi and Scleropodium purum for assessing spatial variation in nitrogen deposition was investigated. Sampling was carried out at eight sites in the western part of Germany with bulk deposition rates ranging between 6.5 and 18.5 kg N ha -1 yr -1 . In addition to the effect of deposition on the nitrogen content of the two species, its influence on 15 N natural abundance (δ 15 N values) and on productivity was examined. Annual increases of the mosses were used for all analyses. Significant relationships between bulk N deposition and nitrogen content were obtained for both species; δ 15 N-values reflected the ratio of NH 4 -N to NO 3 -N in deposition. A negative effect of nitrogen input on productivity, i.e. decreasing biomass per area with increasing N deposition due to a reduction of stem density, was particularly evident with P. schreberi. Monitoring of N deposition by means of mosses is considered an important supplement to existing monitoring programs. It makes possible an improved spatial resolution, and thus those areas that receive high loads of nitrogen are more easily discernible. - Mosses are useful as monitors of nitrogen deposition

  11. Radioactivation method for simultaneous determination of nitrogen, phosphorus and potassium content in plants and fertilizers

    International Nuclear Information System (INIS)

    Kovtun, J.L.; Miroshnikova, N.N.; Saveliev, I.B.; Sidorov, A.V.; Srapeniants, R.A.; Tsagolov, K.S.

    1981-01-01

    According to the invention, the radioactivation method for simultaneous determination of the nitrogen, phosphorus and potassium content in plants and fertilizers consists in exposing samples to be analyzed and standard samples to neutron irradiation and recording the spectra of the gamma radiation induced in said samples, whereupon the samples are laid aside for a period of time determined by the half-life of the interfering isotope. This is followed by again recording the spectra of the samples being analyzed and of the standard samples and superposing the first and second spectra of the samples being analyzed and of the standard samples. These spectra are then shifted relative to each other along the energy axis, and the contents of the elements being analyzed are determined by thus comparing the spectra of the samples being analyzed and of the standard samples

  12. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element

    Science.gov (United States)

    B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise

    2016-01-01

    The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...

  13. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  14. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    Science.gov (United States)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as

  15. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    DEFF Research Database (Denmark)

    Wang, L.; Ibrom, Andreas; Korhonen, J. F. J.

    2013-01-01

    and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally...

  16. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  17. Macronutrients leaf contents of corn in intercropping with forages of genus Panicum and Urochloa in simultaneous seeding

    Directory of Open Access Journals (Sweden)

    Denise Tsuzukibashi

    2013-12-01

    Full Text Available The planting of crops in degraded pasture areas is a formula used for decades by farmers to recover the productive capacity of pastures and soils. The integrated crop-livestock (ICL consists of different production systems of grains, fibers, wood, meat, milk and agro-deployed in the same area, in intercrop, rotation or succession. Typically this integration mainly involves the planting of grain and pasture in the recovery or deployment. This work aimed to evaluate the macronutrients leaf contents of irrigated corn intercropped with forages of the genus Panicum and Urochloa simultaneously to sown corn. The experiment was conducted at the Farm for Teaching, Research and Extension, Faculty of Engineering - UNESP, Ilha Solteira in an Oxisol in Savannah conditions, in experimental area that had a history of no-tillage to 8 years (previous crop corn. The experimental design used was randomized blocks with four replications and five treatments: Panicum maximum cv. Tanzania sown simultaneously (CTS corn; Panicum maximum cv. Mombaça sown simultaneously (CMS to corn; Urochloa brizantha cv. Xaraes sown simultaneously (CBS corn; Urochloa ruziziensis sown simultaneously (CRS to corn, and corn without intercropping (CWI. The seeds of grasses were sown in spacing of 0.34 m, being sown with a seed drill with disc coulters mounted mechanism for no-tillage system at a depth of 0.03 m. There was no significant difference between the single corn tillage and intercropping with different modalities of forage genus Panicum and Urochloa to the leaf contents of N, P, K, Ca and Mg, demonstrating the non-compete forages with corn in a intercrop on the absorption of these nutrients. In respect to S, CTS presented higher content of S foliar when compared to CWI (Table 1. The absorption of nutrients by corn are not affect by the intercrop with forages of the genus Panicum and Urochloa, in simultaneously sown.

  18. Prediction of Fecal Nitrogen and Fecal Phosphorus Content for Lactating Dairy Cows in Large-scale Dairy Farms

    Directory of Open Access Journals (Sweden)

    QU Qing-bo

    2017-05-01

    Full Text Available To facilitate efficient and sustainable manure management and reduce potential pollution, it's necessary for precise prediction of fecal nutrient content. The aim of this study is to build prediction models of fecal nitrogen and phosphorus content by the factors of dietary nutrient composition, days in milk, milk yield and body weight of Chinese Holstein lactating dairy cows. 20 kinds of dietary nutrient composition and 60 feces samples were collected from lactating dairy cows from 7 large-scale dairy farms in Tianjin City; The fecal nitrogen and phosphorus content were analyzed. The whole data set was divided into training data set and testing data set. The training data set, including 14 kinds of dietary nutrient composition and 48 feces samples, was used to develop prediction models. The relationship between fecal nitrogen or phosphorus content and dietary nutrient composition was illustrated by means of correlation and regression analysis using SAS software. The results showed that fecal nitrogen(FN content was highly positively correlated with organic matter intake(OMI and crude fat intake(CFi, and correlation coefficients were 0. 836 and 0. 705, respectively. Negative correlation coefficient was found between fecal phosphorus(FP content and body weight(BW, and the correlation coefficient was -0.525. Among different approaches to develop prediction models, the results indicated that determination coefficients of multiple linear regression equations were higher than those of simple linear regression equations. Specially, fecal nitrogen content was excellently predicted by milk yield(MY, days in milk(DIM, organic matter intake(OMI and nitrogen intake(NI, and the model was as follows:y=0.43+0.29×MY+0.02×DIM+0.92×OMI-13.01×NI (R2=0.96. Accordingly, the highest determination coefficient of prediction equation of FP content was 0.62, when body weight(BW, phosphorus intake(PI and nitrogen intake(NI were combined as predictors. The prediction

  19. Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2016-11-01

    Full Text Available Nitrogen (N is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E-2-hexanal and (E,Z-2,6-nonadienal. (E-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber.

  20. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    Science.gov (United States)

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  1. Fruit quality and olive leaf and stone addition affect Picual virgin olive oil triterpenic content.

    Science.gov (United States)

    Allouche, Yosra; Uceda, Marino; Jiménez, Antonio; Aguilera, M Paz; Gaforio, José Juan; Beltrán, Gabriel

    2009-10-14

    The present research aimed to evaluate whether Picual virgin olive oil triterpenic compounds are affected by the addition of variable quantities of stones and leaves before processing or by fruit resting on the ground during 3 months. Results showed that stone addition did not influence triterpenic dialcohol content (uvaol and erythrodiol), whereas triterpenic acids (oleanolic and maslinic) increased significantly when 20 and 30% stones were added. Leaves added at 2% increased significantly oleanolic acid, maslinic acid, and erythrodiol content by 83, 41, and 36%, respectively. During fruit resting on the ground, olive oils showed no differences in uvaol content, a slight increase in erythrodiol, and a gradual increase in both oleanolic and maslinic acids, obtaining at the end of the experiment contents nearly 10- and 3-fold higher than control oils. These results confirm that olive oil triterpenic composition is modified by the factors analyzed.

  2. Mapping of QTLs for Leaf Malondialdehyde Content Associated with Stress Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Jing JIANG

    2009-03-01

    Full Text Available Malondialdehyde (MDA is the final product of lipid peroxidation, and MDA content can reflect the stress tolerance of plants. To map QTLs conditioning the MDA content in rice leaves, a recombinant inbred line (RIL population with 247 lines derived from an indica-indica cross Zhenshan 97B×Milyang 46, and a linkage map consisting of 207 DNA markers were used. The RIL population showed a transgressive segregation in the MDA content of rice leaves. Two QTLs for the MDA content in rice leaves were detected in the intervals RG532–RG811 and RG381–RG236 on chromosome 1, with the additive effects from maternal and paternal parents, accounting for 4.33% and 4.62% of phenotype variations, respectively.

  3. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    Science.gov (United States)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  4. Simulation of Soil Nitrogen Content Effect on Weed Seedling Emergence Pattern in Moldavian Balm (Dracocephalum moldavica L.

    Directory of Open Access Journals (Sweden)

    Afsaneh Moradian

    2016-06-01

    Full Text Available The soil nitrogen content with impact on weed seed dormancy breaking can change their seedling emergence pattern. A trial was carried out in 2014 to predict seedling emergence of Xanthium strumarium, Chenopodium album, Echinocloa cruss-galli,  Amaranthus retroflexus andConvolvulus arvensis,  and to evaluate the impact of soil nitrogen content (Control with 0.07% nitrogen, adding 50 and 100 kg N.ha-1 on seedling emergence pattern in Moldavian balm. The experimental design was randomized complete block design. Weed seedlings were counted and removed on a weekly basis throughout the season. The data were converted to percent of cumulative emergence and percentage of cumulative emergence values was compared with thermal time using Gompertz modified functions. The all species showed different emergence patterns and thermal time required for the onset of emergence. The results also showed that the emergence patterns of Chenopodium and Convolvulus  not affected by nitrogen treatments. However, soil nitrogen content significantly changed emergence patterns of A. retroflexus, E. cruss-galli and X. strumarium. According to our model, A. retroflexus, E. cruss-galli and X. strumarium emergence, respectively, started at 237, 96 and 63 TT with 50 kg additional nitrogen.ha-1, while the respective value in control were 340, 117 and 135, respectively. Due to influence of soil nitrogen on emergence pattern of A. retroflexus, E. cruss-galli and X. strumarium, soil nitrogen content should be considered as an important parameter in the modeling of these weed seedling emergence.

  5. Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content of a Temperate Humid Forest Using Multi Resolution Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Hamed Adab

    2016-11-01

    Full Text Available Vegetation moisture and dry matter content are important indicators in predicting the behavior of fire and it is widely used in fire spread models. In this study, leaf fuel moisture content such as Live Fuel Moisture Content (LFMC, Leaf Relative Water Content (RWC, Dead Fuel Moisture Content (DFMC, and Leaf Dry Matter Content (LDMC (hereinafter known as moisture content indices (MCI were calculated in the field for different forest species at 32 sites in a temperate humid forest (Zaringol forest located in northeastern Iran. These data and several relevant vegetation-biophysical indices and atmospheric variables calculated using Landsat 7 Enhanced Thematic Mapper Plus (ETM+ data with moderate spatial resolution (30 m were used to estimate MCI of the Zaringol forest using Artificial Neural Network (ANN and Multiple Linear Regression (MLR methods. The prediction of MCI using ANN showed that ETM+ predicted MCI slightly better (Mean Absolute Percentage Error (MAPE of 6%–12% than MLR (MAPE between 8% and 17%. Once satisfactory results in estimating MCI were obtained by using ANN from ETM+ data, these data were then upscaled to estimate MCI using MODIS data for daily monitoring of leaf water and leaf dry matter content at 500 m spatial resolution. For MODIS derived LFMC, LDMC, RWC, and DLMC, the ANN produced a MAPE between 11% and 29% for the indices compared to MLR which produced an MAPE of 14%–33%. In conclusion, we suggest that upscaling is necessary for solving the scale discrepancy problems between the indicators and low spatial resolution MODIS data. The scaling up of MCI could be used for pre-fire alert system and thereby can detect fire prone areas in near real time for fire-fighting operations.

  6. Nitrogen dioxide column content measurements made from an aircraft between 5 deg and 82 deg N

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, W A

    1984-01-01

    In the first two weeks of May 1981, the research jet of the German Aerospace Research Estlablishment (DFVLR) was charted to fly a meridional section between 5 deg and 82 deg N. A scanning filter photometer, developed at the Max-Planck-Institut fuer Aeronomie to measure column content values of atmospheric ozone and nitrogen dioxide, using ultraviolet and visible absorption techniques, constituted part of the experimental payload for this campaign that was called SIMOC. The vertical NO2 column content above the aircraft, flying at approximately 10 km, was found to decrease rapidly from 6.9 x 10 to the 15th molecules/sq cm to 2.5 x 10 to the 15th molecules/sq cm around 50 deg N and then to increase again north of 75 deg N. A sharp rise in the NO2 content was observed south of the subtropical jet but this could possibly be due to the increased depth of the troposphere above the aircraft in these regions. 8 references.

  7. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer.

    Science.gov (United States)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N 2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg -1 N fixed and 35 t dry biomass. 15 N 2 fixation peaked at noon, reaching 0.4 mg N g -1 dry weight h -1 . Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N 2 -fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.

  8. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  9. Evaluation of the nitrate content in leaf vegetables produced through different agricultural systems.

    Science.gov (United States)

    Guadagnin, S G; Rath, S; Reyes, F G R

    2005-12-01

    The nitrate content of leafy vegetables (watercress, lettuce and arugula) produced by different agricultural systems (conventional, organic and hydroponic) was determined. The daily nitrate intake from the consumption of these crop species by the average Brazilian consumer was also estimated. Sampling was carried out between June 2001 to February 2003 in Campinas, São Paulo State, Brazil. Nitrate was extracted from the samples using the procedure recommended by the AOAC. Flow injection analysis with spectrophotometric detection at 460 nm was used for nitrate determination through the ternary complex FeSCNNO+. For lettuce and arugula, the average nitrate content varied (p hydroponic system. For watercress, no difference (p hydroponic samples, both having higher nitrate contents (p hydroponic system, represented 29% of the acceptable daily intake established for this ion.

  10. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  11. Leaf and sidedressing nitrogen application on wheat crop in savannaAplicação foliar e em cobertura de nitrogênio na cultura do trigo no cerrado

    Directory of Open Access Journals (Sweden)

    Marcelo Andreotti

    2011-08-01

    Full Text Available The nitrogen in wheat is essential for obtaining high yields, not only the dose but also the time and the way of application are critical, reducing potential leaching and the cost of production. The objective is evaluating leaf and sidedressing nitrogen application on wheat crop in years of 2006 and 2007. A randomized blocks design in a factorial scheme 5x3x2 was used. The treatments consisted of five doses of nitrogen in the solution (0; 2.5; 5.0; 7.5 and 10%, three application times (at tillering: 30 days after plant emergency (DAE, at full flowering (50 DAE + in the beginning of grain formation (70 DAE and at tillering + in the beginning of grain formation, with and without sidedressing nitrogen applied at 40 DAE, using urea as source. They were evaluated: chlorophyll and nitrogen content in leaf, number of spikelets per ear, number of grains per ear, mass of grains per ear, number of grains per spikelet, mass hectolitric, mass of 100 grains and productivity of grains. The application of nitrogen topdressing in both years, influenced the yield characteristics of wheat. The times of leaf nitrogen only affected the leaf N content. The leaf nitrogen concentrations increased linearly the number of grains per spikelets, grains per spike, chlorophyll content, grain weight per ear and grain yield, and reduced mean weight per hectoliter, only in 2007.A adubação nitrogenada na cultura do trigo é essencial para a obtenção de altas produtividades da cultura, não somente a dose, como também a época e o modo de aplicação são fundamentais no rendimento, reduzindo possíveis problemas de lixiviação e o custo de produção. O trabalho teve como objetivo avaliar os efeitos da adubação nitrogenada em cobertura e foliar em diferentes estádios sobre as características produtivas da cultura do trigo em dois agrícolas, em condições irrigadas no cerrado. Os tratamentos foram originados do fatorial 5x3x2 e consistiram de cinco concentrações de

  12. Nitrogen content determinations in different stages of thermal treatment involved in conversion of ammonium diuranate to uranium metal

    International Nuclear Information System (INIS)

    Shrivastava, K.C.; Shelke, G.P.

    2017-01-01

    Determination of nitrogen content in the uranium metal and uranium oxide based reactor fuels is important to meet the requirement of specifications given by fuel designer. Therefore, a systematic study was carried out to determine the variations in nitrogen content during the conversion of ammonium diuranate (ADU) to uranium oxides (UO 3 and UO 2 ), and finally to uranium metal by inert gas fusion-thermal conductivity detection (IGF-TCD) technique. To understand the measured nitrogen content variations, the thermal decomposition study of ADU was carried out using thermogravimetry (TG)/differential thermogravimetry (DTG) and differential thermal analysis (DTA) in the temperature range of 25-1073 K. Powder X-ray diffraction (XRD) technique was used to confirm the formation of uranium oxide precursors at different temperature. (author)

  13. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry

    NARCIS (Netherlands)

    de Jong, Steven M.; Addink, Elisabeth A.; Doelman, Jonathan C.

    2014-01-01

    Water content of the vegetation canopy or individual leaves is an important variable in physiological plant processes. In Mediterranean regions where water availability is an important production limiting factor, it is a strong indicator of vegetation stress. Spectroscopic earth-observation

  14. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Science.gov (United States)

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  15. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study.

    Science.gov (United States)

    Crous, Kristine Y; O'Sullivan, Odhran S; Zaragoza-Castells, Joana; Bloomfield, Keith J; Negrini, A Clarissa A; Meir, Patrick; Turnbull, Matthew H; Griffin, Kevin L; Atkin, Owen K

    2017-08-01

    Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    International Nuclear Information System (INIS)

    Ombaka, L.M.; Ndungu, P.G.; Omondi, B.; McGettrick, J.D.; Davies, M.L.; Nyamori, V.O.

    2016-01-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF_3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF_3 catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF_3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF_3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF_3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.

  17. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  18. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    L. K. Takao

    Full Text Available Abstract There is considerable interest in identifying new antioxidants from plant materials. Several studies have emphasized the antioxidant activity of species belonging to the Myrtaceae family. However, there are few reports on these species from the Cerrado (Brazilian savanna. In this study, the antioxidant activity and phenolic content of 12 native Myrtaceae species from the Cerrado were evaluated (Blepharocalyx salicifolius, Eugenia bimarginata, Eugenia dysenterica, Eugenia klotzschiana, Hexachlamys edulis, Myrcia bella, Myrcia lingua, Myrcia splendens, Myrcia tomentosa, Psidium australe, Psidium cinereum, and Psidium laruotteanum. Antioxidant potential was assessed using the antioxidant activity index (AAI by the DPPH method and total phenolic content (TPC by the Folin–Ciocalteu assay. There was a high correlation between TPC and AAI values. Psidium laruotteanum showed the highest TPC (576.56 mg GAE/g extract and was the most potent antioxidant (AAI = 7.97, IC50 = 3.86 µg·mL−1, with activity close to that of pure quercetin (IC50 = 2.99 µg·mL−1. The extracts of nine species showed IC50 of 6.24–8.75 µg·mL−1. Most species showed TPC and AAI values similar to or higher than those for Camellia sinensis, a commonly consumed tea with strong antioxidant properties. The results reveal that the analyzed Myrtaceae species from the Cerrado possess high phenolic contents and antioxidant activities. Thus, they are a potential source of new natural antioxidants.

  19. Auxiliary units for refining of high nitrogen content oils: Premium II refinery case

    Energy Technology Data Exchange (ETDEWEB)

    Nicolato, Paolo Contim; Pinotti, Rafael [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    PETROBRAS is constantly investing on its refining park in order to increase the production of clean and stable fuels and to be capable to process heavier oils with high contaminants content. Sulfur and nitrogen are the main heteroatoms present in petroleum. They are responsible for some undesirable fuels properties like corrosivity and instability, and also emit pollutants when burnt. Hydrotreating and hydrocracking processes are designed to remove these contaminants and adjust other fuel properties, generating, as byproduct, sour gases and sour water streams rich in H{sub 2}S and NH{sub 3}, which are usually sent to Sour Water Treatment Units and Sulfur Recovery Units. The regeneration of the amine used for the light streams treatment, as fuel gas and LPG, also generates sour gas streams that must be also sent to Sulfur Recovery Units. As the ammonia content in the sour streams increases, some design parameters must be adjusted to avoid increasing the Refinery emissions. Sulfur Recovery Units must provide proper NH3 destruction. Sour Water Treatment must have a proper segregation between H{sub 2}S and ammonia streams, whenever desirable. Amine Regeneration Systems must have an efficient procedure to avoid the ammonia concentration in the amine solution. This paper presents some solutions usually applied to the Petroleum Industry and analyses some aspects related to Premium II Refinery Project and how its design will help the Brazilian refining park to meet future environmental regulation and market demands. (author)

  20. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    Science.gov (United States)

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Examining the Influence of Seasonality, Condition, and Species Composition on Mangrove Leaf Pigment Contents and Laboratory Based Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Francisco Flores-de-Santiago

    2016-03-01

    Full Text Available The purpose of this investigation was to determine the seasonal relationships (dry vs. rainy between reflectance (400–1000 nm and leaf pigment contents (chlorophyll-a (chl-a, chlorophyll-b (chl-b, total carotenoids (tcar, chlorophyll a/b ratio in three mangrove species (Avicennia germinans (A. germinans, Laguncularia racemosa (L. racemosa, and Rhizophora mangle (R. mangle according to their condition (stressed vs. healthy. Based on a sample of 360 leaves taken from a semi-arid forest of the Mexican Pacific, it was determined that during the dry season, the stressed A. germinans and R. mangle show the highest maximum correlations at the green (550 nm and red-edge (710 nm wavelengths (r = 0.8 and 0.9, respectively for both chl-a and chl-b and that much lower values (r = 0.7 and 0.8, respectively were recorded during the rainy season. Moreover, it was found that the tcar correlation pattern across the electromagnetic spectrum was quite different from that of the chl-a, the chl-b, and chl a/b ratio but that their maximum correlations were also located at the same two wavelength ranges for both seasons. The stressed L. racemosa was the only sample to exhibit minimal correlation with chl-a and chl-b for either season. In addition, the healthy A. germinans and R. mangle depicted similar patterns of chl-a and chl-b, but the tcar varied depending on the species. The healthy L. racemosa recorded higher correlations with chl-b and tcar at the green and red-edge wavelengths during the dry season, and higher correlation with chl-a during the rainy season. Finally, the vegetation index Red Edge Inflection Point Index (REIP was found to be the optimal index for chl-a estimation for both stressed and healthy classes. For chl-b, both the REIP and the Vogelmann Red Edge Index (Vog1 index were found to be best at prediction. Based on the results of this investigation, it is suggested that caution be taken as mangrove leaf pigment contents from spectroscopy data

  2. Nitrogen deposition and soil carbon content affect nitrogen mineralization during primary succession in acid inland drift sand vegetation

    NARCIS (Netherlands)

    Sparrius, L.B.; Kooijman, A.M.

    2013-01-01

    Background and aims Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha−1 yr−1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats. Methods

  3. Effects of nitrogen content in monocrystalline nano-CeO2 on the degradation of dye in indoor lighting

    International Nuclear Information System (INIS)

    Sun, Dongfeng; Gu, Mingjie; Li, Ruixing; Yin, Shu; Song, Xiaozhen; Zhao, Bin; Li, Chengqiang; Li, Junping; Feng, Zhihai; Sato, Tsugio

    2013-01-01

    Azo dyes are an abundant class of synthetic dyes, however their complex structure makes them difficult to biologically degrade. We sought to degrade acid orange 7 (AO7) using nitrogen-doped nano-CeO 2 , which is a promising alternative photocatalyst to nitrogen-doped TiO 2 . Nitrogen-doped monocrystalline CeO 2 nanoparticles with various nitrogen contents were synthesized solvothermally at 120 o C from Ce(NO 3 ) 3 ·6H 2 O, triethanolamine, and ethanol. The CeO 2 monocrystals were between 7 and 8 nm in diameter. Nitrogen was shown to be incorporated into CeO 2 lattice from the results of the lattice parameter calculations, X-ray photoelectron spectroscopy analysis and elemental analysis. The degradation of AO7 in water was investigated using a domestic 10 W compact fluorescent lamp. The degradation efficiency of AO7 by monocrystalline CeO 2 increased with increasing nitrogen content, reaching 97.6% for the sample with a N:Ce molar ratio of 0.3.

  4. The Effect of Irrigation and Nitrogen on Growth Attributes and Chlorophyll Content of Garlic in Line Source Sprinkler Irrigation System

    Directory of Open Access Journals (Sweden)

    rahim motalebifard

    2017-02-01

    Full Text Available Introduction: With 12 million tons production per year, garlic is the fourth important crop in world. In addition to its medical value, it has been used in food industry. The Hamedan province with 1900 ha cultivation area and 38 percent of production is one of the most important garlic area productions in Iran. Few studies on water use and management of garlic exist in the world. Garlic is very sensitive to water deficit especially in tubers initiation and ripening periods. The current research was done because of scarce research on garlic production under water deficit condition in Iran and importance of plant nutrition and nutrients especially nitrogen on garlic production under stressful conditions. Nitrogen is necessary and important element for increasing the yield and quality of garlic. Application of nitrogen increases the growth trend of garlic such as number of leaves, leaf length and plant body. Reports have shown that garlic has high nitrogen requirement, particularly in the early stages of growth. Materials and Methods: This study was conducted for evaluating the combined effects of nitrogen and irrigation on the yield and quality of garlic (Allium sativumL.. The study was performed as a split-block based on randomized complete blocks design with factors of irrigation at four levels (0-3(normal irrigation, 3-6 (slight water deficit, 6-9 (moderate water deficit and 9-12 (sever water deficit meters distance from main line source sprinkler system, nitrogen at four levels (0, 50,100 and 150 kg nitrogen per ha using three replications and line source sprinkler irrigation system. The total water of irrigation levels was measured by boxes that were fixed in meddle of each plot. The statistical analysis of results were performed using themethod described by Hanks (1980. The chlorophyll index was measured using the chlorophyll meter 502 (Minolta, Spain. The chlorophyll a and bwas measured by the method described by Arnon (1946 and Gross (1991

  5. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  6. Changes in the contents of nitrogen fractions with loosing vital capacity of the Siberian fir Abies sibirica Ledeb. seeds

    Directory of Open Access Journals (Sweden)

    S. G. Prokushkin

    2017-02-01

    Full Text Available Siberian fir seeds often lose their germinating capacity during storage. This results from, among other factors, changing contents of nitrogen compounds in the seeds, especially those of protein fractions. This paper focuses on analyzing changes of these compounds in nonviable seeds of the species depending on ecological and conditions and stand location, as well as on tree growth class (Kraft growth classes I and IV. The contents of the total and protein nitrogen in the nonviable seeds of the trees of growth classes I and IV appeared to vary widely and to depend on stand location and seed location in the tree crown. The maximum contents were in the seeds located in the upper part of the crown. The seeds from the middle and lower crown parts contained much less total and protein nitrogen. The hard-to-solve protein fraction dominated over other protein fraction in the seeds from the upper part of the crowns of the trees of growth classes I and IV. However, this fraction, like prolamines, changed uniformly throughout the crowns, whereas seed glutelin content varied insignificantly among the crown parts. Albumins and globulins showed a uniform crown top-to-bottom decrease. A comparison of viable seed with unviable seeds for contents of the nitrogen forms revealed a marked decrease in the total and protein nitrogen in the latter, especially for the trees of growth class IV. The seeds that lost their germinating capacity exhibited increasingly hard-to-solve protein fraction and drastically decreasing albumins and globulins wherever the seeds were in the crown. Their glutelin and prolamine contents changed inconsiderably.The changes of the quantitative ratio between the protein fractions found by the study cause, along with other physiological and biochemical factors, the loss of viability of Siberian fir seeds during storage.

  7. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  8. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data – potential of unmanned aerial vehicle imagery

    NARCIS (Netherlands)

    Roosjen, Peter P.J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G.P.W.

    2018-01-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index

  9. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  10. Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Marcela; Frantík, Tomáš; Koblihová, Helena; Bartůňková, Kristýna; Nývltová, Z.; Vosátka, Miroslav

    2011-01-01

    Roč. 11, č. 98 (2011), s. 1-14 ISSN 1471-2229 R&D Projects: GA MPO FT-TA3/008; GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : knotweed * stilbenes * leaf damage Subject RIV: EF - Botanics Impact factor: 3.447, year: 2011

  11. Application of titration methods for measuring the contents of ammonium nitrogen and volatile fatty acids in agricultural biogas plants.

    Science.gov (United States)

    Piątek, Michał; Lisowski, Aleksander; Lisowska, Barbara

    2017-12-20

    The aim of our research was to assess a relatively new method of estimating ammonium nitrogen concentration in anaerobic digestion of plant substrates. We analysed our own data, received from the anaerobic digestion of maize silage (PM), as well as data published by Purser et al. (2014) who measured energy crops and slurry (ECS), and food waste (FW). In our study, the process was monitored for VFA content that was determined by gas chromatography, and for the content of ammonium nitrogen determined using the HACH LANGE LCK 303 cuvette test. We created polynomial regression models that bind the content of ammonium nitrogen with the volume of H 2 SO 4 used to titrate the sample from initial pH to pH 5. To estimate parameters of model, the PM dataset was used. The obtained models were positively validated using ECS and FW datasets. Our results confirmed the effectiveness of the Purser et al. method with an average absolute error of less than 223mgl -1 of the VFA concentration, which was approximately 20-times less than the level that caused inhibition. In conclusion, we can affirm the suitability of using titration methods to assess the ammonium nitrogen content of bioreactors with a stable composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genotypic and environmental effects on cottonseed oil, nitrogen, and gossypol contents in eighteen years Regional High Quality tests

    Science.gov (United States)

    Determination of environmental influence on seed traits is critical for genetic improvement of seed quality in Upland cotton (Gossypium hirsutum L.). The objective of this study was to analyze the relative contribution of environment and genotype (G) for seed oil, nitrogen (N), and gossypol content...

  13. Effects of Organic and Chemical Fertilizers on Leaf Yield, Essential Oil Content and Composition of Lemon Verbena (Lippia citriodora Kunth

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ebadi

    2017-02-01

    Full Text Available Introduction: Organic fertilizers with beneficial effects on soil structure and nutrient availability help maintain yield and quality, and they are less costly than synthetic fertilizers. Vermicompost and vermiwash are two organic fertilizers that they contain a biologically active mixture of bacteria, enzymes and phytohormones, also these organic fertilizers can supply the nutritional needs of plants. Lemon verbena (Lippia citriodora Kunth, Verbenaceae is an evergreen perennial aromatic plant. The lemon-scented essential oil from the lemon verbena has been widely used for its digestive, relaxing, antimalarial and lemony flavor properties. In order to decrease the use of chemical fertilizers for reduction of environmental pollution, this research was undertaken to determine effects of vermicompost and vermiwash in comparison with chemical fertilizer on leaf yield, essential oil content and composition of lemon verbena. Materials and Methods: A pot experiment based on a completely randomized design with six treatments and three replications on Lemon verbena was carried out in the experimental greenhouse of the Department of Horticulture Sciences, Tarbiat Modares University, 2012. Treatments consisted of 10, 20 and 30 % by volume of vermicompost and vermiwash (with an addition to irrigation in three steps, including: two weeks after the establishment of plants in pots, the appearing of branches and three weeks before harvest, complete fertilizer and control without any fertilizer. Each replication contained six pots and each pot contained one plant of Lemon verbena provided from Institute of Medicinal Plants, Karaj, therefore 108 pots were used in this experiment. The pots were filled up by a mixture contained 3/5 soil and 2/5 sand (v/v. After three months, plant aerial parts were harvested concomitantly at starting of the flowering stage. Aerial parts were dried at room temperature for 72 hours and dry weights of dried branches and leaves were

  14. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  15. The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize

    International Nuclear Information System (INIS)

    Moosavi, S.G.

    2012-01-01

    In order to study the effect of water deficit stress at different growth stages and N fertilizer levels on morphological traits, yield and yield components of maize cv. Single Cross 704, an experiment was conducted as a split-plot based on a Randomized Complete Block Design with three replications. The main plot included irrigation at four levels (irrigation stop at 10-leaf, tasselling and grain-filling stages and optimum irrigation) and the sub-plot was N fertilizer at three levels (75, 150 and 225 kg N/ha). The results of analysis of variance showed that water-deficit stress and N fertilizer level significantly affected leaf area index at silking stage, ear length, grain number per ear, 1000-grain weight and grain yield. Stem diameter, ear diameter and harvest index were only affected by irrigation treatments and the interaction between irrigation and N level did not significantly affect the studied traits. Means comparison indicated that ear diameter under optimum irrigation was higher than that under the treatments of irrigation stop at 8-leaf, tasselling and grain-filling stages by 29.9, 19.1 and 33.5%, respectively; and ear length was higher than them by 38.1, 28.9 and 25.2%, respectively. Moreover, the highest grain number per ear, 1000-grain weight and grain yield were obtained under optimum irrigation treatment, and irrigation stop at 10-leaf, tasselling and grain-filling stages decreased grain yield by 52.8, 66.4 and 44.9%, respectively; and it decreased grain number/ear by 45.9, 59.3 and 30.1%, respectively. In addition, optimum irrigation treatment with mean 1000-grain weight of 289.2 g was significantly superior over other irrigation stop treatments by 27.6-42.8% and produced the highest leaf area index at silking stage (4.1). Means comparison of traits at different N levels indicated that N level of 225 kg/ha produced the highest ear length (17.82 cm), grain number per ear (401.9), 1000-grain weight (258.8 g), leaf area index at silking stage (4

  16. Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents

    Directory of Open Access Journals (Sweden)

    Graciela S Diniz

    2014-05-01

    Full Text Available The chemical profiles of Desmapsamma anchorata, Hymeniacidon heliophila (Porifera, Bunodosoma caissarum, Renilla muelleri (Cnidaria, Aplysia brasiliana, Eledone massyae, Isognomon bicolor (Mollusca, Echinaster brasiliensis, Echinometra lucunter, Holothuria grisea, Lytechinus variegatus (Echinodermata, and Phallusia nigra (Chordata were determined. Hydrosoluble protein was the most abundant class of substances for all species, except for the ascidian Phallusia nigra, in which the carbohydrate content was higher. The percentages of hydrosoluble protein (dry weight, dw varied widely among the invertebrates, ranging from 5.88% (R. muelleri to 47.6% (Eledone massyae of the dw .The carbohydrate content fluctuated from 1.3% (R. muelleri to 18.4% (Aplysia brasiliana of the dw. For most of the species, lipid was the second most abundant class of substances, varying from 2.8% (R. muelleri to 25.3% (Echinaster brasiliensis of the dw. Wide variations were also found for the invertebrates nitrogen content, with the lowest value recorded in the cnidarian R. muelleri (2.02% of the dw and the highest in the molluscan E. massyae (12.7% of the dw. The phosphorus content of the dw varyed from 0.24% (R. muelleri to 1.16% (E. massyae. The amino acid composition varied largely among the species, but for most of the species glycine, arginine, glutamic acid, and aspartic acid were the most abundant amino acids, with histidine and tyrosine among the less abundant amino acids. The actual content of total protein in the samples was calculated by the sum of amino acid residues, establishing dw values that fluctuated from 11.1% (R. muelleri to 66.7% (E. massyae. The proteinaceous nitrogen content was high in all species, with an average value of 97.3% of the total nitrogen. From data of total amino acid residues and total nitrogen, specific nitrogen-to-protein conversion factors were calculated for each species. The nitrogen-to-protein conversion factors ranged from 5.10 to

  17. Effects of water deficit and nitrogen levels on grain yield and oil and protein contents of maize

    Directory of Open Access Journals (Sweden)

    Kazem Ghassemi-Golezani

    2015-02-01

    Full Text Available This research was conducted in 2014, to evaluate the effects of water deficit and nitrogen fertilizer on grain yield, oil and protein contents of maize (cv. double Cross 303. The experiment was arranged as split-plot based on Randomized Complete Block design (RCB with three replications. Irrigation treatments (irrigation after 60, 90, 120 and 150 mm evaporation and nitrogen levels (0, 46 and 92 kg N/ha were located in the main and sub plots, respectively. Mean grain yield per unit area decreased with decreasing water availability, but it was improved with increasing nitrogen fertilizer. Grain oil percentage significantly decreased, but protein percentage slightly increased as a result of water deficit. In general, oil and protein yields significantly decreased under moderate and severe water stress, mainly because of decreasing grain yield under these conditions. Nitrogen application decreased oil percentage, but increased protein percentage significantly. Nevertheless, nitrogen fertilizer enhanced oil and protein yields per unit area, with no significant difference between nitrogen rates. These results were positively related with grain yield per unit area in maize.

  18. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method.

    Science.gov (United States)

    Mozafar, A

    1996-02-01

    Excessive use of nitrogen fertilizers is known to increase the NO3 and reduce the vitamin C contents in fruits and vegetables. We investigated the concentration of these compounds in spinach leaves when plants were transferred to nitrogen-free media prior to their harvest. It was noted that a pre-harvest transfer of spinach to N-free media reduces the NO3 and increases the vitamin C content of the leaves by a substantial amount in a 2-3 day period. It is suggested that this technique may be suited to produce spinach or other leafy vegetables with low NO3 and high vitamin C contents under commercial hydroponic conditions.

  19. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Science.gov (United States)

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  20. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Directory of Open Access Journals (Sweden)

    Xiubo Wang

    Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  1. Aplicação foliar de nitrogênio em videira: avaliação do teor na folha e das reservas nitrogenadas e de carboidratos nas gemas dos ramos do ano Nitrogen foliar spraying in grapevine: content in leaves and reserve of nitrogen and carboihydrates in shoots buds

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-12-01

    Full Text Available No Rio Grande do Sul (RS, as aplicações foliares de nitrogênio, quando necessárias, têm sido usadas para complementar a adubação via solo. Entretanto, carece-se de informações dos efeitos da freqüência e da quantidade de N aplicado sobre a sua dinâmica na folha e de reservas nitrogenadas e de carboidratos nas partes perenes da videira, que compõem o objetivo deste trabalho. O trabalho foi conduzido em um vinhedo da cultivar Chenin Blanc, safra 2004/05, na Embrapa Uva e Vinho, em Bento Gonçalves (RS, sobre um Neossolo Litólico. Os tratamentos consistiram de uma, duas e três aplicações foliares de 0 (água; 1,11; 2,23; 3,31 e 4,41g de N planta-1. Após cada aplicação de nitrogênio, foram coletadas folhas inteiras (limbo+pecíolo no terço médio dos ramos do ano, no interior e exterior dos diferentes lados da planta, secas, moídas e preparadas para a análise de N total. Na última época de coleta de folhas, foram coletados três ramos do ano em cada planta, retiradas seis gemas em cada ramo, as quais foram submetidas à análise de amido, carboidratos solúveis totais, carboidratos redutores, aminoácidos totais e proteínas totais. As aplicações foliares de N aumentaram o teor do nutriente na folha inteira, de forma destacada, nas épocas de coletas próximas às aplicações; entretanto, essas aplicações diminuíram os teores de amido e carboidratos solúveis totais nas gemas dos ramos do ano e não afetaram os teores de carboidratos redutores e os totais de aminoácidos e proteínas.Leaf nitrogen application is used in grapevines in Southern Brazil as complement to soil fertilization. On the other hand, there is no information about its affects on nitrogen content in the leaves and nitrogen and carbohydrates reserves in the perennial parts. The experiment was carried out in 2004/2005, with the objective to evaluate the effect of nitrogen foliar spraying on leaves and nitrogen and carbohydrates reserves in shoots buds

  2. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  3. Abiotic and biotic determinants of leaf carbon exchange capacity from tropical to high boreal biomes

    Science.gov (United States)

    Smith, N. G.; Dukes, J. S.

    2016-12-01

    Photosynthesis and respiration on land represent the two largest fluxes of carbon dioxide between the atmosphere and the Earth's surface. As such, the Earth System Models that are used to project climate change are high sensitive to these processes. Studies have found that much of this uncertainty is due to the formulation and parameterization of plant photosynthetic and respiratory capacity. Here, we quantified the abiotic and biotic factors that determine photosynthetic and respiratory capacity at large spatial scales. Specifically, we measured the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of Ribulose-1,5-bisphosphate regeneration (Jmax), and leaf dark respiration (Rd) in >600 individuals of 98 plant species from the tropical to high boreal biomes of Northern and Central America. We also measured a bevy of covariates including plant functional type, leaf nitrogen content, short- and long-term climate, leaf water potential, plant size, and leaf mass per area. We found that plant functional type and leaf nitrogen content were the primary determinants of Vcmax, Jmax, and Rd. Mean annual temperature and mean annual precipitation were not significant predictors of these rates. However, short-term climatic variables, specifically soil moisture and air temperature over the previous 25 days, were significant predictors and indicated that heat and soil moisture deficits combine to reduce photosynthetic capacity and increase respiratory capacity. Finally, these data were used as a model benchmarking tool for the Community Land Model version 4.5 (CLM 4.5). The benchmarking analyses determined errors in the leaf nitrogen allocation scheme of CLM 4.5. Under high leaf nitrogen levels within a plant type the model overestimated Vcmax and Jmax. This result suggested that plants were altering their nitrogen allocation patterns when leaf nitrogen levels were high, an effect that was not being captured by the model. These data, taken with models in mind

  4. Specific leaf mass, fresh: dry weight ratio, sugar and protein contents in species of Lamiaceae from different light environments

    Directory of Open Access Journals (Sweden)

    M Castrillo

    2005-06-01

    Full Text Available Samples from eleven species of Lamiaceae were collected from different light environments in Venezuela for laboratory analysis.The studied species were: Plectranthus scutellarioides (Ps, Scutellaria purpurascens (Sp, Hyptis pectinata (Hp, H. sinuata (Hs, Leonorus japonicus (Lj, Plecthranthus amboinicus (Pa Ocimum basilicum (Ocb, O.campechianum (Occ Origanum majorana (Orm, Rosmarinus officinali ,(Ro and Salvia officinalis (So. Protein and soluble sugar contents per unit of area were measured, Specific Leaf Mass (SLMand fresh: dry weight (FW/DW ratios were calculated. The higher values for soluble sugars contents were present in sun species: Lj, Pa, Ocb, Occ, Or. m, Ro and So; the lower values were obtained in low light species: Ps, Sp, Hp, Hs. The values of protein content do not show any clear trend or difference between sun and shade environments. The lowest values for the fresh weight: dry weight ratio are observed in sun species with the exception of Lj and Pa, while the highest value is observed in Pa, a succulent plant. The higher values of specific leaf mass (SLM(Kg DMm-2 are observed in sun plants. The two way ANOVA revealed that there were significant differences among species and between sun and low light environments for sugar content and FW: DW ratio, while SLM was significant for environments but no significant for species, and not significant for protein for both species and environments. The soluble sugar content, FW: DW ratio and SLM values obtained in this work, show a clear separation between sun and shade plants. The sugar content and FW:DW ratio are distinctive within the species,and the light environment affected sugar content, FW:DW ratio and SLM. These species may be shade-tolerant and able to survive in sunny environments. Perhaps these species originated in shaded environments and have been adapting to sunny habitats.Rev.Biol.Trop.53(1-2:23-28.Epub 2005 Jun 24En once especies de la familia Lamiaceae: Plecthranthus

  5. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms

    KAUST Repository

    Molina-Ramírez, Axayacatl

    2015-05-19

    We have supplemented available, concurrent measurements of fresh weight (W, g) and body carbon (C, g) (46 individuals, 14 species) and nitrogen (N, g) (11 individuals, 9 species) of marine gelatinous animals with data obtained during the global ocean MALASPINA 2010 Expedition (totalling 267 individuals and 33 species for the W versus C data; totalling 232 individuals and 31 species for the N versus C data). We then used those data to test the allometric properties of the W versus C and N versus C relationships. Overall, gelatinous organisms contain 1.13 ± 1.57% of C (by weight, mean ± SD) in their bodies and show a C:N of 4.56 ± 2.46, respectively, although estimations can be improved by using separate conversion coefficients for the carnivores and the filter feeders. Reduced major axis regression indicates that W increases isometrically with C in the carnivores (cnidarians and ctenophores), implying that their water content can be described by a single conversion coefficient of 173.78 gW(g C)-1, or a C content of 1.17 ± 1.90% by weight, although there is much variability due to the existence of carbon-dense species. In contrast, W increases more rapidly than C in the filter feeders (salps and doliolids), according to a power relationship W = 446.68C1.54. This exponent is not significantly different from 1.2, which is consistent with the idea that the watery bodies of gelatinous animals represent an evolutionary response towards increasing food capture surfaces, i.e. a bottom-up rather than a top-down mechanism. Thus, the available evidence negates a bottom-up mechanism in the carnivores, but supports it in the filter feeders. Last, N increases isometrically with C in both carnivores and filter feeders with C:N ratios of 3.89 ± 1.34 and 4.38 ± 1.21, respectively. These values are similar to those of compact, non-gelatinous organisms and reflect a predominantly herbivorous diet in the filter feeders, which is confirmed by a difference of one trophic level

  6. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms

    KAUST Repository

    Molina-Ramí rez, Axayacatl; Cá ceres, Carlos; Romero-Romero, Sonia; Bueno, Juan; Gonzá lez-Gordillo, J. Ignacio; Irigoien, Xabier; Sostres, Jorge; Bode, Antonio; Mompeá n, Carmen; Ferná ndez Puelles, Mariluz; Echevarria, Fidel; Duarte, Carlos M.; Acuñ a, José Luis

    2015-01-01

    We have supplemented available, concurrent measurements of fresh weight (W, g) and body carbon (C, g) (46 individuals, 14 species) and nitrogen (N, g) (11 individuals, 9 species) of marine gelatinous animals with data obtained during the global ocean MALASPINA 2010 Expedition (totalling 267 individuals and 33 species for the W versus C data; totalling 232 individuals and 31 species for the N versus C data). We then used those data to test the allometric properties of the W versus C and N versus C relationships. Overall, gelatinous organisms contain 1.13 ± 1.57% of C (by weight, mean ± SD) in their bodies and show a C:N of 4.56 ± 2.46, respectively, although estimations can be improved by using separate conversion coefficients for the carnivores and the filter feeders. Reduced major axis regression indicates that W increases isometrically with C in the carnivores (cnidarians and ctenophores), implying that their water content can be described by a single conversion coefficient of 173.78 gW(g C)-1, or a C content of 1.17 ± 1.90% by weight, although there is much variability due to the existence of carbon-dense species. In contrast, W increases more rapidly than C in the filter feeders (salps and doliolids), according to a power relationship W = 446.68C1.54. This exponent is not significantly different from 1.2, which is consistent with the idea that the watery bodies of gelatinous animals represent an evolutionary response towards increasing food capture surfaces, i.e. a bottom-up rather than a top-down mechanism. Thus, the available evidence negates a bottom-up mechanism in the carnivores, but supports it in the filter feeders. Last, N increases isometrically with C in both carnivores and filter feeders with C:N ratios of 3.89 ± 1.34 and 4.38 ± 1.21, respectively. These values are similar to those of compact, non-gelatinous organisms and reflect a predominantly herbivorous diet in the filter feeders, which is confirmed by a difference of one trophic level

  7. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    Science.gov (United States)

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Leaf δ15N as an indicator of arbuscular mycorrhizal nitrogen uptake in a coastal-plain forest (restinga forest) at Southeastern Brazil

    Science.gov (United States)

    Mardegan, S. F.; Valadares, R.; Martinelli, L.

    2013-12-01

    cleared and stained according to Phillips and Hayman (1970), being scored for mycorrhizal colonization using the grid-line intersection method. We used analysis of variance (ANOVA) followed by a post hoc Tukey HSD test to determine differences amongst compartments. Spearman correlation coefficient was calculated to quantify the relationship between leaf δ15N and root colonization rates. Vegetation nitrogen concentration was around 22.5 g kg-1, being higher than those from litter and soil. Vegetation δ15N mean values were around -0.2 ‰, ranging from -1.6 to 2.0 ‰, being lower than those from the soils where they grow (mean values close to 3.0 ‰). Roots from all species were colonized, with the presence of typical AMF structures (hyphae, vesicles and arbuscules within root cortex). Root colonization rates ranged from less than 1 to about 55 %. In most cases, species with δ15N values had colonization rates exceeding 20 %. We observed an inverse relationship between the rate of root colonization and leaf δ15N of the species analyzed. These results suggest the importance of AMF symbiosis for nitrogen supply at such nutrient-limited coastal environments.

  9. Amino acid content in red wines obtained from grapevine nitrogen foliar treatments: consumption during the alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Javier Portu

    2014-12-01

    Full Text Available Nitrogen is an important element for grapevine and winemaking which affects the development of the plant and yeast, and therefore it is important for wine quality. The aim of this work was to study the influence of foliar application to vineyard of proline, phenylalanine and urea and two commercial nitrogen fertilizers, without and with amino acids in their formulation, on the wine amino acid content and their consumption during the alcoholic fermentation. The results showed that these treatments did not affect the amino acid composition in wines. The differences observed for certain amino acids were so small that the concentration of total amino acids was not significantly different among wines. Moreover, it was observed that the higher the content of amino acids in the medium, the greater their consumption during the alcoholic fermentation.

  10. Genetic variations in the dynamics of dry matter accumulation, nitrogen assimilation and translocation in new T. aestivum L. varieties. II. Nitrogen assimilation and translocation in relation to grain yield and protein content

    International Nuclear Information System (INIS)

    Nankova, M.; Kostov, K.; Penchev, E.

    1999-01-01

    The study was carried out under greenhouse and field conditions and showed considerable genotype differences between the vrs. Enola, Karat, Svilena and Pliska (T. aestivum L.) with regard to N assimilation during heading, which played an important role in grain yield formation (0.852). Grain yield depends considerably on N translocation (NT) in the period heading-full maturity (0.864) and on its part affects the intensity of N uptake in grain during grain filling-full maturity. In both experiments cv. Svilena demonstrated high NR from the leaves, which was the reason for more than 52 % of N in grain. In the field experiment cv. Svilena confirmed this tendency, the NR being highest in the 2-3 leaf stage, followed by the flag leaf and the down leaves. The intensity of N uptake in grain during grain filling-full maturity was highest in the vrs. Enola and Karat. This intensity was in strong correlation with NA during heading, and with NT in V m during heading-full maturity. It also affected to a high degree the protein content in grain, as well as grain yield. In both experiments a strong negative correlation was established between the NHI/GHI ratio, and grain yield and nitrogen assimilation during heading; a positive correlation was determined with grain NHI. Under the conditions of increasing N dressing, the vrs. Enola, Karat, and Svilena had higher N expense for formation of a production unit, 63 up to 91 % of the N being used for formation of grain with high protein content. Protein yield correlated strongly not only with protein in grain, but also with the intensity of uptake in grain during grain filling - full maturity. The highest protein yield was registered in cv. Karat. By their N expense for production of 100 kg protein, the new varieties did not differ from the standard variety Pliska. The results from the study showed a higher genetic potential of the agrochemically promising varieties Karat, Enola and Svilena than the standard variety Pliska. Refs. 10

  11. Crescimento de folhas do capim-bermuda tifton 85 submetido à adubação nitrogenada após o corte Leaf growth of tifton 85 bermudagrass submitted to nitrogen fertilization after cutting

    Directory of Open Access Journals (Sweden)

    Linda Monica Premazzi

    2011-03-01

    Full Text Available Com o objetivo de avaliar a influência de doses e épocas de aplicação de nitrogênio após o corte no fator de correção de área foliar, na taxa de alongamento de folhas e no comprimento e área da lâmina foliar do capim-bermuda tifton 85 (Cynodon spp foram conduzidos dois experimentos em casa de vegetação. Ambos os experimentos foram estabelecidos em vasos com capacidade para 7 kg de terra, com solo classificado como Neossolo Quartzarênico Órtico típico, em esquema fatorial 4 × 2, para avaliação de quatro doses de nitrogênio (0, 80, 160 e 240 mg kg-1 de solo e duas épocas de aplicação (imediatamente após o corte e sete dias após o corte das plantas. O delineamento experimental foi em blocos completos ao acaso, com quatro repetições. Com o fornecimento de nitrogênio, observou-se diminuição no fator de correção de área foliar. O nitrogênio proporciona variação positiva no comprimento foliar, na área da lâmina foliar e na taxa de alongamento da folha, variações que ocorreram em maior grandeza entre a não-aplicação de nitrogênio e a dose de 80 mg kg-1 de solo.With the objective of evaluating the influence of nitrogen rates and application time after cutting on correction factor for leaf area, on leaf elongation rate and on blade leaf length and area of tifton 85 bermudagrass (Cynodon spp, two experiments were carried out in a greenhouse. Both experiments were established in pots with capacity for 7 kg of soil classified as Entisol, in a 4 × 2 factorial scheme, for evaluation of four nitrogen rates (0, 80, 160 and 240 mg kg-1 of soil and two application times (immediately after cutting and seven days after cutting of the plants. It was used a complete randomized block design, with four replications. As nitrogen was supplied, it was observed a decrease in the correction factor for leaf area. There is a predominance of positive effects of nitrogen on leaf length, on leaf blade area and on leaf elongation rate

  12. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  13. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  14. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed

    Directory of Open Access Journals (Sweden)

    Alkassas, A. R.

    2007-09-01

    Full Text Available The aim of this field experiment was to investigate the effect of nitrogen, potassium and a plant growth retardant (PGR on seed yield and protein and oil content of an Egyptian cotton cultivar (Gossypium barbadense Giza 86. Treatments consisted of: soil application of N (95 and 143 kg N ha-1 in the form ammonium nitrate, foliar application of potassium (0, 319, 638 or 957 g K ha-1 as potassium sulfate and foliar application of mepiquat chloride (MC (0 and 48 + 24 g active ingredient ha-1 on seed, protein and oil yields and oil properties of Egyptian cotton cultivar “Giza 86” (Gossypium barbadense. After applying the higher N-rate, foliar application of potassium and plant growth retardant MC significantly increased seed yield and the content of seed protein and oil, seed oil refractive index, unsaponifiable matter and total unsaturated fatty acids (oleic and linoleic. In contrast, oil acid and saponification value as well as total saturated fatty acids were decreased by foliar application of potassium and MC. The seed oil content was decreased with soil application of N.El objetivo de los experimentos de campo fue investigar el efecto del nitrogeno, potasio y retardantes del crecimiento de plantas sobre el contenido en proteínas y aceite de una semilla de algodón cultivada en Egipto (Gossypium barbadense Giza 86. Los tratamientos consistieron en la aplicación en suelo de N (95 and 143 kg N ha-1 en forma de nitrato amónico, aplicación foliar de K (0, 319, 638 or 957 g K ha-1 como sulfato potásico y aplicación foliar de cloruro de m mepiquat (MC (0 and 48 + 24 g de ingrediente activo ha-1 sobre un cultivar de algodón «Giza 86» (Gossypium barbadense. La aplicación de la cantidad más elevada de N, unida a la aplicación de potasio y del retardador MC, aumentó significativamente el rendimiento en semilla, así como el contenido en proteinas y en aceite. Respecto al aceite, aumentó el índice de refracción, la fracci

  15. effects of nitrogen enrichment on heavy metals content of cattle dung ...

    African Journals Online (AJOL)

    Admin

    dung/poultry manure supplemented with 25 kg of urea (CDPMU) and (iii) cattle dung (CD) as ... Key words: Nitrogen Enrichment, Heavy Metals, Cattle Dung, Poultry Manure, Compost. .... available phosphorus, exchangeable bases and base.

  16. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  17. Investigation of Hydrogen and Nitrogen Content in Compacted Graphite Iron Production

    OpenAIRE

    Siafakas, Dimitrios

    2013-01-01

    The aim of this research, part of a wider program called SPOFIC, is to investigate how the casting procedure affects the concentration of hydrogen and nitrogen gases in Compacted Graphite Iron used for the production of truck cylinder blocks. Hydris equipment was used for the Hydrogen measurements and the Optical Emission Spectroscopy and combustion analysis methods were used for the nitrogen measurements. The experiment was performed in one of the cooperating foundries. It was found that Hyd...

  18. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris

    Science.gov (United States)

    Zhang, Ping; Li, Zhe; Lu, Lunhui; Xiao, Yan; Liu, Jing; Guo, Jinsong; Fang, Fang

    2017-06-01

    Stressful conditions can stimulate the accumulation of carotenoids in some microalgae. To obtain more knowledge of the stress response, we studied the effects of different N concentrations on unicellular content of carotenoids using Raman spectroscopic technique; cellular stoichiometric changes and the fluorescence parameters of Chlorella vulgaris were concomitantly studied. Initially, we optimized the Raman scattering conditions and demonstrated the feasibility of unicellular carotenoid analysis by Raman spectroscopic technique. The results showed that an integration time of 10 s, laser power at 0.1 mW and an accumulation time of 1 were the optimum conditions, and the peak height at 1523 cm- 1 scaled linearly with the carotenoid content in the range of 0.625-1440 mg/L with a recovery rate of 97% 103%. In the experiment, seven different nitrogen levels ranging from 0 to 2.48 × 105 μg/L were imposed. Samples were taken at the start, exponential phase and end of the experiment. The results showed that nitrogen stress can facilitate the synthesis of carotenoids, while at the same time, excessive nitrogen stress led to lower proliferative and photosynthetic activity. Compared with carotenoids, chlorophylls were more sensitive to nitrogen stress; it declined dramatically as stress processed. There existed no significant differences for Fv/Fm among different nitrogen levels during the exponential phase, while in the end, it declined and a significant difference appeared between cells in 2.48 × 105 μg/L N and other experimental levels. Photosynthetic efficiency, namely the C/N mole ratio in algal cells, didnot significantly change during the exponential phase; however, apparent increases ultimately occurred, except for the stable C/N in BG11 medium. This increase matched well with the carotenoid decline, indicating that an increasing cellular C/N mole ratio can be used as an indicator of excessive stress in carotenoid production. Besides, there also existed an inverse

  19. Genotypic variation of nitrogen use efficiency in Indian mustard

    International Nuclear Information System (INIS)

    Ahmad, Altaf; Khan, Ishrat; Abrol, Yash P.; Iqbal, Muhammad

    2008-01-01

    This experiment was conducted to investigate the variation of nitrogen efficiency (NE), nitrogen uptake efficiency (UE), physiological nitrogen use efficiency (PUE) among Indian mustard genotypes, grown under N-insufficient and N-sufficient conditions. Nitrogen efficiency varied from 52.7 to 92.8. Seed yield varied from 1.14 t ha -1 to 3.21 t ha -1 under N-insufficient condition, while 2.14 t ha -1 -3.33 t ha -1 under N-sufficient condition. Physiological basis of this difference was explained in terms of nitrogen uptake efficiency and physiological nitrogen use efficiency, and their relationship with the growth and yield characteristics. While nitrogen uptake efficiency was positively correlated with plant biomass (0.793**), leaf area index (0.664*), and leaf nitrogen content (0.783**), physiological nitrogen use efficiency is positively correlated with photosynthetic rate (0.689**) and yield (0.814**). This study suggests that genotype having high nitrogen uptake efficiency and high physiological nitrogen use efficiency might help in reducing the nitrogen load on soil without any penalty on the yield. - Nitrogen efficient crop plants may help in reducing environmental contamination of nitrate without any penalty on seed yield

  20. The Influence of Biopolym FTZ on the Content of Nitrogen Compounds in Rumen

    OpenAIRE

    Eva Petrášková; Jana Hnisová; Bohuslav Čermák; Šoch Miloslav; Bohuslav Vostoupal

    2010-01-01

    The aim of this study was to verify the effect of Biopolym FZT on the crude protein in the ruminal content. The experiment was conducted in laboratory conditions. Rumen content was removed from the Holstein breed cow fitted with ruminal fistula. The hydrolyzed brown seaweed was added to the samples of the ruminal content. After incubation of the samples the crude protein content was determined. In experiments with solid ruminal contents positive effects of Biopolym on the crude protein conten...

  1. Effect of primary air content on formation of nitrogen oxides during combustion of Ehkibastuz coal

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Imankulov, Eh.R.

    1986-01-01

    Investigations are discussed carried out in a pilot plant at the Kaz. Power Engineering Scientific Research Institute into the effect of the amount of primary air in coal-dust flame on the final concentration of nitrogen oxides in flue gases. The tests were carried out in a 7500 mm high, 1600 mm dia vertical cylindrical combustion chamber having type P-57 burner, and air dispersed fuel plus additional air supplies located at the top. Amounts of coal dust fed by a drum feeder along the air pipe varied from 100-600 kg/h. The required air was supplied by 5000 m/sup 3//h Type TK-700/5 blowers at 0.04 MPa. Ehkibastuz coal samples contained: 1.3% moisture; 48.1% ash; 38.02% carbon; 2.56% hydrogen; 0.73% sulfur; 0.60% nitrogen; heat of combustion was 14.3 MJ/kg. Results obtained indicate that variations in the amount of primary air in swirl flow burners affect formation of fuel nitrogen; there is an optimum volume at which minimum quantities of nitrogen oxides are formed. Either an increase or decrease in the primary air results in a rise in nitrogen oxide concentration. 3 references.

  2. Effect of the extraction solvent on the oleuropein content and antioxidant properties of olive leaf (cv. Oblica, Lastovka and Levantinka extracts

    Directory of Open Access Journals (Sweden)

    M. Gotovac

    2014-01-01

    Full Text Available In the last few decades numerous studies have proved that an olive leaf is a rich source of bioactive phenolic compounds, mainly oleuropein and its derivatives. The aim of this study was to investigate the influence of the extraction solvent on the phenolic and oleuropein content in the leaf extracts of Dalmatian autochthonic olive cultivars: Oblica, Lastovka and Levantinka. The antioxidant activity of leaf extracts was determined using FRAP method and by metal chelating activity evaluation. The recovery obtained using methanol and ethanol (50:50, v/v was higher than by use of water solvents. The highest share of total phenols and oleuropein was detected in ethanolic extract of Lastovka, while almost two-fold lower amounts were obtained using water extracts, both hot water and room temperature water. The extremely significant correlation between the FRAP and oleuropein/phenolic content points out the importance of these compounds in the total reducing activity of the extracts. All tested extracts provided good chelating activity probably due to the high concentrations of oleuropein but also the presence of other compounds with catechol structure, which is the most important structural feature of strong chelating activity. According to the obtained results it can be concluded that the extraction of polyphenols from olive leaves, especially from Lastovka cultivar, could present an interesting means of increasing the value of this cheap plant material that often remains unused after the harvest.

  3. Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Brennan, B.L.; Yasumura, S.; Vartsky, D.; Vaswani, A.N.; Ellis, K.J.

    1983-01-01

    Total body protein (nitrogen), body cell mass (potassium), fat, and water were measured in 15 renal patients on maintenance hemodialysis (MHD). Total body nitrogen was measured by means of prompt γ neutron activation analysis; total body water was determined with tritium labeled water; total body potassium was measured by whole body counting. The extracellular water was determined by a technique utilizing the measurement of total body chloride and plasma chloride. When compared with corresponding values of a control group of the same age, sex, and height, the protein content, body cell mass, and total body fat of the MHD patients were within the normal range. The only significant change was an increase in the extracellular water/body cell mass ratio in the male MHD patients compared to the control. The lack of significant difference of the nitrogen values of the MHD patients compared to matched controls suggests that dialysis minimizes any residual effects of uremic toxicity or protein-calorie malnutrition. These findings further suggest that there is a need to reevaluate the traditional anthropometric and biochemical standards of nutritional status for MHD patients. It was concluded that it is particularly important to measure protein stores of MHD patients with low protein intake to ascertain nutritional status. Finally, in vivo measurement of total body nitrogen and potassium for determination of body composition provides a simple, direct, and accurate assessment of the nutritional status of MHD patients

  4. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  6. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers.

    Science.gov (United States)

    Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P

    2014-11-15

    The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  8. The Influence of Biopolym FTZ on the Content of Nitrogen Compounds in Rumen

    Directory of Open Access Journals (Sweden)

    Eva Petrášková

    2010-05-01

    Full Text Available The aim of this study was to verify the effect of Biopolym FZT on the crude protein in the ruminal content. The experiment was conducted in laboratory conditions. Rumen content was removed from the Holstein breed cow fitted with ruminal fistula. The hydrolyzed brown seaweed was added to the samples of the ruminal content. After incubation of the samples the crude protein content was determined. In experiments with solid ruminal contents positive effects of Biopolym on the crude protein content was shown. The best results were achieved at the dilution of 1:2000.

  9. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    Science.gov (United States)

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight

  10. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  11. Dynamics of nitrogenous substances content in the diet of the wood mouse (Apodemus sylvaticus)

    Czech Academy of Sciences Publication Activity Database

    Čepelka, L.; Heroldová, Marta; Jánová, E.; Suchomel, J.

    2013-01-01

    Roč. 61, č. 5 (2013), s. 1247-1253 ISSN 1211-8516 R&D Projects: GA MZe QH72075 Institutional support: RVO:68081766 Keywords : Apodemus sylvaticus * wood mouse * diet quality * near-infrared spectroscopy * nitrogenous substances Subject RIV: EG - Zoology

  12. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    Science.gov (United States)

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  13. The effect of nitrogen and sulphur fertilization on the yield and content of sulforaphane and nitrates in cauliflower

    Directory of Open Access Journals (Sweden)

    Nina Čekey

    2011-01-01

    Full Text Available In the field experiment with cauliflower, we investigated the effect of four different variants of nitrogen and suplhur fertilization on quantity and quality of cauliflower in the term of sulforaphane content and nitrate accumulation. The influence of fertilization was statistically significant between control variant and fertilization variants and in both experimental years within all parameters of cauliflower yield. The highest yield of cauliflower was reached at the variant 4 when it was fertilized on the level of nutrients N:S = 250:60 kg.ha−1. The increase of yield against control variant represented value 26.6%. The applied fertilization positively affected on the accumulation sulforaphane in the cauliflower. Its highest content was determined at the variant 4 (N:S = 250:60 kg.ha−1. In comparison with control variant, the sulforaphane content was increased about 18.4%. On the other side, applied nutrition resulted in increased accumulation of nitrates in the cauliflower. The most increase of nitrate content, compared to the control variant, was also ascertained at the variant 4 (about 31.4%.The gathered data point towards to the possibility and way how we could effect on the increased accumulation of sulforaphane in cauliflower florets. This sphere of fertilization effect on the sulforaphane content is not sufficiently explored well. Our aim is to continue in this research subject and to find way how to cultivate vegetables with higher content of health-promoting compounds.

  14. Storage effects on quantity and composition of dissolved organic carbon and nitrogen of lake water, leaf leachate and peat soil water.

    Science.gov (United States)

    Heinz, Marlen; Zak, Dominik

    2018-03-01

    This study aimed to evaluate the effects of freezing and cold storage at 4 °C on bulk dissolved organic carbon (DOC) and nitrogen (DON) concentration and SEC fractions determined with size exclusion chromatography (SEC), as well as on spectral properties of dissolved organic matter (DOM) analyzed with fluorescence spectroscopy. In order to account for differences in DOM composition and source we analyzed storage effects for three different sample types, including a lake water sample representing freshwater DOM, a leaf litter leachate of Phragmites australis representing a terrestrial, 'fresh' DOM source and peatland porewater samples. According to our findings one week of cold storage can bias DOC and DON determination. Overall, the determination of DOC and DON concentration with SEC analysis for all three sample types were little susceptible to alterations due to freezing. The findings derived for the sampling locations investigated here may not apply for other sampling locations and/or sample types. However, DOC size fractions and DON concentration of formerly frozen samples should be interpreted with caution when sample concentrations are high. Alteration of some optical properties (HIX and SUVA 254 ) due to freezing were evident, and therefore we recommend immediate analysis of samples for spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  16. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.

    2002-01-01

    , trehalose and glycogen. Nitrogen starvation triggered the accumulation of trehalose and glycogen. After 8 h of starvation, the content of trehalose and glycogen was increased 4-fold and 2-fold, respectively. Carbon starvation resulted in a partial conversion of glycogen into trehalose. The trehalose content...... increased from 45 to 64 mg (g dry-weight)(-1), whereas the glycogen content in the same period was reduced from 55 to 5 mg (g dry-weight)(-1). Glycogen was consumed faster than trehalose during storage of the starved yeast for 1 month. Nitrogen starvation resulted in a decrease in the protein content...

  17. Measurement of the body content of sodium, potassium, chloride, calcium, phophorus and nitrogen with reference to spironolactone

    International Nuclear Information System (INIS)

    Boddy, K.

    1978-01-01

    The total body content of sodium, chloride, nitrogen, calcium and phosphorus can be measured simultaneously by in vivo activation analysis and at the same time total body potassium can be determined directly by whole body counting. These procedures have been described and compared with methods using isotope dilution. The complementary nature of the techniques, when properly applied, as well as reported disparities have been illustrated by a number of clinical investigations generally involving aldosterone antagonists. The methods should provide a better insight to the complex changes in body conposition and metabolism accociated with hypertension (and other diseases) and their treatment. (Auth.)

  18. Carbon and nitrogen in Danish forest soils - Contents and distribution determined by soil order

    DEFF Research Database (Denmark)

    Vejre, Henrik; Callesen, Ingeborg; Vesterdal, Lars

    2003-01-01

    ). The average total organic C and N contents were 12.5 and 0.61 kg m(-2) respectively. There were large differences in total C and N among soil orders. Spodosols had the greatest C content (14.6 kg m(-2)), and Alfisols the least (8.8 kg m(-2)), while the N content was highest in Alfisols (0.75 kg m(-2......)) and least in Spodosols (0.51 kg m(-2)). The main contributor to the high C content in Spodosols is the spodic horizons containing illuvial humus, and thick organic horizons. Carbon and N concentrations decreased with soil depth. Soil clay content was negatively correlated to C content and positively...

  19. Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii

    Science.gov (United States)

    Gregory L. Bruland; Richard A.. Mackenzie

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...

  20. Photoluminescence study of the nitrogen content effect on GaAs/GaAs1-xNx/GaAs/AlGaAs: (Si) quantum well

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben bouzid, S.; Aloulou, S.; Harmand, J.C.; Chtourou, R.

    2008-01-01

    We study the effect of nitrogen content in modulation-doped GaAs/GaAs 1-x N x /GaAs/GaAlAs:(Si) quantum well using low-temperature photoluminescence spectroscopy. The samples were grown on GaAs (001) substrates by molecular-beam epitaxy with different nitrogen compositions. The variation of the nitrogen composition from 0.04% to 0.32% associated to the bi-dimensional electron gas gives a new interaction mode between the nitrogen localized states and the GaAs 1-x N x /GaAs energies levels. The red-shift observed in photoluminescence spectra as function of nitrogen content has been interpreted in the frame of the band anticrossing model

  1. Leaf gas exchange, fv/fm ratio, ion content and growth conditions of the two moringa species under magnetic water treatment

    International Nuclear Information System (INIS)

    Hasan, M.M.; Alharby, H.F.; Hajar, A.; Hakeem, K.R.

    2017-01-01

    The current greenhouse experiment investigates the role of magnetic water on the two Moringa species (Moringa oleifera and Moringa peregrina). Both species were exposed to the magnetic field (30 mT). The magnetic water increased the plant height, leaf number, leaflet number, and internode distances in both the species, respectively. Relative water content (RWC) and leaf area in both the species showed changes under magnetic water treatment. The results showed in magnetic water treatment, the leaf gas exchange parameters such as assimilation (A), stomatal conductance (gs), transpiration rate (E), and vapor pressure deficit (VPD) were increased. Similarly, Photosynthetic pigments (Chl a, Chl b, Chl (a+b), Carotenoids), photosynthetic water use efficiency (WUE) were also increased significantly. Magnetized water had also significant effects on the maximal efficiency of PSII photochemistry (Fv/Fm). Our study suggested that magnetic water treatment could be used as an environment-friendly technology for improving the growth and physiology of Moringa species. In addition, this technology could be further incorporated into the traditional methods of agriculture for the improvement of crop plants, particularly in the arid and sub-arid areas of the world. (author)

  2. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  3. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content.

    Science.gov (United States)

    Bertin, Yolande; Girardeau, J P; Chaucheyras-Durand, F; Lyan, Bernard; Pujos-Guillot, Estelle; Harel, Josée; Martin, Christine

    2011-02-01

    The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.

  4. The changes of the polyphenol content and antioxidant activity in potato tubers (Solanum tuberosum L. due to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Diana Hrabovská

    2013-11-01

    Full Text Available 96 Normal 0 false false false CS JA X-NONE Cultivar is one of the most important internal factors affecting polyphenol concentration in the plants. However, influence of the grown locality, climate conditions and way of cultivation belong to important external factors. In our experiment the influence of different nitrogen doses (0 - 40 - 80 - 120 - 160 - 240 kg N.ha-1 applied in the form of Vermikompost on the total polyphenol content and derived total antioxidant activity in cv. Sorento were investigated. While in the 1st - 5th variants the determined polyphenol content in dry mater of potato tubers decreased from 399.2 to 70.40 mg.kg-1, in the 6th variant that was twice higher in comparison to the 5th variants (135.6 mg.kg-1. The statistically significant differences in values of total polyphenol content between variants (polynomial function of 2nd degree were confirmed. The study also confirmed a strong statistical correlation between the content of polyphenols and the content of antioxidant activity has been confirmed (sign. F: 3.24E-10. The highest value of antioxidant activity was observed in the first variant. From the first to the fifth variant (7.62 - 4.84%, the value of antioxidant activity was decreasing and in the sixth variant this value increased to 6.31%.

  5. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  6. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  7. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  8. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  9. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Science.gov (United States)

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  10. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    Tian, Y.; Zhu, Y.; Cao, W.

    2005-01-01

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  11. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Directory of Open Access Journals (Sweden)

    Jinsong Wang

    2015-12-01

    Full Text Available The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr. ecosystems. Chinese pine litter, Mongolian oak (Quercus mongolica Fisch. ex Ledeb. litter, and a pine–oak mixture were selected from a plantation and a natural forest of Chinese pine. Four N addition treatments, i.e., control (N0: 0 kg N ha−1·year−1, low-N (N1: 5 kg N ha−1·year−1, medium-N (N2: 10 kg N ha−1·year−1, and high-N (N3: 15 kg N ha−1·year−1, were applied starting May 2010. In the plantation, N addition significantly stimulated the decomposition of the Chinese pine litter. In the natural forest, N addition had variable effects on the decomposition of single-species litter and the litter mixture. A stimulatory effect of the high-N treatment on the Chinese pine litter decomposition could be attributed to a decrease in the substrate C:N ratio. However, an opposite effect was found for the Mongolian oak litter decomposition. The stimulating effect of N addition on the Chinese pine litter may offset the suppressive effect on the Mongolian oak litter, resulting in a neutral effect on the litter mixture. These results suggest that the different responses in decomposition of single-species litter and the litter mixture to N addition are mainly attributed to litter chemical composition. Further investigations are required to characterize the effect of long-term high-level N addition on the litter decomposition as N deposition is likely to increase rapidly in the region where this study was conducted.

  12. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    Science.gov (United States)

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  13. A mechanistic nitrogen limitation model for CLM(ED)

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.; Rogers, A.; Wullschleger, S. D.; Fisher, R.; Vrugt, J. A.

    2014-12-01

    Photosynthetic capacity is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models it is either a fixed value or derived from a linear function of leaf nitrogen content. A mechanistic leaf nitrogen allocation model have been developed for a DOE-sponsored Community Land Model coupled to the Ecosystem Demography model (CLM-ED) to predict the photosynthetic capacity [Vc,max25 (μmol CO2 m-2 s-1)] under different environmental conditions at the global scale. We collected more than 800 data points of photosynthetic capacity (Vc,max25) for 124 species from 57 studies with the corresponding leaf nitrogen content and environmental conditions (temperature, radiation, humidity and day length) from literature and the NGEE arctic site (Barrow). Based on the data, we found that environmental control of Vc,max25 is about 4 times stronger than the leaf nitrogen content. Using the Markov-Chain Monte Carlo simulation approach, we fitted the collected data to our newly developed nitrogen allocation model, which predict the leaf nitrogen investment in different components including structure, storage, respiration, light capture, carboxylation and electron transport at different environmental conditions. Our results showed that our nitrogen allocation model explained 52% of variance in observed Vc,max25 and 65% variance in observed Jmax25 using a single set of fitted model parameters for all species. Across the growing season, we found that the modeled Vc,max25 explained 49% of the variability in measured Vc,max25. In the context of future global warming, our model predicts that a temperature increase by 5oC and the doubling of atmospheric carbon dioxide reduced the Vc,max25 by 5%, 11%, respectively.

  14. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  15. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  16. Effect of gamma rays on nucleic acids content (RNA and DNA) of the cotton leaf worm Spodoptera Littoralis (BOISD). Vol. 4

    International Nuclear Information System (INIS)

    Sallam, H.A.; El-Shall, S.A.; Sobeiha, A.K.; El-Bamby, M.A.

    1996-01-01

    Full grown pupae of the cotton leaf worm Spodoptera Littoralis (Boisd) were exposed to exposed to sub sterilizing doses of 100, 200 and 300 Gy gamma radiation. The changes in nucleic acids content (RNA and DNA) of irradiated pupae, after 24 hours from irradiation, and also in 3 days old adults resulting from irradiated pupae were investigated. The total nucleic acids content in either pupae or adults was progressively reduced as the dose was increased. The reduction of both RNA and DNA in females was greater than in males. DNA was more radiosensitive than RNA. The destructive action of irradiation on nucleic acids was more pronounced in adult stage. Irradiation increased the RNA/DNA ratio than control at all treatments for female pupae at 200 Gy. 2 tabs

  17. Effect of gamma rays on nucleic acids content (RNA and DNA) of the cotton leaf worm Spodoptera Littoralis (BOISD). Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, H A; El-Shall, S A [Biological Applications Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Sobeiha, A K; El-Bamby, M A [Plant Protection Department, Faculty of Agriculture, Ain Shams University, Cairo (Egypt)

    1996-03-01

    Full grown pupae of the cotton leaf worm Spodoptera Littoralis (Boisd) were exposed to exposed to sub sterilizing doses of 100, 200 and 300 Gy gamma radiation. The changes in nucleic acids content (RNA and DNA) of irradiated pupae, after 24 hours from irradiation, and also in 3 days old adults resulting from irradiated pupae were investigated. The total nucleic acids content in either pupae or adults was progressively reduced as the dose was increased. The reduction of both RNA and DNA in females was greater than in males. DNA was more radiosensitive than RNA. The destructive action of irradiation on nucleic acids was more pronounced in adult stage. Irradiation increased the RNA/DNA ratio than control at all treatments for female pupae at 200 Gy. 2 tabs.

  18. Total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf and the antibacterial activity towards Escherichia coli and Staphylococcus aureus

    Science.gov (United States)

    Rita, Wiwik Susanah; Swantara, I. Made Dira; Asih, I. A. Raka Astiti; Sinarsih, Ni Ketut; Suteja, I. Kadek Pater

    2016-03-01

    Total flavonoid and phenolic contents in some natural products was suspected of having a positive correlation to its activity in inhibiting the growth of bacteria. The aim of this study was to determine the total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf, and to evaluate the antibacterial activity towards Escherechia coli and Staphylococcus aureus. Extraction of compounds was done by ethanol 96%, followed by fractionation into n-hexane, ethyl acetate, and n-butanol. Determination of total flavonoid and phenolic contents was done by UV-Vis Spectrophotometer using standard of quersetin and galic acid respectively. In addition, antibacterial activity was evaluated by agar disc diffusion method. Extraction of 1000 g of Samanea saman leaf was obtained 80 g of ethanol extracts, fractionation of the extract was obtained 8.02 g of n-hexane extracts, 7.11 g of ethyl acetate extracts, 13.5 g of n-butanol extracts, and 14.16 g of aqueous extracts. Phytochemical screening of the n-butanol extracts revealed the presence of flavonoid and phenolic compounds. Total flavonoid and phenolic contents were successively 43.5798 mg QE/100g and 34.0180 mg GAE/100g. The butanol extracts inhibited the growth of S.aureus higher than the growth of E.coli. At the concentration of 2, 4, 6, 8 % (b/v), and positive control (meropenem μg/disc), inhibition zone towards S. aureus was successively 5.67, 9.33, 10.33, 12.00, and 32.33 mm, while the inhibition zone towards E. coli was1.33, 3.33, 4.33, 5.43, and 34.00 mm.

  19. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    Science.gov (United States)

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  20. Toxic Effect of Lead on Nitrogen Contents and Enzymes in Wheat Leaves

    International Nuclear Information System (INIS)

    Rashid, Parveen; Mukherji, S.

    2005-01-01

    Application of lead nitrate solution to the foliar parts of wheat plants (Triticum aestivum L. cv. Sonalika) caused inhibition of uptake of total as well as soluble nitrogen in pre- and post-flowering stages. Maximum inhibition was recorded under the highest dose (10 mM) in both the stages. Catalase also suffered gradual reduction in the activity with the increase of concentration and a maximum reduction of 56 and 41 per cent was recoreded in pre- and post flowering stage respectively, under 10 mM dose. Peroxidase and IAA oxidase showed progressive increase in their activity proportional to the concentration of lead. In peroxidase, a maximum of 108 and 85 per cent increased activity was noted at the highest dose at pre- and post-flowering stages respectively, while in IAA oxidase highest dose resulted in 46 and 84 per cent increment in the activity from the control at pre- and post-flowering stages respectively. (authors)

  1. Determination of Total Volatile Basic Nitrogen (TVB-N Content in Beef by Hyperspectral Imaging Technique

    Directory of Open Access Journals (Sweden)

    Liu Shanmei

    2016-01-01

    Full Text Available Non-destructive determination of TVB-N content in beef using hyperspectral imaging (HSI technique was evaluated. In order to create a robust model to predict the TVB-N content in beef, partition of sample set, spectral pretreatment, and the optimum wavelength selection were discussed. After the beef sample set was parted by concentration gradient (CG algortithm, and the spectra of beef samples were preprocessed by standard normalized variate (SNV combined with auto scale(AS, the partial least square regression (PLSR model was established using the full spectral range, which had the best prediction abilities with Rcv2 of 0.9124, Rp2 of 0.8816, RMSECV of 1.5889, and RMSEP of 1.7719, respectively. After the optimum wavelengths which is closely related to the TVB-N content of beef samples was obtained using the competitive adaptive re-weighted (CARS algorithm, a new PLSR model was established using the optimum wavelengths, which had outstanding prediction abilities with Rcv2 of 0.9235, Rp2 of 0.9241, RMSECV of 1.4881, and RMSEP of 1.4882, respectively.The study showed that HSI is a powerful technique to predict the TVB-N content in beef by a nondestructive way.

  2. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants.

    Science.gov (United States)

    He, Jie; Austin, Paul T; Lee, Sing Kong

    2010-09-01

    Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between

  3. Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves.

    Science.gov (United States)

    Sugiyama, Mari; Takahashi, Makoto; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-09-21

    This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.

  4. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  5. Spatial variability of leaf nutrient contents in a drip irrigated citrus orchard Variabilidade espacial dos teores foliares de nutrientes em um pomar de citros sob irrigação localizada

    Directory of Open Access Journals (Sweden)

    Robson A. Armindo

    2012-06-01

    Full Text Available This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.O objetivo do presente trabalho foi estudar a variabilidade espacial de macro e micronutrientes foliares. O pomar com plantas de 5 anos de idade, plantado com espaçamento regular de 8 x 7 m, foi manejado sob irrigação localizada. Foram coletadas amostras foliares de cada planta do pomar para serem analisadas em laboratório. Os dados foram analisados por meio do programa computacional R, versão 2.5.1 Copyright (C 2007, juntamente com o pacote GeoR. Todos os teores de macro e micronutrientes estudados ajustaram-se à distribuição normal e apresentaram dependência espacial. Os modelos de melhor ajuste, com base na verosimilhança, para os macro e micronutrientes, foram esférico e matern. Para os macronutrientes nitrogênio, fósforo, potássio, cálcio, magnésio e enxofre, sugerem-se distâncias mínimas entre amostras de 37; 58; 29; 63; 46 e 15 m, respectivamente, enquanto para os micronutrientes boro, cobre, ferro, manganês e zinco, essas distâncias são de 29; 9; 113; 35 e 14 m, respectivamente.

  6. Influence of nitrogen deficiency on photosynthesis and chloroplast ultrastructure of pepper plants (Research Note

    Directory of Open Access Journals (Sweden)

    S. DONCHEVA

    2008-12-01

    Full Text Available Pepper plants (Capsicum annuum L. cv. Zlaten Medal were grown on nutrient solution without nitrogen, and photosynthetic response of plants was examined by determination of leaf CO2 fixation and chlorophyll and carotenoid contents. The absence of nitrogen in the medium resulted in a decrease of the leaf area and of plant biomass accumulation, and in an increase of the root-shoot dry weight ratio. The photosynthetic activity and chlorophyll and carotenoid contents decreased significantly under nitrogen deprivation. Examination of nitrogen deficient leaves by transmission electron microscopy showed dramatic changes in chloroplast ultrastructure. The proportion of starch granules and plastoglobules in the stroma matrix was increased and internal membrane system was greatly reduced. It seems that nitrogen plays an important role in the formation of chloroplast structure and hence to the photosynthetic intensity and productivity of pepper plants.

  7. Variation in the leaf sodium content of the Hordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden Promise

    International Nuclear Information System (INIS)

    Forster, B.P.; Pakniyat, H.; Macaulay, M.; Matheson, W.; Phillips, M.S.; Thomas, W.T.B.; Powell, W.

    1994-01-01

    Tests for shoot and root sodium content were carried out on various barley cultivars (Hordeum vulgare) and experimental lines including wild barley (H. spontaneum) and derivatives. Lines were grown in hydroculture with and without the addition of salt (NaCl), and sodium concentrations in shoots and roots were determined. Variation in shoot sodium content was found between the various lines; in contrast, no significant differences were found between the lines tested for root sodium content. The most significant finding was the variation in shoot sodium content between the two cultivars Golden Promise and Maythorpe. Golden Promise is a direct gamma-ray induced mutant of the cultivar Maythorpe and the reduced shoot sodium content of Golden Promise can be attributed to radiation treatment. (author)

  8. Effects of acetylsalicylic acid on fresh weight pigment and protein content of bean leaf discs (Phaseolus vulgaris L.).

    Science.gov (United States)

    Canakçi, S

    2003-01-01

    The effects of 100, 250, and 500 ppm acetylsalicylic acid solutions treatments on weight alteration, pigment and protein amounts in discs from the primary leaves of one month old bean (Phaseolus vulgaris L.) seedlings produced tinder greenhouse conditions are presented. The experiments show that: 100 ppm ASA had no significant influence (P > 0.05) but 250 and 500 ppm ASA caused an increase on weight loss (P 0.05), none of the ASA treatments caused a statistically significant influence on carotenoid amount (P > 0.05); 100 and 250 ppm ASA treatments did not cause a significant influence on protein amount (P > 0.05). however 500 ppm ASA treatment caused an increase on protein injury (P < 0.05). Consequently, it is supposed that wet weight loss, pigment and protein injury have somewhat increased on leaf discs. depending on the toxic effect of high acetylsalicylic acid concentrations.

  9. NITROGEN CONTENT AND DRY-MATTER DIGESTIBILITY OF GUINEA AND SABI GRASSES AS INFLUENCED BY TREE LEGUME CANOPY

    Directory of Open Access Journals (Sweden)

    Andi Lagaligo Amar

    2012-08-01

    Full Text Available A research study was undertaken to study the grass layer across a mini landscape dominated by tree legume Albizia lebbeck to explore the nutritional differences of two introduced grasses, guinea grass (Panicum maximum and sabi grass (Urochloa mosambicensis, paying particular attention to the presence or absence of tree legume canopy of Albizia lebbeck. The two grass species showed a tendency to replace the native spear grass (Heteropogon contortus; their dominance was more or less complete under tree canopies but was increasing in open areas between trees. Nutritional differences were examined by nitrogen concentration and dry matter digestibility. For comparison, Heteropogon contortus, a native species only found in the open, was included in the nutritional determination using the same methods as the guinea and sabi grasses. The quality parameters of the pasture species were statistically compared (LSD, P=0.05. The quality of herbage was different between the species. Urochloa mosambicensis was better than Panicum maximum. In the open, sabi grass has higher N content (0.62% than guinea grass (0.55%, but they were similar when grown under the canopy (0.69% and 0.72%, respectively. Sabi grass has consistently higher dry matter digestibility (41.39% and 36.83%, respectively under the canopy and in the open, than guinea grass (27.78% and 24.77%. These two species are much higher in both N concentration and dry matter digestibility than the native spear grass. The native species has contained 0.28% N, and 17.65% digestible dry matter. The feeding values of herbage were influenced by the canopy factor. Both guinea and sabi grasses have better quality when grown under the tree canopies than in between canopies. Nitrogen concentration and dry matter digestibility of the guinea grass under canopy were, 0.72% and 27.78%, respectively, significantly higher than those from the open area, 0.55% and 24.77%. Similarly, herbage of sabi grass under canopy has 0

  10. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    Science.gov (United States)

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  11. Parametric investigation on the effect of nitrogen to reduce SF6 content in spark gap

    Science.gov (United States)

    Raj, Avinash; Khaidir, Nur; Ishak, Sanuri; Ghani, Basri Abdul; Chakrabarty, Chandan; Permal, Navitharshaani; Ahmad, Harizan

    2017-03-01

    Almost all the MV and HV switchgears used by power utilities for interrupting faults are Sulphur Hexaflouride SF6 gas circuit breakers as this gas has the best dielectric properties to quench the onset of an arc in the event of fault. However due to strong dissociating properties of this gas when in contact with air that can release fluorine into the atmosphere, the Kyoto protocol has mandated to reduce the usage of SF6 in the future. SF6 is a greenhouse gas and it's about 3000 more severe than CO2. And that's the reason for replacing this gas. A close match in the quenching properties to SF6 that is now being intensively researched is nitrogen N2. This gas is considered to be an inert gas, and its release into the atmosphere has no harmful effects (except for asphyxiation - which can be easily handled with awareness). As the need for a replacement of SF6 becomes critical in the near future, the urgency to find the right gas is immediate. Hence the proposed work in this paper is to make a comprehensive parametric investigation of N2 gas in vacuum spark-gap. The spark-gap is chosen due to flexibility in changing the gap distance and easily be housed in vacuum. The parameters to be investigated are pure N2 and N2/ SF6 mix. The settling-time of the electrical break-down voltage and current are measured using voltage probe and Pearson probe. This time is paramount as it determines the speed of breaking the circuit. A faster breaking time ensures the safety of other HV equipment in the circuit. A comparative study between the various parameters will be conducted to obtain the best recipe (gas mix and gap distance) that gives the shortest settling time the breakdown using N2/ SF6/Mixture gas was successfully conducted and a Paschen curve has been established.

  12. Estimativa do teor de nitrogênio em arroz irrigado com o clorofilômetro e a cartela de cores Nitrogen content estimative in flooded rice by using of chlorophyll meter and color chart

    Directory of Open Access Journals (Sweden)

    Elisandra Pocojeski

    2012-11-01

    Full Text Available O clorofilômetro e a cartela de cores têm sido utilizados para monitorar a adubação nitrogenada em diferentes culturas, com o pressuposto de que há uma relação entre suas leituras e o teor de nitrogênio (N no tecido das plantas. O objetivo deste trabalho foi avaliar a utilização do clorofilômetro e da cartela de cores na estimativa do teor de N em folhas de arroz irrigado por alagamento. Foram utilizados dois experimentos instalados em um Planossolo Háplico, sendo o primeiro conduzido com cinco doses de N (0, 50, 80, 120 e 160kg ha-1 na forma de ureia e a cultivar 'IRGA 417', e o segundo com seis cultivares de arroz irrigado de diferentes ciclos ('BR-IRGA 409', 'BR-IRGA 410', 'IRGA 417', 'IRGA 421', 'EPAGRI 108' e 'HÍBRIDO 2' com uma única dose de N. Foram realizadas avaliações com clorofilômetro e a cartela de cores nas folhas do arroz em diferentes épocas. Simultaneamente às leituras, foram coletadas amostras de folhas e nelas determinado o teor de N. Quando variaram as doses de N, houve correlação significativa entre as leituras do clorofilômetro e da cartela de cores com o teor de N nas folhas, independente da época de avaliação. Já quando variaram as cultivares, as leituras do clorofilômetro se correlacionaram com o teor de N (r=0,78; PThe chlorophyll meter and the color chart have been applied to monitor nitrogen fertilization in different crops, based on the assumption that there is a correlation between their readings and the nitrogen content (N in the plant tissue. This research aims at assessing the use of the chlorophyll meter and the color chart to estimate the N content in leaves of flooded rice plants. Two experiments installed at a Albaqualf (Planossolo Háplico were used, the first using five N doses (0, 50, 80, 120 and 160kg ha-1 as urea and the cultivar 'IRGA 417', and the second with six flooded rice cultivars of different cycles ('BR-IRGA 409', 'BR-IRGA 410', 'IRGA 417', 'IRGA 421', 'EPAGRI 108' and

  13. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  14. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  15. Manipulation of Contents of Nitrate, Phenolic Acids, Chlorophylls, and Carotenoids in Lettuce (Lactuca sativa L.) via Contrasting Responses to Nitrogen Fertilizer When Grown in a Controlled Environment.

    Science.gov (United States)

    Qadir, Othman; Siervo, Mario; Seal, Chris J; Brandt, Kirsten

    2017-11-22

    This study aimed to use different nitrogen fertilizer regimes to produce Butterhead lettuce with such large differences in nitrate content that they could be used as treatment and placebo to study the effect of inorganic nitrate on human health. Plants were grown under controlled conditions at 27/23 °C day/night with a relatively low photosynthetically active radiation (PAR) of 150 μmol m -2 s -1 for 14 h day -1 and nitrogen supplies ranging from 26 to 154 ppm of N as ammonium nitrate in the fertigation solution. This resulted in contrasting high (∼1078 mg nitrate 100 g -1 FW) or low (∼6 mg 100 g -1 ) nitrate contents in the leaves. Contents of carotenoids and chlorophylls in fresh weight did not differ significantly between the highest and the lowest N-supply levels. However, increased nitrogen supply reduced contents of phenolic compounds from 154 to 22 mg 100 g -1 FW, dry matter content from 8.9% to 4.6%, and fresh weight per plant from 108.52 to 47.57 g/plant FW (all P < 0.001). Thus, while fertilizer treatments can provide lettuce with substantially different nitrate contents, maintaining similar pigment contents (color), they also strongly influence the contents of phenolic acids and flavones.

  16. Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

    Directory of Open Access Journals (Sweden)

    Khuc Thi Hue

    2012-12-01

    Full Text Available The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter, K98-7 (medium bitter and a local (sweet, were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM and crude protein (CP production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF, acid detergent fibre (ADF and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05. Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  17. Nitrogen and amino acids content in lake Drukshyaj plancton organisms biocenoses grown in model experiments

    International Nuclear Information System (INIS)

    Krevsh, A.V.; Budrene, S.F.; Yankyavichyus, K.K.

    1989-01-01

    Biocenoses growth in lake Drukshyaj (from 1984 water reservoir of the Ignalina NPP) collected in July 1985 and grown in 2 various in composition culture media: in medium close in composition of main minerals to water of high capacity reservoir (medium 1) and in medium Fitzjarld (medium 2), has shown that the medium affects the component composition of plancton, as well as dominating types of algae. Phytoplancton was dominating component in biomass in both media. In medium 1 dominate green and diatoms, in medium 2 - blue-green algae. Content of proteins and amino acids in biomass changed depending on duration of biocenoses growth when dominating green and diatoms in biocenoses mass grown in medium 1, it reached maximum on the 15th day, and when dominating blue-green algae in biocenoses biomass grown in medium 2 - on the 30th day

  18. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  19. Nitrogen vertical distribution by canopy reflectance spectrum in winter wheat

    International Nuclear Information System (INIS)

    Huang, W J; Yang, Q Y; Peng, D L; Huang, L S; Zhang, D Y; Yang, G J

    2014-01-01

    Nitrogen is a key factor for plant photosynthesis, ecosystem productivity and leaf respiration. Under the condition of nitrogen deficiency, the crop shows the nitrogen deficiency symptoms in the bottom leaves, while excessive nitrogen will affect the upper layer leaves first. Thus, timely measurement of vertical distribution of foliage nitrogen content is critical for growth diagnosis, crop management and reducing environmental impact. This study presents a method using bi-directional reflectance difference function (BRDF) data to invert foliage nitrogen vertical distribution. We developed upper-layer nitrogen inversion index (ULNI), middle-layer nitrogen inversion index (MLNI) and bottom-layer nitrogen inversion index (BLNI) to reflect foliage nitrogen inversion at upper layer, middle layer and bottom layer, respectively. Both ULNI and MLNI were made by the value of the ratio of Modified Chlorophyll Absorption Ration Index to the second Modified Triangular Vegetation Index (MCARI/MTVI2) referred to as canopy nitrogen inversion index (CNII) in this study at ±40° and ±50°, and at ±30° and ±40° view angles, respectively. The BLNI was composed by the value of nitrogen reflectance index (NRI) at ±20° and ±30° view angles. These results suggest that it is feasible to measure foliage nitrogen vertical-layer distribution in a large scale by remote sensing

  20. The effect of meat and bone meal (MBM on the nitrogen and phosphorus content and pH of soil

    Directory of Open Access Journals (Sweden)

    Anna Nogalska

    2017-12-01

    Full Text Available A field experiment was conducted in 2011 – 2013 in Poland. The objective of this study was to determine the effect of increasing doses of meat and bone meal (MBM on the mineral nitrogen (Nmin and available phosphorus (P content of soil and the soil pH. Changes in the content of NH4+-N, NO3--N and available P in soil were affected by MBM dose, experiment duration, weather conditions and crop species. Soil amended with MBM was more abundant in mineral N and available P. The lowest concentration of NO3--N and the highest concentration of NH4+-N were noted in the first year of the study, because the nitrification process requires a longer time. MBM had no influence on the accumulation of Nmin in soil, whereas the concentration of available P increased significantly throughout the experiment. The soil pH decreased with increasing MBM doses. After the application of the highest MBM doses soil pH classification was changed from neutral to slightly acidic.

  1. Effects of Plant Density and Nitrogen Fertilizer on Dry Flower Yield and Essential Oil Content of Chamomile (Matricaria chamomilla

    Directory of Open Access Journals (Sweden)

    Gh. Sharafi

    2013-06-01

    Full Text Available Chamomile is a valuable medicinal plant and is used as spice and herbal medicine. Application of agronomical methods has important role in increasing quantitative and qualitative traits of this medicinal plant. Fertilizer management is an important factor in successful cultivation of medicinal plants, which could have positive effects on their quantitative and qualitative indices. This experiment was conducted in order to determine the effects of plant density and nitrogen (N fertilizer on dry flower yield and essential oil content of chamomile (Matricaria chamomilla using factorial randomized complete blocks design with three replications. Three N rates from urea source (0, 100 and 200 kg/ha and three plant densities (28.6, 40 and 66.7 plants per m2 were considered. The results showed that the highest single plant yield was produced in the lowest plant density (28.6 plants per m2 and application of 100 kg/ha N. The highest dry flower yield of 474.1 kg/ha and essential oil content of 0.2% was produced in 25 cm row width and fixed plant spacing of 10 cm (40 plants per m2 and application of 100 kg/ha N.

  2. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area

    International Nuclear Information System (INIS)

    Vingiani, S.; Adamo, P.; Giordano, S.

    2004-01-01

    The accumulation ability of the major elements sulphur, nitrogen and carbon by the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in Naples urban area,was investigated. Bags were exposed at the beginning of July 1999 and gathered in two subsequent moments: at the end of the dry season (after 10 weeks of exposure) and during the wet season (after 17 weeks of exposure), to include the effects of rainy conditions. Sulphur and N content of the lichen increased all over the exposure period, while the level of C did not change significantly either after 10 or 17 weeks of exposition. For the moss the S accumulation was limited to the dry period of exposure, whereas N and C content decreased with exposure. Results, in contrast with those obtained in a previous study on trace elements bioaccumulation [Adamo et al., Environmental Pollution, (2003) 122, 91-103], suggest that accumulation of gaseous pollutants is strongly influenced by biomonitor vitality and that lichen bags are a more reliable and effective tool for monitoring S, N and C atmospheric depositions in urban areas compared to moss bags, because of greater lichen resistance to dry and stressing conditions of urban environment. - The lichen Pseudevernia furfuracea is more effective than the moss Sphagnum capillifolium as S and N pollutants biomonitor

  3. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  4. Effects of cow diet on the microbial community and organic matter and nitrogen content of feces.

    Science.gov (United States)

    van Vliet, P C J; Reijs, J W; Bloem, J; Dijkstra, J; de Goede, R G M

    2007-11-01

    Knowledge of the effects of cow diet on manure composition is required to improve nutrient use efficiency and to decrease emissions of N to the environment. Therefore, we performed an experiment with nonlactating cows to determine the consequences of changes in cow rations for the chemical characteristics and the traits of the microbial community in the feces. In this experiment, 16 cows were fed 8 diets, differing in crude protein, neutral detergent fiber, starch, and net energy content. These differences were achieved by changing dietary ingredients or roughage to concentrate ratio. After an adaptation period of 3 wk, fecal material was collected and analyzed. Observed results were compared with simulated values using a mechanistic model that provides insight into the mechanisms involved in the effect of dietary variation on fecal composition. Feces produced on a high-fiber, low-protein diet had a high C:N ratio (>16) and had lower concentrations of both organic and inorganic N than feces on a low-fiber, high-protein diet. Fecal bacterial biomass concentration was highest in high-protein, high-energy diets. The fraction of inorganic N in the feces was not significantly different between the different feces. Microbial biomass in the feces ranged from 1,200 to 8,000 microg of C/g of dry matter (average: 3,700 microg of C/g of dry matter). Bacterial diversity was similar for all fecal materials, but the different protein levels in the feeding regimens induced changes in the community structure present in the different feces. The simulated total N content (N(total)) in the feces ranged from 1.0 to 1.5 times the observed concentrations, whereas the simulated C:N(total) of the feces ranged from 0.7 to 0.9 times the observed C:N(total). However, bacterial biomass C was not predicted satisfactorily (simulated values being on average 3 times higher than observed), giving rise to further discussion on the definition of microbial C in feces. Based on these observations, it

  5. Microbial degradation of high nitrogen contents (primarily nitrate) in industrial waste water

    International Nuclear Information System (INIS)

    Claus, G.; Kutzner, H.J.

    1984-04-01

    This study deals with the denitrification of industrial waste water of high nitrate content, including waste water from the recovery process for nuclear material. At first the autotrophic process employing Thiob. denitrificans was investigated: kinetics, stoichiometry, application of a packed bed reactor; effect of nitrate concentration, retention time, loading and height of the reactor on denitrification. The system proved to be useful for waste water with nitrate up to 4.5 g/L; the highest rate of denitrification achieved was 1.5 g/L.h when the retention time was 2.5 h and the nitrate concentration (in-flow) 4.3 g/L (i.e. reactor loadung 41 kg NO 3 - /m 3 .d). Equally good results were obtained by the heterotrophic process: ethanol allowed a reactor loading of 60 kg NO 3 - /m 3 .d; however, in this case bacterial growth tended to clog the column. - Enrichments made with ethanol yielded Ps. aeruginosa as main component of the population; in contrast, those with methanol resulted in a mixture of Hyphomicrobium spec. and Paracoccus denitrificans; this bacterial culture was used to determine the stoichiometry of denitrification in continuous culture; it was also employed to denitrify a diluted solution of nitric acid (0.1 ml HNO 3 /L) which could be achieved in continuous culture using a retention time of 25 h. (orig.) [de

  6. Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields

    NARCIS (Netherlands)

    Bote, Adugna Debela; Zana, Zewdneh; Ocho, Fikre L.; Vos, Jan

    2018-01-01

    Natural supply of nitrogen is often limiting coffee production. From the viewpoints of growth and biomass production, adequate nitrogen supply is important. Growing coffee under full sunlight not only enhances potential yields but also increases demands for nitrogen fertilizer, the extent of which

  7. Effect of natural and artificial drying of leaf biomassof Psidium guajava on the content and chemical composition of essential oil

    Directory of Open Access Journals (Sweden)

    Elizabeth Aparecida Josefi da Silva

    2016-10-01

    Full Text Available Psidium guajava L. is native to Central and South America. It is widely distributed and well adapted to Brazil, a producer of essential oils rich in terpenes. The objective of this study was to evaluate the effects of natural and artificial drying on the content and chemical composition of the essential oil of guava leaves (Psidium guajava L. grown in Rio Verde (GO. The two treatments consisted of drying fresh leaves either naturally in the shade or artificially at 40°C. Chemical composition was analyzed qualitatively and quantitatively by gas coupled with mass spectrometer chromatography (GC/MS and gas chromatography using a flame ionizer (GC-FID, respectively. The method of drying changed the content and chemical composition of the essential oil of guava leaves. Drying in the shade reduced the content and altered the constituents of the essential oil, whereas drying in an oven at 40°C, despite having reduced the amounts of the constituents, exhibited the highest essential oil content and increased the concentration of certain major constituents as compared to that in the natural shade drying method. The major components found in the essential oil of leaves regardless of the drying processes were trans-caryophyllene, ?-humulene, aromadendrene, ?-selinene, and selin-11-en-4?-ol. According to reports in the literature, these compounds possess fungicidal, insecticidal, antimicrobial, and anti-inflammatory activity, among others beneficial actions.

  8. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu; Zou, Houbing; Zeng, Shangjing; Pan, Ying; Wang, Runwei; Wang, Xue; Sun, Qingli; Zhang, Zongtao; Qiu, Shilun

    2015-01-01

    -formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  9. Environmental controls over methane emissions from bromeliad phytotelmata: The role of phosphorus and nitrogen availability, temperature, and water content

    Science.gov (United States)

    Kotowska, Martyna M.; Werner, Florian A.

    2013-12-01

    bromeliads are common epiphytic plants throughout neotropical forests that store significant amounts of water in phytotelmata (tanks) formed by highly modified leafs. Methanogenic archaea in these tanks have recently been identified as a significant source of atmospheric methane. We address the effects of environmental drivers (temperature, tank water content, sodium phosphate [P], and urea [N] addition) on methane production in anaerobically incubated bromeliad slurry and emissions from intact bromeliad tanks in montane Ecuador. N addition ≥ 1 mg g-1 had a significantly positive effect on headspace methane concentrations in incubation jars while P addition did not affect methane production at any dosage (≤ 1 mg g-1). Tank bromeliads (Tillandsia complanata) cultivated in situ showed significantly increased effluxes of methane in response to the addition of 26 mg N addition per tank but not to lower dosage of N or any dosage of P (≤ 5.2 mg plant-1). There was no significant interaction between N and P addition. The brevity of the stimulatory effect of N addition on plant methane effluxes (1-2 days) points at N competition by other microorganisms or bromeliads. Methane efflux from plants closely followed within-day temperature fluctuations over 24 h cycles, yet the dependency of temperature was not exponential as typical for terrestrial wetlands but instead linear. In simulated drought, methane emission from bromeliad tanks was maintained with minimum amounts of water and regained after a short lag phase of approximately 24 h. Our results suggest that methanogens in bromeliads are primarily limited by N and that direct effects of global change (increasing temperature and seasonality, remote fertilization) on bromeliad methane emissions are of moderate scale.

  10. Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. 'Santa Maria' in semi-arid conditions

    Directory of Open Access Journals (Sweden)

    Ali Ikinci

    2014-01-01

    Full Text Available BACKGROUND: Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communisand Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal and Pyrus rootstocks (seedling or clonal have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg and micro element (Fe, Zn, Cu, Mn and B content of 'Santa Maria' pear (Pyrus communis L. were investigated. RESULTS: Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1, largest trunk cross-sectional area (TCSA, lowest yield efficiency and lowest cumulative yield (ton ha−1 in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season. CONCLUSION: The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of 'Santa Maria' pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for 'Santa Maria' pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant, K, Ca, Mg, Fe

  11. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Energy Technology Data Exchange (ETDEWEB)

    Olego, M.A.; Visconti, F.; Quiroga, M.J.; Paz, J.M. De; Garzón-Jimeno, E.

    2016-11-01

    Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils. (Author)

  12. Seasonal Changes in the Character and Nitrogen Content of Dissolved Organic Matter in an Alpine/Subalpine Headwater Catchment

    Directory of Open Access Journals (Sweden)

    Eran W. Hood

    2001-01-01

    Full Text Available We are studying the chemical quality of dissolved organic nitrogen (DON in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55 during peak runoff in early summer and lower values (15 to 25 during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result

  13. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  14. Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste.

    Science.gov (United States)

    Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki

    2016-12-01

    Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.

  15. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    secondary levels. In subject matter didactics, the question of content is more developed, but it is still mostly confined to teaching on lower levels. As for higher education didactics, discussions on selection of content are almost non-existent on the programmatic level. Nevertheless, teachers are forced...... curriculum, in higher education, and to generate analytical categories and criteria for selection of content, which can be used for systematic didactical reflection. The larger project also concerns reflection on and clarification of the concept of content, including the relation between content at the level......Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007...

  16. Evaluation of Yield, Yield Components and Essential Oil Content of Marigold (Calendula officinalis L. with the Use of Nitrogen and Vermicompost

    Directory of Open Access Journals (Sweden)

    Alireza Pazoki

    2016-10-01

    Full Text Available Environmenal problems resulting from application of nitrogen fertilizers in the production plant materials led agricultural specialists to use clean and alternative methods to towards the organic farming and use of organic fertilizers. In this study, thus, the effect of nitrogen and vermicompost fertilizer rates on yield, yield components, essential oil content and some morphological traits of marigold was studied in a split plot experiment based on completely randomized blocks design with 3 replications in Shahr-e-Rey region during 2013 growing season. Nitrogen rates with 3 levels (0, 60, 120 and 180 kg.ha-1 were assigned to main plots and vermicompost with 3 levels (0, 10, and 20 t.ha-1 to the sub plots. Mean comparison of simple effects indicated that the plants treated with 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 organic fertilizer vermicompost produced higher trait values under study than control (non application of vermincompost. Interaction effect of experimented factors was significant on all traits under evaluation. Thus, highest seed yield (1567 kg.ha-1, biological yield (6664 kg.ha-1 and essential oil yield (8.85 kg.ha-1 obtained by the application of 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 varmicompost. Based on the results obtained it could be said that nitrogen and vermicompost may improve seed and biological yield and yield components of marigold.

  17. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  18. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    Science.gov (United States)

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  19. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  20. Synthesis of Nitrogen-Doped Carbon Nano tubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content

    International Nuclear Information System (INIS)

    Hachimi, A.; Hakeem, A.; Merzougui, B.; Atieh, M. A.; Merzougui, B.; Atieh, M. A.; Laoui, A.; Swain, G.M.; Chang, Q.; Shao, M.

    2015-01-01

    Nitrogen-doped CNTs (N-CNTs) were synthesized using an injection-vertical chemical vapor deposition (IV-CVD) reactor. This type of reactor is quite useful for the continuous mass production of CNTs. In this work, the optimum deposition conditions for maximizing the incorporation of nitrogen were identified. Ferrocene served as the source of the Fe catalyst and was dissolved in acetonitrile, which served as both the hydrocarbon and nitrogen sources. Different concentrations of ferrocene in acetonitrile were introduced into the top of a vertically aligned reactor at a constant flow rate with hydrogen serving as the carrier. The effects of hydrogen flow rate, growth temperature, and catalyst loading (Fe from the ferrocene) on the microstructure, elemental composition, and yield of N-CNTs were investigated. The N-CNTs possessed a bamboo-like microstructure with a nitrogen doping level as high as 14 at.% when using 2.5 to 5 mg/m L of the ferrocene/acetonitrile mixture at 800 degree under a 1000 sccm flow of hydrogen. A production rate of 100 mg/h was achieved under the optimized synthesis conditions.

  1. Synthesis of Nitrogen-Doped Carbon Nanotubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Abdouelilah Hachimi

    2015-01-01

    Full Text Available Nitrogen-doped CNTs (N-CNTs were synthesized using an injection-vertical chemical vapor deposition (IV-CVD reactor. This type of reactor is quite useful for the continuous mass production of CNTs. In this work, the optimum deposition conditions for maximizing the incorporation of nitrogen were identified. Ferrocene served as the source of the Fe catalyst and was dissolved in acetonitrile, which served as both the hydrocarbon and nitrogen sources. Different concentrations of ferrocene in acetonitrile were introduced into the top of a vertically aligned reactor at a constant flow rate with hydrogen serving as the carrier. The effects of hydrogen flow rate, growth temperature, and catalyst loading (Fe from the ferrocene on the microstructure, elemental composition, and yield of N-CNTs were investigated. The N-CNTs possessed a bamboo-like microstructure with a nitrogen doping level as high as 14 at.% when using 2.5 to 5 mg/mL of the ferrocene/acetonitrile mixture at 800°C under a 1000 sccm flow of hydrogen. A production rate of 100 mg/h was achieved under the optimized synthesis conditions.

  2. An 15N study of the effects of nitrate, ammonium, and nitrate + ammonium nutrition on nitrogen assimilation in Zea mays L

    International Nuclear Information System (INIS)

    Murphy, A.T.

    1984-10-01

    A brief review of the literature on the effects of nitrate and ammonium nitrogen sources on plant growth, and the assimilation of those nitrogen sources, has been presented. It was concluded that ammonium nutrition produces optimum growth, with nitrate + ammonium being a better nitrogen source than only nitrate. Leaf blade nitrate reductase activity exceeded that of the root in nitrate-fed plants, suggesting that the shoot is the major region of nitrate assimilation. This is further supported by the results of xylem exudate analysis, where 93% of the newly-absorbed nitrogen exported by the roots was detected as nitrate. Evidence in support of this hypothesis was also obtained by studying the distribution of 15 N in the various nitrogenous compounds. The effects of nitrogen source on plant growth, organic nitrogen and inorganic nitrogen contents, and the rates of incorporation into nitrogenous compounds were studied. The observed differences were explained with reference to the effects of the various nitrogen sources on the physiology of the plants. The experimental techniques included assays of the enzymes nitrate reductase and glutamine synthetase, whole plant growth studies, and the analysis of nitrogenous compounds of xylem exudate and those extracted from the leaf blade, leaf base, and root regions of maize plants after feeding with a nutrient solution containing nitrogen as 15 N

  3. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  4. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  5. Adubação foliar e via solo de nitrogênio em plantas de milho em fase inicial de desenvolvimento Leaf fertilization and via soil nitrogen suplementation in maize plants at initial developmental stage

    Directory of Open Access Journals (Sweden)

    Sidnei Deuner

    2008-10-01

    Full Text Available Considerado o nutriente mais importante, tanto no incremento da produção de grãos como no teor protéico destes, o nitrogênio (N é também o elemento que mais onera a cultura do milho. Neste trabalho, objetivou-se verificar se a aplicação foliar de nitrogênio influencia o acúmulo de proteínas e parâmetros de crescimento de plantas jovens de milho em comparação com a aplicação de uréia via solo. Para tanto, plantas jovens do híbrido de milho BR 206 receberam aplicações de uréia como fonte de N via foliar e via solo nas concentrações de zero; 0,5% e 1,0%. As plantas foram cultivadas em casa-de-vegetação sendo realizadas três aplicações de N, a primeira aos seis dias após a emergência (DAE num volume de 10 mL por planta e as duas seguintes aos 10 e 14 DAE com 20 mL cada. Aos 18 DAE as plantas foram coletadas e as análises procedidas. Para altura de plantas, volume radicular, área foliar, matéria seca da parte aérea e raízes, observou-se maior eficiência da adubação foliar, principalmente ao nível de 0,5% de uréia. O fornecimento de uréia a 1,0% via solo proporcionou aumento significativo no teor de proteínas nas folhas. Tais resultados sugerem que a adubação foliar pode ser uma maneira eficiente para complementar o que é absorvido pelas raízes, no entanto não deve ser utilizada como fonte única de N inorgânico às plantas.Consider the most important nutrient in the increment of grain gield and also the proteic level, nitrogen (N, in addition of this fact, this nutrient is the component that most increases the production cost of maize crop. This study aimed to verify whether the application of leaf nitrogen influences the accumulation of proteins and parameters of growth of young plants of maize compared to the application of urea via soil. For both, young plants of the hybrid maize BR 206 received applications of urea as a source of N via leaf and soil at concentrations of zero, 0.5% and 1.0%. The

  6. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    Science.gov (United States)

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  7. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    Science.gov (United States)

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  8. The distribution and utilization of nitrogen in developing zea mays L. seedlings

    International Nuclear Information System (INIS)

    Watt, M.P.M. de O.C.

    1987-01-01

    During the first five days of germination, in the presence of NO - 3 - 15 N and N-SERVE, the nitrogen reserves of Zea mays L. caryopses accounted for 75% of the total nitrogen content of the seedlings. By day 7, exogenous nitrate contributed to all the inorganic nitrogen measured in the plant. Although NO - 3 - 15 N (94,2 atom % 15 N) was supplied throughout the germination process, and increasing pool of unlabelled nitrate was detected in both the grain and the seedling during this period. It appears that during germination in maize there is an oxidative pathway from reduced nitrogen in the reserve proteins to nitrate-nitrogen which is then supplied to the developing embryo. The levels of nitrate in the leaf increased towards the sheath, whereas other forms of nitrogen, nitrate reductase activity and capacity for nitrate accumulation increased in the opposite direction. Studies with mesophyll and bundle sheath protoplasts showed that the mesophyll tissue contributes over 80% of the total leaf content of inorganic nitrogen. Leaf tissue of Zea mays was found to have the capacity to assimilate nitrate in the dark, but at a lower rate than in the light. Oxygen did not restrict the initial rate of nitrate reduction in the dark. The rate of the in vivo nitrate reduction declined during the second hour of dark anaerobiosis, and was only restored upon supply of oxygen. Under dark anaerobic conditions nitrite accumulated and, on transfer to oxygen, the accumulate nitrite was reduced

  9. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L. increases seed protein content and weight without augmenting nitrogen supplying.

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Zhao

    Full Text Available Heavy nitrogen (N application to gain higher yield of wheat (Triticum aestivum L. resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed, respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  10. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying.

    Science.gov (United States)

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  11. Development of FT-NIR Models for the Simultaneous Estimation of Chlorophyll and Nitrogen Content in Fresh Apple (Malus Domestica Leaves

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-01-01

    Full Text Available Agricultural practices determine the level of food production and, to great extent, the state of the global environment. During the last decades, the indiscriminate recourse to fertilizers as well as the nitrogen losses from land application have been recognized as serious issues of modern agriculture, globally contributing to nitrate pollution. The development of a reliable Near-Infra-Red Spectroscopy (NIRS-based method, for the simultaneous monitoring of nitrogen and chlorophyll in fresh apple (Malus domestica leaves, was investigated on a set of 133 samples, with the aim of estimating the nutritional and physiological status of trees, in real time, cheaply and non-destructively. By means of a FT (Fourier Transform-NIR instrument, Partial Least Squares (PLS regression models were developed, spanning a concentration range of 0.577%–0.817% for the total Kjeldahl nitrogen (TKN content (R2 = 0.983; SEC = 0.012; SEP = 0.028, and of 1.534–2.372 mg/g for the total chlorophyll content (R2 = 0.941; SEC = 0.132; SEP = 0.162. Chlorophyll-a and chlorophyll-b contents were also evaluated (R2 = 0.913; SEC = 0.076; SEP = 0.101 and R2 = 0.899; SEC = 0.059; SEP = 0.101, respectively. All calibration models were validated by means of 47 independent samples. The NIR approach allows a rapid evaluation of the nitrogen and chlorophyll contents, and may represent a useful tool for determining nutritional and physiological status of plants, in order to allow a correction of nutrition programs during the season.

  12. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    International Nuclear Information System (INIS)

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-01-01

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  13. Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China

    Science.gov (United States)

    Li, Jin Hua; Jiao, Shu Mei; Gao, Rong Qing; Bardgett, Richard D.

    2012-12-01

    Plant-soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3-5 years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3-5 years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.

  14. Stable isotope compositions of organic carbon and contents of organic carbon and nitrogen of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.

    2006-01-01

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. Accelerate mass spectrometer (AMS) 14 C ages on total OM for sediments collected from the Ngorongoro Crater Lake indicate that the sedimentation rate is approximately 17 cm/ka. The δ 13 C values from the 20 cm long core (short core) show a downcore increase, whereas that of 500 cm long core (long core), show two peaks enriched in 13 C and three peaks depleted in 13 C. A general downcore increase in the δ 13 C values for the short core suggests changes in the relative proportion of C 3 and C 4 fraction increasing downcore. Similarly, low and high peaks in the long core suggest changes in the relative proportion of C 3 and C 4 with low values having high proportion of C 3 type of material, probably indicating changes in precipitation and lake levels in the area. Deposition of OM depleted in 13 C took place during periods of high precipitation and high lake levels. Although high content of OC and nitrogen in some core sections are associated with elevated C/N ratio values, diagenetic alteration of isotope signature is unlikely to have caused OC and isotope enrichment in sections having high contents of OC and nitrogen. The OC isotope record from Lake Ndutu shows a general downcore decrease in δ 13 C values and contents of OC and nitrogen. (author)

  15. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Alinat, Elodie, E-mail: elodie.alinat@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Delaunay, Nathalie, E-mail: nathalie.delaunay@espci.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Archer, Xavier, E-mail: xavier.archer@interieur.gouv.fr [Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); Mallet, Jean-Maurice, E-mail: jean-maurice.mallet@es.fr [École Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 7203 LBM, F-75005 Paris (France); Gareil, Pierre, E-mail: pierre.gareil@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France)

    2015-04-09

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  16. Explaining Leaf Nitrogen Distribution in a Semi-Arid Environment Predicted on Sentinel-2 Imagery Using a Field Spectroscopy Derived Model

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2018-02-01

    Full Text Available to improve the assessment of crop and rangeland biochemical and biophysical variables. To date, empirical methods for estimating leaf N require basic and complex statistical analysis—from simple to machine learning regression [16–18,20,21]. The simple... and also environmental variables [10,13]. The latter approach was achieved by using stepwise multiple linear regressions (SMLR), partial least square regression (PLSR), machine learning techniques including artificial neural network (ANN) [17...

  17. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  18. RESEARCH INTO THE USE OF DIETARY NITROGEN BY GROWING AND FATTENING STEERS IN RELATION TO DIET FORMULATION AND ENERGY CONTENT

    Directory of Open Access Journals (Sweden)

    I. VOICU

    2008-05-01

    Full Text Available Investigations were done on the use of the dietary nitrogen by fattening steers between 300-450 kg using the method of in vivo nutrient digestibility and nitrogen balance. Alfalfa and corn-based diets were used, in different forms of preservation and with different ratio of the bulk forage to the concentrate feeds; diet digestibility expressed as organic matter and protein varied between 72-76% and between 66- 75% respectively; the best performance produced by the corn silage diets were observed in diet 2 (with ammonia, while the best results produced by the alfalfa diets was noticed in diet 5 (haylage; nitrogen balance showed the highest values of the retained nitrogen in the alfalfa half-hay diet, the alfalfa hay diet having lower values.

  19. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    Science.gov (United States)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  20. Leaf optical properties shed light on foliar trait variability at individual to global scales

    Science.gov (United States)

    Shiklomanov, A. N.; Serbin, S.; Dietze, M.

    2016-12-01

    Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary within communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a potentially rich and widely available source of information on plant traits. In particular, the inversion of physically-based radiative transfer models (RTMs) is an effective and general method for estimating plant traits from spectral measurements. Here, we apply Bayesian inversion of the PROSPECT leaf RTM to a large database of field spectra and plant traits spanning tropical, temperate, and boreal forests, agricultural plots, arid shrublands, and tundra to identify dominant sources of variability and characterize trade-offs in plant functional traits. By leveraging such a large and diverse dataset, we re-calibrate the empirical absorption coefficients underlying the PROSPECT model and expand its scope to include additional leaf biochemical components, namely leaf nitrogen content. Our work provides a key methodological contribution as a physically-based retrieval of leaf nitrogen from remote sensing observations, and provides substantial insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.

  1. The Effect of the Addition of Cassava Leaf Extract in The Manufacturing of Wet Noodle on Antioxidant Activity and Fe Content

    OpenAIRE

    - Novelina

    2016-01-01

    Cassava leaf contains vitamin, mineral, fiber, chlorophyll, and calorie. The vitamin which is found in cassava leaf are vitamin A, B1, B2, C, niacin, and also mineral like Fe (Ferrum), Ca (Calcium) and P (Phosphorous). In 100 g of cassava leaf contains 2 mg of Ferrum, this  amount enough to fulfill Ferrum needed by human body. Ferrum plays the important role in a human body to carry the oxygen from lungs to the tissue and to carry the electron in the process of performing energy in the cell. ...

  2. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  3. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  4. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  5. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    NARCIS (Netherlands)

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Oijen, van M.; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling

  6. Coordinated nitrogen and carbon remobilization for nitrate assimilation in leaf, sheath and root and associated cytokinin signals during early regrowth of Lolium perenne

    Czech Academy of Sciences Publication Activity Database

    Roche, J.; Turnbull, M. H.; Guo, Q.; Novák, Ondřej; Späth, J.; Gieseg, S. P.; Jameson, P. E.; Love, J.

    2017-01-01

    Roč. 119, č. 8 (2017), s. 1353-1364 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : assimilation * cytokinin * defoliation * Lolium perenne * nitrate * Nitrogen * regrowth * water-soluble carbohydrates Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  7. The effect of irrigation, soil cultivation system and nitrogen fertilizer on the vitality and content of selected sugars in Vicia faba seed

    Energy Technology Data Exchange (ETDEWEB)

    Kurasiak-Popowska, D.; Szukala, J.; Gulewicz, K.

    2009-07-01

    In this study the influence of sprinkler irrigation, various soil cultivation systems (conventional, reduced tillage, zero tillage system) and the level (0, 30, 60, 90 kg N ha{sup -}1) of nitrogen (N) fertilization on the vitality and content of selected sugars in faba bean seeds (Vicia faba L.) of the cultivar Nadwislanski was examined. Sprinkler irrigation of faba bean improved seed energy and germination in all three years of the study (1999-2001) - on average germination energy by 8.8% and total germination by 3.2%-. Germination of faba bean seed under conventional tillage in the drier years was significantly higher than in the zero tillage system. In the wetter year, seed from both simplified systems produced seeds with higher germination than in traditional conventional tillage. Nitrogen (N) fertilizer affected germination energy, but had no effect on faba bean germination. Sprinkler irrigation and N fertilization had no effect on the content of the sugars studied in the faba bean seed. However, the stachyose content of faba bean seeds from conventional tilled plants was significantly higher than in seed of zero tilled plants (0.78 mg g{sup -}1 seed dm), and the galactose content of seed from zero tilled plants was significantly higher than in the other two cultivation systems - 0.34 and 0.28 mg g{sup -}1 seed dm in seeds from conventional and reduced tillage system, respectively. Additional key words: agronomic treatment, faba bean seeds, RFOs sugars. (Author) 24 refs.

  8. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover.

    Science.gov (United States)

    Wei, Zihai; Zhang, Baoxin; Liu, Jianxin

    2018-01-01

    Corn stover (CS) is an abundant source of feed for livestock in China. However, it is low in nutritional value that we have been seeking technologies to improve. Previous studies show that non-fiber carbohydrate (NFC) might limit the utilization of a CS diet by lactating dairy cows. Thus, this study was conducted to investigate the lactation performance and rumen fermentation characteristics in lactating cows consuming CS with two contents of NFC compared to an alfalfa hay-containing diet. Twelve Holstein cows were used in a replicated 3 × 3 Latin square design with three dietary treatments: (1) low-NFC diet (NFC = 35.6%, L-NFC), (2) high-NFC diet (NFC = 40.1%, H-NFC), and (3) alfalfa hay diet (NFC = 38.9%, AH). Intake of DM was lower for cows fed H-NFC compared to L-NFC and AH, while the milk yield was higher in AH than in H-NFC and L-NFC ( P  contents of milk protein and lactose were not different among the groups ( P  > 0.11), but milk fat content was higher for cows fed H-NFC and L-NFC compared to AH ( P  rumen ammonia nitrogen concentration and the concentrations of urea nitrogen in blood and milk were lower for cows fed H-NFC and AH compared to L-NFC ( P  rumen propionate and total volatile fatty acids were different among groups ( P  content in a diet containing corn stover can improve the feed efficiency and benefit the nitrogen conversion.

  9. Relation between kinetic of alcoholic fermentation and must nitrogen content. Influence of nitrogen fertilization on Vitis vinifera cv Muscadelle with permanent grass cover. Nature and concentration levels of some amino acids of musts

    Directory of Open Access Journals (Sweden)

    Corine Larchevêque

    1998-09-01

    Full Text Available An experiment concerning the introduction of nitrogen fertilization on permanent grass cover was undertaken in 1995. This was done in order to determine both the role and the influence of nitrogen on the fermentability of must. Located in the Sainte-Foy La Grande area, the plot studied has a deep silty soil. The cultivar Muscadelle was grafted on the 3309 C rootstock. Four tests with several N-fertilizations were compared : 1 (no-tillage and 0 kg N/ha/year, 2 (permanent grass cover without N-fertilization, 3 (permanent grass cover and 30 kg N/ha/year and 4 (permanent grass cover and 60 kg N/ha/year. Nitrogen was added at springtime, on the total interrow area as weIl as on the narrow strip around the vines. The grass cover (with or without N-fertilization had a great effect on yield : it decreased the latter by about 38 percent compared to the no-tillage trial. Moreover, the total acidity values were lower for the musts in trials 2,3 and 4 than in the control 1. Inversely, the initial sugar values were greater in the grass cover trials. The duration of alcoholic fermentation was very different with the no-tillage test and the others : 17 days were necessary for the first, and 42 to 50 for the other musts. This parameter was quite cIosely correlated to the content of nitrogen composites in the must and more particularly to amino acids. The global amino acid contents of must and wine were higher in test 1 than in the others. It is noteworthy that numerous kinds of amino acids were present but it seems likely that some of them were very important by virtue of their nature or their concentration levels. Among the principal amino acids, proline represented at least 20 percent of the global amino acids content for musts 2 and 4, and 14 to 19 percent for musts 3 and 1. Arginine was present only in the must of the grass-cover trials. Proline, arginine, alanine, asparagine/glutamine and aspartic acid represented about 50 to 60 percent of the global amino

  10. A comparative assessment of the the nutritional contents of 'wara' a ...

    African Journals Online (AJOL)

    The processing line of West African soft cheese varieties (processed with Calotropis procera (Sodom apple) and Cymbopogon citratus (lemon grass) leaf extracts was assessed for nutrient compositions (nitrogen, crude protein, fat, lactose, moisture content), pH, total aerobic plate count and trace elements (Fe, Zn, Cu, Mn, ...

  11. Parameterization of Leaf-Level Gas Exchange for Plant Functional Groups From Amazonian Seasonal Tropical Rain Forest

    Science.gov (United States)

    Domingues, T. F.; Berry, J. A.; Ometto, J. P.; Martinelli, L. A.; Ehleringer, J. R.

    2004-12-01

    Plant communities exert strong influence over the magnitude of carbon and water cycling through ecosystems by controlling photosynthetic gas exchange and respiratory processes. Leaf-level gas exchange fluxes result from a combination of physiological properties, such as carboxylation capacity, respiration rates and hydraulic conductivity, interacting with environmental drivers such as water and light availability, leaf-to-air vapor pressure deficit, and temperature. Carbon balance models concerned with ecosystem-scale responses have as a common feature the description of eco-physiological properties of vegetation. Here we focus on the parameterization of ecophysiological gas-exchange properties of plant functional groups from a pristine Amazonian seasonally dry tropical rain forest ecosystem (FLONA-Tapajós, Santarém, PA, Brazil). The parameters were specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, photosynthetic carboxylation capacity, dark respiration rates, and stomatal conductance to water vapor. Our plant functional groupings were lianas at the top of the canopy, trees at the top of the canopy, mid-canopy trees and undestory trees. Within the functional groups, we found no evidence that leaves acclimated to seasonal changes in precipitation. However, there were life-form dependent distinctions when a combination of parameters was included. Top-canopy lianas were statistically different from top-canopy trees for leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and stomatal conductance to water vapor, suggesting that lianas are more conservative in the use of water, causing a stomatal limitation on photosynthetic assimilation. Top-canopy, mid canopy and understory groupings were distinct for specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and photosynthetic carboxylation capacity. The recognition that plant

  12. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2016-01-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process....... As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite...... investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low...

  13. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    Energy Technology Data Exchange (ETDEWEB)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C., E-mail: kdas@engr.uga.edu [College of Engineering, The University of Georgia, Athens, GA (United States); Forsberg, Lennart S.; Azadi, Parastoo [Complex Carbohydrate Research Center, The University of Georgia, Athens, GA (United States)

    2015-06-23

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  14. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    International Nuclear Information System (INIS)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C.; Forsberg, Lennart S.; Azadi, Parastoo

    2015-01-01

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  15. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  16. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare