WorldWideScience

Sample records for leading-order chiral nucleon-nucleon

  1. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  2. Nuclear forces with Δ excitations up to next-to-next-to-leading order. Part I: Peripheral nucleon-nucleon waves

    International Nuclear Information System (INIS)

    Krebs, H.; Epelbaum, E.; Meissner, U.G.

    2007-01-01

    We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)

  3. Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature

    International Nuclear Information System (INIS)

    Rukeng Su

    1994-01-01

    By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)

  4. Chiral symmetry and the nucleon--nucleon interaction

    International Nuclear Information System (INIS)

    Brown, G.E.

    1977-01-01

    The nucleon--nucleon interaction is understood in terms of a dynamic model, the sigma model. The anti NN → ππ helicity amplitudes are assumed to be physical data, and the dynamical model must reproduce these data, more or less. 14 references

  5. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  6. The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)

  7. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  8. Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Pavon Valderrama, M.

    2011-01-01

    We study the perturbative renormalizability of chiral two-pion exchange for singlet and triplet channels within effective field theory, provided that the one-pion exchange piece of the interaction has been fully iterated. We determine the number of counterterms/subtractions needed to obtain finite results when the cutoff is removed, resulting in three counterterms for the singlet channel and six for the triplet. The results show that perturbative chiral two-pion exchange reproduce the data up to a center-of-mass momentum of k∼200-300 MeV in the singlet channel and k∼300-400 MeV in the triplet.

  9. p-wave pion production from nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.

    2009-01-01

    We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.

  10. Toy model for pion production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Hanhart, C.; Miller, G. A.; Myhrer, F.; Sato, T.; Kolck, U. van

    2001-01-01

    We develop a toy model for pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations

  11. Nucleon-nucleon scattering data

    International Nuclear Information System (INIS)

    Bystricky, J.; Lehar, F.

    1981-01-01

    The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)

  12. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2016-10-28

    We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.

  13. Nucleon-nucleon theory and phenomenology

    International Nuclear Information System (INIS)

    Signell, P.

    1981-03-01

    This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers

  14. Pionic background for nucleon-nucleon observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1992-01-01

    A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs

  15. Radial excitations in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  16. Resonance saturation of the chiral couplings at next-to-leading order in 1/NC

    International Nuclear Information System (INIS)

    Rosell, Ignasi; Ruiz-Femenia, Pedro; Sanz-Cillero, Juan Jose

    2009-01-01

    The precision obtainable in phenomenological applications of chiral perturbation theory is currently limited by our lack of knowledge on the low-energy constants (LECs). The assumption that the most important contributions to the LECs come from the dynamics of the low-lying resonances, often referred to as the resonance saturation hypothesis, has stimulated the use of large-N C resonance Lagrangians in order to obtain explicit values for the LECs. We study the validity of the resonance saturation assumption at the next-to-leading order in the 1/N C expansion within the framework of resonance chiral theory. We find that, by imposing QCD short-distance constraints, the chiral couplings can be written in terms of the resonance masses and couplings and do not depend explicitly on the coefficients of the chiral operators in the Goldstone boson sector of resonance chiral theory. As we argue, this is the counterpart formulation of the resonance saturation statement in the context of the resonance Lagrangian. Going beyond leading order in the 1/N C counting allows us to keep full control of the renormalization scale dependence of the LEC estimates.

  17. Nucleon-nucleon scattering phase shifts

    International Nuclear Information System (INIS)

    Bryan, R.

    1978-01-01

    Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1 D 2 and 3 F 3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references

  18. Nucleon-nucleon scattering and different meson exchanges

    International Nuclear Information System (INIS)

    Osman, A.

    1985-10-01

    The iterative and noniterative diagrams with different meson exchange are investigated. The α, πβ and πγ meson exchange, (where α=π, rho, σ, ω, eta and delta; β=π, rho, σ and ω; γ=π and rho), are considered. These diagrams are taken to involve the nucleon-nucleon, the nucleon-isobar and the isobar-isobar intermediate states. The diagrams are calculated in momentum space following the noncovariant perturbation theory. The role of each of these diagrams is examined by calculating its contribution to the nucleon-nucleon interaction. The potential model is taken to include one-boson-exchange terms in addition to these diagrams. The nucleon-nucleon scattering phase shifts are described successfully showing the importance of tensor force. The contributions of the different parts are studied in the nucleon-nucleon scattering. (author)

  19. A new form for the nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1976-01-01

    The form of the internucleon force is considered. It is assumed that the nucleon-nucleon potential depends, in general, both on the distance ν and the angle theta. It is also assumed that the potential V(ν,ω) admits an analytic continuation into the complex ω-plane so that when ω=costheta is real it denotes the direction in which the potential is being determined. The analysis leads to a new parametryzation of the nucleon-nucleon potential

  20. The nucleon- nucleon interaction and symmetries

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs

  1. General aspects of the nucleon-nucleon interaction and nuclear matter properties

    Energy Technology Data Exchange (ETDEWEB)

    Plohl, Oliver

    2008-07-25

    The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are

  2. General aspects of the nucleon-nucleon interaction and nuclear matter properties

    International Nuclear Information System (INIS)

    Plohl, Oliver

    2008-01-01

    The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are

  3. The nucleon- nucleon interaction and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Van Oers, W T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.

  4. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    NARCIS (Netherlands)

    Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable,

  5. Nucleon-nucleon correlations in dense nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.

    1993-02-01

    In this thesis new results on the problematics of the formation of nucleon-nucleon correlations in nuclear matter could be presented. Starting from a general study of the two-particle problem in matter we studied the occurrence of a suprafluid phase (pair condensate of nucleons). The Gorkov decoupling by means of anomalous Green functions was generalized, so that also Cooper pairs with spin 1 (triplet pairing) can be described. A generalized gap equation resulted, which permits to determine the order parameters of the suprafluied phase in arbitrary channels of the nucleon-nucleon scattering states. This equation was solvd in the 1 S 0 -, in the 3 P 2 - 3 F 2 , and in the 3 S 1 - 3 D 1 channel under application of realistic nucleon-nucleon potentials. The behaviour of the resulting gap parameters in the single channels was studied as function of density and temperature. (orig.) [de

  6. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  7. Coupled channels Marchenko inversion for nucleon-nucleon potentials

    International Nuclear Information System (INIS)

    Kohlhoff, H.; Geramb, H.V. von

    1994-01-01

    Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)

  8. Parity violation in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs

  9. Solitary wave exchange potential and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Prema, K.; Raghavan, S.S.; Sekhar Raghavan

    1986-11-01

    Nucleon-nucleon interaction is studied using a phenomenological potential model called solitary wave exchange potential model. It is shown that this simple model reproduces the singlet and triplet scattering data and the deuteron parameters reasonably well. (author). 6 refs, 2 figs, 1 tab

  10. Chiral effective field theory for nuclear matter including long- and short-range multi-nucleon interactions

    Directory of Open Access Journals (Sweden)

    Oller J.A.

    2010-04-01

    Full Text Available We review on a novel chiral power counting scheme for in-medium chiral perturbation theory with nucleons and pions as degrees of freedom. It allows for a systematic expansion taking into account local as well as pion-mediated inter-nucleon interactions. Based on this power counting, one can identify classes of nonperturbative diagrams that require a resummation. As a method for performing those resummations we review on the techniques of Unitary Chiral Pertubation Theory for nucleon-nucleon interactions. We then apply both power counting and non-perturbative methods to the example of calculating the pion self-energy in asymmetric nuclear matter up-to-and-including next-to-leading order. It is shown that the leading corrections involving in-medium nucleon-nucleon interactions cancel between each other at given chiral orders.

  11. The nucleon-nucleon interaction in the presence of the electromagnetic field: Nucleon-nucleon bremsstrahlung

    International Nuclear Information System (INIS)

    Brown, V.R.

    1990-01-01

    Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made

  12. Jets in high energy nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing

  13. Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts

    Directory of Open Access Journals (Sweden)

    Jhasaketan Bhoi

    2015-12-01

    Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.

  14. Quark bags, P-matrix and nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1984-01-01

    This paper is an extended version of the talk given at IX European Conference on Few Body Problems in Physics, Tbilisi, 1984. It reviews recent developments of the quark compound bag (QCB) model including explicit examples of the QCB nucleon-nucleon potentials, description of the deuteron properties, calculation of the six quark admixture in the deuteron and applications to the three-nucleon system

  15. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.

    Science.gov (United States)

    Tews, I; Krüger, T; Hebeler, K; Schwenk, A

    2013-01-18

    Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

  16. On the sensitivity of nucleon-nucleon correlations to the form of short-range potential

    International Nuclear Information System (INIS)

    Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.

    1986-01-01

    Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)

  17. Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1988-01-01

    The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments

  18. Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1985-11-01

    The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)

  19. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  20. Semi-phenomenological model of the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Houriet, A.; Bagnoud, Y.

    1977-01-01

    A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)

  1. Inequalities and bounds for nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Ramandurai, K.S.

    1979-08-01

    The objective of this work is to derive model-independent inequalities and bounds for nucleon-nucleon elastic scattering amplitudes based on well-established theoretical principles and symmetries. Two classes of methods are used: algebraic and variational. In the algebraic part, the author derives inequalities and bounds for NN amplitudes and observables using their mutual relations and x symmetries. In the variational part, he employs Lagrange's method of undetermined multipliers to evaluate the bounds. He tests the predictions of a sample of proposed phase shifts at three different energies using the results obtained

  2. Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory

    Science.gov (United States)

    Dai, Ling-Yun; Haidenbauer, Johann; Meißner, Ulf-G.

    2017-07-01

    Results for the antinucleon-nucleon (\\overline{N}N) interaction obtained at next-to-next-to-next-to-leading order in chiral effective field theory (EFT) are reported. A new local regularization scheme is used for the pion-exchange contributions that has been recently suggested and applied in a pertinent study of the N N force within chiral EFT. Furthermore, an alternative strategy for estimating the uncertainty is utilized that no longer depends on a variation of the cutoffs. The low-energy constants associated with the arising contact terms are fixed by a fit to the phase shifts and inelasticities provided by a phase-shift analysis of \\overline{p}p scattering data. An excellent description of the \\overline{N}N amplitudes is achieved at the highest order considered. Moreover, because of the quantitative reproduction of partial waves up to J = 3, there is also a nice agreement on the level of \\overline{p}p observables. Specifically, total and integrated elastic and charge-exchange cross sections agree well with the results from the partial-wave analysis up to laboratory energies of 300 MeV, while differential cross sections and analyzing powers are described quantitatively up to 200-250 MeV. The low-energy structure of the \\overline{N}N amplitudes is also considered and compared to data from antiprotonic hydrogen.

  3. Nucleon-nucleon correlations and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van Neck, D.; Waroquier, M.; Heyde, K.

    1997-01-01

    Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)

  4. Nucleon-nucleon interaction in the soliton bag model

    International Nuclear Information System (INIS)

    Schuh, A.

    1985-01-01

    In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de

  5. Two-body Dirac equations for nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Liu Bin; Crater, Horace

    2003-01-01

    We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit

  6. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  7. Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...

  8. Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification

    Science.gov (United States)

    Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.

    2018-03-01

    We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.

  9. The nucleon-nucleon potential in the chromodielectric soliton model

    International Nuclear Information System (INIS)

    Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.

    1993-01-01

    The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar σ field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function κ(σ). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme

  10. Counter terms for low momentum nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.

    2004-01-01

    There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements

  11. Induced hyperon-nucleon-nucleon interactions and the hyperon puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Roland; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    There is a strong experimental and theoretical interest in determining the structure of hypernuclei and the effect of strangeness in strongly interacting many-body systems. Recently, we presented the first calculations of hypernuclei in the p shell from first principles. However, these calculations showed either slow convergence with respect to model-space size or, when the hyperon-nucleon potential is transformed via the Similarity Renormalization Group, strong induced three-body terms. By including these induced hyperon-nucleon-nucleon (YNN) terms explicitly, we get precise binding and excitation energies. We present first results for p-shell hypernuclei and discuss the origin of the YNN terms, which are mainly driven by the evolution of the Λ-Σ conversion terms. We find that they are tightly connected to the hyperon puzzle, a long-standing issue where the appearance of hyperons in models of neutron star matter lowers the predicted maximum neutron star mass below the bound set by the heaviest observed objects.

  12. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1986-07-01

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)

  13. Effective nucleon-nucleon interaction in the RPA

    International Nuclear Information System (INIS)

    Batista, E.F.; Carlson, B.V.; Conti, C. de; Frederico, T.

    2001-01-01

    The purpose of the present work is to study the properties of the effective nucleon-nucleon interaction, in a infinite system of mesons and baryons , using the relativistic Hartree-Fock-Bogoliubov approximation. To derive the RHFB equations in a systematic fashion, we use Dyson's equation to sum to all orders the self-consistent tadpole and exchange contributions to the extended baryon Green's function (the Gorkov propagator). The meson propagator is computed as a sum over ring diagrams which consist in repeated insertions of the lowest-order proper polarization graph. The sum is the diagrammatic equivalent of the relativistic random phase approximation (RPA) that describes the well-known collective modes. In the nuclear medium, the σ and ω propagators are linked because of scalar-vector mixing, a density-dependent effect that generates a coupling between the Dyson's equation for the meson propagators. We use the dressed meson propagator to obtain the effective interaction and investigate its effect on the 1 S 0 pairing in nuclear matter. The effective interaction has title effect on the self-energy mean field, since the latter is dominated by the Hartree contribution, which is determined by the free meson propagators. The pairing field, however, is obtained from an exchange term, in which the effective interaction can play an important role. As the polarization corrections to the meson propagators tend to increase the σ-meson mass and decrease the ω-meson mass, they result in an effective interaction which is more repulsive than the bare one. We would expect this to result in a decrease in the 1 S 0 pairing, similar to that seen in nonrelativistic calculations. (author)

  14. Nucleon-nucleon theory and phenomenology. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Signell, P.

    1981-01-01

    Progress is outlined on five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction with the new dramatically altered ππ s-wave interaction and using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly, and determining which phases are given by theory at which energies; (4) the introduction of our K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated and verified permanent nucleon-nucleon data bank in the 0 to 1200 MeV range that can be used by all nucleon-nucleon researchers (or anyone else) via Telenet dial-in and by means of a published compendium

  15. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  16. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    International Nuclear Information System (INIS)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs

  17. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  18. Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field

    International Nuclear Information System (INIS)

    Philipp, W.

    1975-01-01

    The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de

  19. Double polarized neutron-proton scattering and nucleon-nucleon tensor force: An alternative analysis

    International Nuclear Information System (INIS)

    Tornow, W.; Gould, C.R.; Haase, D.G.; Walston, J.R.; Raichle, B.W.

    2002-01-01

    Previous neutron-proton total cross-section difference measurements Δσ L and Δσ T between E n =7.43 and 17.1 MeV have been analyzed in a new way that reduces experimental systematic uncertainties. The results obtained for the 3 S 1 - 3 D 1 mixing parameter ε 1 are very similar to the published values, substantiating the previous conclusion that the nucleon-nucleon tensor force at low energies is stronger than predicted by the Nijmegen partial-wave analysis and, therefore, by all the recent high-precision nucleon-nucleon potential models as well

  20. Covariant computation of e+e- production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Haglin, K.; Kapusta, J.; Gale, C.

    1989-01-01

    Electron-positron production differential cross sections in nucleon-nucleon collisions are calculated analytically via meson exchange with a realistic pseudovector coupling including strong interaction form factors. These results are compared with newly obtained data from the DLS at the BEVALAC of proton on beryllium. A comparison with the soft photon approximation is also made. (orig.)

  1. Survey of structures revealed in nucleon-nucleon scattering experiments and dibaryon resonances

    International Nuclear Information System (INIS)

    Hidaka, K.; Yokosawa, A.

    1979-01-01

    Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. Evidence is presented for the existence of dibaryon resonances with an emphasis on a diproton resonance in 3 F 3 (J/sup P/ = 3 - ) state. 38 references

  2. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-11-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  3. Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Goyal, D.P.; Yugindro Singh, K.; Singh, S.

    1986-01-01

    The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)

  4. Consequences of the factorization hypothesis in nucleon-nucleon, $\\gamma p and \\gamma \\gamma$ scattering

    CERN Document Server

    Block, Martin M

    2002-01-01

    Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).

  5. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    Science.gov (United States)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  6. Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field

    International Nuclear Information System (INIS)

    Haegele, G.

    1979-01-01

    The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)

  7. Investigation of the nucleon structure and the nucleon-nucleon interaction by electron-deuteron scattering

    International Nuclear Information System (INIS)

    Simon, G.G.

    1978-01-01

    In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)

  8. Single nucleon-nucleon collision model for subthreshold pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Bellini, V.; Di Toro, M.; Bonasera, A.

    1985-01-01

    We show that inclusive experimental data on subthreshold pion production in 12 C + 12 C and 16 O + 12 C collisions can be reproduced using a first chance Nucleon-Nucleon (NN) collision mechanism. Pauli blocking effects are extremely important while π-resorption can be safely neglected for these light systems. We apply our method at various beam energies. The possible importance of collective dynamical effects around the physical threshold is finally suggested

  9. The nucleon-nucleon correlations and the integral characteristics of the potential distributions in nuclei

    International Nuclear Information System (INIS)

    Knyaz'kov, O.M.; Kukhtina, I.N.

    1989-01-01

    The integral characteristics of the potential distribution in nuclei, namely the volume integrals, moments and mean square radii are studied in the framework of the semimicroscopic approach to the interaction of low energy nucleons with nuclei on the base of the exchange nucleon-nucleon correlations and the density dependence of effective forces. The ratio of the normalized multipole moments of potential and matter distributions is investigated. The energy dependence of the integral characteristics is analyzed. 15 refs.; 2 tabs

  10. Effect of two-pion exchange in nucleon-nucleon scattering in high partial waves

    International Nuclear Information System (INIS)

    Harun ar Rashid, A.M.; Chaudhury, T.K.

    1983-01-01

    The work of Brown and Durso (Phys. Lett. 35B, 120 (1971)) on the soft-pion determination of the intermediate range nucleon-nucleon interaction is extended by using the most general form of the ΔNπ interaction which involves an arbitrary parameter Z. It is shown that both the annihilation channel helicity amplitude fsub(+)sup((O))(t) as well as peripheral proton-proton scattering phase shifts seem to favour Z=1/2. (author)

  11. Nucleon-nucleon forces in the quark compound bag model and few-nucleon systems

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.

    1984-01-01

    Role of quark-gluon degrees of freedom is discussed in nucleon-nucleon scattering at low and intermediate energies. It is shown that the existence of six-quark hags fixes the form of NN potential at small distances, which leads to the P-matrix satisfying the criterion of Jaffe and Low. The dynamical model of three-nucleon system is discussed taking into accoint the contribution of six-quark bags

  12. Nuclear electric dipole moments in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-03-19

    We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.

  13. Chiral 2π exchange at fourth order and peripheral NN scattering

    International Nuclear Information System (INIS)

    Entem, D.R.; Machleidt, R.

    2002-01-01

    We calculate the impact of the complete set of two-pion exchange contributions at chiral fourth order (also known as next-to-next-to-next-to-leading order) on peripheral partial waves of nucleon-nucleon scattering. Our calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of fourth order is substantially smaller than the one of third order, indicating convergence of the chiral expansion. We compare the prediction from chiral pion exchange with the corresponding one from conventional meson theory as represented by the Bonn full model and find, in general, good agreement. Our calculations provide a sound basis for investigating the issue whether the low-energy constants determined from πN lead to reasonable predictions for NN

  14. Properties of Nuclei up to A =16 using Local Chiral Interactions

    Science.gov (United States)

    Lonardoni, D.; Carlson, J.; Gandolfi, S.; Lynn, J. E.; Schmidt, K. E.; Schwenk, A.; Wang, X. B.

    2018-03-01

    We report accurate quantum Monte Carlo calculations of nuclei up to A =16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in O 16 these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of binding energies, charge radii, and form factors for all these nuclei, including open-shell systems in A =6 and 12.

  15. Two-nucleon S10 amplitude zero in chiral effective field theory

    Science.gov (United States)

    Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.

    2018-02-01

    We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.

  16. Nucleon-nucleon theory and phenomenology. Progress report and renewal proposal, June 1, 1981-May 31, 1982

    International Nuclear Information System (INIS)

    Signell, P.

    1981-01-01

    This project has involved five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with signifantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 meV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 1-1200 MeV range that can be used by all nucleon-nucleon researchers

  17. Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering

    International Nuclear Information System (INIS)

    Fuchs, M.

    1993-01-01

    After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance

  18. Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2016-08-01

    Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.

  19. Spin symmetry in the Dirac sea derived from the bare nucleon-nucleon interaction

    Science.gov (United States)

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2018-06-01

    The spin symmetry in the Dirac sea has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac sea is studied in detail. It is found that if the single-particle states in the Dirac sea are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac sea is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.

  20. NN → NN π: the new frontier in nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1986-01-01

    The torch in nucleon-nucleon scattering has been passed to experimental and theoretical studies of pion production. Comparing two unitary models shows that most of the structures predicted for spin observables in NN → NNπ are model independent and roughly in agreement with the data. The contribution of rho- exchange is small, indicating the reaction is largely ''peripheral''. The energy dependence of these isobar models is smooth. The largely unstudied reactions producing neutral and negatively-charged pions show richer structure than positively-charged pion production. 6 refs

  1. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  2. Investigation of the nucleon-nucleon tensor force in three-nucleon system

    Energy Technology Data Exchange (ETDEWEB)

    Clajus, M.; Egun, P.M.; Gruebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA) Brookhaven National Lab., Upton, NY (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.)); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland))

    1990-08-16

    Proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. The observable most sensitive to the tensor force is the nucleon-nucleon polarization transfer coefficient K{sub y}sup(y'). The new angular distribution of K{sub y}sup(y') clearly favours the tensor force of the Bonn A potential, which is weaker than the one of the Paris potential. (orig.).

  3. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  4. Effective nucleon-nucleon t matrix in the (p,2p) reaction

    International Nuclear Information System (INIS)

    Kudo, Y.; Kanayama, N.; Wakasugi, T.

    1989-01-01

    The cross sections and the analyzing powers for the /sup 40/Ca(p-arrow-right,2p) reactions at E/sub p/ = 76.1, 101.3, and 200 MeV are calculated in the distorted-wave impulse approximation using the Love-Franey effective nucleon-nucleon interaction. It is shown that the calculated individual contributions of the central, spin-orbit, and tensor parts in the Love-Franey interaction to the cross sections and the analyzing powers strongly depend on the incident proton energies. The spectroscopic factors extracted are consistent with the other reaction studies

  5. Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Paar, N.; Papakonstantinou, P.; Hergert, H.; Roth, R.

    2006-01-01

    We investigate collective multipole excitations for closed shell nuclei from 16 O to 208 Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1 - and 2 + channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)

  6. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    International Nuclear Information System (INIS)

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  7. One-boson-exchange approach to dilepton production in nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Haglin, K.L.

    1991-01-01

    The author calculates energy-dependent nucleon-nucleon elastic cross sections and electron-positron pair production differential cross sections for the processes pp → pp, np → np, and pp → ppe + e - , np → npe + e - at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on a one-boson-exchange (π, ρ, ω, σ, δ, η) approximation to the nucleon-nucleon scattering problem. Strong form factors are included in a manner which preserves gauge invariance. He finds excellent results as compared with data for the total elastic cross sections. The calculate differential elastic cross sections show only qualitative agreement with data. For dilepton production in n-p scattering the model overestimates the number of pairs as compared with proton on beryllium data. For the p-p case he finds the tensor coupling of the ρ to the nucleons to be clearly dominant. Data do not yet exist for the p-p case at these energies: the author predicts them

  8. The quark model and the nature of the repulsive core of the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Faessler, A.; Fernandez, F.; Luebeck, G.; Shimizu, K.

    1982-01-01

    The nature of the repulsive core of the nucleon-nucleon is studied in the quark model. The resonating group equation for nucleon-nucleon scattering is solved with the colour Fermi-Breit interaction including further a linear or quadratic confinement potential. It is shown that the colour magnetic interaction which is adjusted to the Δ-nucleon mass splitting favours the orbital symmetry and disfavours the completely symmetric orbital state. For the important orbital symmetry the relative S wave function between the two nucleons has to have a node. In the framework of the resonating group including the NN, ΔΔ and the hidden colour (CC) channels it is shown that this node produces a 3 S and 1 S phase shift which is identical to a hard core phase shift with a hard core radius γ 0 between 0.3 and 0.6 fm depending on the assumed root mean square radius of the quark part of the nucleon. (orig./HSI)

  9. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  10. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  11. P-odd effects observed in the reactions with neutrons and isospin structure of weak nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Smotritskij, L.M.

    2001-01-01

    Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru

  12. Asymmetry measurements in nucleon--nucleon scattering with polarized beams and targets at ZGS to Fermilab energies

    International Nuclear Information System (INIS)

    Yakosawa, A.

    1977-01-01

    Results of various asymmetry measurements in nucleon-nucleon scattering with polarized beams and targets at ZGS energies are presented. A possible direct-channel resonance in the pp system is discussed. Most of the discussion above ZGS energies are aimed at future measurements

  13. A separable approach to the Bethe-Salpeter equation and its application to nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Schwarz, K.; Froehlich, J.; Zingl, H.F.K.

    1980-01-01

    The Bethe-Salpeter equation is solved in closed form with the help of a four dimensional separable 'potential'. For possible applications to three-nucleon investigations the authors have fitted all nucleon-nucleon S-wave phase shifts in a sufficient way by this method; in addition they also present an example for a P-wave. (Auth.)

  14. Advances in Nucleon-Nucleon Scattering Experiments and Their Theoretical Consequences

    International Nuclear Information System (INIS)

    Bekteshi, Sadik; Kabashi, Skender; Kamishi, Burim

    2007-01-01

    An overview of critical analysis of the experimental data obtained from nucleon-nucleon scattering is given and investigated in this work. Comparison of the experimental data with results of recent partial wave analysis of Nijmegen group, VPI/GWU and Saclay is given. Potentials of Nijmegen, Bonn and Argonne group are discussed. Experimental data which lead to the break of charge symmetry, to the break of the charge independence and to the determination of the off-shell tensor force, are particularly emphasized. Disagreements which exist between theoretical calculations related to the contribution of particular mechanism in different reactions are pointed out. In this relation, still open problems to be solved and measurement that should be undertaken in the future are identified, as well

  15. Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1988-01-01

    The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)

  16. Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables

    International Nuclear Information System (INIS)

    Field, R.D.; Stevens, P.R.

    1975-01-01

    A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions

  17. Parity violation in nuclei: studies of the weak nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Mcdonald, A.B.

    1980-03-01

    The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)

  18. Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    French, J.B.; Pandey, A.; Smith, J.

    1987-01-01

    The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab

  19. Skyrme-model πNN form factor and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Holzwarth, G.; Machleidt, R.

    1997-01-01

    We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society

  20. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Final report

    International Nuclear Information System (INIS)

    Burleson, G.R.

    1987-01-01

    We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs

  1. One-Boson Approach to Dilepton Production in Nucleon-Nucleon Collisions.

    Science.gov (United States)

    Haglin, Kevin Lee

    1990-01-01

    We calculate energy dependent nucleon-nucleon total elastic cross sections and invariant mass dependent electron-positron pair production differential cross sections for the processes pp to pp, np to np and pp to ppe ^+e^-, pn to pne^+e ^- at laboratory kinetic energies in the 1-5 GeV range. These calculations will be based on relativistic quantum field theory in the one-boson-exchange (pi,rho,omega,sigma,delta, eta) approximation to the nucleon-nucleon scattering problem. There are several independent Feynman diagrams for each process--twenty-five for the case np to npe^+e^ - and forty-eight for the case pp to ppe^+e^- --which, for evaluation, require taking the trace of as many as ten gamma matrices and evaluating an angular integral of a quotient of polynomial functions of initial and final energies, particle masses, coupling constants and so on. These mathematical operations are carried out with the aid of the following algebraic manipulators: for the trace operations we use REDUCE 3.3 on the VAX at the ACS facility and for testing the angular integration algorithms we use MAPLE on the Cray-2 at the Minnesota Supercomputer Institute. Finally, we use Cray-2 Fortran for the resulting numerical substitutions. Gauge invariance is strictly observed while including strong and electromagnetic form factors. The numerical results for these calculations are compared with existing data from the Particle Data Group Booklet and compared with recently released data from the Dilepton Spectrometer (DLS) at the Bevalac of proton on Beryllium. For the latter comparison, the spectrometer's finite acceptance function is introduced before a rapidity and transverse momentum integration.

  2. Do phase-shift analyses and nucleon-nucleon potential models yield the wrong 3Pj phase shifts at low energies?

    International Nuclear Information System (INIS)

    Tornow, W.; Witala, H.; Kievsky, A.

    1998-01-01

    The 4 P J waves in nucleon-deuteron scattering were analyzed using proton-deuteron and neutron-deuteron data at E N =3 MeV. New sets of nucleon-nucleon 3 P j phase shifts were obtained that may lead to a better understanding of the long-standing A y (θ) puzzle in nucleon-deuteron elastic scattering. However, these sets of 3 P j phase shifts are quite different from the ones determined from both global phase-shift analyses of nucleon-nucleon data and nucleon-nucleon potential models. copyright 1998 The American Physical Society

  3. An exploratory study of matrix elements of triangle I=3/2 K→ππ decays at next-to-leading order in the chiral expansion

    International Nuclear Information System (INIS)

    Boucaud, P.; Gimenez, V.; Lin, C.J.D.; Washington Univ., Seattle, WA; Lubicz, V.; Martinelli, G.; Papinutto, M.; Sachrajda, C.T.

    2004-12-01

    We present the first direct evaluation of ΔI=3/2 K → ππ matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K → ππ matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behaviour in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. In this way we find stable results for the quenched matrix elements of the electroweak penguin operators ( I=2 left angle ππ vertical stroke O 8 vertical stroke K 0 right angle =(0.68±0.09) GeV 3 and I=2 left angle ππ vertical stroke O 7 vertical stroke K 0 right angle =(0.12±0.02) GeV 3 ), but not for the matrix elements of O 4 (for which there are too many low-energy constants at NLO for a reliable extrapolation). For all three operators we find that the effect of including the NLO corrections is significant (typically about 30%). We present a detailed discussion of the status of the prospects for the reduction of the systematic uncertainties. (orig.)

  4. The effect of higher order different meson exchange nucleon-nucleon interactions on the three-nucleon binding energy coupling problem

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1989-01-01

    Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs

  5. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Annual progress report, 1988--1989

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs

  6. The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1986-01-01

    Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)

  7. Charge dependence and charge asymmetry in the nucleon-nucleon interaction due to processes involving Δ's

    International Nuclear Information System (INIS)

    Wells, T.B.

    1978-01-01

    The charge dependence and charge asymmetry of the nucleon-nucleon force arising from the exchange of a pion and a photon with the excitation of a nucleon resonance [Δ(1236)] is calculated. This charge dependence and asymmetry is studied through its effects on the 1 S nucleon-nucleon scattering lengths. The complexity of the calculation forces the use of approximations. The calculation is performed first with a pole approximation for the resonance and a second time with a Chew-Low description of the resonance. Both calculations neglect nuclear recoil. Estimates of this effect are made. The changes in the scattering lengths are small ( +- / 2 = 1.0225 G/sub π 0 / 2 will explain the proton-neutron scattering length

  8. Experimental determination of the effective nucleon-nucleon interaction for p-nucleus reactions at intermediate energies

    International Nuclear Information System (INIS)

    McClelland, J.B.; Aas, B.; Azizi, A.

    1982-01-01

    A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers

  9. Probing of the isospin-dependent mean field and nucleon-nucleon cross section in a medium by nucleon emissions

    International Nuclear Information System (INIS)

    Liu Jianye; Xing Yongzhong; Guo Wenjun

    2003-01-01

    We study the isospin effects of the mean field and two-body collision on the nucleon emissions at the intermediate energy heavy-ion collisions by using an isospin-dependent transport theory. The calculated results show that the nucleon emission number N n depends sensitively on the isospin effect of nucleon-nucleon cross section and weakly on the isospin-dependent mean field for neutron-poor system in higher beam energy region. In particular, the correlation between the medium correction of two-body collision and the momentum-dependent interaction enhances the dependence of nucleon emission number N n on the isospin effect of nucleon-nucleon cross section. On the contrary, the ratio of the neutron-proton ratio of the gas phase to the neutron-proton ratio of the liquid phase, i.e., the degree of isospin fractionation [(N/Z) gas ] b /[(N/Z) liq ] b depends sensitively on the isospin-dependent mean field and weakly on the isospin effect of two-body collision for neutron-rich system in the lower beam energy region. In this case, N n and [(N/Z) gas ] b /[(N/Z) liq ] b are the probes for extracting the information about the isospin-dependent nucleon-nucleon cross section in the medium and the isospin-dependent mean field, respectively

  10. The nucleon-nucleon interaction in the framework of the boson exchange model

    International Nuclear Information System (INIS)

    Niephaus, G.H.

    1984-01-01

    The aim of this thesis was the description of the nucleon-nucleon interaction in a microscopically founded model. For this the description of the 2-nucleon problem by an interacting 2-nucleon-pion system was presented. The starting point of our description was a relativistic eigenvalue equation for the system of mesons and two baryons. The interaction of the baryons with the mesons was described by interaction Hamiltonians. By the elimination of antinucleon states by means of a unitary tansformation (Foldy-Wouthuysen transformation) the interaction Hamiltonians for nucleons could be generated for the field-theoretical Lagrangian densities. The Hamiltonians for resonant baryon states were obtained by means of a simplified procedure from the corresponding Lagrangian densities. Because the determination of Lagrangian densities is not unique, for the pion-nucleon coupling two alternative Lagrangian densities were allowed. For the interaction of positive-energy nucleonic states these two coupling yield nearly equal results; the production or annihilation of negative-energy nucleon states (antiparticles) the predictions however are very different. (orig./HSI) [de

  11. Regularization and the potential of effective field theory in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1998-04-01

    This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m π 2 /M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic

  12. Relativistic one-boson-exchange model for the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Gross, F.; Van Orden, J.W.; Holinde, K.

    1992-01-01

    Nucleon-nucleon data below 300-MeV laboratory energy are described by a manifestly covariant wave equation in which one of the intermediate nucleons is restricted to its mass shell. Antisymmetrization of the kernel yields an equation in which the two nucleons are treated in an exactly symmetric manner, and in which all amplitudes satisfy the Pauli principle exactly. The kernel is modeled by the sum of one boson exchanges, and four models, all of which fit the data very well (χ 2 congruent 3 per data point) are discussed. Two models require the exchange of only the π, σ, ρ, and ω, but also require an admixture of γ 5 coupling for the pion, while two other models restrict the pion coupling to pure γ 5 γ μ , but require the exchange of six mesons, including the η, and a light scalar-isovector meson referred to as σ 1 . Deuteron wave functions resulting from these models are obtained. The singularities and relativistic effects which are a part of this approach are discussed, and a complete development of the theory is presented

  13. Nucleon-nucleon partial-wave analysis to 1100 MeV

    International Nuclear Information System (INIS)

    Arndt, R.A.; Hyslop, J.S. III; Roper, L.D.

    1987-01-01

    Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1100 MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 22 single-energy solutions are obtained consists of 7223 pp and 5474 np data. A resonancelike structure is found to occur in the 1 D 2 , 3 F 3 , 3 P 2 - 3 F 2 , and 3 F 4 - 3 H 4 partial waves; this behavior is associated with poles in the complex energy plane. The pole positions and residues are obtained by analytic continuation of the ''production'' piece of the T matrix obtained in the energy-dependent solution. The new phases differ somewhat from previously published VPIandSU solutions, especially in I = 0 waves above 500 MeV, where np data are very sparse. The partial waves are, however, based upon a significantly larger data base and reflect correspondingly smaller errors. The full data base and solution files can be obtained through a computer scattering analysis interactive dial-in (SAID) system at VPIandSU, which also exists at many institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base

  14. Nucleon-nucleon optical model for energies to 3 GeV

    International Nuclear Information System (INIS)

    Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.

    2001-01-01

    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions

  15. Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Science.gov (United States)

    Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi

    2012-08-01

    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.

  16. Nucleon-nucleon scattering studies at small angles at COSY-ANKE

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2015-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The SAID database and analysis program comprise various experimental observables at different energies over the full angular range and express them in the partial waves. The goal of the experiments held at COSY-Juelich is to provide SAID with new valuable measurements. Scattering data was taken at small angles for six beam energies between 0.8 and 2.4 GeV with polarized proton beam incident on both proton and deuteron unpolarized targets using the ANKE spectrometer. First, the results of the proton-proton (pp) scattering analyzing power and cross section are presented. While pp data closes a very important gap at small angles in the database, proton-neutron (pn) data is a crucial contribution to the almost non-explored pn database above 800 MeV. Therefore, the talk will mainly concentrate on the proton-deuteron (pd) scattering studies, which includes the overview of the older COSY experiments with polarized deuteron beam, and the abovementioned new experiment with polarized proton beam and unpolarized deuteron target. The presentation will show the most recent results of the analyzing powers of pd elastic and pn scattering.

  17. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  18. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1990-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei

  19. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    OpenAIRE

    Braun, R. T.; Tornow, W.; Howell, C. R.; Trotter, D. E. Gonzalez; Roper, C. D.; Salinas, F.; Setze, H. R.; Walter, R. L.; Weisel, G. J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model s...

  20. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.T. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L. [Department of Physics, Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2008-02-21

    We present the most accurate and complete data set for the analyzing power A{sub y}({theta}) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E{sub n}=12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.

  1. Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Howell, C.R.; Gonzalez Trotter, D.E.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.; Weisel, G.J.

    2008-01-01

    We present the most accurate and complete data set for the analyzing power A y (θ) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at E n =12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study

  2. Coulomb effects in three-nucleon scattering versus charge-symmetry breaking in the 3P nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Walter, R.L.; Slaus, I.

    1992-01-01

    Comparison of data for neutron-deuteron and proton-deuteron analyzing power A y for elastic scattering has become crucial for investigating charge-symmetry breaking in the 3 P nucleon-nucleon interactions. We extended this comparison down to 5 MeV and find that the relative difference between n-d and p-d scattering at the A y maximum near 120 degree increases with decreasing energy. By applying a straightforward Coulomb ''correction'' to the p-d data, we account for most of the difference, suggesting that the Coulomb force, rather than charge-symmetry breaking, is responsible for most of the observed difference

  3. Determination of the 3Pj phase shifts from nucleon-nucleon data: a critical evaluation and a surprising result

    International Nuclear Information System (INIS)

    Tornow, T.; Tornow, W.

    1999-01-01

    It Is shown that the 3 P j neutron-proton (proton-proton) phase shifts cannot be determined to less than ± 100 % (± 20 %) uncertainty at low energies (∼ 10 MeV), even if high-accuracy nucleon-nucleon data were to become available for currently inaccessible observables. For a more accurate determination, appropriate theoretical constraints have to be invoked, but their accuracy can be judged only from the comparison of rigorous three-nucleon continuum calculations with particular three-nucleon observables. (author)

  4. Chiral symmetry and nucleon structure: Low energy aspects

    International Nuclear Information System (INIS)

    Weise, W.

    1989-01-01

    The symmetries and currents of QCD at low energy and long wavelength are realized in the form of mesons, rather than quarks and gluons. In this talk I summarize the merits, but also the limits, of chiral non-linear meson theories and their soliton solutions, in descriptions of nucleon structure and the nucleon-nucleon interaction. (orig.)

  5. The low-energy neutron-deuteron analyzing power and the sup 3 P sub 0,1,2 interactions of nucleon-nucleon potentials

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Howell, C.R.; Alohali, M.; Chen, Z.P.; Felsher, P.D.; Hanly, J.M.; Walter, R.L.; Weisel, G. (Duke Univ., Durham, NC (USA). Dept. of Physics Triangle Universities Nuclear Lab., Durham, NC (USA)); Mertens, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Witala, H.; Gloeckle, W. (Bochum Univ. (Germany, F.R.). Inst. fuer Theoretische Physik 2)

    1991-03-28

    Data for the analyzing power A{sub y}({theta}) for the elastic scattering of neutrons from deuterons have been measured at 5.0, 6.5 and 8.5 MeV to an accuracy of +-0.0035. Surprisingly large differences have been observed at these low energies between the data and rigorous Faddeev calculations using the Paris and Bonn B nucleon-nucleon potentials. The A{sub y}({theta}) data provide a stringent test for our present understanding of the on-shell and off-shell {sup 3}P{sub 0,1,2} nucleon-nucleon interactions. (orig.).

  6. Analytic approach to the relativistic problem of constructing effective nucleon-nucleon and pion-nucleon interaction operators at low and intermediate energies

    International Nuclear Information System (INIS)

    Safronov, A.N.; Safronov, A.A.

    2006-01-01

    Full text: A nonperturbative character of QCD at low and intermediate energies generates serious mathematical difficulties in describing the dynamics of hadron-hadron interactions in terms quark-gluon degrees of freedom. Therefore much effort has gone in past years into developing QCD-motivated approaches that formulate the theory of strong interaction in terms of hadron degrees of freedom. The path-integral technique together with idea of spontaneous chiral-symmetry breaking leads to Effective Field Theory (EFT) [1]. Unfortunately EFT can be applied to description of hadron-hadron interactions only at very low energies. On the other hand, meson theories of nuclear forces have long since been used to describe the properties of nucleon systems and scattering processes. Now it is not quite clear, up to what distances the meson-exchange pattern of nuclear forces is valid. Recently the new relativistic approach to the problem of constructing effective hadron-hadron interaction operators has been proposed [2-4] on the basis of analytic S-matrix theory and Gelfand-Levitan-Marchenko-Martin methods for solving the inverse quantum scattering problem. In this approach effective potential is defined as a local operator in a partial-wave equation of the quasipotential type such that it generates on-shell relativistic (Feynman) scattering amplitude that has required discontinuities at dynamical cuts. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of subprocesses involving on-mass-shell particles off the physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, EFT can be used to calculate the discontinuities across dynamical-cut segments closest to the physical region. In [2-4] we have examined the basic features of the proposed approach. Attention has been given primarily to analyzing the new mechanism of

  7. Theoretical advancements and applications of the low-momentum nucleon-nucleon interaction

    Science.gov (United States)

    Holt, Jason Davidson

    One of the most fundamental problems in low-energy nuclear physics is how to calculate nuclear structure observables from the most basic microscopic elements available. The low-momentum nucleon-nucleon interaction Vlow k provides a nearly-unique microscopic starting point for calculations involving finite nuclei. We first discuss the Renormalization Group and Effective Field Theory ideas behind the development of Vlow k and show that Vlow k is expressible as a bare interaction supplemented by a series of counter terms representing a short range interaction. One drawback of Vlow k is that it is necessarily non-Hermitian, and, as such not immediately suited for use in shell model calculations. To remedy this, we present a new method, based on Schmidt orthogonalization, that generates a family of Hermitian low-momentum interactions, and show it is a generalization of several well-known Hermitian transformations. Moreover, this transformation is shown to preserve phase shifts and deuteron properties. To get an effective interaction which takes into account the complicated processes taking place in the nuclear many-body system, Vlow k must be supplemented by the effects of core polarization. Typically calculated to second order, the higher order properties of core polarization have been long-debated. We develop a new method for calculating core polarization diagrams to all order, which, when applied to nuclei in the sd-shell region, is shown to be quite close to the second-order results. In the second part of the Dissertation, we study how the shell model effective interaction derived from Vlow k can predict and explain complex nuclear properties. In particular we will study in depth mixed-symmetry (MS) structures: collective nuclear excitations in which protons and neutrons move out of phase. After a basic theoretical description of these states in terms of the Interacting Boson Model and a discussion of the most important experimental studies, we show that shell model

  8. Holographic QCD beyond the leading order

    International Nuclear Information System (INIS)

    Kim, Youngman; Ko, P.; Wu, Xiao-Hong

    2008-01-01

    We consider a holographic QCD model for light mesons beyond the leading order in the context of 5-dim gauged linear sigma model on the interval in the AdS 5 space. We include two dimension-6 operators in addition to the canonical bulk kinetic terms, and study chiral dynamics of π, ρ, a 1 and some of their KK modes. As novel features of dim-6 operators, we get non-vanishing Br(a 1 → πγ), the electromagnetic form factor and the charge radius of a charged pion, which improve the leading order results significantly and agree well with the experimental results.

  9. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Progress report, January 1, 1985-December 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs

  10. Disappearance of flow and the in-medium nucleon-nucleon cross section for {sup 64}Zn+{sup 27}Al collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhi-Yong [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Academia Sinica, Lanzhou, GS (China). Inst. of Modern Physics; Peter, J; Angelique, J C; Bizard, G; Brou, R; Cussol, D [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, A; Cabot, C; Crema, E [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Buta, A [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; [Institute of Atomic Physics, Bucharest (Romania)] [and others

    1996-09-01

    Experimental measurement and theoretical comparison of collective flow can give important information about the nuclear equation of state (EOS) and the in-medium nucleon-nucleon cross section. Experimental measurements of {sup 64}Zn+{sup 27}Al collision from 35 to 79 MeV/u with the 4{pi} array MUR=TONNEAU are presented. The results are compared to BUU calculations. (K.A.).

  11. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Mahmodi, M.; Ariai, J.; O. N. Ghodsi)

    2007-01-01

    In this paper, the cross-sections of fusion reactions 16 O + 208 Pb, 28 Si + 208 Pb, 40 C + 40 Ca, 40 Ca + 48 Ca, 58 Ni + 58 Ni, and 16 O + 154 Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16 O + 208 Pb and 28 Si + 208 Pb reactions are due to the many particle effects on the nucleon-nucleon potential. (author)

  12. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2007-01-01

    Full Text Available In this paper, the cross-sections of fusion reactions 16O + 208Pb, 28Si + 208Pb, 40C + + 40Ca, 40Ca + 48Ca, 58Ni + 58Ni, and 16O + 154Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16O + 208Pb and 28Si + 208Pb reactions are due to the many particle effects on the nucleon-nucleon potential.

  13. Distance- and momentum-dependence of modern nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Feldmeier, Hans; Neff, Thomas; Weber, Dennis

    2015-01-01

    A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)

  14. Building the nucleus from quarks: The cloudy bag model and the quark description of the nucleon-nucleon wave functions

    International Nuclear Information System (INIS)

    Miller, G.A.

    1984-01-01

    In the Cloudy Bag Model hadrons are treated as quarks confined in an M.I.T. bag that is surrounded by a cloud of pions. Computations of the charge and magnetism distributions of nucleons and baryons, pion-nucleon scattering, and the strong and electromagnetic decays of mesons are discussed. Agreement with experimental results is excellent if the nucleon bag radius is in the range between 0.8 and 1.1 fm. Underlying qualitative reasons which cause the pionic corrections to be of the obtained sizes are analyzed. If bags are of such reasonably large sizes, nucleon bags in nuclei will often come into contact. As a result one needs to consider whether explicit quark degrees of freedom are relevant for Nuclear Physics. To study such possibilities a model which treats a nucleus as a collection of baryons, pions and six-quark bags is discussed. In particular, the short distance part of a nucleon-nucleon wave function is treated as six quarks confined in a bag. This approach is used to study the proton-proton weak interaction, the asymptotic D to S state ratio of the deuteron, the pp → dπ reaction, the charge density of /sup 3/He, magnetic moments of /sup 3/He and /sup 3/H and, the /sup 3/He-/sup 3/H binding energy difference. It is found that quark effects are very relevant for understanding nuclear properties

  15. Real and imaginary part of the potential between two nuclei and the realistic nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Trefz, M.

    1985-01-01

    Starting from a realistic nucleon-nucleon interaction (Reid soft-core) in the model of two infinitely extended confusing nuclear matter complex energy densities are calculated by means of a G matrix. By means of a generalized local-density approximation the results are transferred to finite nuclei. In the framework of the frozen-density approximation in the energy-density formalism a complex potential between two nuclei is calculated. The potential calculated so contains not the contribution of 1-particle-1-hole states to the optical potential. The contribution of these states is therefore calculated in the Feshbach formalism, respectively these states are explicitely regarded in coupled-channel calculations. The model is applied to light (for instance 12 C+ 12 C), medium heavy (for instance 48 Ca+ 48 Ca), and heavy (for instance 40 Ar+ 208 Pb) systems. Potentials for incident energies of 5-84 MeV per projectile nucleon are calculated. By means of these potentials differential cross sections and reaction cross sections are determined and compared with the experimental data. The energy dependence of the reaction cross section is discussed. It is shown that at higher energies (40 MeV/N) the differential cross sections can be quantitatively reproduced. For the reaction cross section in the whole energy range good agreement with the experiment is obtained. Contrarily to current theoretical models it is proved that at low energies the excitation of collective states yields a large contribution to the reaction cross section and therefore must not be neglected. (orig.) [de

  16. Discrepancies between global nucleon-nucleon phase shifts and new data for n-p scattering at 16.9 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1977-01-01

    Data for the analyzing power A/sub y/(theta) for n-p scattering at 16.9 MeV have been measured for the range from 50 to 145 0 (c.m.). Eleven values are reported to an accuracy of about +- 0.002, the highest overall precision ever obtained in any fast-neutron polarization experiment. Predictions based on phase-shift sets obtained from global analyses of nucleon-nucleon scattering disagree significantly with the new data. The data are sufficiently precise to show a dependence on the f-wave spin-orbit phase parameter

  17. The study of nucleon-nucleon interaction from the 3 nucleon interaction D(n,nnp) at 14 MeV

    International Nuclear Information System (INIS)

    Gondrand, Jean-Claude

    1970-01-01

    The n-p spectrum for the neutron-proton final state interaction in a complete D(n,nnp) experiment at 14 MeV was measured with a two-dimensional time-of-flight spectrometer. A previously measured n-n spectrum, and the n-p spectrum are compared with theoretical convoluted spectra obtained from Faddeev equations (AMADO Model) for three nucleon-nucleon potentials. The cross-sections σ(E 1 ,Ω 1 ,Ω 2 ) are extracted from the two experimental spectra by a simulation method. (author) [fr

  18. Effect of in-medium nucleon-nucleon cross section on proton-proton momentum correlation in intermediate-energy heavy-ion collisions

    Science.gov (United States)

    Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao

    2018-03-01

    The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.

  19. Influence of the density dependence factor in effective nucleon-nucleon forces and interaction of 4He-particles with stable nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.

    2004-01-01

    Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei

  20. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  1. J/Ψ production in proton-proton and deuteron-gold collisions at 200 GeV in the nucleon-nucleon center of mass

    International Nuclear Information System (INIS)

    Cobigo, Y.

    2004-01-01

    To understand the quark-gluon plasma formed in heavy-ion collisions, we have to understand the cold nuclear matter behavior. In this aim we studied deuteron-gold collisions at 200 GeV in the nucleon-nucleon center of mass at the collider RHIC. The J/Ψ was suggested to probe the plasma. We studied its production via its muon decay measured in the muon spectrometers of the PHENIX experiment. We developed a Kalman fit method for tracks and vertex, for the muon spectrometers data analysis. The J/Ψ production was analyzed in function of kinematic and geometric variables. Comparison between proton-proton and deuterium-gold data allowed a better understanding of shadowing and absorption phenomena present in collisions without any dense matter. (author) [fr

  2. T20 measurements for 1H(d searrow,γ)3He and the P-wave component of the nucleon-nucleon force

    International Nuclear Information System (INIS)

    Schmid, G.J.; Chasteler, R.M.; Weller, H.R.; Tilley, D.R.; Fonseca, A.C.; Lehman, D.R.

    1996-01-01

    Measurements of T 20 (θ lab =90 degree) for 1 H(d searrow,γ) 3 He, in the energy range E d (lab)=12.7 endash 19.8 MeV, have been compared with the results of new exact three-body Faddeev calculations using the Paris and Bonn-A nucleon-nucleon (NN) potentials. This comparison indicates a strong sensitivity of the T 20 observable to the p-wave part of the NN force. In particular, we find that the 3 P 1 component of the P-wave interaction is the dominant P-wave term affecting the value of T 20 (θ lab =90 degree) at these energies. This contrasts with the results of polarized N-D scattering studies where the 3 P 0 component has been found to dominate. cents 1996 The American Physical Society

  3. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  4. Two-dimensional field theory description of a disoriented chiral condensate

    International Nuclear Information System (INIS)

    Kogan, I.I.

    1993-01-01

    We consider the effective (1+1)-dimensional chiral theory describing fluctuations of the order parameter of the disoriented chiral condensate (DCC) which can be formed in the central rapidity region in relativistic nucleus-nucleus or nucleon-nucleon collisions at high energy. Using (1+1)-dimensional reduction of QCD at high energies and assuming spin polarization of the DDC one can find the Wess-Zumino-Novikov-Witten model at the level k=3 as the effective chiral theory for the one-dimensional DDC. Some possible phenomenological consequences are briefly discussed

  5. Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain

    Science.gov (United States)

    Li, Pengcheng; Wang, Yongjia; Li, Qingfeng; Guo, Chenchen; Zhang, Hongfei

    2018-04-01

    With the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, a systematic investigation of the effects of in-medium nucleon-nucleon (NN ) elastic cross section on the collective flow and the stopping observables in 197Au+197Au collisions at beam energies from 40 to 150 MeV/nucleon is performed. Simulations with the medium correction factors F =σNN in -medium/σNN free=0.2 ,0.3 ,0.5 and the one obtained with the FU3FP1 parametrization which depends on both the density and the momentum are compared to the FOPI and INDRA experimental data. It is found that, to best fit the experimental data of the slope of the directed flow and the elliptic flow at midrapidity as well as the nuclear stopping, the correction factors of F =0.2 and 0.5 are required for reactions at beam energies of 40 and 150 MeV/nucleon, respectively. Whereas calculations with the FU3FP1 parametrization can simultaneously reproduce these experimental data reasonably well. And, the observed increasing nuclear stopping with increasing beam energy in experimental data can also be reproduced by using the FU3FP1 parametrization, whereas the calculated stopping power in Au + Au collisions with beam energies from 40 to 150 MeV /nucleon almost remains constant when taking F equal to a fixed value.

  6. Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.

  7. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  8. Impact of the in-medium nucleon-nucleon cross section on early-reaction-phase dynamics below 100 MeV/u

    International Nuclear Information System (INIS)

    Basrak, Z.; Zoric, M.; Eudes, P.; Sebille, F.

    2009-01-01

    It has been shown theoretically [1] and confirmed experimentally [2] that heavy ion reactions (HIR) at intermediate energies, especially for central collisions, are strongly dominated by the mid-rapidity emission, a component which is emitted early during the dynamical reaction phase. This prompt and copious dynamical emission is proportional to the impact parameter 6 and evacuates a large amount of available system energy [1,3]. Since this emission occurs in the early compact phase of HIR, it is crucial to study details of the early transformation of the initial relative motion of the entrance reaction channel into other forms of energy in particular to its main components, heat E th and compression E compr . We have carried out such a study within the framework of the semi-classical Landau-Vlasov model with the momentum-dependent Gogny interaction D1-G1 [4]. In this model, σ NN is the free nucleon-nucleon cross section with its usual energy and isospin dependence. For the sake of simplicity, σ NN is assumed to be isotropic and density independent, an approximation which is fully justified in HIR below 100 MeV/u. In an earlier work the free nucleon-nucleon cross section was considered [5]. Here, we investigate the in-medium effects, i.e. how the change of σ NN influences the early energy transformation and the early particle emission. The change is taken into account by multiplying σ NN by a corrective constant factor F. In other words, we examine how the E th and E compr evolve with the reaction time and how the dynamical emission behaves and both as a function of the factor F. We investigate two systems: 3 6A r + 6 8N i and 6 8N i + 6 8N i reactions at 52, 74, and 95 MeV/u (52, 74, and 90 MeV/u for the latter reaction) at all impact parameters from central to peripheral collisions. The results of the simulations show that the time evolution of heat E th and compression E compr during the early dynamical reaction phase present maxima at all incident energies

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  10. Theoretical predictions for α -decay chains of 118 290 -298Og isotopes using a finite-range nucleon-nucleon interaction

    Science.gov (United States)

    Ismail, M.; Adel, A.

    2018-04-01

    The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.

  11. Meson-baryon coupling constants from a chiral-invariant SU(3) Lagrangian and application to NN scattering

    International Nuclear Information System (INIS)

    Stoks, V.G.J.

    1997-01-01

    We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)

  12. The nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Green, A.M.

    1978-01-01

    The first part of this talk is based on the one presented at the Tokyo conference last September and can be found in ref( 1 ). This coveres such topics as the Paris and Stonybrook potentials, the new values of the NN coupling constants and also our understanding of the NNω coupling constant. The second part reviews recent developments concerning the Paris potential, the application of the MIT bag model to the NN interaction, the effect of crossed pion processes and vertex form factors. Comments made about the possible future trends of NN potential calculations. The current status of the D-state probability of the deuteron is discussed. (orig./AH) [de

  13. Decoupling of charm beyond leading order

    OpenAIRE

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham

    2017-01-01

    We study the effective theory of decoupling of a charm quark at low energies. We do this by simulating a model, QCD with two mass-degenerate charm quarks. At leading order the effective theory is a pure gauge theory. By computing ratios of hadronic scales we have direct access to the power corrections in the effective theory. We show that these corrections follow the expected leading behavior, which is quadratic in the inverse charm quark mass.

  14. Effects of in-medium nucleon-nucleon cross sections on stopping observable and ratio of free protons in heavy-ion collisions at 400 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun; Huang, Ching-Yuan [Sun Yat-sen University, Sino-French Institute of Nuclear Engineering and Technology, Zhuhai (China); Xie, Wen-Jie [Yuncheng University, Department of Physics, Yuncheng (China); Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Zhang, Feng-Shou [Beijing Normal University, The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing (China); Beijing Radiation Center, Beijing (China); National Laboratory of Heavy Ion Accelerator of Lanzhou, Center of Theoretical Nuclear Physics, Lanzhou (China)

    2016-07-15

    The effects of in-medium nucleon-nucleon cross sections on the stopping observable and ratio of free protons in heavy-ion collisions at 400 MeV/nucleon have been investigated within the framework of the IQMD+GEMINI model. Five kinds of in-medium corrections of nucleon-nucleon cross sections, which are considerably different in the referred energy and density, have been used in the model. It has been found that calculations of the stopping decrease when the in-medium cross sections decrease. Moreover, the ratio of free protons R{sub p} depends not only on the value of the in-medium factors but also on its isospin dependence. In order to investigate the isospin effect of in-medium factors on the ratio of free protons R{sub p}, the isospin dependence of in-medium factors has been adjusted and used in the model. The calculations have shown that the isospin dependence of in-medium factors does not impact the stopping, but impacts the ratio of free protons R{sub p}. When the in-medium factors relation f{sub nn}{sup med} > f{sub pp}{sup med} is used in the model, the calculated values of R{sub p} are larger than those in the f{sub nn}{sup med} < f{sub pp}{sup med} case. (orig.)

  15. Nuclear matter from chiral effective field theory

    International Nuclear Information System (INIS)

    Drischler, Christian

    2017-01-01

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal

  16. Nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Drischler, Christian

    2017-11-15

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the

  17. Scaling violations beyond the leading order

    CERN Document Server

    Petronzio, R

    1981-01-01

    The authors are concerned with the explicit construction of a method which generalizes beyond leading order the simple probabilistic interpretation of leading scaling violations. The results obtained in this language allow to predict the evolution with the variation of external invariants not only of 'space-like' processes, where the off- shell partons starting the hard interaction have space-like four momenta, like in the case of deep inelastic scattering or Drell-Yan, but also of 'time-like' processes, like the one-particle inclusive e /sup +/e/sup -/ annihilation, where the partons acting in the fragmentation functions have 'time-like' off-shell invariant masses. (9 refs).

  18. Parton distributions beyond the leading order

    International Nuclear Information System (INIS)

    Chyla, J.

    1993-01-01

    The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorization scheme to another recalled. It is shown that the conventional M bar S and DIS definitions thereof are ill defined due to the lack of distinction between the factorization scheme dependence of parton distribution functions and renormalization scheme dependence of the strong coupling constant α s . A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading-order event generators briefly outlined

  19. Evolution of parton densities beyond leading order

    International Nuclear Information System (INIS)

    Curci, G.; Petronzio, R.; Furmanski, W.

    1980-01-01

    We develop a technique, based explicitly on the factorization properties of mass singularities, which allows one to calculate the evolution of parton densities beyond leading order. We present the results for the evolution of hadronic structure functions as well as for parton fragmentation functions into hadrons. Within our scheme the predictions for a particular process are obtained by convoluting a universal parton density with a short-distance cross section specific to the process. As an application, we calculate the QCD predictions for the Q 2 dependence of deep inelastic lepton-hadron scattering and of one-particle inclusive e + e - annihilation cross sections. Our results for electroproduction agree with those obtained with the operator product expansion technique. Physical quantitites in scattering are related to the corresponding ones in annihilation by analytic continuation, whereas the Gribov-Lipatov relation is strongly violated. (orig.)

  20. QCD with two colors at finite baryon density at next-to-leading order

    International Nuclear Information System (INIS)

    Splittorff, K.; Toublan, D.; Verbaarschot, J.J.M.

    2002-01-01

    We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau-Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order

  1. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    Science.gov (United States)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  2. Elastic nucleon-deuteron scattering and breakup with chiral forces

    Directory of Open Access Journals (Sweden)

    Witała Henryk

    2016-01-01

    Full Text Available Results on three-nucleon (3N elastic scattering and breakup below the pion production threshold are discussed. The large discrepancies found between a theory based on numerical solutions of 3N Faddeev equations with standard nucleon-nucleon (NN potentials only and data point to the need for three-nucleon forces (3NF’s. This notion is supported by the fact that another possible reason for the discrepancies in elastic nucleon-deuteron (Nd scattering, relativistic effects, turned out to be small. Results for a new generation of chiral NN forces (up to N4LO together with theoretical truncation errors are shown. They support conclusions obtained with standard NN potentials

  3. The Matrix Element Method at Next-to-Leading Order

    OpenAIRE

    Campbell, John M.; Giele, Walter T.; Williams, Ciaran

    2012-01-01

    This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...

  4. Next to leading order three jet production at hadron colliders

    International Nuclear Information System (INIS)

    Kilgore, W.

    1997-01-01

    Results from a next-to-leading order event generator of purely gluonic jet production are presented. This calculation is the first step in the construction of a full next-to-leading order calculation of three jet production at hadron colliders. Several jet algorithms commonly used in experiments are implemented and their numerical stability is investigated. A numerical instability is found in the iterative cone algorithm which makes it inappropriate for use in fixed order calculations beyond leading order. (author)

  5. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  6. Evolution of spin-dependent structure functions from DGLAP equations in leading order and next to leading order

    International Nuclear Information System (INIS)

    Baishya, R.; Jamil, U.; Sarma, J. K.

    2009-01-01

    In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by solving Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations in leading order and next to leading order in the small x limit. Here we have used Taylor series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron structure functions, and the results are compared with the SLAC E-143 Collaboration data.

  7. Next-To-Leading Order Determination of Fragmentation Functions

    CERN Document Server

    Bourhis, L; Guillet, J P; Werlen, M

    2001-01-01

    We analyse LEP and PETRA data on single inclusive charged hadron cross-sections to establish new sets of Next-to-Leading order Fragmentation Functions. Data on hadro-production of large-$p_{\\bot}$ hadrons are also used to constrain the gluon Fragmentation Function. We carry out a critical comparison with other NLO parametrizations.

  8. Higgs production at next-to-next-to-leading order

    Indian Academy of Sciences (India)

    Instituut-Lorentz, University of Leiden, Leiden, The Netherlands. Abstract. We describe the calculation of inclusive Higgs boson production at hadronic colliders at next-to-next-to-leading order (NNLO) in perturbative quantum chromody- namics. We have used the technique developed in ref. [4]. Our results agree with those.

  9. Next-to-leading order corrections to the valon model

    Indian Academy of Sciences (India)

    Next-to-leading order corrections to the valon model. G R BOROUN. ∗ and E ESFANDYARI. Physics Department, Razi University, Kermanshah 67149, Iran. ∗. Corresponding author. E-mail: grboroun@gmail.com; boroun@razi.ac.ir. MS received 17 January 2014; revised 31 October 2014; accepted 21 November 2014.

  10. Next-to-leading order corrections to the valon model

    Indian Academy of Sciences (India)

    A seminumerical solution to the valon model at next-to-leading order (NLO) in the Laguerre polynomials is presented. We used the valon model to generate the structure of proton with respect to the Laguerre polynomials method. The results are compared with H1 data and other parametrizations.

  11. Topics in perturbative QCD beyond the leading order

    International Nuclear Information System (INIS)

    Buras, A.J.

    1979-08-01

    The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references

  12. Medium corrections to nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1990-01-01

    The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs

  13. Collinear limits beyond the leading order from the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan; Wormsbecher, Wadim [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany)

    2017-02-08

    The structure of tree-level scattering amplitudes for collinear massless bosons is studied beyond their leading splitting function behavior. These near-collinear limits at sub-leading order are best studied using the Cachazo-He-Yuan (CHY) formulation of the S-matrix based on the scattering equations. We compute the collinear limits for gluons, gravitons and scalars. It is shown that the CHY integrand for an n-particle gluon scattering amplitude in the collinear limit at sub-leading order is expressed as a convolution of an (n−1)-particle gluon integrand and a collinear kernel integrand, which is universal. Our representation is shown to obey recently proposed amplitude relations in which the collinear gluons of same helicity are replaced by a single graviton. Finally, we extend our analysis to effective field theories and study the collinear limit of the non-linear sigma model, Einstein-Maxwell-Scalar and Yang-Mills-Scalar theory.

  14. Shining LUX on isospin-violating dark matter beyond leading order

    DEFF Research Database (Denmark)

    Cirigliano, V.; Graesser, M. L.; Ovanesyan, G.

    2014-01-01

    Isospin-violating dark matter (IVDM) has been proposed as a viable scenario to reconcile conflicting positive and null results from direct detection dark matter experiments. We show that the lowest-order dark matter-nucleus scattering rate can receive large and nucleus-dependent corrections at next......-to-leading order (NLO) in the chiral expansion. The size of these corrections depends on the specific couplings of dark matter to quark flavors and gluons. In general the full NLO dark-matter-nucleus cross-section is not adequately described by just the zero-energy proton and neutron couplings. These statements...... are concretely illustrated in a scenario where the dark matter couples to quarks through scalar operators. We find the canonical IVDM scenario can reconcile the null XENON and LUX results and the recent CDMS-Si findings provided its couplings to second and third generation quarks either lie on a special line...

  15. Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order

    CERN Document Server

    Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej

    2016-01-01

    We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.

  16. Next to leading order semi-inclusive spin asymmetries

    International Nuclear Information System (INIS)

    Florian, D. de; Epele, L.N.; Fanchiotti, H.; Garcia C, C.A.; Sassot, R.

    1996-04-01

    We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order (NLO) QCD corrections and contributions coming from the target fragmentation region. These corrections have been estimated using NLO fragmentation functions, parton distributions and also a model for spin dependent fracture functions which is proposed here. We have found that NLO corrections are small but non-negligible in a scheme where gluons are polarised and that our estimate for target fragmentation effects, which is in agreement with the available semi-inclusive data, does not modify significantly charged asymmetries but is non-negligible for the so called difference asymmetries. (author). 18 refs., 7 figs

  17. Double collinear splitting amplitudes at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain)

    2014-01-07

    We compute the next-to-leading order (NLO) QCD corrections to the 1→2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani’s formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.

  18. The Agent of extracting Internet Information with Lead Order

    Science.gov (United States)

    Mo, Zan; Huang, Chuliang; Liu, Aijun

    In order to carry out e-commerce better, advanced technologies to access business information are in need urgently. An agent is described to deal with the problems of extracting internet information that caused by the non-standard and skimble-scamble structure of Chinese websites. The agent designed includes three modules which respond to the process of extracting information separately. A method of HTTP tree and a kind of Lead algorithm is proposed to generate a lead order, with which the required web can be retrieved easily. How to transform the extracted information structuralized with natural language is also discussed.

  19. Hadronic Leading Order Contribution to the Muon g-2

    Science.gov (United States)

    Nomura, Daisuke

    2018-05-01

    We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.

  20. Revisiting the vector form factor at next-to-leading order in 1/N{sub C}

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi, E-mail: rosell@uch.ceu.e [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)

    2010-10-15

    Using the Resonance Chiral Theory lagrangian, we perform a calculation of the vector form factor of the pion at the next-to-leading order (NLO) in the 1/N{sub C} expansion. Imposing the correct QCD short-distance constraints, one determines it in terms of F, G{sub V}, F{sub A} and resonance masses. Its low momentum expansion fixes then the low-energy chiral couplings L{sub 9} and C{sub 88} -C{sub 90} at NLO, keeping full control of their renormalization scale dependence. At {mu}{sub 0} = 0.77 GeV, we obtain L{sup r}{sub 9}({mu}{sub 0}) = (7.6 {+-} 0.6) . 10{sup -3} and C{sup r}{sub 88}({mu}{sub 0}) -C{sup r}{sub 90}({mu}{sub 0}) = (-4.5 {+-} 0.5) . 10{sup -5}.

  1. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik

    2011-03-15

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)

  2. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-08-01

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.

  3. Classical equation of motion and anomalous dimensions at leading order

    International Nuclear Information System (INIS)

    Nii, Keita

    2016-01-01

    Motivated by a recent paper by Rychkov-Tan http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 , we calculate the anomalous dimensions of the composite operators at the leading order in various models including a ϕ"3-theory in (6−ϵ) dimensions. The method presented here relies only on the classical equation of motion and the conformal symmetry. In case that only the leading expressions of the critical exponents are of interest, it is sufficient to reduce the multiplet recombination discussed in http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 to the classical equation of motion. We claim that in many cases the use of the classical equations of motion and the CFT constraint on two- and three-point functions completely determine the leading behavior of the anomalous dimensions at the Wilson-Fisher fixed point without any input of the Feynman diagrammatic calculation. The method developed here is closely related to the one presented in http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 but based on a more perturbative point of view.

  4. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  5. Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Zykunov, Vladimir; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Sharma, Archana; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Lobelle Pardo, Patricia; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Markin, Oleg; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Mc Donald, Jeffrey; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range $| \\eta | < $ 2.4, and a third particle measured in the hadron forward calorimeters (4.4 $ < | \\eta | < $ 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and $\\eta$ gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  6. Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect.

    Science.gov (United States)

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  7. Chiral dynamics with (nonstrange quarks

    Directory of Open Access Journals (Sweden)

    Kubis Bastian

    2017-01-01

    Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  8. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    Science.gov (United States)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  9. The complete lowest order chiral Lagrangian from a little box

    International Nuclear Information System (INIS)

    DeGrand, T.; Schaefer, S.

    2007-09-01

    We recently performed a pilot study determining the parameters of the leading order chiral Lagrangian from distributions of the eigenvalues of a quenched Dirac operator coupled to an imaginary isospin chemical potential. (orig.)

  10. Hyperon-nucleon interactions - a chiral effective field theory approach

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2006-01-01

    We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme

  11. Electric dipole polarizability: from few- to many-body systems

    Directory of Open Access Journals (Sweden)

    Miorelli Mirko

    2016-01-01

    Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.

  12. Nuclear Lattice Simulations with Chiral Effective Field Theory

    OpenAIRE

    Lee, Dean

    2008-01-01

    We present recent results on lattice simulations using chiral effective field theory. In particular we discuss lattice simulations for dilute neutron matter at next-to-leading order and three-body forces in light nuclei at next-to-next-to-leading order.

  13. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    Osborn, James C.

    2011-01-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  14. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  15. Symmetry conservation in the linear chiral soliton model

    International Nuclear Information System (INIS)

    Goeke, K.

    1988-01-01

    The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs

  16. Semileptonic decays of B mesons into excited charm mesons: leading order and 1/mc contributions

    International Nuclear Information System (INIS)

    Mannel, T.

    1994-01-01

    We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays of a B meson into excited daughter mesons. For an excited daughter meson with charm, a single form factor is needed at leading order, while five form factors and two dimensionful constants are needed to order 1/m c in the heavy quark expansion. For non-charmed final states, a total of four form factors are needed at leading order. For the process B→D(*)Xlν, four form factors are also needed at leading order. (orig.)

  17. Flavor effects on the electric dipole moments in supersymmetric theories: A beyond leading order analysis

    International Nuclear Information System (INIS)

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2009-01-01

    The standard model predictions for the hadronic and leptonic electric dipole moments (EDMs) are considerably far from the present experimental resolutions; thus, the EDMs represent very clean probes of new physics effects. Especially, within supersymmetric frameworks with flavor-violating soft terms, large and potentially visible effects to the EDMs are typically expected. In this work, we systematically evaluate the predictions for the EDMs at the beyond leading order. In fact, we show that beyond-leading-order contributions to the EDMs dominate over the leading-order effects in large regions of the supersymmetric parameter space. Hence, their inclusion in the evaluation of the EDMs is unavoidable. As an example, we show the relevance of beyond-leading-order effects to the EDMs for a supersymmetric SU(5) model with right-handed neutrinos.

  18. The next-to-leading order (NLO) gluon distribution from DGLAP ...

    Indian Academy of Sciences (India)

    leading order (NLO) is obtained by applying the method of characteristics. Its compatibility with double leading logarithmic approximation (DLLA) asymptotics is discussed and comparison with the exact ones like GRV98NLO is made. The solution ...

  19. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  20. A Hybrid Strategy for the Lattice Evaluation of the Leading Order Hadronic Contribution to (g - 2)μ

    Science.gov (United States)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2016-04-01

    The leading-order hadronic contribution to the muon anomalous magentic moment, aμLO,HVP, can be expressed as an integral over Euclidean Q2 of the vacuum polarization function. We point out that a simple trapezoid-rule numerical integration of the current lattice data is good enough to produce a result with a less-than-1% error for the contribution from the interval above Q2 ≳ 0.1 - 0.2GeV2. This leaves the interval below this value of Q2 as the one to focus on in the future. In order to achieve an accurate result also in this lower window Q2 ≲ 0.1 - 0.2GeV2, we indicate the usefulness of three possible tools. These are: Padé Approximants, polynomials in a conformal variable and a NNLO Chiral Perturbation Theory representation supplemented by a Q4 term. The combination of the numerical integration in the upper Q2 interval together with the use of these tools in the lower Q2 interval provides a hybrid strategy which looks promising as a means of reaching the desired goal on the lattice of a sub-percent precision in the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

  1. Chiral dynamics with (non)strange quarks

    International Nuclear Information System (INIS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  2. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  3. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    Science.gov (United States)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  4. Coloured quarks and the short range nucleon nucleon interaction

    International Nuclear Information System (INIS)

    Ribeiro, J.E.F.T.

    1978-02-01

    The strong repulsive core that exists in the scattering of two nucleons is studied with the help of the Resonating Group Method (R.G.M.), where the Pauli Principle of fermion antisymmetry is taken explicitly into account. The quark-quark potential is described in terms of colour (long range confining potential) and hyperfine interactions alone. The mass differences N*(1688) - N(938) and Δ(1236) = N(938) are used to fit the two free constants of the assumed quark potential. It is shown that although the Pauli Principle does not exclude ab initio a S state of two nucleons, a strong repulsive potential is, nevertheless, found. Two cases are studied in detail: The Isosinglet case (neutron proton scattering) and the Isotriplet one (identical nucleons). Phase shifts for each case are presented and the obtained relative wave functions are found consistent with the observed experimental features for the repulsive potential. Some formal results concerning an important class of operators characteristic of the present R.G.M. calculations are also presented. (author)

  5. Theoretical aspects of the nucleon-nucleon workshop

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1984-01-01

    This report concentrates on the inelastic NN system from 300 to 1500 MeV. Topics covered include the visibility of quark signals, dibaryons, the model dependence of predicted NN inelasticities, and a review of how well present conventional models compare with a rapidly expanding database. The general conclusion is that there is so far no clear evidence in the NN system at intermediate energies for unconventional dibaryon resonances. Short remarks are also made concerning one theoretical contribution on elastic scattering and on new experimental results for deuteron photo-disintegration and pion-nucleon charge exchange. 11 references

  6. Nucleon-nucleon scattering length from three-body reactions

    International Nuclear Information System (INIS)

    Bodek, K.

    1989-01-01

    Experiments aimed at the measurement of the singlet scattering lengths 1 a np and 1 a nn of the NN-interaction in the presence of a heavy spectator are described. The values obtained are compared with the results of measurements of other reactions. The very good agreement of the experimental values of 1 a np from all breakup reactions and elastic scattering as well as agreement of the values of 1 a nn from breakup reactions and disagreement with the value from the π - d → nnγ reaction cast doubts on the hypothesis ascribing this discrepancy to a 3N-force. This result also suggests a stronger effect of a violation of the charge independence principle than previously accepted. 101 refs., 18 figs., 3 tabs. (author)

  7. Phenomenological renormalization of free nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Prakash, M.; Waghmare, Y.R.; Mehrotra, I.

    1976-01-01

    Low-lying spectra of 6 Li, 18 F, 18 O, 42 Sc, 42 Ca, 58 Ni and 92 Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the 3 S 1 relative state are made (1+α) times their bare interaction value, where α is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME. (orig.) [de

  8. Nucleon-nucleon scattering at LAMPF and KEK

    International Nuclear Information System (INIS)

    Glass, G.

    1988-01-01

    A review of current measurements of spin-dependent observables in p-p and n-p scattering is given for experiments done at two laboratories, Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF) and the National Laboratory for High Energy Physics in Japan (KEK). 18 refs., 12 figs

  9. Hard probes of short-range nucleon-nucleon correlations

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  10. Nucleon-nucleon interaction and the quark model

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1 S and 3 S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42] r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42] r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU 3 . With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU 3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found

  11. Boson-exchange nucleon-nucleon potential and nuclear structure

    International Nuclear Information System (INIS)

    Grange, Pierre.

    1976-01-01

    A fully momentum-dependent one-boson-exchange potential is derived which takes into account the mesons, π, eta, sigma, rho, ω and phi. Scattering bound states and nuclear matter properties are studied in momentum space. The use of such potential is shown to be as easy as the use of more simple phenomenological interactions. In nuclear matter the formalism of Bethe-Goldstone is chosen to compute the binding energy versus density in the approximation of two-body and three-body correlations. The three-body correlated wave function obtained is then used [fr

  12. Search for basic properties of the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Gersten, A.

    1981-01-01

    Extraction of N-N amplitudes directly from phase-shift analysis is described and the results are compared to those obtained via potential or pseudopotential models at low and intermediate energies and through Regge trajectory exchanges and diffraction models at high energies. While potential models fit the experimental data up to about 400 MeV lab energy, the information obtained directly by phase-shift analysis of N-N amplitudes is obtained from experiments in the 400-800 MeV range. At higher energies the real part of the amplitudes becomes better approximated by the first Born term. In this way one can get an insight into the meson exchange structure of the N-N amplitudes. (O.T.)

  13. Quark compound bag (QCB) model and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1983-01-01

    Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction

  14. Pade expansion and the renormalization of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Yang Jifeng; Huang Jianhua; Liu Dan

    2006-01-01

    The importance of imposing physical boundary conditions on the T-matrix to remove to nonperturbative renormalization prescription dependence is stressed and demonstrated in two diagonal channels 1 P 1 and 1 D 2 , with the help of Pade expansion. (authors)

  15. Coherent generation of mesons in nucleon-nucleon interactions

    CERN Document Server

    Takibaev, Z S; Zaitsev, K G

    1974-01-01

    The authors have at an experiment conducted at CERN searched for events of 0 four-prong type which satisfy coherent pion production. The 2-meter hydrogen bubble chamber at CERN was bombarded by 19.07 GeV protons. The cross-section for four final state particle events was 13.04 mb. the cross-section for the process pp to pp pi /sup +/ pi /sup -/ was 1.1 mb and the cross section for coherent pion production was found to vary according to the criteria used between 0.044 mb. and 0.2 mb. Some theoretical work is given using the Glauber formalism in which it is assumed that the nucleon behaves like a nucleus and contains sub-particles. From the theory and data an upper limit of 10 is put on the number of subparticles in the nucleon. (9 refs).

  16. Quarkonium spectral function in medium at next-to-leading order for any quark mass

    International Nuclear Information System (INIS)

    Burnier, Yannis

    2015-01-01

    The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarisation tensor. The spectrum shows a well-defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order, and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations. (orig.)

  17. Towards next-to-leading order transport coefficients from the four-particle irreducible effective action

    International Nuclear Information System (INIS)

    Carrington, M. E.; Kovalchuk, E.

    2010-01-01

    Transport coefficients can be obtained from two-point correlators using the Kubo formulas. It has been shown that the full leading order result for electrical conductivity and (QCD) shear viscosity is contained in the resummed two-point function that is obtained from the three-loop three-particle irreducible resummed effective action. The theory produces all leading order contributions without the necessity for power counting, and in this sense it provides a natural framework for the calculation. In this article we study the four-loop four-particle irreducible effective action for a scalar theory with cubic and quartic interactions, with a nonvanishing field expectation value. We obtain a set of integral equations that determine the resummed two-point vertex function. A next-to-leading order contribution to the viscosity could be obtained from this set of coupled equations.

  18. Leading-order classical Lagrangians for the nonminimal standard-model extension

    Science.gov (United States)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  19. Production of transverse energy from minijets in next-to-leading order perturbative QCD

    CERN Document Server

    Eskola, Kari J

    2000-01-01

    We compute in next-to-leading order (NLO) perturbative QCD the transverse energy carried into the central rapidity unit of hadron or nuclear collisions by the partons freed in the few-GeV subcollisions. The formulation is based on a rapidity window and a measurement function of a new type. The behaviour of the NLO results as a function of the minimum transverse momentum and as a function of the scale choice is studied. The NLO results are found to be stable relative to the leading-order ones even in the few-GeV domain.

  20. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD.

    Science.gov (United States)

    Dixon, Lance J; Luo, Ming-Xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing

    2018-03-09

    The energy-energy correlation (EEC) between two detectors in e^{+}e^{-} annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  1. A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction

    International Nuclear Information System (INIS)

    Frixione, Stefano; Ridolfi, Giovanni; Nason, Paolo

    2007-01-01

    We present a next-to-leading order calculation of heavy flavour production in hadronic collisions that can be interfaced to shower Monte Carlo programs. The calculation is performed in the context of the POWHEG method. It is suitable for the computation of charm, bottom and top hadroproduction. In the case of top production, spin correlations in the decay products are taken into account

  2. Conformally symmetric contributions to BFKL evolution at next to leading order

    International Nuclear Information System (INIS)

    Coriano, C.; White, A.R.

    1995-01-01

    Unitarity corrections to the BFKL evolution at next to leading order determine a new component of the evolution kernel which is shown to possess conformal invariance properties. Expressions for the complete spectrum of the new component and the correction to the intercept of the pomeron trajectory are presented

  3. Leading order finite size effects with spins for inspiralling compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-06-10

    The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.

  4. The importance and use of asymptotic freedom beyond the leading order

    International Nuclear Information System (INIS)

    Duke, D.W.

    1979-05-01

    The theoretical and phenomenological importance of asymptotic freedom beyond the leading order is discussed. The two main topics are (1) the determination of the fundamental scale Λ, and (2) ambiguities in parton model definitions when using the higher order effects of asymptotic freedom. (author)

  5. Single jet photoproduction at HERA in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kramer, G.; Salesch, S.G.

    1993-01-01

    We present results for next- to-leading order calculations of single jet inclusive cross sections by resolved photons in ep-collisions at HERA. The dependence on the jet recombination cut and on the choice of the renormalization and factorization scales is studied in detail. (orig.). 5 figs

  6. Doublet channel neutron-deuteron scattering in leading order effective field theory

    OpenAIRE

    B. BlankleiderFlinders U.; J. Gegelia(INFN)

    2015-01-01

    The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included.

  7. Transverse momentum dependent fragmentation function at next-to-next-to-leading order

    NARCIS (Netherlands)

    Garcia, M.; Scimemi, I.; Vladimirov, A.

    2016-01-01

    We calculate the unpolarized transverse momentum dependent fragmentation function at next-to-next-to-leading order, evaluating separately the transverse momentum dependent (TMD) soft factor and the TMD collinear correlator. For the first time, the cancellation of spurious rapidity divergences in a

  8. Next-to-next-leading order correction to 3-jet rate and event-shape ...

    Indian Academy of Sciences (India)

    The coupling constant, , was measured by two different methods: first by employing the three-jet observables. Combining all the data, the value of as at next-to-next leading order (NNLO) was determined to be 0.117 ± 0.004(hard) ± 0.006(theo). Secondly, from the event-shape distributions, the strong coupling constant, ...

  9. Comparison of three jet events to predictions from a next-to-leading order calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Alexander [Univ. of New Mexico, Albuquerque, NM (United States)

    2002-01-01

    The properties of three-jet events in data of integrated luminosity 86±4 pb-1 from CDF Run 1b and with total transverse energy greater than 175 GeV have been analyzed and compared to predictions from a next-to-leading order perturbative QCD calculation.

  10. Chirality invariance and 'chiral' fields

    International Nuclear Information System (INIS)

    Ziino, G.

    1978-01-01

    The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)

  11. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  12. Mueller-Navelet jets in next-to-leading order BFKL. Theory versus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caporale, F.; Murdaca, B.; Papa, A. [Universita della Calabria, Dipartimento di Fisica, Cosenza (Italy); Gruppo collegato di Cosenza, Istituto Nazionale di Fisica Nucleare, Cosenza (Italy); Ivanov, D.Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk (Russian Federation)

    2014-10-15

    We study, within QCD collinear factorization and including BFKL resummation at the next-to-leading order, the production of Mueller-Navelet jets at LHC with center-of-mass energy of 7 TeV. The adopted jet vertices are calculated in the approximation of a small aperture of the jet cone in the pseudorapidity-azimuthal angle plane. We consider several representations of the dijet cross section, differing only beyond the next-to-leading order, to calculate a few observables related with this process. We use various methods of optimization to fix the energy scales entering the perturbative calculation and compare our results with the experimental data from the CMS collaboration. (orig.)

  13. Multi-parton loop amplitudes and next-to-leading order jet cross-sections

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Kosower, D.A.; Signer, A.

    1998-02-01

    The authors review recent developments in the calculation of QCD loop amplitudes with several external legs, and their application to next-to-leading order jet production cross-sections. When a number of calculational tools are combined together--helicity, color and supersymmetry decompositions, plus unitarity and factorization properties--it becomes possible to compute multi-parton one-loop QCD amplitudes without ever evaluating analytically standard one-loop Feynman diagrams. One-loop helicity amplitudes are now available for processes with five external partons (ggggg, q anti qggg and q anti qq anti q' g), and for an intermediate vector boson V ≡ γ * , Z, W plus four external partons (V q anti q and V q anti qq'anti q'). Using these amplitudes, numerical programs have been constructed for the next-to-leading order corrections to the processes p anti p → 3 jets (ignoring quark contributions so far) and e + e - → 4 jets

  14. Top-quark decay at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  15. Parton-shower uncertainties with Herwig 7: benchmarks at leading order

    Energy Technology Data Exchange (ETDEWEB)

    Bellm, Johannes; Schichtel, Peter [Durham University, Department of Physics, IPPP, Durham (United Kingdom); Nail, Graeme [University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Department of Physics, IPPP, Durham (United Kingdom); University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Siodmok, Andrzej [CERN, TH Department, Geneva (Switzerland); Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics in Cracow, Krakow (Poland)

    2016-12-15

    We perform a detailed study of the sources of perturbative uncertainty in parton-shower predictions within the Herwig 7 event generator. We benchmark two rather different parton-shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work. (orig.)

  16. The Gluon-Induced Mueller-Tang Jet Impact Factor at Next-to-Leading Order

    CERN Document Server

    Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio

    2014-01-01

    We complete the computation of the Mueller-Tang jet impact factor at next-to-leading order (NLO) initiated in arXiv:1406.5625 and presented in arXiv:1404.2937 by computing the real corrections associated to gluons in the initial state making use of Lipatov's effective action. NLO corrections for this effective vertex are an important ingredient for a reliable description of large rapidity gap phenomenology within the BFKL approach.

  17. Regge behaviour of structure function and gluon distribution at low-x in leading order

    International Nuclear Information System (INIS)

    Sarma, J.K.

    2000-01-01

    We present a method to find the gluon distribution from the F 2 proton structure function data at low-x assuming the Regge behaviour of the gluon distribution function at this limit. We use the leading order (LO) Altarelli-Parisi (AP) evolution equation in our analysis and compare our result with those of other authors. We also discuss the limitations of the Taylor expansion method in extracting the gluon distribution from the F 2 structure function used by those authors. (orig.)

  18. A next-to-leading order QCD analysis of the spin structure function $g_1$

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1998-01-01

    We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.

  19. Next to leading order evolution of SIDIS processes in the forward region

    International Nuclear Information System (INIS)

    Daleo, A.; Sassot, R.

    2003-01-01

    We compute the order α s 2 quark initiated corrections to semi-inclusive deep inelastic scattering extending the approach developed recently for the gluon contributions. With these corrections we complete the order α s 2 QCD description of these processes, verifying explicitly the factorization of collinear singularities. We also obtain the corresponding NLO evolution kernels, relevant for the scale dependence of fracture functions. We compare the non-homogeneous evolution effects driven by these kernels with those obtained at leading order accuracy and discuss their phenomenological implications

  20. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  1. Next-to leading order analysis of target mass corrections to structure functions and asymmetries

    International Nuclear Information System (INIS)

    Brady, L.T.; Accardi, A.; Hobbs, T.J.; Melnitchouk, W.

    2011-01-01

    We perform a comprehensive analysis of target mass corrections (TMCs) to spin-averaged structure functions and asymmetries at next-to-leading order. Several different prescriptions for TMCs are considered, including the operator product expansion, and various approximations to it, collinear factorization, and xi-scaling. We assess the impact of each of these on a number of observables, such as the neutron to proton F 2 structure function ratio, and parity-violating electron scattering asymmetries for protons and deuterons which are sensitive to gamma-Z interference effects. The corrections from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also quantified.

  2. Leading-order hadronic contribution to g-2 from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B.; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Feng, Xu [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Petschlies, Marcus [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2011-03-15

    We calculate the leading-order hadronic correction to the anomalous magnetic moments of each of the three charged leptons in the Standard Model: the electron, muon and tau. Working in two-flavor lattice QCD, we address essentially all sources of systematic error: lattice artifacts, finite-size effects, quark-mass extrapolation, momentum extrapolation and disconnected diagrams. The most significant remaining systematic error, the exclusion of the strange and charm quark contributions, is addressed in our four-flavor calculation. We achieve a statistical accuracy of 2% or better for the physical values for each of the three leptons and the systematic errors are at most comparable. (orig.)

  3. Detailed comparison of next-to-leading order predictions for jet photoproduction at HERA.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. W.; Klassen, M.; Vossebeld, J.

    1999-06-02

    The precision of new HERA data on jet photoproduction opens up the possibility to discriminate between different models of the photon structure. This requires equally precise theoretical predictions from perturbative QCD calculations. In the past years, next-to-leading order calculations for the photoproduction of jets at HERA have become available. Using the kinematic cuts of recent ZEUS analyses, we compare the predictions of three calculations for different dijet and three-jet distributions. We find that in general all three calculations agree within the statistical accuracy of the Monte Carlo integration yielding reliable theoretical predictions. In certain restricted regions of phase space, the calculations differ by up to 5%.

  4. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    CERN Document Server

    Degrande, Celine; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-04-10

    We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  5. Matching the Nagy-Soper parton shower at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Manfred [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University (Germany)

    2015-07-01

    We give a short review of the shower concept, first introduced by Nagy and Soper, that includes full quantum correlations in the shower evolution. We also state the current status of implementation of the publicly available shower program Deductor. However, the main focus of the talk is the matching of the shower at next-to-leading order within the MC rate at NLO formalism. Matching is necessary in order to increase the accuracy of theoretical predictions and to employ a hadronization model. We show first results using Deductor in conjunction with the Helac-NLO framework for top quark pair production in association with one hard jet.

  6. Next to Leading Order QCD Corrections to Polarized $\\Lambda$ Production in DIS

    CERN Document Server

    de Florian, D

    1997-01-01

    We calculate next to leading order QCD corrections to semi-inclusive polarized deep inelastic scattering and $e^+e^-$ annihilation cross sections for processes where the polarization of the identified final-state hadron can also be determined. Using dimensional regularization and the HVBM prescription for the $\\gamma_5$ matrix, we compute corrections for different spin-dependent observables, both in the $\\overline{MS}$ and $\\overline{MS_p}$ factorization schemes, and analyse their structure. In addition to the well known corrections to polarized parton distributions, we also present those for final-state polarized fracture functions and polarized fragmentation functions, in a consistent factorization scheme.

  7. Automized squark-neutralino production to next-to-leading order

    International Nuclear Information System (INIS)

    Binoth, Thomas; Wigmore, Ioan; Netto, Dorival Goncalves; Lopez-Val, David; Plehn, Tilman; Mawatari, Kentarou

    2011-01-01

    The production of one hard jet in association with missing transverse energy is a major LHC search channel motivated by many scenarios for physics beyond the standard model. In scenarios with a weakly interacting dark matter candidate, like supersymmetry, it arises from the associated production of a quark partner with the dark matter agent. We present the next-to-leading-order cross section calculation as the first application of the fully automized MadGolem package. We find moderate corrections to the production rate with a strongly reduced theory uncertainty.

  8. A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction

    International Nuclear Information System (INIS)

    Nason, Paolo; Ridolfi, Giovanni

    2006-01-01

    We present a first application of a previously published method for the computation of QCD processes that is accurate at next-to-leading order, and that can be interfaced consistently to standard shower Monte Carlo programs. We have considered Z pair production in hadron-hadron collisions, a process whose complexity is sufficient to test the general applicability of the method. We have interfaced our result to the HERWIG and PYTHIA shower Monte Carlo programs. Previous work on next-to-leading order corrections in a shower Monte Carlo (the MC-NLO program) may involve the generation of events with negative weights, that are avoided with the present method. We have compared our results with those obtained with MC-NLO, and found remarkable consistency. Our method can also be used as a standalone, alternative implementation of QCD corrections, with the advantage of positivity, improved convergence, and next-to-leading logarithmic accuracy in the region of small transverse momentum of the radiated parton

  9. Next-to-leading order QCD predictions for the hadronic WH+jet production

    International Nuclear Information System (INIS)

    Su Jijuan; Ma Wengan; Zhang Renyou; Guo Lei

    2010-01-01

    We calculate the next-to-leading order (NLO) QCD corrections to the WH 0 production in association with a jet at hadron colliders. We study the impacts of the complete NLO QCD radiative corrections to the integrated cross sections, the scale dependence of the cross sections, and the differential cross sections ((dσ/dcosθ), (dσ/dp T )) of the final W-, Higgs boson and jet. We find that the corrections significantly modify the physical observables, and reduce the scale uncertainty of the leading-order cross section. Our results show that by applying the inclusive scheme with p T,j cut =20 GeV and taking m H =120 GeV, μ=μ 0 ≡(1/2)(m W +m H ), the K-factor is 1.15 for the process pp→W ± H 0 j+X at the Tevatron, while the K-factors for the processes pp→W - H 0 j+X and pp→W + H 0 j+X at the LHC are 1.12 and 1.08, respectively. We conclude that to understand the hadronic associated WH 0 production, it is necessary to study the NLO QCD corrections to the WH 0 j production process which is part of the inclusive WH 0 production.

  10. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  11. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    CERN Document Server

    Adolph, C.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jorg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; J.Matou s; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; M. Pe s; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Wolbeek, J. ter; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-01-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({\\rm GeV}/c)^2$. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/$c$ polarised muon beam impinging on a polarised $^6$LiD target. By analysing the full range in hadron transverse momentum $p_T$, the different $p_T$-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation $\\Delta g/g$ is evaluated at leading order in pQCD at a hard scale of $\\mu^2 = \\langle Q^2\\rangle = 3(GeV=c)^2$. It is determined in three intervals of the nucleon momentum fraction carried by gluons, $x_g$, covering the range $0.04 \\!<\\! x_{ \\rm g}\\! <\\! 0.28$ . and does not exhibit a significant dependence on $x_{\\rm g}$. Average...

  12. Differential Higgs boson pair production at next-to-next-to-leading order in QCD

    International Nuclear Information System (INIS)

    Florian, Daniel de; Mazzitelli, Javier; Grazzini, Massimiliano; Hanga, Catalin; Lindert, Jonas M.; Kallweit, Stefan; Maierhoefer, Philipp; Rathlev, Dirk

    2016-06-01

    We report on the first fully differential calculation for double Higgs boson production through gluon fusion in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. The calculation is performed in the heavy-top limit of the Standard Model, and in the phenomenological results we focus on pp collisions at √(s)=14 TeV. We present differential distributions through NNLO for various observables including the transverse-momentum and rapidity distributions of the two Higgs bosons. NNLO corrections are at the level of 10%-25% with respect to the next-to-leading order (NLO) prediction with a residual scale uncertainty of 5%-15% and an overall mild phase-space dependence. Only at NNLO the perturbative expansion starts to converge yielding overlapping scale uncertainty bands between NNLO and NLO in most of the phase-space. The calculation includes NLO predictions for pp→HH+jet+X. Corrections to the corresponding distributions exceed 50% with a residual scale dependence of 20%-30%.

  13. The radiative decays $B \\to V_{\\gamma}$ at next-to-leading order in QCD

    CERN Document Server

    Bosch, S W; Bosch, Stefan W.; Buchalla, Gerhard

    2002-01-01

    We provide a model-independent framework for the analysis of the radiative B-meson decays B -> K* gamma and B -> rho gamma. In particular, we give a systematic discussion of the various contributions to these exclusive processes based on the heavy-quark limit of QCD. We propose a novel factorization formula for the consistent treatment of B -> V gamma matrix elements involving charm (or up-quark) loops, which contribute at leading power in Lambda_QCD/m_B to the decay amplitude. Annihilation topologies are shown to be power suppressed. In some cases they are nevertheless calculable. The approach is similar to the framework of QCD factorization that has recently been formulated for two-body non-leptonic B decays. These results allow us, for the first time, to compute exclusive b -> s(d) gamma decays systematically beyond the leading logarithmic approximation. We present results for these decays complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Phenomenological implications ...

  14. Event generation for next to leading order chargino production at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Robens, T.

    2006-10-15

    At the International Linear Collider (ILC), parameters of supersymmetry (SUSY) can be determined with an experimental accuracy matching the precision of next-to-leading order (NLO) and higher-order theoretical predictions. Therefore, these contributions need to be included in the analysis of the parameters. We present a Monte-Carlo event generator for simulating chargino pair production at the ILC at next-to-leading order in the electroweak couplings. We consider two approaches of including photon radiation. A strict fixed-order approach allows for comparison and consistency checks with published semianalytic results in the literature. A version with soft- and hard-collinear resummation of photon radiation, which combines photon resummation with the inclusion of the NLO matrix element for the production process, avoids negative event weights, so the program can simulate physical (unweighted) event samples. Photons are explicitly generated throughout the range where they can be experimentally resolved. In addition, it includes further higher-order corrections unaccounted for by the fixed-order method. Inspecting the dependence on the cutoffs separating the soft and collinear regions, we evaluate the systematic errors due to soft and collinear approximations for NLO and higher-order contributions. In the resummation approach, the residual uncertainty can be brought down to the per-mil level, coinciding with the expected statistical uncertainty at the ILC. We closely investigate the two-photon phase space for the resummation method. We present results for cross sections and event generation for both approaches. (orig.)

  15. Study of beauty quark production and next-to-leading order at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Nuncio Quiroz, Adriana Elizabeth

    2008-08-15

    In this thesis a study on the production and evolution of beauty quarks in ep collisions at HERA is presented. The emphasis is put on the corresponding Quantum Chromodynamics predictions including next-to-leading order corrections. In the context of this work the FMNR x Pythia interface was developed, which calculates next-to-leading order Quantum Chromodynamics predictions at visible level for heavy-flavour processes in the photoproduction regime. This is achieved using the RedStat routines which transform the FMNR program into a Monte Carlo-like event generator. The parton-level events obtained are interfaced to Pythia using the Le Houches accord routines. All branching ratios and decay channels of the heavy quarks implemented in the Pythia framework are used, and therefore complex cuts on the nal state can be applied. The FMNR x Pythia interface is applied in this thesis to obtain next-to-leading order predictions for the recently finished heavy flavour ZEUS analyses: the ep {yields} b anti bX {yields} D{sup *}{mu}X' and ep {yields} b anti bX {yields} {mu}{sup +}{mu}{sup -}X' channels. A comparison with the H1 D{sup *}{mu} measurement is also performed. Since the use of such double tagging techniques to identify events where heavy flavours are present proved to be very convenient when the nal state is a pair of leptons, another part of this thesis work deals with the implementation of an electron finder, the {sup G}Elec finder. This finder is tested on the reconstruction of the J/{psi} {yields} e{sup +}e{sup -} signal. Finally, a heavy-flavour analysis has been started, namely the ep {yields} b anti bX {yields} e{mu}X' dilepton channel, using an integrated luminosity of 114 pb{sup -1} gated by the ZEUS detector in the years 1996-2000. Compared to previous analyses the study of beauty quark production in this channel extends the phase space of the measurement closer to the kinematic threshold, since electrons provide access to lower p{sub T} values

  16. Study of beauty quark production and next-to-leading order effects at HERA

    International Nuclear Information System (INIS)

    Nuncio Quiroz, Adriana Elizabeth

    2008-08-01

    In this thesis a study on the production and evolution of beauty quarks in ep collisions at HERA is presented. The emphasis is put on the corresponding Quantum Chromodynamics predictions including next-to-leading order corrections. In the context of this work the FMNR x Pythia interface was developed, which calculates next-to-leading order Quantum Chromodynamics predictions at visible level for heavy-flavour processes in the photoproduction regime. This is achieved using the RedStat routines which transform the FMNR program into a Monte Carlo-like event generator. The parton-level events obtained are interfaced to Pythia using the Le Houches accord routines. All branching ratios and decay channels of the heavy quarks implemented in the Pythia framework are used, and therefore complex cuts on the nal state can be applied. The FMNR x Pythia interface is applied in this thesis to obtain next-to-leading order predictions for the recently finished heavy flavour ZEUS analyses: the ep → b anti bX → D * μX' and ep → b anti bX → μ + μ - X' channels. A comparison with the H1 D * μ measurement is also performed. Since the use of such double tagging techniques to identify events where heavy flavours are present proved to be very convenient when the nal state is a pair of leptons, another part of this thesis work deals with the implementation of an electron finder, the G Elec finder. This finder is tested on the reconstruction of the J/ψ → e + e - signal. Finally, a heavy-flavour analysis has been started, namely the ep → b anti bX → eμX' dilepton channel, using an integrated luminosity of 114 pb -1 gated by the ZEUS detector in the years 1996-2000. Compared to previous analyses the study of beauty quark production in this channel extends the phase space of the measurement closer to the kinematic threshold, since electrons provide access to lower p T values than muons do. The technical part of this thesis consisted in the calibration, maintenance and data

  17. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  18. Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Degrande, Celine [CERN, Theory Division, Geneva 23 (Switzerland); Fuks, Benjamin [Sorbonne Universites, UPMC Univ. Paris 06, Paris (France); CNRS, Paris (France); Mawatari, Kentarou [Universite Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Vrije Universiteit Brussel, Theoretische Natuurkunde and IIHE/ELEM, International Solvay Institutes, Brussels (Belgium); Mimasu, Ken [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    We study the impact of dimension-six operators of the standard model effective field theory relevant for vector-boson fusion and associated Higgs boson production at the LHC. We present predictions at the next-to-leading order accuracy in QCD that include matching to parton showers and that rely on fully automated simulations. We show the importance of the subsequent reduction of the theoretical uncertainties in improving the possible discrimination between effective field theory and standard model results, and we demonstrate that the range of the Wilson coefficient values allowed by a global fit to LEP and LHC Run I data can be further constrained by LHC Run II future results. (orig.)

  19. Higgs boson production in association with a jet at next-to-next-to-leading order

    CERN Document Server

    Boughezal, Radja; Melnikov, Kirill; Petriello, Frank; Schulze, Markus

    2015-01-01

    We present precise predictions for Higgs boson production in association with a jet. Our calculation is accurate to next-to-next-to-leading order (NNLO) QCD in the Higgs Effective Field Theory and constitutes the first complete NNLO computation for Higgs production with a final-state jet in hadronic collisions. We include all relevant phenomenological channels and present fully-differential results as well as total cross sections for the LHC. Our NNLO predictions reduce the unphysical scale dependence by more than a factor of two and enhance the total rate by about twenty percent compared to NLO QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.

  20. Next-to-next-to-leading order evolution of non-singlet fragmentation functions

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.

    2006-04-01

    We have investigated the next-to-next-to-leading order (NNLO) corrections to inclusive hadron production in e + e - annihilation and the related parton fragmentation distributions, the 'time-like' counterparts of the 'space-like' deep-inelastic structure functions and parton densities. We have re-derived the corresponding second-order coefficient functions in massless perturbative QCD, which so far had been calculated only by one group. Moreover we present, for the first time, the third-order splitting functions governing the NNLO evolution of flavour non-singlet fragmentation distributions. These results have been obtained by two independent methods relating time-like quantities to calculations performed in deep-inelastic scattering. We briefly illustrate the numerical size of the NNLO corrections, and make a prediction for the difference of the yet unknown time-like and space-like splitting functions at the fourth order in the strong coupling constant. (Orig.)

  1. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Feng, Xu [High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Hotzel, Grit [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, D-15738 Zeuthen (Germany); Department of Physics, University of Cyprus,P.O.Box 20537, 1678 Nicosia (Cyprus); Petschlies, Marcus [The Cyprus Institute,P.O.Box 27456, 1645 Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab,12000 Jefferson Avenue, Newport News, VA 23606 (United States); Collaboration: The ETM Collaboration

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sub μ}{sup hvp}. Our final result including an estimate of the systematic uncertainty a{sub μ}{sup hvp}=6.74(21)(18)⋅10{sup −8} shows a good overall agreement with these computations.

  2. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-01-01

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a μ hvp , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a μ hvp . Our final result including an estimate of the systematic uncertainty a μ hvp =6.74(21)(18)⋅10 −8 shows a good overall agreement with these computations

  3. On top-pair hadro-production at next-to-next-to-leading order

    International Nuclear Information System (INIS)

    Moch, S.; Uwer, P.; Vogt, A.

    2012-03-01

    We study the QCD corrections at next-to-next-to-leading order (NNLO) to the cross section for the hadronic pair-production of top quarks. We present new results in the high-energy limit using the well-known framework of k t -factorization. We combine these findings with the known threshold corrections and present improved approximate NNLO results over the full kinematic range. This approach is employed to quantify the residual theoretical uncertainty of the approximate NNLO results which amounts to about 4% for the Tevatron and 5% for the LHC cross-section predictions. Our analytic results in the high-energy limit will provide an important check on future computations of the complete NNLO cross sections.

  4. Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory.

    Science.gov (United States)

    Zhang, Cen

    2016-04-22

    Single top production processes at hadron colliders provide information on the relation between the top quark and the electroweak sector of the standard model. We compute the next-to-leading order QCD corrections to the three main production channels: t-channel, s-channel, and tW associated production, in the standard model including operators up to dimension six. The calculation can be matched to parton shower programs and can therefore be directly used in experimental analyses. The QCD corrections are found to significantly impact the extraction of the current limits on the operators, because both of an improved accuracy and a better precision of the theoretical predictions. In addition, the distributions of some of the key discriminating observables are modified in a nontrivial way, which could change the interpretation of measurements in terms of UV complete models.

  5. The Higgs transverse momentum spectrum with finite quark masses beyond leading order

    CERN Document Server

    Caola, Fabrizio; Marzani, Simone; Muselli, Claudio; Vita, Gherardo

    2016-01-01

    We apply the leading-log high-energy resummation technique recently derived by some of us to the transverse momentum (pt) distribution for production of a Higgs boson in gluon fusion. We use our results to obtain information on mass-dependent corrections to this observable, which is only known at leading order when exact mass dependence is included. In the low pt region we discuss the all-order exponentiation of collinear bottom mass logarithms. In the high pt region we show that the infinite top mass approximation loses accuracy as a power of pt, while the accuracy of the high-energy approximation is approximately constant as pt grows. We argue that a good approximation to the NLO result for pt >~200 GeV can be obtained by combining the full LO result with a K-factor computed using the high-energy approximation.

  6. Model for next-to-leading order threshold resummed form factors

    International Nuclear Information System (INIS)

    Aglietti, Ugo; Ricciardi, Giulia

    2004-01-01

    We present a model for next-to-leading order resummed threshold form factors based on a timelike coupling recently introduced in the framework of small x physics. Improved expressions for the form factors in N-space are obtained which are not plagued by Landau-pole singularities, as the included absorptive effects - usually neglected - act as regulators. The physical reason is that, because of faster decay of gluon jets, there is not enough resolution time to observe the Landau pole. Our form factors reduce to the standard ones when the absorptive parts related to the coupling are neglected. The inverse transform from N-space to x-space can be done directly without any prescription and we obtain analytical expressions for the form factors, which are well defined in all x-space

  7. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  8. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  9. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  10. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

    Science.gov (United States)

    Azadbakht, F. Teimoury; Boroun, G. R.

    2018-02-01

    We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

  11. Direct Photon Production at Next-to–Next-to-Leading Order

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2017-05-01

    We present the first calculation of direct photon production at next-to-next-to leading order (NNLO) accuracy in QCD. For this process, although the final state cuts mandate only the presence of a single electroweak boson, the underlying kinematics resembles that of a generic vector boson plus jet topology. In order to regulate the infrared singularities present at this order we use the $N$-jettiness slicing procedure, applied for the first time to a final state that at Born level includes colored partons but no required jet. We compare our predictions to ATLAS 8 TeV data and find that the inclusion of the NNLO terms in the perturbative expansion, supplemented by electroweak corrections, provides an excellent description of the data with greatly reduced theoretical uncertainties.

  12. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    International Nuclear Information System (INIS)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.; Aghasyan, M.; Birsa, R.; Dalla Torre, S.; Levorato, S.; Santos, C.; Sozzi, F.; Tessaro, S.; Tessarotto, F.; Akhunzyanov, R.; Alexeev, G.D.; Anfimov, N.V.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.M.; Kroumchtein, Z.V.; Meshcheryakov, G.V.; Nagaytsev, A.; Olshevsky, A.G.; Orlov, I.; Peshekhonov, D.V.; Rossiyskaya, N.S.; Rybnikov, A.; Savin, I.A.; Selyunin, A.; Shevchenko, O.Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E.; Alexeev, M.G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A.M.; Longo, R.; Parsamyan, B.; Takekawa, S.; Andrieux, V.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; Hose, N. d'; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Seder, E.; Thibaud, F.; Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P.; Austregesilo, A.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Kraemer, M.; Krinner, F.; Paul, S.; Uhl, S.; Azevedo, C.D.R.; Pereira, F.; Veloso, J.; Badelek, B.; Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H.; Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Mallot, G.K.; Schoenning, K.; Bodlak, M.; Finger, M.; Finger, M. Jr.; Matousek, J.; Pesek, M.; Roskot, M.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Dasgupta, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Nowak, W.D.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Wolbeek, J. ter; Chang, W.C.; Hsieh, C.Y.; Sawada, T.; Choi, I.; Giordano, F.; Grosse Perdekamp, M.; Heitz, R.; Kulinich, Y.; Makins, N.; Montuenga, P.; Peng, J.C.; Riedl, C.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.S.; Dhara, L.; Sarkar, S.; Sinha, L.; Denisov, O.Yu.; Maggiora, A.; Panzieri, D.; Tosello, F.; Donskov, S.V.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.; Suzuki, H.; Duic, V.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.; Fresne von Hohenesche, N. du; Harrach, D. von; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.

    2017-01-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q"2 > 1 (GeV/c)"2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam impinging on a polarised "6LiD target. By analysing the full range in hadron transverse momentum p_T, the different p_T-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g is evaluated at leading order in pQCD at a hard scale of μ"2 = left angle Q"2 right angle = 3 (GeV/c)"2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x_g, covering the range 0.04 < x_g < 0.28 and does not exhibit a significant dependence on x_g. The average over the three intervals, left angle Δg/g right angle = 0.113 ± 0.038_(_s_t_a_t_._) ± 0.036_(_s_y_s_t_._) at left angle x_g right angle ∼ 0.10, suggests that the gluon polarisation is positive in the measured x_g range. (orig.)

  13. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Aghasyan, M.; Birsa, R.; Dalla Torre, S.; Levorato, S.; Santos, C.; Sozzi, F.; Tessaro, S.; Tessarotto, F. [INFN, Trieste (Italy); Akhunzyanov, R.; Alexeev, G.D.; Anfimov, N.V.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.M.; Kroumchtein, Z.V.; Meshcheryakov, G.V.; Nagaytsev, A.; Olshevsky, A.G.; Orlov, I.; Peshekhonov, D.V.; Rossiyskaya, N.S.; Rybnikov, A.; Savin, I.A.; Selyunin, A.; Shevchenko, O.Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexeev, M.G. [University of Turin, Department of Physics, Turin (Italy); Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A.M.; Longo, R.; Parsamyan, B.; Takekawa, S. [University of Turin, Department of Physics, Turin (Italy); INFN, Turin (Italy); Andrieux, V.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; Hose, N. d' ; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Seder, E.; Thibaud, F. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P. [National Centre for Nuclear Research, Warsaw (Poland); Austregesilo, A.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Kraemer, M.; Krinner, F.; Paul, S.; Uhl, S. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Azevedo, C.D.R.; Pereira, F.; Veloso, J. [University of Aveiro, Department of Physics, Aveiro (Portugal); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bedfer, Y. [CERN, Geneva 23 (Switzerland); CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Bernhard, J. [CERN, Geneva 23 (Switzerland); Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Bielert, E.R.; Mallot, G.K.; Schoenning, K. [CERN, Geneva 23 (Switzerland); Bodlak, M.; Finger, M.; Finger, M. Jr.; Matousek, J.; Pesek, M.; Roskot, M. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F.; Bressan, A.; Dasgupta, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P. [University of Trieste, Department of Physics, Trieste (Italy); INFN, Trieste (Italy); Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Nowak, W.D.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Wolbeek, J. ter [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Chang, W.C.; Hsieh, C.Y.; Sawada, T. [Academia Sinica, Institute of Physics, Taipei (China); Choi, I.; Giordano, F.; Grosse Perdekamp, M.; Heitz, R.; Kulinich, Y.; Makins, N.; Montuenga, P.; Peng, J.C.; Riedl, C. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, IL (United States); Cicuttin, A.; Crespo, M.L. [INFN, Trieste (Italy); Abdus Salam ICTP, Trieste (Italy); Dasgupta, S.S.; Dhara, L.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Panzieri, D.; Tosello, F. [INFN, Turin (Italy); Donskov, S.V.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Scientific Center Institute for High Energy Physics of National Research Center ' Kurchatov Institute' , Protvino (Russian Federation); Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duic, V. [University of Trieste, Department of Physics, Trieste (Italy); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M. [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Fresne von Hohenesche, N. du; Harrach, D. von; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Collaboration: COMPASS Collaboration; and others

    2017-04-15

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q{sup 2} > 1 (GeV/c){sup 2}. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam impinging on a polarised {sup 6}LiD target. By analysing the full range in hadron transverse momentum p{sub T}, the different p{sub T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g is evaluated at leading order in pQCD at a hard scale of μ{sup 2} = left angle Q{sup 2} right angle = 3 (GeV/c){sup 2}. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x{sub g}, covering the range 0.04 < x{sub g} < 0.28 and does not exhibit a significant dependence on x{sub g}. The average over the three intervals, left angle Δg/g right angle = 0.113 ± 0.038{sub (stat.)} ± 0.036{sub (syst.)} at left angle x{sub g} right angle ∼ 0.10, suggests that the gluon polarisation is positive in the measured x{sub g} range. (orig.)

  14. Chiral mirrors

    International Nuclear Information System (INIS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  15. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  16. Analytic treatment of leading-order parton evolution equations: Theory and tests

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; McKay, Douglas W.

    2009-01-01

    We recently derived an explicit expression for the gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) in terms of the proton structure function F 2 γp (x,Q 2 ) in leading-order (LO) QCD by solving the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for the Q 2 evolution of F 2 γp (x,Q 2 ) analytically, using a differential-equation method. We showed that accurate experimental knowledge of F 2 γp (x,Q 2 ) in a region of Bjorken x and virtuality Q 2 is all that is needed to determine the gluon distribution in that region. We rederive and extend the results here using a Laplace-transform technique, and show that the singlet quark structure function F S (x,Q 2 ) can be determined directly in terms of G from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi gluon evolution equation. To illustrate the method and check the consistency of existing LO quark and gluon distributions, we used the published values of the LO quark distributions from the CTEQ5L and MRST2001 LO analyses to form F 2 γp (x,Q 2 ), and then solved analytically for G(x,Q 2 ). We find that the analytic and fitted gluon distributions from MRST2001LO agree well with each other for all x and Q 2 , while those from CTEQ5L differ significantly from each other for large x values, x > or approx. 0.03-0.05, at all Q 2 . We conclude that the published CTEQ5L distributions are incompatible in this region. Using a nonsinglet evolution equation, we obtain a sensitive test of quark distributions which holds in both LO and next-to-leading order perturbative QCD. We find in either case that the CTEQ5 quark distributions satisfy the tests numerically for small x, but fail the tests for x > or approx. 0.03-0.05--their use could potentially lead to significant shifts in predictions of quantities sensitive to large x. We encountered no problems with the MRST2001LO distributions or later CTEQ distributions. We suggest caution in the use of the CTEQ5 distributions.

  17. Similarity renormalization group evolution of N N interactions within a subtractive renormalization scheme

    Directory of Open Access Journals (Sweden)

    Durães F.O.

    2010-04-01

    Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral effective field theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a fixed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoff through the SRG transformation.

  18. Virasoro vacuum block at next-to-leading order in the heavy-light limit

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento & INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-02-11

    We consider the semiclassical limit of the vacuum Virasoro block describing the diagonal 4-point correlation functions on the sphere. At large central charge c, after exponentiation, it depends on two fixed ratios h{sub H}/c and h{sub L}/c, where h{sub H,L} are the conformal dimensions of the 4-point function operators. The semiclassical block may be expanded in powers of the light ratio h{sub L}/c and the leading non-trivial (linear) order is known in closed form as a function of h{sub H}/c. Recently, this contribution has been matched against AdS{sub 3} gravity calculations where heavy operators build up a classical geometry corresponding to a BTZ black hole, while the light operators are described by a geodesic in this background. Here, we compute for the first time the next-to-leading quadratic correction O((h{sub L}/c){sup 2}), again in closed form for generic heavy operator ratio h{sub H}/c. The result is a highly non-trivial extension of the leading order and may be relevant for further refined AdS{sub 3}/CFT{sub 2} tests. Applications to the two-interval Rényi entropy are also presented.

  19. Leading-order hadronic contribution to the electron and muon g-2

    International Nuclear Information System (INIS)

    Jegerlehner, Fred; Humboldt-Univ. Berlin

    2015-11-01

    I present a new data driven update of the hadronic vacuum polarization effects for the muon and the electron g-2. For the leading order contributions I find a had(1) μ =(686.99±4.21)[687.19±3.48] x 10 -10 based on e + e - data [incl. τ data], a had(2) μ =(-9.934± 0.091) x 10 -10 (NLO) and a had(3) μ =(1.226±0.012) x 10 -10 (NNLO) for the muon, and a had(1) e =(184.64±1.21) x 10 -14 (LO), a had(2) e =(-22.10±0.14) x 10 -14 (NLO) and a had(3) e =(2.79±0.02) x 10 -14 (NNLO) for the electron. A problem with vacuum polarization undressing of cross-sections (time-like region) is addressed. I also add a comment on properly including axial mesons in the hadronic light-by-light scattering contribution. My estimate here reads aμ[a 1 ,f 1 ' ,f 1 ]∝(7.51±2.71) x 10 -11 . With these updates a exp μ - the μ =(32.73±8.15) x 10 -10 a 4.0σ deviation, while a exp e -a the e =(-1.10±0.82) x 10 -12 shows no significant deviation.

  20. Next-to-leading-order tests of NRQCD factorization with J/{psi} yield and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Butenschoen, Mathias [Wien Univ. (Austria). Fakultaet fuer Physik; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    We report on recent progress in testing the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) at next-to-leading order (NLO) for J/{psi} yield and polarization. We demonstrate that it is possible to unambiguously determine the leading color-octet long-distance matrix elements (LDMEs) in compliance with the velocity scaling rules through a global fit to experimental data of unpolarized J/{psi} production in pp, p anti p, ep, {gamma}{gamma}, and e{sup +}e{sup -} collisions.Three data sets not included in the fit, from hadroproduction and from photoproduction in the fixed-target and colliding-beam modes, are nicely reproduced. The polarization observables measured in different frames at DESY HERA and CERN LHC reasonably agree with NLO NRQCD predictions obtained using the LDMEs extracted from the global fit, while measurements from the FNAL Tevatron exhibit severe disagreement. We demonstrate that alternative LDME sets recently obtained in two other NLO NRQCD analyses of J/{psi} yield and polarization, with different philosophies, also fail to reconcile the Tevatron polarization data with the other available world data.

  1. Resummed B→Xulν decay distributions to next-to-leading order

    International Nuclear Information System (INIS)

    Aglietti, U.

    2001-01-01

    We perform factorization of the most general distribution in semileptonic B→X u decays and we resum the threshold logarithms to next-to-leading order. From this (triple-differential) distribution, any other distribution is obtained by integration. As an application of our method, we derive simple analytical expressions for a few distributions, resummed to leading approximation. It is shown that the shape function can be directly determined by measuring the distribution in m X 2 /E X 2 , not in m X 2 /m B 2 . We compute the resummed hadron energy spectrum, which has a 'Sudakov shoulder', and we show how the distribution in the singular region is related to the shape function. We also present an improved formula for the photon spectrum in B→X s γ, which includes soft-gluon resummation and non-leading operators in the effective Hamiltonian. We explicitly show that the same non-perturbative function -- namely, the shape function -- controls the non-perturbative effects in all the distributions in the semileptonic and in the rare decay

  2. Properties of Lithium-11 and Carbon-22 at leading order in halo effective field theory

    Directory of Open Access Journals (Sweden)

    Acharya Bijaya

    2016-01-01

    Full Text Available We study the 11Li and 22C nuclei at leading order (LO in halo effective field theory (Halo EFT. Using the value of the 22C rms matter radius deduced in Ref. [1] as an input in a LO calculation, we simultaneously constrain the values of the two-neutron (2n separation energy of 22C and the virtual-state energy of the 20C−neutron system (hereafter denoted 21C. The 1−σ uncertainty of the input rms matter radius datum, along with the theory error estimated from the anticipated size of the higher-order terms in the Halo EFT expansion, gives an upper bound of about 100 keV for the 2n separation energy. We also study the electric dipole excitation of 2n halo nuclei to a continuum state of two neutrons and the core at LO in Halo EFT. We first compare our results with the 11Li data from a Coulomb dissociation experiment and obtain good agreement within the theoretical uncertainty of a LO calculation. We then obtain the low-energy spectrum of B(E1 of this transition at several different values of the 2n separation energy of 22C and the virtual-state energy of 21C. Our predictions can be compared to the outcome of an ongoing experiment on the Coulomb dissociation of 22C to obtain tighter constraints on the two- and three-body energies in the 22C system.

  3. Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.

    Science.gov (United States)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2017-05-26

    In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.

  4. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    Science.gov (United States)

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  5. Next-to-leading order strong interaction corrections to the ΔF = 2 effective Hamiltonian in the MSSM

    International Nuclear Information System (INIS)

    Ciuchini, Marco; Franco, E.; Guadagnoli, D.; Lubicz, Vittorio; Porretti, V.; Silvestrini, L.

    2006-01-01

    We compute the next-to-leading order strong interaction corrections to gluino-mediated ΔF = 2 box diagrams in the Minimal Supersymmetric Standard Model. These corrections are given by two loop diagrams which we have calculated in three different regularization schemes in the mass insertion approximation. We obtain the next-to-leading order Wilson coefficients of the ΔF = 2 effective Hamiltonian relevant for neutral meson mixings. We find that the matching scale uncertainty is largely reduced at the next-to-leading order, typically from about 10-15% to few percent

  6. Inclusive hadron production in photon-photon collisions at next-to-leading order

    International Nuclear Information System (INIS)

    Binnewies, J.

    1996-01-01

    We study inclusive charged-hadron production in collisions of quasireal photons at next-to-leading order (NLO) in the QCD-improved parton model, using fragmentation functions recently extracted from PEP and LEP1 data of e + e - annihilation. We consistently superimpose the direct (DD), single-resolved (DR), and double-resolved (RR) γγ channels. We consider photon spectra generated by electromagnetic bremsstrahlung and/or beamstrahlung off colliding e + and e - beams as well as those which result from backscattering of laser light off such beams. First, we revisit existing single-tag data taken by TASSO at PETRA and by MARK II at PEP (with e + e - energy √S∼30 GeV) and confront them with our NLO calculations imposing the respective experimental cuts. We also make comparisons with the neutral-kaon to charged-hadron ratio measured by MARK II. Then, we present NLO predictions for LEP2, a next-generation e + e - linear collider (NLC) in the TESLA design with √S=500 GeV, and a Compton collider obtained by converting a 500-GeV NLC. We analyze transverse-momentum and rapidity spectra with regard to the scale dependence, the interplay of the DD, DR, and RR components, the sensitivity to the gluon density inside the resolved photon, and the influence of gluon fragmentation. It turns out that the inclusive measurement of small-p T hadrons at a Compton collider would greatly constrain the gluon density of the photon and the gluon fragmentation function. (orig.)

  7. Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond

    International Nuclear Information System (INIS)

    Das, Arindam; Konar, Partha; Majhi, Swapan

    2016-01-01

    Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I and inverse seesaw models, respectively, in explaining the naturally small neutrino mass. TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the Standard Model light neutrinos, through which they can be produced and detected at the high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections to the heavy neutrino production, and study the scale variation in cross-sections as well as the kinematic distributions with different final states at 14 TeV LHC and also in the context of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated with missing energy in the final state. Using the √s=8 TeV, 20.3 fb"−"1 and 19.7 fb"−"1 data at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton search by CMS at √s=8 TeV with 19.5 fb"−"1 data, we also obtain the prospective scale dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.

  8. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  9. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    Science.gov (United States)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  10. Extended Holstein-Primakoff mapping for the next-to-leading order of the 1/N expansion at finite temperature

    International Nuclear Information System (INIS)

    Dzhioev, Alan; Storozhenko, A.; Vdovin, A.; Aouissat, Z.; Wambach, J.

    2004-01-01

    An extended Holstein-Primakoff mapping which incorporates both single- and double-fermion mappings is used in the context of thermofield dynamics to study the next-to-leading order of the 1/N expansion at finite temperature. For the Lipkin-Meshkov-Glick model it is shown that the extended mapping naturally leads to the correct Fermi statistics both in leading and next-to-leading order

  11. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  12. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  13. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  14. On meson resonances and chiral symmetry

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-07-01

    We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)

  15. Baryon mass splittings in chiral perturbation theory

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Milana, J.

    1995-01-01

    Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation

  16. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  17. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  18. On chiral and non chiral 1D supermultiplets

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  19. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  20. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  1. Mechanical separation of chiral dipoles by chiral light

    International Nuclear Information System (INIS)

    Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)

  2. Next-to-Leading Order Computation of Exclusive Diffractive Light Vector Meson Production in a Saturation Framework.

    Science.gov (United States)

    Boussarie, R; Grabovsky, A V; Ivanov, D Yu; Szymanowski, L; Wallon, S

    2017-08-18

    We perform the first next-to-leading order computation of the γ^{(*)}→V (ρ,ϕ,ω) exclusive impact factor in the QCD shock-wave approach and in the most general kinematics. This paves the way to the very first quantitative study of high-energy nucleon and nucleus saturation beyond the leading order for a whole range of small-x exclusive processes, to be measured in ep, eA, pp, and pA collisions at existing and future colliders.

  3. Top quark forward-backward asymmetry in e+ e- annihilation at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Zhu, Hua Xing

    2014-12-31

    We report on a complete calculation of electroweak production of top-quark pairs in e+ e- annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully differential in phase space and can be used to calculate any infrared-safe observable. Especially we calculated the next-to-next-to-leading-order corrections to the top-quark forward-backward asymmetry and found sizable effects. Our results show a large reduction of the theoretical uncertainties in predictions of the forward-backward asymmetry, and allow for a precision determination of the top-quark electroweak couplings at future e+ e- colliders.

  4. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  5. Next-to-leading order electroweak corrections to off-shell WWW production at the LHC arXiv

    CERN Document Server

    Schönherr, Marek

    Triboson processes allow for a measurement of the triple and quartic couplings of the Standard Model gauge bosons, which can be used to constrain anomalous gauge couplings. In this paper we calculate the next-to-leading order electroweak corrections to fully off-shell $W^-W^+W^+$ production, namely the production of a $\\ell_1^-\\ell_2^+\\ell_3^+\\bar{\

  6. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    Science.gov (United States)

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  7. Imaginary part of the next-to-leading-order static gluon self-energy in an anisotropic plasma

    International Nuclear Information System (INIS)

    Carrington, M. E.; Rebhan, A.

    2009-01-01

    Using hard-loop (HL) effective theory for an anisotropic non-Abelian plasma, which even in the static limit involves nonvanishing HL vertices, we calculate the imaginary part of the static next-to-leading-order gluon self-energy in the limit of a small anisotropy and with external momentum parallel to the anisotropy direction. At leading order, the static propagator has spacelike poles corresponding to plasma instabilities. On the basis of a calculation using bare vertices, it has been conjectured that, at next-to-leading order, the static gluon self-energy acquires an imaginary part which regulates these spacelike poles. We find that the one-loop resummed expression taken over naively from the imaginary-time formalism does yield a nonvanishing imaginary part even after including all HL vertices. However, this result is not correct. Starting from the real-time formalism, which is required in a nonequilibrium situation, we construct a resummed retarded HL propagator with correct causality properties and show that the static limit of the retarded one-loop-resummed gluon self-energy is real. This result is also required for the time-ordered propagator to exist at next-to-leading order.

  8. The development of the light cone in the quantum chromodynamics up to the first non-leading order

    International Nuclear Information System (INIS)

    Kaschluhn, L.

    1986-01-01

    For the product of two electromagnetic currents in QCD there is derived in a systematic way a nonlocal light-cone expansion up to next-to-leading order. Thereby the gauge-invariance of the underlying theory has been taken into acccount by using the known general solutions of the Ward identities in axial gauge. (author)

  9. Inclusive particle production at HERA: Resolved and direct quasi-real photon contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.

    1994-01-01

    We calculate in next-to-leading order inclusive cross sections of single-particle production via both direct and resolved photons in ep collisions at HERA. Transverse-momentum and rapidity distributions are presented and the dependences on renormalization and factorization scales and subtraction schemes are investigated. (orig.)

  10. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  11. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  12. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  13. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  14. Polarized Di-hadron production in lepton-nucleon collisions at the next-to-leading order of QCD

    International Nuclear Information System (INIS)

    Hendlmeier, Christof

    2008-05-01

    We compute the next-to-leading order QCD corrections to the spin-dependent cross section for hadron-pair photoproduction. In the first part of the Thesis the calculation is performed using largely analytical methods. We present a detailed phenomenological study of our results focussing on the K-factors and scale dependence of the next-to-leading order cross sections. The second part is dedicated to an alternative approach using Monte-Carlo integration techniques. We present a detailed description how this method works in practice and give phenomenological studies for the photoproduction of two hadrons. This process is relevant for the extraction of the gluon polarization in present and future spin-dependent lepton-nucleon scattering experiments. (orig.)

  15. Polarized Di-hadron production in lepton-nucleon collisions at the next-to-leading order of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hendlmeier, Christof

    2008-05-15

    We compute the next-to-leading order QCD corrections to the spin-dependent cross section for hadron-pair photoproduction. In the first part of the Thesis the calculation is performed using largely analytical methods. We present a detailed phenomenological study of our results focussing on the K-factors and scale dependence of the next-to-leading order cross sections. The second part is dedicated to an alternative approach using Monte-Carlo integration techniques. We present a detailed description how this method works in practice and give phenomenological studies for the photoproduction of two hadrons. This process is relevant for the extraction of the gluon polarization in present and future spin-dependent lepton-nucleon scattering experiments. (orig.)

  16. Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Kramer, Gustav [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-03-15

    We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p{sub T}) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p{sub T} and approaches one at larger p{sub T} at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.

  17. Survival probability for diffractive dijet production in p anti p collisions from next-to-leading order calculations

    International Nuclear Information System (INIS)

    Klasen, M.; Kramer, G.

    2009-08-01

    We perform next-to-leading order calculations of the single-diffractive and non-diffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in protonantiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order. (orig.)

  18. Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft ℤ{sub 2} breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cacchio, Vincenzo; Chowdhury, Debtosh; Eberhardt, Otto [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Roma (Italy); Murphy, Christopher W. [Scuola Normale Superiore,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2016-11-07

    We fit the next-to-leading order unitarity conditions to the Two-Higgs-Doublet model with a softly broken ℤ{sub 2} symmetry. In doing so, we alleviate the existing uncertainty on how to treat higher order corrections to quartic couplings of its Higgs potential. A simplified approach to implementing the next-to-leading order unitarity conditions is presented. These new bounds are then combined with all other relevant constraints, including the complete set of LHC Run I data. The upper 95% bounds we find are 4.2 on the absolute values of the quartic couplings, and 235 GeV (100 GeV) for the mass degeneracies between the heavy Higgs particles in the type I (type II) scenario. In type II, we exclude an unbroken ℤ{sub 2} symmetry with a probability of 95%. All fits are performed using the open-source code HEPfit.

  19. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)

    2015-09-14

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  20. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    International Nuclear Information System (INIS)

    Martini, Till; Uwer, Peter

    2015-01-01

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  1. Dijet production in diffractive deep-inelastic scattering in next-to-next-to-leading order QCD arXiv

    CERN Document Server

    Britzger, D.; Gehrmann, T.; Huss, A.; Niehues, J.; Žlebčík, R.

    Hard processes in diffractive deep-inelastic scattering can be described by a factorisation into parton-level subprocesses and diffractive parton distributions. In this framework, cross sections for inclusive dijet production in diffractive deep-inelastic electron-proton scattering (DIS) are computed to next-to-next-to-leading order (NNLO) QCD accuracy and compared to a comprehensive selection of data. Predictions for the total cross sections, 39 single-differential and four double-differential distributions for six measurements at HERA by the H1 and ZEUS collaborations are calculated. In the studied kinematical range, the NNLO corrections are found to be sizeable and positive. The NNLO predictions typically exceed the data, while the kinematical shape of the data is described better at NNLO than at next-to-leading order (NLO). A significant reduction of the scale uncertainty is achieved in comparison to NLO predictions. Our results use the currently available NLO diffractive parton distributions, and the dis...

  2. Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD

    International Nuclear Information System (INIS)

    Bierenbaum, Isabella; Kramer, Gustav

    2016-03-01

    We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p T ) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p T and approaches one at larger p T at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.

  3. The gamma N ---> Delta transition in chiral effective-field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  4. The $\\gamma N\\to \\De$ transition in chiral effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  5. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  6. On some aspects of optimisation of factorisation scheme dependence at the next-to-leading order in QCD

    International Nuclear Information System (INIS)

    Chyla, J.

    1989-01-01

    Several recent papers attempting to apply the optimised QCD perturbation theory to reactions involving real or virtual photons are discussed with particular attention paid to the ambiguity appearing in the definition of parton distribution and fragmentation functions at the next-to-leading order (NLO). The necessity to use NLO parametrisations of quark densities is stressed and the problem with respect to the factorisation mass M for the 'physical' definition of parton densities is pointed out. (orig.)

  7. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy

    Science.gov (United States)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-01

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  8. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  9. Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Thomas Jefferson National Accelerator Facility, Theory Center, Newport News, VA (United States); Du, Dechuan; Laehde, Timo A.; Li, Ning; Lu, Bing-Nan; Luu, Thomas [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Klein, Nico [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany)

    2017-05-15

    We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing. (orig.)

  10. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  11. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  12. Direct construction of the effective action of chiral gauge fermions in the anomalous sector

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2009-01-01

    The anomaly implies an obstruction to a fully chiral covariant calculation of the effective action in the abnormal-parity sector of chiral theories. The standard approach then is to reconstruct the anomalous effective action from its covariant current. In this work, we use a recently introduced formulation which allows one to directly construct the non-trivial chiral invariant part of the effective action within a fully covariant formalism. To this end we develop an appropriate version of Chan's approach to carry out the calculation within the derivative expansion. The result to four derivatives, i.e., to leading order in two and four dimensions and next-to-leading order in two dimensions, is explicitly worked out. Fairly compact expressions are found for these terms. (orig.)

  13. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  14. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  15. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  16. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  17. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  18. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  20. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  1. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  2. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  3. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  4. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  5. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  6. The complete vertical stroke ΔS vertical stroke =2-hamiltonian in the next-to-leading order

    International Nuclear Information System (INIS)

    Herrlich, S.; Nierste, U.

    1996-04-01

    We present the complete next-to-leading order short-distance QCD corrections to the effective vertical stroke ΔS vertical stroke =2-hamiltonian in the Standard Model. The calculation of the coefficient η 3 is described in great detail. It involves the two-loop mixing of bilocal structures composed of two vertical stroke ΔS vertical stroke =1 operators into vertical stroke ΔS vertical stroke =2 operators. The next-to-leading order corrections enhance η 3 by 27% to η 3 =0.47(+0.03-0.04) thereby affecting the phenomenology of ε K sizeably. η 3 depends on the physical input parameters m t , m c and Λsub(anti M anti S) only weakly. The quoted error stems from renormalization scale dependences, which have reduced compared to the old leading log result. The known calculation of η 1 and η 2 is repeated in order to compare the structure of the three QCD coefficients. We further discuss some field theoretical aspects of the calculation such as the renormalization group equation for Green's functions with two operator insertions and the renormalization scheme dependence caused by the presence of evanescent operators. (orig.)

  7. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    Science.gov (United States)

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  8. QCD next-to-leading order predictions matched to parton showers for vector-like quark models

    CERN Document Server

    Fuks, Benjamin

    2017-02-27

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair-production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks...

  9. Next-to-leading order QCD corrections to W+W- production via vector-boson fusion

    International Nuclear Information System (INIS)

    Jaeger, Barbara; Oleari, Carlo; Zeppenfeld, Dieter

    2006-01-01

    Vector-boson fusion processes constitute an important class of reactions at hadron colliders, both for signals and backgrounds of new physics in the electroweak interactions. We consider what is commonly referred to as W + W - production via vector-boson fusion (with subsequent leptonic decay of the Ws), or, more precisely, e + ν e μ - ν-bar μ + 2 jets production in proton-proton scattering, with all resonant and non-resonant Feynman diagrams and spin correlations of the final-state leptons included, in the phase-space regions which are dominated by t-channel electroweak-boson exchange. We compute the next-to-leading order QCD corrections to this process, at order α 6 α s . The QCD corrections are modest, changing total cross sections by less than 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions

  10. Charm quark contribution to K+ ---> pi+ nu anti-nu at next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Buras, Andrzej J.; /Munich, Tech. U.; Gorbahn, Martin; /Durham U., IPPP /Karlsruhe U., TTP; Haisch, Ulrich; /Fermilab /Zurich U.; Nierste, Ulrich; /Karlsruhe U., TTP

    2006-03-01

    The authors calculate the complete next-to-next-to-leading order QCD corrections to the charm contribution of the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}. They encounter several new features, which were absent in lower orders. They discuss them in detail and present the results for the two-loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions, and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-leading order renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a significant reduction of the theoretical uncertainty from {+-} 9.8% down to {+-} 2.4% in the relevant parameter P{sub c}(X), implying the leftover scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta}, and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006, and {+-} 1.2{sup o}, respectively. For the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c}(X) = 0.37 {+-} 0.06 is modified to P{sub c}(X) = 0.38 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). They present tables for P{sub c}(X) as a function of m{sub c}(m{sub c}) and {alpha}{sub s}(M{sub z}) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions they find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. They also emphasize that improved calculations of the long

  11. K- nuclear potentials from in-medium chirally motivated models

    International Nuclear Information System (INIS)

    Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2011-01-01

    A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.

  12. Fully differential Higgs boson pair production in association with a Z boson at next-to-next-to-leading order in QCD

    Science.gov (United States)

    Li, Hai Tao; Li, Chong Sheng; Wang, Jian

    2018-04-01

    We present a fully differential next-to-next-to-leading order QCD calculation of the Higgs pair production in association with a Z boson at hadron colliders, which is important for probing the trilinear Higgs self-coupling. The next-to-next-to-leading-order corrections enhance the next-to-leading order total cross sections by a factor of 1.2-1.5, depending on the collider energy, and change the shape of next-to-leading order kinematic distributions. We discuss how to determine the trilinear Higgs self-coupling using our results.

  13. Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Benedikt; Denner, Ansgar [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg (Germany); Dittmaier, Stefan [Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany); Hofer, Lars [Institut de Ciències del Cosmo (ICCUB), Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona - UB, 08028 Barcelona (Spain); Jäger, Barbara [Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen (Germany)

    2017-01-09

    We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into μ{sup +}μ{sup −}e{sup +}e{sup −} or μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of ∼−5% and reach several −10% in the high-energy tails of distributions. Comparing the results for μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states, we find significant differences mainly in distributions that are sensitive to the μ{sup +}μ{sup −} pairing in the μ{sup +}μ{sup −}μ{sup +}μ{sup −} final state. Differences between μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} channels due to interferences of equal-flavour leptons in the final state can reach up to 10% in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.

  14. Higgs Boson Production at Hadron Colliders: Differential Cross Section Through Next-to-Next-to-Leading Order

    International Nuclear Information System (INIS)

    Anastasiou, C

    2004-01-01

    The authors present a calculation of the fully differential cross section for Higgs boson production in the gluon fusion channel through next-to-next-to-leading order in perturbative QCD. They apply the method introduced in [1] to compute double real emission corrections. The calculation permits arbitrary cuts on the final state in the reaction hh → H + X. it can be easily extended to include decays of the Higgs boson into observable final states. In this Letter, they discuss the most important features of the calculation, and present some examples of physical applications that illustrate the range of observables that can be studied using the result. They compute the NNLO rapidity distribution of the Higgs boson, and also calculate the NNLO rapidity distribution with a veto on jet activity

  15. Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Dekkers, Oliver [PRISMA Cluster of Excellence and Institut für Physik,Johannes-Gutenberg-Universität Mainz,55099 Mainz (Germany); Heisler, Dennis; Bernreuther, Werner [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Si, Zong-Guo [School of Physics, Shandong University,Jinan, Shandong 250100 (China)

    2016-12-19

    We set up a formalism, within the antenna subtraction framework, for computing the production of a massive quark-antiquark pair in electron positron collisions at next-to-next-to-leading order in the coupling α{sub s} of quantum chromodynamics at the differential level. Our formalism applies to the calculation of any infrared-safe observable. We apply this set-up to the production of top-quark top antiquark pairs in the continuum. We compute the production cross section and several distributions. We determine, in particular, the top-quark forward-backward asymmetry at order α{sub s}{sup 2}. Our result agrees with previous computations of this observable.

  16. Leading order determination of the gluon polarisation from DIS events with high-$p_T$ hadron pairs

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O.Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; jr., M.Finger; Fischer, H; Franco, C; von Hohenesche, N.du Fresne; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Hedicke, S; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F.; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J P; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Procureur, S L; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T; Schmidt, K; Schmitt, L; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised ^6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x_g covering the range 0.04 < x_g < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x_g. Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (syst.) at x_g=0.09 and a scale of mu^2 = 3~(GeV/c)^2.

  17. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    Science.gov (United States)

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  18. Charm production in deep-inelastic e$\\gamma$ scattering to next-to-leading order in QCD

    CERN Document Server

    Laenen, Eric

    1995-01-01

    We discuss the calculation of F_2^{\\gamma}({\\rm charm}) to next-to-leading order (NLO) in QCD, including contributions from both hadronlike and pointlike photons. We show that the former dominates strongly below x\\simeq 0.01, and the latter above this value. This fact makes F_2^{\\gamma}({\\rm charm}) for x \\geq 0.01 calculable, whereas for x \\leq 0.01 it serves to constrain the small-x gluon density in the photon. Both ranges in x are accessible at LEP2. Theoretical uncertainties are well under control. We present rates for single-tag events for the process for e^+e^- \\rightarrow e^+e^- c X for LEP2. Although these event rates are small, we believe a measurement of F_2^{\\gamma}({\\rm charm}) is feasible.

  19. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  20. Next-to-leading-order QCD corrections to e+e−→H+γ

    Directory of Open Access Journals (Sweden)

    Wen-Long Sang

    2017-12-01

    Full Text Available The associated production of Higgs boson with a hard photon at lepton collider, i.e., e+e−→Hγ, is known to bear a rather small cross section in Standard Model, and can serve as a sensitive probe for the potential new physics signals. Similar to the loop-induced Higgs decay channels H→γγ,Zγ, the e+e−→Hγ process also starts at one-loop order provided that the tiny electron mass is neglected. In this work, we calculate the next-to-leading-order (NLO QCD corrections to this associated H+γ production process, which mainly stem from the gluonic dressing to the top quark loop. The QCD corrections are found to be rather modest at lower center-of-mass energy range (s<300 GeV, thus of negligible impact on Higgs factory such as CEPC. Nevertheless, when the energy is boosted to the ILC energy range (s≈400 GeV, QCD corrections may enhance the leading-order cross section by 20%. In any event, the e+e−→Hγ process has a maximal production rate σmax≈0.08 fb around s=250 GeV, thus CEPC turns out to be the best place to look for this rare Higgs production process. In the high energy limit, the effect of NLO QCD corrections become completely negligible, which can be simply attributed to the different asymptotic scaling behaviors of the LO and NLO cross sections, where the former exhibits a milder decrement ∝1/s , but the latter undergoes a much faster decrease ∝1/s2. Keywords: Standard Model, Higgs boson, QCD corrections

  1. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  2. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  4. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the

  5. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  6. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  7. QCD chiral Lagrangian on the lattice, strong coupling expansion, and Ward identities with Wilson fermions

    International Nuclear Information System (INIS)

    Levi, A.R.; Lubicz, V.; Rebbi, C.

    1997-01-01

    We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society

  8. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  9. Asymmetric chiral colour

    International Nuclear Information System (INIS)

    Cuypers, F.

    1990-01-01

    Chiral colour is considered in a general framework where the coupling constants associated with each SU(3) component are allowed to be different. To reproduce QCD at low energy, gluons and axigluons cannot then be maximally mixed. Present data form e + e - colliders contrains the axigluon mass to values between 50 GeV and 375 GeV whilst the mixing angle is bounded by 13deg and 45deg. The lower limit of the axigluon mass is a definite bound at 90% C.L., whereas the upper limit only applies if chiral colour is to explain the anomalously high rates of hadron production at TRISTAN. (orig.)

  10. Heavy-light semileptonic decays in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  11. SIMP model at NNLO in chiral perturbation theory

    Science.gov (United States)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  12. Chirality: from QCD to condensed matter

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2015-01-01

    This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)

  13. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  14. A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton

    International Nuclear Information System (INIS)

    Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.

    2007-01-01

    We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)

  15. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  16. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  17. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    International Nuclear Information System (INIS)

    Iancu, E.; Mueller, A.H.; Triantafyllopoulos, D.N.

    2016-01-01

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  18. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Benić, Sanjin [Physics Department, Faculty of Science, University of Zagreb,Zagreb 10000 (Croatia); Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Fukushima, Kenji [Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Garcia-Montero, Oscar [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory,Bldg. 510A, Upton, NY 11973 (United States)

    2017-01-26

    We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k{sub ⊥} and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.

  19. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    Science.gov (United States)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  20. First determination of D* -meson fragmentation functions and their uncertainties at next-to-next-to-leading order

    Science.gov (United States)

    Soleymaninia, Maryam; Khanpour, Hamzeh; Nejad, S. Mohammad Moosavi

    2018-04-01

    We present, for the first time, a set of next-to-next-to-leading order (NNLO) fragmentation functions (FFs) describing the production of charmed-meson D* from partons. Exploiting the universality and scaling violations of FFs, we extract the NLO and NNLO FFs through a global fit to all relevant data sets from single-inclusive e+e- annihilation. The uncertainties for the resulting FFs as well as the corresponding observables are estimated using the Hessian approach. We evaluate the quality of the SKM18 FFs determined in this analysis by comparing with the recent results in literature and show how they describe the available data for single-inclusive D*±-meson production in electron-positron annihilation. As a practical application, we apply the extracted FFs to make our theoretical predictions for the scaled-energy distributions of D*±-mesons inclusively produced in top quark decays. We explore the implications of SKM18 for LHC phenomenology and show that our findings of this study can be introduced as a channel to indirect search for top-quark properties.

  1. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, E. [Institut de physique théorique, Université Paris Saclay,CNRS, CEA, F-91191 Gif-sur-Yvette (France); Mueller, A.H. [Department of Physics, Columbia University,New York, NY 10027 (United States); Triantafyllopoulos, D.N. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT*, Trento (Italy); Fondazione Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (Italy)

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  2. Transverse energy-energy correlations in next-to-leading order in {alpha}{sub s} at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Wang, Wei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barreiro, Fernando; Llorente, Javier [Universidad Autonoma de Madrid (Spain). Dept. de Fisica

    2012-05-15

    We compute the transverse energy-energy correlation (EEC) and its asymmetry (AEEC) in next-to-leading order (NLO) in {alpha}{sub s} in proton-proton collisions at the LHC with the center-of-mass energy E{sub c.m.}=7 TeV. We show that the transverse EEC and the AEEC distributions are insensitive to the QCD factorization- and the renormalization-scales, structure functions of the proton, and for a judicious choice of the jet-size, also the underlying minimum bias events. Hence they can be used to precisely test QCD in hadron colliders and determine the strong coupling {alpha}{sub s}. We illustrate these features by defining the hadron jets using the anti-k{sub T} jet algorithm and an event selection procedure employed in the analysis of jets at the LHC and show the {alpha}{sub s}(M{sub Z})-dependence of the transverse EEC and the AEEC in the anticipated range 0.11{<=} {alpha}{sub s}(M{sub Z}){<=}0.13.

  3. QCD leading order study of the J/ψ leptoproduction at HERA within the nonrelativistic QCD framework

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhan [Guizhou Minzu University, School of Science, Guiyang (China); Zhang, Hong-Fei [Third Military Medical University, Department of Physics, School of Biomedical Engineering, Chongqing (China)

    2017-11-15

    As indicated in our previous paper (Zhang and Sun in Phys. Rev. D 96:034002, 2017), the existing literature studying the J/ψ production in deeply inelastic scattering (DIS) in collinear factorisation is on the basis of a formalism that will lead to wrong results when the ranges of the transverse momentum or the rapidity of the J/ψ in the laboratory frame do not cover all values possible for them. In this paper, we present the renewed results for the J/ψ production in DIS at HERA within the nonrelativistic QCD framework at QCD leading order (LO). Three different sets of the long-distance matrix elements are employed for comparison. The predictions via the colour-singlet (CS) model at QCD LO are generally below the experimental data especially in the regions where perturbation theory are expected to work well, while the colour-octet contributions are of the same order of magnitude as the CS ones, however, in general make the agreement between theory and experiment better. (orig.)

  4. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  5. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  6. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.

    2011-01-01

    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  7. FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

    Science.gov (United States)

    Gavin, Ryan; Li, Ye; Petriello, Frank; Quackenbush, Seth

    2011-11-01

    We introduce an improved version of the simulation code FEWZ ( Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a significantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts. Program summaryProgram title: FEWZ Catalogue identifier: AEJP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6 280 771 No. of bytes in distributed program, including test data, etc.: 173 027 645 Distribution format: tar.gz Programming language: Fortran 77, C++, Python Computer: Mac, PC Operating system: Mac OSX, Unix/Linux Has the code been vectorized or parallelized?: Yes. User-selectable, 1 to 219 RAM: 200 Mbytes for common parton distribution functions Classification: 11.1 External routines: CUBA numerical integration library, numerous parton distribution sets (see text); these are provided with the code

  8. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  9. Phenomenological renormalization of free nucleon-nucleon interaction. [Sussex matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M; Waghmare, Y R [Indian Inst. of Tech., Kanpur. Dept. of Physics; Mehrotra, I [Allahabad Univ. (India). Dept. of Physics

    1976-08-01

    Low-lying spectra of /sup 6/Li, /sup 18/F, /sup 18/O, /sup 42/Sc, /sup 42/Ca, /sup 58/Ni and /sup 92/Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the /sup 3/S/sub 1/ relative state are made (1+..cap alpha..) times their bare interaction value, where ..cap alpha.. is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME.

  10. Data management design: nucleon-nucleon data bank (0 to 1200 MeV)

    International Nuclear Information System (INIS)

    Signell, P.; Freiheit, F.

    1981-01-01

    This is a guide to the design of the on-line data records in this bank, covering all energies and particle combinations up to about 1200 MeV. The design of the bank's management system satisfies almost all of the conditions set forth in the proposed Design Principles for Physics Data Banks

  11. Nucleon-nucleon interaction in the quark-compound-bag model

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1982-01-01

    The NN potential is investigated in the framework of the quark-compound-bag model. The cluster decomposition of the total six-quark wave function are obtained. The resulting potential is nonlocal and energy dependent with coefficients which can be derived both phenomenologically and theoretically. Stringent conditions exist for those coefficients. As an example the NN potentials for the 3 S 1 and 1 S 0 states are presented. The properties of the wave functions are studied both in the configurational and momentum space

  12. The off-shell nucleon-nucleon interaction in the singlet s-state

    International Nuclear Information System (INIS)

    Groot, H. de

    1975-01-01

    This thesis studies the off-shell behaviour of the neutron-proton interaction in the singlet state. To generate phase-shift-equivalent potentials a particular type of inversion problem is solved. It requires the potential to contain a non-local, separable part which is supposed to describe part of the short-range interaction. A special solution of the general inversion problem that produces potentials consisting of two separable terms is studied. Criteria to accept or reject particular inversion solutions are discussed. Neutron-proton potentials in the 1 S 0 partial wave which form part of the input for the general inversion procedure are defined. Different local potential tails are chosen, as well as varying short-range interactions, both local and non-local. The input phase shifts are discussed including three extrapolations of the phase shifts at high energy. The half-shell transition matrix for the potentials defined is studied. Some problems introduced by the additional electromagnetic interaction in the proton-proton system is investigated. (Auth.)

  13. Weak interactions in deuterons: exchange currents and nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dautry, F.; Rho, M.; Riska, D.O.

    1976-01-01

    While the meson-exchange electromagnetic current has been tested with an impressive success in the two-nucleon system, nothing much is known about the reliability of the exchange currents in weak interactions. This question is studied using muon absorption in the deuteron, μ - + d→n + n + γ. The meson-exchange current, previously derived in parallel to those of the electromagnetic interaction, is checked for consistency against the p-wave piece of the p + p→d + π + process near threshold and then tested with the total capture rate for which some (though not so accurate) data are available. The same Hamiltonian is then used to calculate the matrix elements for the solar neutrino processes p + p→d + e + + γ and p + p + e - → d + γ in the hope that they would be measured and help resolve the solar neutrino puzzle. Finally a detailed analysis is made of the differential capture rate dGAMMA/dEsub(n), Esub(n) being the kinematic energy in the c.m. of the two neutrons, in the expectation that it will be used to pin down the ever elusive n-n scattering length. (Auth.)

  14. Solutions of the Schrodinger Equation Using Approximate Nucleon-Nucleon and Lambda-Nucleon Potentials.

    Science.gov (United States)

    Banerjee, S. N.; Chakraborty, S. N.

    1980-01-01

    Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)

  15. Attractive component in the nucleon-nucleon interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Nyman, E.M.; Riska, D.O.

    1986-01-01

    The spin- and isospin-independent part of the nulceon-nucleon interaction in the Skyrme model is shown to contain a weak attractive intermediate-range term in addition to the well-known short-range repulsion. The attraction is a consequence of the rotational degree of freedom of a skyrmion in the presence of the field of another one, and can be thought of as an enhancement of the moment of inertia of each skyrmion. While the attractive term is dominant at large distances it is not sufficiently strong for nuclear binding. (orig.)

  16. The new nucleon-nucleon scattering data and the Paris potential predictions

    International Nuclear Information System (INIS)

    Lacombe, M.; Loiseau, B.; Vinh Mau, R.; Cote, J.; Pires, P.

    1980-11-01

    New data (cross section, polarization, Wolfenstein parameters and spin-correlations) on proton-proton and neutron-proton scattering have been recently published by different groups. These include high precision and/or original measurements covering the energy range 6 MeV < Tsub(lab)< 800 MeV. A direct comparison of these data with the values produced by the Paris NN potential for energies Tsub(lab) < 350 MeV is reported here. The agreement between theory and experiment is very satisfactory both for low and medium energies. The total chi-squared for the world NN data set for Tsub(lab) < 350 MeV is also reported and compared with those given by the Arndt et al. phase shift-analysis and by the phenomenological Reid soft-core potential

  17. Self-consistent description of static properties of nuclear deformation from nucleon-nucleon effective interactions

    International Nuclear Information System (INIS)

    Quentin, Philippe.

    1975-01-01

    A self-consistent description of deformed nuclei is presented in the Hartree-Fock approximation after correcting in an approximate but variational way for pairing correlations. Density dependent phenomenological effective interactions have been used, mainly according to the Skyrme's parametrization. Methods in use and various related approximations are reviewed in an extensive way. Calculated nuclei belong to the s-d shell, to the rare earth region, to the two transitional regions before and after the latter region, and to the actinide region. For all these nuclei, calculated deformation properties agree remarkably well with experimental data. Such results are extensively compared with those obtained in the more phenomenological approach due to Strutinsky. Finally the hypotheses formulated by Strutinsky are checked numerically in a systematic way, thus leading to the conclusion of the validity of the Strutinsky method [fr

  18. Compilation of nucleon-nucleon and nucleon-antinucleon elastic scattering data

    International Nuclear Information System (INIS)

    Carter, M.K.; Collins, P.D.B.; Whalley, M.R.

    1986-01-01

    A compilation of the data on pp, pn, nn, p-barp, p-barn, n-barp, and n-barn is presented, in both tabular and graphical form, including when available the total and elastic cross sections, the differences of the total cross section in different spin states, the ratio of the real to imaginary part of the forward scattering amplitude, the elastic differential cross sections, the polarization asymmetry and the spin correlation parameters, for all laboratory-frame momenta >=2 GeV/c. All the data in this review can be found in and retrieved from the Durham-RAL HEP data base together with data on a wide variety of other reactions. (author)

  19. Effects of recent measurements on phase shift analysis of nucleon--nucleon scattering

    International Nuclear Information System (INIS)

    Arndt, R.

    1977-01-01

    Four recent measurements in pp and np scattering below 250 MeV are used to indicate the substantial influence that new experiments can have upon phase parameters derived from the expanded data base. The cases are described separately, and the collective effect upon energy dependent analyses is discussed. It is indicated that the types of change are far from negligible. 7 refs

  20. Isospin nonconservation in nucleon-nucleon scattering by a color force

    International Nuclear Information System (INIS)

    Braeuer, K.; Henley, E.M.; Miller, G.A.

    1986-01-01

    A recently performed high accuracy measurement indicates the existence of a spin and isospin nonconserving force in neutron-proton scattering. One origin of this effect can be the influence of the up and down quark mass difference on the one gluon exchange spin-orbit force. We include this effect in a resonating group calculation, and find that its contribution is very small compared to that conventional meson-exchange forces

  1. Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks

    Science.gov (United States)

    Millevolte, Anthony

    2010-01-01

    The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…

  2. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  3. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  4. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  5. Chiral magnetic effect of light

    Science.gov (United States)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  6. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral colour and axigluons

    International Nuclear Information System (INIS)

    Cuypers, F.

    1989-01-01

    The authors studies the phenomenological implications of the Chiral Colour model which allow him to derive experimental bounds on the axigluon mass or to predict deviations from the Standard Model. After a short introduction to the theory, the author examines the way it modifies the standard decay of quarkonium. Comparison with the observed lifetime of the upsilon allows him to exclude the existence of axigluons lighter than 9 GeV. (Others have since extended the work and were able to increase this limit to 25 GeV.) He then studies the Chiral Colour contribution to the hadronic cross-section in the electron-positron scattering and derive a conservative lower bound of 50 GeV for the axigluon mass. Finally, he predicts observable enhancements of the lifetime and rare decay channels of the Z O in the presence of light axigluons

  8. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  9. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  10. On chiral bosonization

    International Nuclear Information System (INIS)

    Bastianelli, F.

    1991-01-01

    We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)

  11. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  12. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  13. Identifying chiral bands in real nuclei

    International Nuclear Information System (INIS)

    Shirinda, O.; Lawrie, E.A.

    2012-01-01

    The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)

  14. Chiral algebras of class S

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  15. Simplified chiral superfield propagators for chiral constant mass superfields

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt

  16. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  17. Magnetic dipole moment of the Δ(1232) in chiral perturbation theory

    International Nuclear Information System (INIS)

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2006-01-01

    The magnetic dipole moment of the Δ(1232) is calculated in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory in combination with the extended on-mass-shell renormalization scheme. As in the case of the nucleon, at leading order both isoscalar and isovector anomalous magnetic moments are given in terms of two low-energy constants. In contrast to the nucleon case, at next-to-leading order the isoscalar anomalous magnetic moment receives a (real) loop contribution. Moreover, due to the unstable nature of the Δ(1232), at next-to-leading order the isovector anomalous magnetic moment not only receives a real but also an imaginary loop contribution. (orig.)

  18. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Kamata, Hiroyuki

    2003-01-01

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  19. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    Science.gov (United States)

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Next-to-next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function

    International Nuclear Information System (INIS)

    Kataev, A.L.; Kotikov, A.V.; Parente, G.; Sidorov, A.V.

    1997-01-01

    The results of the next-to-next-to-leading order QCD analysis of the recently revised experimental data of the CCFR collaboration for the xF 3 structure function using the Jacobi polynomial expansion method are presented. The effects of the higher twist contributions are included into the fits following the infrared renormalon motivated model. It is stressed that at the next-to-next-to-leading order the results for the parameter Λ M -bar S -bar (4) turn out to be almost nonsensitive to the predictions of the infrared renormalon model. The outcomes of our analysis are compared to the ones obtained by the CCFR collaboration itself at the next-to-leading order. (author)

  1. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  2. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  3. Flatspace chiral supergravity

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya

    2018-05-01

    We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

  4. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  5. The Fubini-Furlan-Rosetti sum rule and related aspects in light of covariant baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Bernard, V.; Kubis, B.; Meissner, U.G.

    2005-01-01

    We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral perturbation theory to leading one-loop accuracy and including next-to-leading-order polynomial contributions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion photoproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion mass and show that below the threshold they agree well with determinations based on fixed-t dispersion relations. We also discuss the energy dependence of the electric dipole amplitude E 0+ . (orig.)

  6. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  7. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  8. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  9. Regge behaviour of structure functions and evolution of gluon structure function upto next-to-leading order at low-x

    International Nuclear Information System (INIS)

    Jamil, U.; Sarma, J.K.

    2011-01-01

    Evolution of gluon structure function from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations upto next-to-leading order at low-x is presented assuming the Regge behaviour of structure functions. We compare our results of gluon structure function with GRV 98 global parameterization and show the compatibility of Regge behaviour of structure functions with PQCD. (author)

  10. Massive Gross-Neveu model in the leading order of the 1/N expansion. Allowance for the temperature and the chemical potential

    International Nuclear Information System (INIS)

    Klimenko, K.G.

    1988-01-01

    The massive Gross-Neveu model is treated self-consistently in the leading order of the 1/N expansion. The properties of the model when the temperature and the chemical potential are included are studied. It is shown that there exists a critical value of the chemical potential at which the effective mass of the fermion abruptly changes its value

  11. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  12. Chiral recognition in separation science: an overview.

    Science.gov (United States)

    Scriba, Gerhard K E

    2013-01-01

    Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.

  13. New remarks on chiral bosonization

    International Nuclear Information System (INIS)

    Souza Dutra, A. de

    1992-01-01

    We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)

  14. Vector mesons and chiral symmetry

    International Nuclear Information System (INIS)

    Ecker, G.

    1989-01-01

    The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)

  15. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  16. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  17. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  18. Chiral fermions on the lattice

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-01-01

    The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs

  19. Switching of chirality by light

    NARCIS (Netherlands)

    Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.

    1996-01-01

    Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction

  20. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  1. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  2. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  3. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  4. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  5. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  6. Next-to-leading order prediction for the decay μ→e (e{sup +}e{sup −}) νν̄

    Energy Technology Data Exchange (ETDEWEB)

    Fael, M.; Greub, C. [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,CH-3012 Bern (Switzerland)

    2017-01-19

    We present the differential decay rates and the branching ratios of the muon decay with internal conversion, μ→e (e{sup +}e{sup −}) νν̄, in the Standard Model at next-to-leading order (NLO) in the on-shell scheme. This rare decay mode of the muon is among the main sources of background to the search for μ→eee decay. We found that in the phase space region where the neutrino energies are small, and the three-electron momenta have a similar signature as in the μ→eee decay, the NLO corrections decrease the leading-order prediction by about 10−20% depending on the applied cut.

  7. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    Science.gov (United States)

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  8. Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X.

    Science.gov (United States)

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-28

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  9. Macdonald index and chiral algebra

    Science.gov (United States)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  10. Inclusive two-jet production in photon-photon collisions: Direct and resolved contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kleinwort, T.; Kramer, G.

    1996-10-01

    We have calculated inclusive two-jet production in photon-photon collisions superimposing direct, single-resolved and double-resolved cross sections for center-of-mass energies of TRISTAN and LEP1.5. All three contributions are calculated up to next-to-leading order. The results are compared with recent experimental data. Three NLO sets of parton distributions of the photon are tested. (orig.)

  11. Next-to-next-to-leading order N-jettiness soft function for one massive colored particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai Tao [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics and Astronomy, Monash University, VIC-3800 (Australia); Wang, Jian [PRISMA Cluster of Excellence Mainz Institute for Theoretical Physics, Johannes Gutenberg University, D-55099 Mainz (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2017-02-01

    The N-jettiness subtraction has proven to be an efficient method to perform differential QCD next-to-next-to-leading order (NNLO) calculations in the last few years. One important ingredient of this method is the NNLO soft function. We calculate this soft function for one massive colored particle production at hadron colliders. We select the color octet and color triplet cases to present the final results. We also discuss its application in NLO and NNLO differential calculations.

  12. Revisiting the pion's scalar form factor in chiral perturbation theory

    CERN Document Server

    Juttner, Andreas

    2012-01-01

    The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.

  13. The Effective Chiral Lagrangian for a Light Dynamical "Higgs Particle"

    CERN Document Server

    Alonso, R.; Merlo, L.; Rigolin, S.; Yepes, J.

    2013-01-01

    We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to mass dimension five. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism - whose extreme case is the Standard Model - and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavour-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings.

  14. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  15. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  16. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  17. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  18. Chiral Thirring–Wess model

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson

  19. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  20. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  1. Extreme chirality in Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  2. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  3. Anatomy of Bs → PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    Science.gov (United States)

    Yan, Da-Cheng; Yang, Ping; Liu, Xin; Xiao, Zhen-Jun

    2018-06-01

    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bbars0 → PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide ∼ 40% enhancement to the LO PQCD predictions for B (Bbars0 →K0K bar * 0) and B (Bbars0 →K±K*∓), or a ∼ 37% reduction to B (Bbars0 →π-K*+); and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant Bs0 → P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% enhancement respect to the leading order result; (c) for the "tree" dominated decay Bbars0 →K+ρ- and the "color-suppressed-tree" decay Bbars0 →π0K*0, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C and AP: constructive for the first decay but destructive for the second one; and (d) for Bbars0 → V (η ,η‧) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude A (Vηq) and A (Vηs) due to the η-η‧ mixing.

  4. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  5. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.

    2002-01-01

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  6. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N_f=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

    2013-11-01

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  7. Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production

    International Nuclear Information System (INIS)

    Bluemlein, J.; Ravindran, V.

    2005-01-01

    We calculate the Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan and Higgs production cross sections. The results can be expressed in terms of multiple finite harmonic sums of maximal weight w=4. Using algebraic and structural relations between harmonic sums one finds that besides the single harmonic sums only five basic sums and their derivatives w.r.t. the summation index contribute. This representation reduces the large complexity being present in x-space calculations and is well suited for fast numerical implementations. (orig.)

  8. Inclusive photoproduction of D*± mesons at next-to-leading order in the general-mass variable-flavor-number scheme

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H.

    2009-02-01

    We discuss the inclusive production of D *± mesons in γp collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)

  9. Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2013-12-15

    We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.

  10. Inclusive photoproduction of D{sup *{+-}} mesons at next-to-leading order in the general-mass variable-flavor-number scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kramer, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schienbein, I. [Univ. Joseph Fourier/CNRS-IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Spiesberger, H. [Mainz Univ. (Germany). Inst. fuer Physik

    2009-02-15

    We discuss the inclusive production of D{sup *{+-}} mesons in {gamma}p collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)

  11. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  12. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  13. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  14. Chirality plays important roles in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shen Yumei

    2006-01-01

    The paper introduces the basic concept of chirality, target specific selectivity and their relationship in radiopharmaceuticals. If the ligands labeled by radionuclides have chiral center, the enantiomers must be separated, or the target specific selectivity will not be good. Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals. (authors)

  15. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  16. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  17. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  18. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  19. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Gilat, G.

    1992-01-01

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  20. Transverse charge and magnetization densities in the nucleon's chiral periphery

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  1. First Measurement of Chiral Dynamics in $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K A; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmitt, L; Schonning, K; Schopferer, S; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-01-01

    The COMPASS collaboration at CERN has investigated the $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$ reaction at center-of-momentum energy below five pion masses, $\\sqrt{s} \\lt 5m_\\pi$ , embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $t' \\lt 0.001 GeV^2/c^2$. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3pi-invariant mass $m_{3\\pi} = \\sqrt{s}$ were extracted. The absolute cross section was determined in seven bins of $\\sqrt{s}$ with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.

  2. First measurement of chiral dynamics in π- γ → π- π- π+.

    Science.gov (United States)

    Adolph, C; Alekseev, M G; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K A; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W-D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J-F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schönning, K; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Windmolders, R; Wiślicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-05-11

    The COMPASS Collaboration at CERN has investigated the π- γ → π- π- π+ reaction at center-of-momentum energy below five pion masses, sqrt[s]<5m(π), embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, t'<0.001  GeV2/c2. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3π-invariant mass m(3π)=sqrt[s] were extracted. The absolute cross section was determined in seven bins of sqrt[s] with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.

  3. πK scattering in chiral perturbation theory to one loop

    International Nuclear Information System (INIS)

    Bernard, V.; Kaiser, N.; Strasbourg-1 Univ., 67; Meissner, U.G.

    1991-01-01

    We evaluate the πK scattering amplitude at next-to-leading order in the framework of chiral perturbation theory. All low-energy constants appearing in the effective lagrangian of the pseudoscalars have previously been determined. We calculate the scattering lengths of the S- and P-waves as well as the expansion parameters around the point ν triple bond (s-u)/4M K = t = 0 in the unphysical region. Furthermore, phase-shifts of the low partial ways are presented and compared to the data. In most cases, the chiral predictions are comparable to the trends set by the empirical information. For a precise comparison, however, more accurate experimental determinations of the πK scattering process at low and moderate energies would be necessary. We urge the experimenters to perform these. (orig.)

  4. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  5. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  6. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  7. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  8. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  9. Applications of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations to the combined HERA data on deep inelastic scattering

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-01-01

    We recently derived explicit solutions of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the Q 2 evolution of the singlet structure function F s (x,Q 2 ) and the gluon distribution G(x,Q 2 ) using very efficient Laplace transform techniques. We apply our results here to a study of the HERA data on deep inelastic ep scattering as recently combined by the H1 and ZEUS groups. We use initial distributions F 2 γp (x,Q 0 2 ) and G(x,Q 0 2 ) determined for x s (x,Q 0 2 ) from F 2 γp (x,Q 0 2 ) using small nonsinglet quark distributions taken from either the CTEQ6L or the MSTW2008LO analyses, evolve F s and G to arbitrary Q 2 , and then convert the results to individual quark distributions. Finally, we show directly from a study of systematic trends in a comparison of the evolved F 2 γp (x,Q 2 ) with the HERA data that the assumption of leading-order DGLAP evolution is inconsistent with those data.

  10. Leading and Next-to-Leading Order Gluon Polarization in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.

  11. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at Ο(p 4 ) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon

  12. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  13. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  14. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  16. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  17. No chiral truncation of quantum log gravity?

    Science.gov (United States)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  18. A New Twist on Chirality

    NARCIS (Netherlands)

    Feringa, Bernard

    2001-01-01

    One of the great mysteries in science is the homochirality (single handedness) of the essential molecules of life. Natural sugars are almost exclusively right-handed; natural amino acids are almost exclusively left-handed. Current life forms could not exist without the uniform chirality of these

  19. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  20. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.