WorldWideScience

Sample records for lead alloys

  1. Lead and lead-based alloys as waste matrix materials

    International Nuclear Information System (INIS)

    Arustamov, A.E.; Ojovan, M.I.; Kachalov, M.B.

    1999-01-01

    Metals and alloys with relatively low melting temperatures such as lead and lead-based alloys are considered in Russia as prospective matrices for encapsulation of spent nuclear fuel in containers in preparation for final disposal in underground repositories. Now lead and lead-based alloys are being used for conditioning spent sealed radioactive sources at radioactive waste disposal facilities

  2. Characteristics of Film Formed on Alloy 600 and Alloy 690 in Water Containing lead

    International Nuclear Information System (INIS)

    Hwang Seong Sik; Lee, Deok Hyun; Kim, Hong Pyo; Kim, Joung Soo; Kim, Ju Yup

    1999-01-01

    Anodic polarization behaviors of Alloy 600 and Alloy 690 have been studied as a function of lead content in the solution of pH 4 and 10 at 90 .deg. C. As the amount of lead in the solution increased, critical current densities and passive current densities of Alloy 600 and Alloy 690 increased, while the breakdown potential of the alloys decreased. The high critical current density in the high lead solution was thought to come from the combination of an enhanced dissolution of constituents on the surface of the alloys by the lead and an anodic dissolution of metallic lead deposited on the surface of the specimens. The morphology of lead precipitated on the specimen after the anodic scan changed with the pH of solution: small irregular particles were precipitated on the surface of the specimen in the solution of pH 4, while the high density of regular sized particles was formed on it in the solution of pH 10.Pb was observed to enhance Cr depletion from the outer surface of Alloy 600 and Alloy 690 and also to increase the ratio of O 2- /OH - in the surface film formed in the high lead solution. The SCC resistance of Alloy 600 and Alloy 690 may have decreased due to the poor quality of the passive film formed and the enhanced oxygen evolution in the solution containing lead

  3. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  4. Work function of oxygen exposed lead and lead/indium alloy films

    International Nuclear Information System (INIS)

    Gundlach, K.H.; Hellemann, H.P.; Hoelzl, J.

    1982-01-01

    The effect of indium in superconducting tunnel junctions with lead/indium alloy base electrodes is investigated by measuring the vacuum work function of lead, indium, and lead/indium alloy films. It is found that the anomalous decrease of the work function of lead upon exposure to oxygen, explained by the penetration of oxygen into the inner surface of the lead film, is reversed into a slight increase in work function when some indium is added to the lead. This result indicates that the addition of indium provides a protection by suppressing the penetration of oxygen (and probably other gases) into the interior of the thin film

  5. Lead activity in Pb-Sb-Bi alloys

    Directory of Open Access Journals (Sweden)

    A. S. Kholkina

    2014-11-01

    Full Text Available The present work is devoted to the study of lead thermodynamic activity in the Pb-Sb-Bi alloys. The method for EMF measurements of the concentration cell: (–Pb|KCl-PbCl2¦¦KCl-PbCl2|Pb-(Sb-Bi(+ was used. The obtained concentration dependences of the galvanic cell EMF are described by linear equations. The lead activity in the ternary liquid-metal alloy demonstrates insignificant negative deviations from the behavior of ideal solutions.

  6. INFLUENCE OF MECHANICAL ALLOYING AND LEAD CONTENT ON MICROSTRUCTURE, HARDNESS AND TRIBOLOGICAL BEHAVIOR OF 6061 ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Paidpilli

    2017-03-01

    Full Text Available In the present work, one batch of prealloyed 6061Al powder was processed by mixing and another one was ball milled with varying amount of lead content (0-15 vol. %. These powders were compacted at 300MPa and sintered at 590˚C under N2. The instrumented hardness and the young’s modulus of as-sintered 6061Al-Pb alloys were examined as a function of lead content and processing route. The wear test under dry sliding condition has been performed at varying loads (10-40 N using pin-on-disc tribometer. The microstructure and worn surfaces have been investigated using SEM to evaluate the change in topographical features due to mechanical alloying and lead content. The mechanically alloyed materials showed improved wear characteristics as compared to as-mixed counterpart alloys. Delamination of 6061Al-Pb alloys decreases up to an optimum lead composition in both as-mixed and ball-milled 6061Al-Pb alloys. The results indicated minimum wear rate for as-mixed and ball-milled 6061Al alloy at 5 and 10 vol. % Pb, respectively.

  7. Experimental system design of liquid lithium-lead alloy bubbler for DFLL-TBM

    International Nuclear Information System (INIS)

    Xie Bo; Li Junge; Xu Shaomei; Weng Kuiping

    2011-01-01

    The liquid lithium-lead alloy bubbler is a very important composition in the tritium unit of Chinese Dual-Functional Lithium Lead Test Blanket Module (DFLL-TBM). In order to complete the construction and run of the bubbler experimental system,overall design of the system, main circuit design and auxiliary system design have been proposed on the basis of theoretical calculations for the interaction of hydrogen isotope with lithium-lead alloy and experiment for hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle. The key of this design is gas-liquid exchange packed column, to achieve the measurement and extraction of hydrogen isotopes from liquid lithium-lead alloy. (authors)

  8. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  9. Ternary equilibria in bismuth--indium--lead alloys

    International Nuclear Information System (INIS)

    Liao, K.C.; Johnson, D.L.; Nelson, R.C.

    1975-01-01

    The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system

  10. Penetration of a magnetic field into superconducting lead and lead-indium alloys

    International Nuclear Information System (INIS)

    Egloff, C.; Raychaudhuri, A.K.; Rinderer, L.

    1983-01-01

    The temperature dependence of the magnetic field penetration depth of superconducting lead and lead-indium alloys has been studied over the temperature range between about 2 K and T/sub c/. Data are analyzed in terms of the microscopic theory. The difficulties of a unique analysis of the penetration data are pointed out and a strategy for the analysis is discussed. The penetration depth at T = 0K for pure lead is determined as 522 A. This value, though higher than the previously accepted value for lead, is nevertheless consistent with the strong coupling character of lead

  11. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead

    International Nuclear Information System (INIS)

    Hwang, S.S.; Kim, H.P.; Lee, D.H.; Kim, U.C.; Kim, J.S.

    1999-01-01

    The mode of stress corrosion cracking (SCC) in Ni-base alloys in high temperature aqueous solutions containing lead was studied using C-rings and slow strain rate testing (SSRT). The lead concentration, pH and the heat treatment condition of the materials were varied. TEM work was carried out to observe the dislocation behavior in thermally treated (TT) and mill annealed (MA) materials. As a result of the C-ring test in 1M NaOH+5000 ppm lead solution, intergranular stress corrosion cracking (IGSCC) was found in Alloy 600MA, whereas transgranular stress corrosion cracking (TGSCC) was found in Alloy 600TT and Alloy 690TT. In most solutions used, the SCC resistance increased in the sequence Alloy 600MA, Alloy 600TT and Alloy 690TT. The number of cracks that was observed in alloy 690TT was less than in Alloy 600TT. However, the maximum crack length in Alloy 690TT was much longer than in Alloy 600TT. As a result of the SSRT, at a nominal strain rate of 1 x 10 -7 /s, it was found that 100 ppm lead accelerated the SCC in Alloy 600MA (0.01%C) in pH 10 at 340 C. IGSCC was found in a 100 ppm lead condition, and some TGSCC was detected on the fracture surface of Alloy 600MA cracked in the 10000 ppm lead solution. The mode of cracking for Alloy 600 and Alloy 690 changed from IGSCC to TGSCC with increasing grain boundary carbide content in the material and lead concentration in the solution. IGSCC seemed to be retarded by stress relaxation around the grain boundaries, and TGSCC in the TT materials seemed to be a result of the crack blunting at grain boundary carbides and the enhanced Ni dissolution with an increase of the lead concentration. (orig.)

  12. Synthesis and application of a novel Cu/RGO@Pb alloy for lead-acid batteries

    International Nuclear Information System (INIS)

    Wu, Yumeng; Zhao, Ruirui; Zhou, Huawen; Zhang, Dejing; Zhao, Wei; Chen, Hongyu

    2016-01-01

    In this work, a novel Cu/RGO@Pb alloy was prepared successfully and tested in the simulated lead-acid battery environment. In preparing the novel alloy, Cu/RGO composite was firstly synthesized in order to increase the wettability of RGO to Pb, and then the composite was added to the molten lead to obtain the target alloy. Scanning electron microscope, energy dispersive spectrometer, X-ray diffraction as well as electrochemical measurements were employed to evaluate the performance of the obtained composite and alloy. Results show that the prepared Cu/RGO@Pb possessed higher oxygen evolution over-potential and lower hydrogen evolution over-potential than the contrast alloy, indicating this novel alloy was more suitable for using as positive grids in lead acid batteries. Moreover, the RGO additive could inhibit the formation of Pb(II) and Pb(IV) film on the surface of the alloy, which could enhance the deep-charge/discharge performance of the grids and improve the corrosion resistance.

  13. Determination of new time-temperature-transformation diagrams for lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [Arts et Metiers Paristech, LaBoMaP, ENSAM, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2008-12-01

    The Pb-Ca is an age hardening alloy that allows for an increase in the hardness compared to pure lead. The hardening is obtained after different successive ageing transformations. In addition, this hardening is followed by an overageing which induces a softening. The ageing and overageing transformation mechanisms are now well identified in lead-calcium alloys. In this paper, we propose to represent the domain of stability of each transformation via time-temperature-transformation diagrams for a calcium concentration from 600 to 1280 ppm and in a range of temperatures from -20 to 180 C. These diagrams are constructed with the data obtained by in situ ageing with metallographic observations, hardness and electrical resistance measurements. The specificities of lead-calcium such as its fast ageing at ambient temperature and its overageing over time required the design of specific devices to be able to identify the characteristics of these alloys. (author)

  14. Heat conduction in superconducting lead thallium alloys

    International Nuclear Information System (INIS)

    Ho, J.L.N.

    1975-01-01

    The heat conduction of six strong coupling superconducting Pb--Tl alloy specimens (1 to 20 percent wt Tl) was investigated with the emphasis on the effects of impurities upon the phonon thermal conductivity. All the specimens were annealed at 275 0 C for one week. Results show that the superconducting state phonon thermal conductivity of Pb--Tl is in reasonably good agreement with BRT theory. The strong coupling superconductivity of lead alloys can be handled by scaling the gap parameter using a constant factor. The results presented also show that the phonon thermal conductivity at low temperatures of well annealed lead-thallium alloys can be analyzed in terms of phonon scattering by the grain boundaries, point defects, conduction electrons, and other phonons. The phonon-dislocation scattering was found to be unimportant. The phonon relaxation rate due to point defects is in reasonably good agreement with the Klemens theory for the long range strain field scattering introduced by the thallium impurities. At low temperatures, the normal state phonon thermal conductivity showed an increase in the phonon-electron relaxation rate as the thallium concentration increases. The increase of the phonon-electron relaxation rate is attributed to the change of the Fermi surface caused by the presence of thallium impurity. The effect of the strong electron-phonon coupling character upon the phonon-electron relaxation rate has also been considered in terms of the electron-phonon enhancement factor found in the specific heat measurements

  15. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  16. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  17. Influence of the cooling rate on the ageing of lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [LaBoMaP, Arts et Metiers ParisTech, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et Techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2009-03-01

    Cast lead-calcium alloys were known to be sensitive to experimental parameters, which cause large variations on the ageing and overageing behaviour. From the study of these parameters, the quenching rate was the only significant parameter. A critical cooling rate was defined based on hardness, electrical resistivity and metallographical observations. The inconsistencies in the literature noticed on the evolutions of lead-calcium alloys can now be explained by whether or not this critical cooling rate was respected. (author)

  18. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  19. Lead-free bearing alloys for engine applications

    Science.gov (United States)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  20. Safety considerations of lithium lead alloy as a fusion reactor breeding material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    Test results and conclusions are presented for lithium lead alloy interactions with various gas atmospheres, concrete and potential reactor coolants. The reactions are characterized to evaluate the potential of volatilizing and transporting radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. The safety concerns identified for lithium lead alloy reactions with the above materials are compared to those previously identified for a reference fusion breeder material, liquid lithium. Conclusions made from this comparison are also included

  1. A Technique for Dynamic Corrosion Testing in Liquid Lead Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Eric Paul; Davis, Cliff Bybee; Mac Donald, Philip Elsworth

    2001-04-01

    An experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials to be used in liquid lead alloy cooled reactors has been designed. This experimental project is part of a larger research effort between Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology to investigate the suitability of lead, lead-bismuth, and other lead alloys for cooling fast reactors designed to produce low-cost electricity as well as for actinide burning. The INEEL forced convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The gas flow rates, heat input, and shroud and vessel dimensions have been adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within the downcomer located between the shroud and vessel wall. The ATHENA computer code was used to design the experimental apparatus and estimate the fluid conditions. The corrosion cell will test steel that is commercially available in the U. S. to temperatures above 650oC.

  2. Analyses of alloys for quelatometry, part one, alloys with copper, lead and zinc

    International Nuclear Information System (INIS)

    Clavijo Diaz, Alfonso

    1995-01-01

    A chemical-mathematic model and experimental method based on the acid base balances is developed for the analysis of metallic ions, isolated or in mixtures. The theoretical titling curves, including chelones-forming agents and metallo-chromic indicator were worked on a personal computer. This chelometric method was applied to the quantitative determination of copper, zinc and lead ions in alloys

  3. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  4. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  5. Selection and characterization of lead alloys for use in the SDC EM Calorimeter

    International Nuclear Information System (INIS)

    Nasiatka, J.

    1993-01-01

    Lead, because of it's density and ductility, has been used by man for centuries for many things ranging from building materials, to piping; from electrical connections, to radiation shielding, and batteries. However, despite it's extensive and varied use, not much is really known about it's exact physical and structural properties except in a very rudimentary way. The SDC cast lead EM Calorimeter needs to take full advantage of all the properties that the lead alloy has to offer. Hence, a very thorough and detailed understanding of the properties of the lead-absorber structure must be obtained and controlled, so that the integrity of the calorimeter is not compromised. This paper will attempt to detail a series of ongoing experiments used to characterize and define the properties of the Calcium-Tin-Lead alloys for use in the SDC cast lead electromagnetic calorimeter

  6. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  7. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Gnanasekaran, T.; Srinivasa, Raman S.

    2006-01-01

    The diffusivity of oxygen in liquid lead and lead-bismuth eutectic (LBE) alloy was measured by a potentiostatic method and is given by log(D O Pb /cm 2 s -1 )=-2.554-2384/T(+/-0.070), 818-1061K, and log(D O LBE /cm 2 s -1 )=-0.813-3612/T(+/-0.091), 811-980K. The activity of oxygen in lead and LBE was determined by coulometric titration experiments. Using the measured data, the standard free energy of dissolution of oxygen in liquid lead and LBE was derived and is given byG O(Pb) xs =-121349+16.906T(+/-560)J(gatomO) -1 ,815-1090K,G O(LBE) xs = -127398+27.938T(+/-717)J(gatomO) -1 ,812-1012K.Using the above data, the Gibbs energy of formation of PbO(s) and equilibrium oxygen pressures measured over the oxygen-saturated LBE alloy, the solubility of oxygen in liquid lead and LBE were derived. The solubility of oxygen in liquid lead and LBE are given by log(S/at.%O)=-5100/T+4.32 (+/-0.04), 815-1090K and log(S/at.%O)=-4287/T+3.53 (+/-0.06), 812-1012K respectively.

  8. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  9. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    Science.gov (United States)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  10. Electrochemical reduction of oxygen on lead-silver alloys in an alkaline medium

    International Nuclear Information System (INIS)

    Seliverstov, S.D.; Arkhangel'skaya, Z.P.; Lyzlov, N.Y.

    1986-01-01

    The use of lead-silver alloys as materials for the gas-absorbing electrode in sealed silver-cadmium alkaline storage batteries is desirable primarily from the stanpoint of saving the costly silver. The authors studied reduction of oxygen with the aim of optimizing the composition of the Pb-Ag alloy and of the porous structure of the electrodes. The alloys were made in a muffle furnace in corundum crucibles under a layer of VI-2 flux. Curves are shown which represent the dependence of the ionization current of molecular oxygen on smooth partially immersed electrodes made from alloys differing in composition on the length of the part of the electrode withdrawn from the solution. It is shown that decrease of the corrosion resistance of the alloy in the porous electrode causes partial loss of its mechanical strength. Worsening of the electric contact between the particles of active material is also possible. An alloy of the composition (mass %) 60 Pb-40 Ag is the most suitable from the practical standpoint

  11. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  12. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  13. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  14. Removal of lead from the industrial and synthetic Cu-Pb-Fe alloy with argon barbotage

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-01-01

    Full Text Available Results of research on removal of lead from synthetic and industrial Cu-Pb-Fe alloy with argon barbotage are presented. For examinations was taken a synthetic alloy and industrial alloy coming “Glogow II” Copperworks. As basic research equipment was used a pipe resistance furnace enabling heating of samples up to 1 473 K. Examinations were made in 2 test series. The 1 series was performed on the synthetic alloy, while in 2 series was used an industrial alloy. All series were conducted at 1 473 K and with gas fl ow 5,55•10-6, 6,94•10-6, 8,33•10-6, 9,72•10-6 m3•s-1.

  15. Study and understanding of the ageing mechanisms in lead-calcium alloys

    International Nuclear Information System (INIS)

    Rossi, F.

    2006-12-01

    The data available in the literature about ageing and over-ageing of lead-calcium alloys are often incomplete and inconsistent. It is undoubtedly due to the experimental difficulties encountered to observe the structure transformations which are numerous. As a result there is a certain confusion among the results of the different authors. Moreover, small variations in the process parameters and chemical composition may have some influence on the alloy behaviour. This work enabled us to obtain a set of TTT diagrams, more realistic and accurate than the ones available in the literature. Experimental techniques developed (particularly the preservation of the cold chain with is essential for the guaranty of the results repeatability), enabled particularly the study of the first transformations and better control the five stages of ageing and over-ageing. Our work have enabled to determine precisely the kinetics and the mechanisms of the transformations. This work constitutes a thorough analysis of the ageing and over-ageing of theses alloys. (author)

  16. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  17. A circulating loop tester for liquid alloyed metal of lead-bismuth

    International Nuclear Information System (INIS)

    Kitano, Teruaki; Ono, Mikinori; Kamata, Kinya

    2002-01-01

    Mitsui Engineering and Shipbuilding Co., Ltd. (MES) had focused to merits of this lead-bismuth alloy, to actively carry out many works on this field such as an experience of development of heat exchanger at industrial level of intercourse with IPPE (Institute of Physics and Power Engineering) in Russia with an experience of using results for 80 years on coolant for nuclear reactor. Before about 20 years, MES developed a heat exchanger for installation at a lead-zinc separation process in a refinery in Japan under cooperation of the Mitsui Metal and Mine Co., Ltd., to deliver it for a power generation system at the Hachinohe refinery. As the heat exchanger aims at control of cooling in the separation process, it also contributes to power generation of about 4,300 kW, and now it continues to separate and contribute to self-power generation in the refinery. The heat exchanger is filled with the liquid alloyed metal of lead-bismuth for an intermediate thermal medium in its casing. The metal has some merits such as inactivity to air and water, high boiling point (1,700 centigrade), almost no volume change at its coagulation, and its minus reactivity coefficient. However, the metal has some problems to be solved, such as its steel corrosion, its purification, and control technology. To grow up lead-bismuth technology to a nuclear energy technology in Japan, the lead-bismuth circulating loop tester was produced on May, 2001, to establish application technology on this system to nuclear energy technology in Japan. (G.K.)

  18. Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates

    International Nuclear Information System (INIS)

    Amore, S.; Ricci, E.; Borzone, G.; Novakovic, R.

    2008-01-01

    The present work was carried out in the framework of the study of new lead-free solder alloys for technical applications in electronic devices. In the focus of this characterisation the wetting behaviour of several Sn-rich alloys belonging to the In-Sn, Au-Sn and Cu-Sn systems has been studied by measuring the contact angle variations on Cu and Ni substrates as a function of time and temperature. The interface between the alloy and the substrate has been analysed by the use of optical microscopy and scanning electron microscopy combined with energy-dispersive X-ray spectrometry in order to study the reaction between the alloy and the solid substrate and the possible formation of different compounds at the interface. A remarkable effect of the two different substrates on the behaviour of the contact angle as a function of temperature and on the morphology of the interface between the liquid solder and the solid substrate was observed for the In-Sn and Cu-Sn, while the Au-Sn system shows a very similar wetting behaviour on Cu and Ni

  19. Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys

    Science.gov (United States)

    Lis, Adrian; Nakanishi, Kohei; Matsuda, Tomoki; Sano, Tomokazu; Minagawa, Madoka; Okamoto, Masahide; Hirose, Akio

    2017-07-01

    Solder joints between leads and printed circuit boards in thin small outline packages were produced with conventional Sn1.0Ag0.7Cu (SAC107) and Sn3.0Ag0.7Cu (SAC305) solders as well as various solder alloys with gradually increasing amounts of Bi (up to 3.0 wt.%) and In (up to 1.0 wt.%) within the SAC107 base solder. The reliability of soldered leads in temperature cycle (TC) tests improved most with solder alloys containing both Bi (1.6 wt.%) and In (0.5 wt.%). Microindentation and electron probe microanalysis mappings revealed that the effect originates from a combination of solution and precipitation strengthening of the initial SAC alloy. The distribution of inelastic strain accumulation (ISA), as a measure for degradation, was determined in the solder joints by finite element calculations. It was shown that defects in the solder proximal to the lead (60-75 μm), which was underpinned by similar cracking characteristics along the lead-solder interface. The ISA was confirmed to be lower in SAC+Bi/In alloys owing to their enhanced elasto-plastic properties. Moreover, the addition of a thin Cu coating on the leads could improve the joint reliability, as suggested by the calculation of the ISA and the acceleration factor.

  20. Airborne concentrations of toxic metals resulting from the use of low melting point lead alloys to construct radiotherapy shielding

    International Nuclear Information System (INIS)

    McCullough, E.C.; Senjem, D.H.

    1981-01-01

    Determinations of airborne concentrations of lead, cadmium, bismuth, and tin were made above vessels containing a fusible lead alloy (158 0 F melting point) commonly used for construction of radiotherapy blocks. Fume concentrations were determined by collection on a membrane filter and analysis by atomic absorption spectrophotometry. Samples were obtained for alloy temperatures of 200 0 , 400 0 , and 600 0 F. In all instances, concentrations were much lower than the applicable occupational limits for continuous exposure. The results of this study indicate that the use of a vented hood as a means of reducing air concentrations of toxic metals above and near vessels containing low temperature melting point lead allows commonly used in construction of radiotherapy shields appears unjustifiable. However, proper handling procedures should be observed to avoid entry into the body via alternate pathways (e.g., ingestion or skin absorption). Transmission data of a non-cadmium containing lead alloy with a melting point of 203 0 F was ascertained and is reported on

  1. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  2. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  3. On the use of lead/tin alloys as target material for the production of spallation neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Baumann, P.; Brys, T.; Daum, M.; Egorov, A.; Fierlinger, P.; Fuchs, P.; Henneck, R.; Joray, St.; Keil, R.; Kirch, K.; Krutova, R.; Kuehne, G.; Lebedev, V.T.; Obermeier, H.; Orlova, D.N.; Perret, Ch.; Pichlmaier, A.; Richard, Ph.; Serebrov, A.; Thies, S.

    2005-01-01

    We have examined the suitability of lead (Pb)/tin (Sn) alloys with atomic ratios between 4:1 and 12:1 for use as a spallation target material for the PSI spallation ultracold neutron source. The measured corrosion rate with distilled water, R c -5 cm/year, is more than a factor of 80, less than for normal Pb; this corrosion rate is satisfactory. Microscopic investigations of the surface after the exposure to water revealed no visual changes. Small angle neutron scattering showed that the alloy is mechanically stable under thermal cycling. An experimental simulation of a water-cooled spallation neutron target made of Pb/Sn pebbles with a filling factor of 60% was investigated; the pulsed proton beam was simulated using hot and cold water in the target 'cooling' circuit. With realistic operational parameters for the cooling circuit, serious deformation of the PbSn pebbles occurred which finally blocked the cooling circuit. The Pb/Sn alloys solve the corrosion problem but its mechanical properties are inadequate leading to too short a lifetime to be practical in the PSI spallation source

  4. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  5. Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet

    International Nuclear Information System (INIS)

    Cura D'Ars de Figueiredo Junior, Joao; Freitas Cunha Lins, Vanessa de; Bellis, Vito Modesto de

    2007-01-01

    The corrosion products of a TM 23 bronze-leaded alloy (Cu 72%, Pb 15%, Zn 8% and Sn 5%) were obtained in a salt spray cabinet after exposition during 120 h and 1000 h. The products obtained were studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The major products of bronze-leaded corrosion were oxides and basic salts of Cu, CuCl 2 .3Cu(OH) 2 , and Pb, Pb(OH)Cl. The results can be attributed to a kinetic control of the corrosion reactions

  6. Lag-Lead Compensator for Shape Memory Alloy in Gripping Manipulation

    Directory of Open Access Journals (Sweden)

    Made Andik Setiawan

    2010-12-01

    Full Text Available Shape Memory Alloy (SMA is emerging actuator for micro and nano application, on the other hand the developing controller in such area needs much further considerations.This paper is to present the evaluation of close-loop controller responses of the TiNi SMA spring based gripper by introduced lag, lead and lag-lead compensator. A SMA spring has a diameter of 50 mm wire and 350 gram hanging mass. Driving the SMA actuator is used pulse width modulation (PWM signal and responses tested by varying frequencies and duty-cycles. The implemented frequencies in this study are 12, 25, 125, 250 and 1150 Hz. Lab-View and DAQ-Card is used as a controller, interfacer and data recorder of the system. The gripper fabricated consists of two fingers and the total angular displacement of the gripper is 300. The experimental result of the SMA open-loop response are presented and discussed. For advanced application, the close-loop controller is implemented and studied. The close-loop controllers employed are lag, lead and lag-lead compensator. The SMA response indicated that the rise-time and the steady-state error of the cloop-loop are shorter and lower than open-loop controller. The tuning, response and program of the lag, lead and lag-lead compensator are presented and discussed in this paper.

  7. Medium-Power Lead-Alloy Fast Reactor Balance-of-Plant Options

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Hejzlar, Pavel; Todreas, Neil E.; Buongiorno, Jacopo

    2004-01-01

    Proper selection of the power conversion cycle is a very important step in the design of a nuclear reactor. Due to the higher core outlet temperature (∼550 deg. C) compared to that of light water reactors (∼300 deg. C), a wide portfolio of power cycles is available for the lead alloy fast reactor (LFR). Comparison of the following cycles for the LFR was performed: superheated steam (direct and indirect), supercritical steam, helium Brayton, and supercritical CO 2 (S-CO 2 ) recompression. Heat transfer from primary to secondary coolant was first analyzed and then the steam generators or heat exchangers were designed. The direct generation of steam in the lead alloy coolant was also evaluated. The resulting temperatures of the secondary fluids are in the range of 530-545 deg. C, dictated by the fixed space available for the heat exchangers in the reactor vessel. For the direct steam generation situation, the temperature is 312 deg. C. Optimization of each power cycle was carried out, yielding net plant efficiency of around 40% for the superheated steam cycle while the supercritical steam and S-CO 2 cycles achieved net plant efficiency of 41%. The cycles were then compared based on their net plant efficiency and potential for low capital cost. The superheated steam cycle is a very good candidate cycle given its reasonably high net plant efficiency and ease of implementation based on the extensive knowledge and operating experience with this cycle. Although the supercritical steam cycle net plant efficiency is slightly better than that of the superheated steam cycle, its high complexity and high pressure result in higher capital cost, negatively affecting plant economics. The helium Brayton cycle achieves low net plant efficiency due to the low lead alloy core outlet temperature, and therefore, even though it is a simpler cycle than the steam cycles, its performance is mediocre in this application. The prime candidate, however, appears to be the S-CO 2

  8. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    CERN Document Server

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  9. Microstructure and wear behaviour of aluminium alloys containing embedded nanoscaled lead dispersoids

    International Nuclear Information System (INIS)

    Bhattacharya, Victoria; Chattopadhyay, K.

    2004-01-01

    We report the early stage friction and wear characteristics of aluminium containing nanosized lead dispersions. The nanocomposite was produced by rapid solidification. The experimental results indicate a significant decrease in friction and wear rate in comparison to its coarse grained counterparts. We show that the observed results suggest an adhesive type of wear mechanism. However, increase in hardness due to refinement of the aluminium grains cannot quantitatively rationalize the results. We explore and discuss the role of nanoscaled lead particles and the mass transport between the sample and counterface via mechanical alloying, in the formation of tribolayers affecting the tribological properties. The plane view and cross-sectional transmission electron microscopy reveals significant elongation as well as coarsening of the lead particles during the process of wear. We attempt to understand these results in the framework of moving dislocations and their assistance to the mass transport among the dispersed lead particles

  10. Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology

    International Nuclear Information System (INIS)

    Todreas, Neil E.; MacDonald, Philip E.; Hejzlar, Pavel; Buongiorno, Jacopo; Loewen, Eric P.

    2004-01-01

    A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [∼100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO 2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a

  11. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  12. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Marion, E-mail: marion.roy@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Martinelli, Laure, E-mail: laure.martinelli@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Ginestar, Kevin, E-mail: kevin.ginestar@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Favergeon, Jérôme, E-mail: jerome.favergeon@utc.fr [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Moulin, Gérard [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2016-01-15

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10{sup −9} and 5 10{sup −4} g kg{sup −1}. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = −57584/T(K) −55.876T(K) + 254546 (R is the gas constant in J mol{sup −1} K{sup −1}). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour. - Highlights: • 10 austenitic steels and Ni rich alloys were tested in LBE at 520 °C with dissolved oxygen content between 10{sup -9} and 5 10{sup -4} wt%. • It is shown that only thermodynamics cannot explain the Ni rich alloys corrosion behaviour in LBE. • The role of oxygen on corrosion behaviour in LBE was highlighted. • An equilibrium line was defined above which only oxidation has occurred on 316L: RTln[O](wt%) = -57584/T(K)-55.876T(K)+254546. • 18Cr-15Ni-3.7Si, 21Cr-11Ni-1.6Si and 14Cr-25Ni-3.5Al

  13. Cavity closure during compression between semi-closed die using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Al-Tamimi, M. M.

    2013-01-01

    Superplasticity is a feature of a material or alloy, which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature, and has been extensively used as a model material. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using semi-closed dies (modified dies) with 45 degree inclination and compare the results from these dies with those of flat platens (open dies) published previously. Hollow specimens having different values of bore diameter (Db) to outer diameter (Dout), of the same height and volume were investigated under 40% height reduction. The cavity closure for each specimen was determined. Comparison is made between flat platens and semi-closed dies regarding cavity closure based on bore diameter, bore volume, reduction percentage in bore diameter and reduction percentage in bore volume, at the 40% reduction in height. It was found that modifying the platens (45 degree inclination) resulted in lower values of bore diameters and volume i.e. higher values of reduction in bore diameters and volumes percentages irrespective of the value of bore diameter and the ratio of Db/Dout. (author)

  14. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  15. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  17. Characterisation of lead-calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [Arts et Metiers ParisTech, LaBoMaP, Cluny (France); Delfaut-Durut, L. [CEA, Centre de Valduc, (SEMP, LECM), Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, Limoges (France); Vilasi, M. [LCSM, Univ. Nancy I, Vandoeuvre les Nancy (France)

    2010-02-15

    Transformations undergone by lead-calcium alloys are numerous and have different kinetics from a few minutes to a few years. Anisothermal calorimetric measurements were performed to be able to identify these transformations quickly. It was then possible to identify five transformations. Complementary measurements have enabled us to define transformations with an in-situ electrical resistance measurement to follow the evolution of the calcium in solid solution and with an in-situ hardness measurement to characterise the mechanical properties. The aim of these results is to simulate the ageing and overageing of the alloy in isothermal conditions. (orig.)

  18. Assessment of and proposal for a mechanistic interpretation of the SCC of high nickel alloys in lead-containing environments

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2002-01-01

    The SCC of Alloys 600 and 690 in lead-containing solutions, 'lead stress corrosion cracking' (PbSCC) is quite aggressive on tubing in conditions of operation of steam generators (SG) in pressurized water reactors (PWR). Lead dissolved in water can produce PbSCC at concentrations of Pb as low as 0.1 ppm in these alloys. PbSCC is perhaps the most generally aggressive of the environmental species that occur in SGs. This discussion considers the occurrence of Pb in SGs and the PbSCC that can result. The dependencies of PbSCC on the variables of pH, potential, species, alloy composition, alloy structure, temperature and stress are reviewed. Also, important features of the mechanism of PbSCC are assessed. The most significant question related to PbSCC is why more is not occurring in view of the low thresholds for the PbSCC and the ubiquity of the Pb. While there are usually no common specific sources for Pb in most secondary systems, Pb concentrates on surfaces of tubing efficiently over long times. Regardless, it appears that extensive PbSCC does not occur because it is immobilized by forming stable compounds with other species such as sulfur, carbon, phosphorous and silica. Pb is also immobilized by forming stable adsorbed states with oxides such as magnetite and hematite. The possibility of releasing Pb to produce PbSCC increases as water chemistry produces more pure systems and as chemical cleaning is used. Contrary to the common assumption that PbSCC is TGSCC, that of Alloy 600MA is generally IGSCC; only the sensitized (SN), stress relieved (SR) and thermally treated (TT) conditions of Alloys 600 and 690 sustain TGSCC in Pb-containing solutions. In view of the prevailing IGSCC produced by Pb in MA materials, the possibility of all IGSCC in SGs being due to Pb should be considered where crevice environments are in the nominally neutral range. TGSCC that is observed in SGs can be produced by other, although not widely appreciated, environments. The mechanism of Pb

  19. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  20. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  1. Solubility of iron in liquid lead

    International Nuclear Information System (INIS)

    Ali-Khan, I.

    1981-01-01

    The use of liquid lead in high temperature chemical and metallurgical processes is well known. The structural materials applied for the containment of these processes are either iron base alloys or possess iron as an alloying element. Besides that, lead itself is alloyed in some steels to achieve some very useful properties. For understanding the effect of liquid lead in such structural materials, it is important to determine the solubility of iron in liquid lead which would also be indicative of the stability of these alloys. At the institute of reactor materials of KFA Juelich, investigations have been conducted to determine the solubility of iron in liquid lead up to a temperature of about 1000 0 C. In this presentation the data concerning the solubility of iron in liquid lead are brought up to date and discussed including the results of our previous investigations. (orig.)

  2. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  3. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  4. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  5. Potential uses of lead in nuclear waste disposal

    International Nuclear Information System (INIS)

    Goodwin, F.E.; Pool, K.H.; Westerman, R.E.; Pitman, S.G.; Telander, M.R.

    1991-01-01

    In order for lead to be considered as a nuclear waste packaging material, it must be shown that it has adequate corrosion resistance, and that it does not degrade the properties of other important structural or barrier elements in the waste package. The present work focused on determining (a) the corrosion resistance of commercial purity (CP) lead and a Pb-1.5% Sb alloy in irradiated, elevated-temperature tuff ground water environments; (b) the resistance of alloy 825, a candidate container alloy, to embrittlement by molten lead; and (c) the resistance of lead and the Pb-Sb alloy to localized (pitting, crevice) corrosion. The test results support the feasibility of using lead in nuclear waste containers

  6. Evaluation of thermal conductivity for liquid lead lithium alloys at various Li concentrations based on measurement and evaluation of density, thermal diffusivity and specific heat of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of

  7. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  8. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  9. Limets 2: a hot-cell test set-up for Liquid Metal Embrittlement (LME) studies in liquid lead alloys

    International Nuclear Information System (INIS)

    Van den Bosch, J.; Bosch, R.W.; Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. In the nuclear energy sector one of the main candidate designs for the accelerator driven system (ADS) uses liquid lead or lead bismuth eutectic both as a coolant and as spallation target. In the fusion community liquid lead lithium eutectic is considered as a possible coolant for the blanket and as a tritium source. Therefore the candidate materials for such structural components should not only comply with the operating conditions but in addition need to guarantee chemical and physical integrity when coming into contact with the lead alloys. The latter phenomena can be manifested in terms of erosion/corrosion. and/or of the so called liquid metal embrittlement (LME). Thus the susceptibility to LME of the structural materials under consideration to be used in such applications should be investigated in contact with the various lead alloys. LME, if occurring in any solid metal/liquid meta] couple, is likely to increase with irradiation hardening as localised stresses and crack initiations can promote it. To investigate the mechanical response of irradiated materials in contact with a liquid metal under representative conditions, a dedicated testing facility has recently been developed and built at our centre. It consists of an instrumented hot cell. equipped with a testing machine that allows mechanical testing of active materials in contact with active liquid lead lithium and liquid lead bismuth under well controlled chemistry conditions. The specificity of the installation is to handle highly activated and contaminated samples. Also a dedicated dismantling set-up has been developed that allows to retrieve the samples from the irradiation rig without any supplementary damage. In this presentation we will focus on the technical design of this new installation, its special features that have been developed to allow testing in a hot environment and the modifications and actions that have been taken to allow testing in liquid lead

  10. Determination of tellurium in lead and lead alloy using flow injection-hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mesko, Marcia F.; Pozebon, Dirce; Flores, Erico M.M.; Dressler, Valderi L.

    2004-01-01

    A method based on flow injection-hydride generation atomic absorption spectrometry (FI-HG AAS) for the determination of trace amount of Te in lead and lead alloy is described. A flow injection system (FI) and related analytical parameters as well as Te determination and interference caused by Pb, Bi and Ag on Te were investigated. The Pb interference could be overcome by using a small sample volume, while the Bi interference could be overcome by thiourea. However, it was not possible to minimise the interference caused by Ag on Te. The optimised conditions for Te determination in the analysed samples were: 6 mol l -1 HCl as sample carrier solution, 0.75% (m/v) sodium tetrahydroborate as Te reductant, 40 μl of sample solution, and 200 ml min -1 Ar flow rate as carrier gas. The limit of quantification (LOQ) was 1.0 μg g -1 Te (using 250 mg of sample in 50 ml final solution), the limit of detection (LOD) was 2.5 μg l -1 and the relative standard deviation (RSD) was 6% for five consecutive measurements of sample solution. The standard addition calibration method was used. Relatively high sample throughput (ca. 45 sample runs can be performed in a working hour), reduced sample manipulation since matrix separation is not necessary, and minor waste generation are the main advantages of the proposed method for Te determination by FI-HG AAS

  11. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  12. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  13. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  14. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  15. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    Science.gov (United States)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  16. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  17. Polarization behavior of new and used lead alloys in acid sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P.; O' Keefe, T.J. [Univ. of Missouri-Rolla, Materials Research Center and Dept. of Metallurgical Engineering, Rolla, Missouri (United States)

    2001-07-01

    Polarization and Electrochemical impedance were used to study various lead alloys commercially used to electrowin zinc and copper from acidic sulfate solutions. Anode specimens that had been in service at several electrowinning operations were tested and their electrochemical performance was compared to that obtained from new anode samples. Tests were conducted in sulfuric acid. Cyclic voltammetry was used in a potential range in which both Pb{sup +2} and Pb{sup +4} formed stable phases. Selected polarization tests were also made to study a number of variables, including changes in the concentration of cobalt and manganese in the electrolyte. Results showed that the phases formed on the surface of the anode were critical in defining the electrochemical behavior of the anodes. In particular, certain active phases, which were depolarizing were identified on some of the used anodes. It was possible to duplicate some of these phases in the laboratory. (author)

  18. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  19. Corrosion of ferrous alloys in eutectic lead-lithium environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-09-01

    Corrosion data have been obtained on austenitic prime candidate alloy (PCA) and Type 316 stainless steel and ferritic HT-9 and Fe-9Cr-1Mo steels in a flowing Pb-17 at. % Li environment at 727 and 700 K (454 and 427 0 C). The results indicate that the dissolution rates for both austenitic and ferritic steels in Pb-17Li are an order of magnitude greater than in flowing lithium. The influence of time, temperature, and alloy composition on the corrosion behavior in Pb-17Li is similar to that in lithium. The weight losses for the austenitic steels are an order of magnitude greater than for the ferritic steels. The rate of weight loss for the ferritic steels is constant, whereas the dissolution rates for the austenitic steels decrease with time. After exposure to Pb-17Li, the austenitic steels develop a very weak and porous ferrite layer which easily spalls from the specimen surface

  20. High Bismuth Alloys as Lead-Free Alternatives for Interconnects in High-Temperature Electronics

    Science.gov (United States)

    Mallampati, Sandeep

    Predominant high melting point solders for high-temperature electronics (operating temperatures from 200 to 250°C) are Pb-based which are being banned from usage due to their toxic nature. In this study, high bismuth alloy compositions (Bi-14Cu-8Sn, Bi-20Sb-10Cu, Bi-15Sb-10Cu and Bi-10Sb-10Cu) were designed, cast, and characterized to understand their potential as replacements. The desirable aspect of Bi is its high melting temperature, which is 271°C. Alloying elements Sn, Sb and Cu were added to improve some of its properties such as thermal conductivity, plasticity, and reactivity with Cu and Ni surface. Metallographic sectioning and microstructure analysis were performed on the bulk alloys to compare the evolution of phases predicted from equilibrium phase diagrams. Reflow processes were developed to make die-attach samples out of the proposed alloys and die-shear testing was carried out to characterize mechanical integrity of the joint. Thermal shock between -55°C to 200°C and high temperature storage at 200°C were performed on the assembled die-attach samples to study microstructure evolution and mechanical behavior of the reflowed alloys under accelerated testing conditions. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the bulk alloys and also on the die-attach assembly. Finally, tensile testing was performed on the dogbone specimens to identify the potential for plastic deformation and electron backscatter diffraction (EBSD) analysis was used to study the grain orientations on the fracture surfaces and their influence on the crack propagation. Bi-14Cu-8Sn has formed BiNi by on the die backside metallization and the reaction with Cu was poor. This has resulted in weaker substrate side interface. It was observed that Bi-Sb alloys have strong reactivity with Ni (forming Bi3Ni, BiNi and NiSb intermetallic phases), and with Cu (forming Cu2Sb, Cu4Sb). Spallation was observed in NiSb interfacial intermetallic layer and

  1. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  2. Thermodynamic properties of the liquid Bi-Cu-Sn lead-free solder alloys

    Directory of Open Access Journals (Sweden)

    Kopyto M.

    2009-01-01

    Full Text Available The electromotive force measurement method was employed to determine the thermodynamic properties of liquid Bi-Cu-Sn alloys using solid electrolyte galvanic cells as shown below: Kanthal+Re, Bi-Cu-Sn, SnO2 | Yttria Stabilized Zirconia | air, Pt, Po2=0.2:1 atm Measurements were carried out for three cross-sections with constant Bi/Cu ratio equal to: 1/3, 1 and 3 and for various tin content varying every 10%, resulting in a total of 26 different alloy compositions. The temperature of the measurements varied within the range from 973 to 1325 K. A linear dependence of the e.m.f. on temperature was observed for all alloy compositions and the appropriate line equations were derived. Tin activities were calculated as function of composition and temperature. Results were presented in tables and figures.

  3. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Science.gov (United States)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  4. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  5. Effect of reversible hydrogen alloying and plastic deformation on microstructure development in titanium alloys

    International Nuclear Information System (INIS)

    Murzinova, M.A.

    2011-01-01

    Hydrogen leads to degradation in fracture-related mechanical properties of titanium alloys and is usually considered as a very dangerous element. Numerous studies of hydrogen interaction with titanium alloys showed that hydrogen may be considered not only as an impurity but also as temporary alloying element. This statement is based on the following. Hydrogen stabilizes high-temperature β-phase, leads to decrease in temperature of β→α transformation and extends (α + β )-phase field. The BCC β-phase exhibits lower strength and higher ductility in comparison with HCP α -phase. As a result, hydrogen improves hot workability of hard-to-deform titanium alloys. Hydrogen changes chemical composition of the phases, kinetics of phase transformations, and at low temperatures additional phase transformation (β→α + TiH 2 ) takes place, which is accompanied with noticeable change in volumes of phases. As a result, fine lamellar microstructure may be formed in hydrogenated titanium alloys after heat treatment. It was shown that controlled hydrogen alloying improves weldability and machinability of titanium alloys. After processing hydrogenated titanium preforms are subjected to vacuum annealing, and the hydrogen content decreases up to safe level. Hydrogen removal is accompanied with hydrides dissolution and β→α transformation that makes possible to control structure formation at this final step of treatment. Thus, reversible hydrogen alloying of titanium alloys allows to obtain novel microstructure with enhanced properties. The aim of the work was to study the effect of hydrogen on structure formation, namely: i) influence of hydrogen content on transformation of lamellar microstructure to globular one during deformation in (α+β)-phase field; ii) effect of dissolved hydrogen on dynamic recrystallization in single α- and β- phase regions; iii) influence of vacuum annealing temperature on microstructure development. The work was focused on the optimization of

  6. Inhibition of stress corrosion cracking of alloy 600 in 10% NaOH solutions with and with lead oxide at 315 C

    International Nuclear Information System (INIS)

    Hur, D.H.; Kim, J.S.; Baek, J.S.; Kim, J.G.

    2002-01-01

    Alloy 600 steam generator tube materials have experienced various degradations by corrosion such as stress corrosion cracking (SCC) on the inner and outer diameter surface of tube, intergranular attack and pitting, and by mechanical damage such as fretting-wear and fatigue. These tube degradations not only increase the costs for tube inspection, maintenance and repair but also reduce the operation safety and the efficiency of plants. Therefore, the methodologies have been extensively developed to mitigate them. The addition of inhibitors to the coolant is a feasible method to mitigate tube degradations in operating plants. In this paper, a new inhibitor is proposed to mitigate the secondary side stress corrosion cracking of alloy 600 tubes. The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of alloy 600 was evaluated in 10% sodium hydroxide solution with and without lead oxide at 315 C. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours without and with inhibitors such as titanium oxide, titanium boride, cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective inhibitors, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in pure 10% NaOH solution. Furthermore, no SCC was observed in lead contaminated 10% NaOH solution by the addition of the cerium boride. (authors)

  7. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Handwerker, Carol A.

    2018-01-01

    The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

  8. Hot corrosion resistance of a Pb-Sb alloy for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Aoki, Claudia S.C. [Research and Development Centre - CPqD Foundation, Rod. Campinas/Mogi, km 118.5, 13086-912 Campinas, SP (Brazil)

    2008-12-01

    The aim of this study was to evaluate the effects of the microstructural morphologies of a Pb-6.6 wt%Sb alloy on the resulting corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at different temperatures: environment temperature, 50 C and 70 C. A water-cooled unidirectional solidification system was employed permitting a wide range of microstructures to be analyzed. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the corrosion behavior of the Pb-Sb alloy samples. It was found that with increasing temperatures the general corrosion resistance of Pb-Sb dendritic alloys decreases, and that independently of the working temperature finer dendritic spacings exhibit better corrosion resistance than coarser ones. (author)

  9. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  10. Study and understanding of the ageing mechanisms in lead-calcium alloys; Etude et comprehension des mecanismes de vieillissement des alliages de plomb-calcium

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F

    2006-12-15

    The data available in the literature about ageing and over-ageing of lead-calcium alloys are often incomplete and inconsistent. It is undoubtedly due to the experimental difficulties encountered to observe the structure transformations which are numerous. As a result there is a certain confusion among the results of the different authors. Moreover, small variations in the process parameters and chemical composition may have some influence on the alloy behaviour. This work enabled us to obtain a set of TTT diagrams, more realistic and accurate than the ones available in the literature. Experimental techniques developed (particularly the preservation of the cold chain with is essential for the guaranty of the results repeatability), enabled particularly the study of the first transformations and better control the five stages of ageing and over-ageing. Our work have enabled to determine precisely the kinetics and the mechanisms of the transformations. This work constitutes a thorough analysis of the ageing and over-ageing of theses alloys. (author)

  11. Progressive degradation of alloy 690 and the development of a significant improvement in alloy 800CR

    International Nuclear Information System (INIS)

    Staehle, Roger W.; Arioka, Koji; Tapping, Robert

    2015-01-01

    The present most widely used alloys for tubing in steam generators and structural materials in water cooled reactors are Alloy 690 and Alloy 800. However, both alloys, while improved over Alloy 600 may not meet the needs of longer range applications in the range of 80-100 years. Alloy 690 sustains damage resulting from the formation of cavities at grain boundaries which eventually cover about 50% of the area of the grain boundaries with the remainder covering being covered with carbides. The cavities seem to nucleate on the carbides leaving the grain boundaries a structure of cavities and carbides. Such a structure will lead the Alloy 690 to fail completely. Normal Alloy 800 does not produce such cavities and probably retains a large amount of its corrosion resistance but does sustain progressive SCC at low rate. A new alloy, 800CR, has been developed in a collaboration among Arioka, Tapping, and Staehle. This alloy is based on a Cr composition of 23.5-27% with the remainder retaining the previous Alloy 800 composition. 800CR sustains a crack velocity about 100 times less than Alloy 690 and a negligible rate of initiation. The 800CR, alloy is now seeking a patent. (authors)

  12. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  13. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead's behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range

  14. Morphology and Hardness Improvement of Lead Bearing Alloy through Composite Production: 75Pb-15Sb-10Sn/ 15% V/V SiO2 Particulate Composite

    Directory of Open Access Journals (Sweden)

    Linus Okon ASUQUO

    2013-06-01

    Full Text Available The morphology and hardness improvement of lead bearing alloy through composite production: 75Pb-15Sb-10Sn/ 15%v/v SiO2 particulate composite, was studied. 75Pb-15Sb-10Sn white bearing alloy produced at the foundry shop of National Metallurgical Development Centre Jos was used for the production of the composite using stir-cast method. The reinforcing agent was 63 microns passing particles of silica. This was produced from pulverizing quartz using laboratory ball mill. The specimens of the composite produced were then subjected to metallographic to study the morphology of the structures produced both in the as cast and aged conditions of the composite. The samples were also tested for hardness and the result showed that the as cast composite had a hardness value of 33 HRB which is an improvement over the hardness value of 27.7 HRB for the 75Pb-15Sb-10Sn alloy which was used for the production of the composite. The effect of age hardening on the produced composite was also investigated; the result showed that the maximum hardness of 34 HRB was obtained after ageing for 3 hours. The micrographs revealed inter-metallic compound SbSn, eutectic of two solid solutions-one tin-rich and the other lead-rich, reinforcing particles, and solid solution of β. The results revealed that particle hardening can be used to improve the hardness of 75Pb-15Sb-10Sn white bearing alloy for use as heavy duty bearing material.

  15. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    Science.gov (United States)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  16. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  17. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    Science.gov (United States)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  18. Lead-Free Electronics: Impact for Space Electronics

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    Pb is used as a constituent in solder alloys used to connect and attach electronic parts to printed wiring boards (PWBs). Similar Pbbearing alloys are electroplated or hot dipped onto the terminations of electronic parts to protect the terminations and make them solderable. Changing to Pb-free solders and termination finishes has introduced significant technical challenges into the supply chain. Tin/lead (Sn/Pb) alloys have been the solders of choice for electronics for more than 50 years. Pb-free solder alloys are available but there is not a plug-in replacement for 60/40 or 63/37 (Sn/Pb) alloys, which have been the industry workhorses.

  19. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  20. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  1. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  2. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  3. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  4. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  5. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep, K.G. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Materials Chemistry, RWTH Aachen University, Kopernikusstr.10, 52074 Aachen (Germany); Tasan, C.C., E-mail: c.tasan@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Yao, M.J. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Deng, Y. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Department of Engineering Design and Materials, Norwegian University of Science and Technology, No-7491 Trondheim (Norway); Springer, H. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany)

    2015-11-11

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  6. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    International Nuclear Information System (INIS)

    Pradeep, K.G.; Tasan, C.C.; Yao, M.J.; Deng, Y.; Springer, H.; Raabe, D.

    2015-01-01

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  7. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  8. A new paradigm for heat treatment of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ustinovshikov, Y., E-mail: ust@ftiudm.ru

    2014-11-25

    Highlights: • The sign of the ordering energy in alloys varies with the temperature. • Each temperature of heating leads to formation of its characteristic microstructure. • Quenching of alloys is a totally unnecessary and useless operation. - Abstract: The article considers the consequences in the field of heat treatment of alloys that could follow the introduction of the concept of phase transition ordering-phase separation into common use. By example of the Fe{sub 50}Cr{sub 50} alloy, industrial carbon tool steel and Ni{sub 88}Al{sub 12} alloy, it is shown that this transition occurs at a temperature, which is definite for each system, that the change of the sign of the chemical interaction between component atoms reverses the direction of diffusion fluxes in alloys, which affects changes in the type of microstructures. The discovery of this phase transition dramatically changes our understanding of the solid solution, changes the ideology of alloy heat treatment. It inevitably leads to the conclusion about the necessity of carrying out structural studies with the help of TEM in order to adjust the phase diagrams of the systems where this phase transition has been discovered. Conclusions have been made that quenching of alloys from the so-called region of the solid solution, which is usually performed before tempering (aging) is a completely unnecessary and useless operation, that the final structure of the alloy is formed during tempering (aging) no matter what the structure was before this heat treatment.

  9. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  10. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  11. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  12. NEW METHOD OF PRODUCTION OF ALUNINUM SILICON ALLOYS

    Directory of Open Access Journals (Sweden)

    V. K. Afanasiev

    2015-01-01

    Full Text Available A new approach to the preparation of aluminum-silicon alloys, based on the concept of the leading role of hydrogen in determining the structure and properties of alloys consists in using as charge materials of silicon dioxide (silica and hydrogen instead of crystalline silicon was described. Practical ways to implement the new method were proposed on the example of industrial alloys prepared on charge synthetic alloy. It is shown that the application of the proposed method allows to improve the mechanical properties and reduce the coefficient of thermal expansion alloys, Al-Si. The effect of heat treatment on mechanical properties, density and thermal expansion of synthetic alloys was researched.

  13. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  14. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  15. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  16. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  17. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  18. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  19. Characterization of lead-free solders for electronic packaging

    Science.gov (United States)

    Ma, Hongtao

    The characterization of lead-free solders, especially after isothermal aging, is very important in order to accurately predict the reliability of solder joints. However, due to lack of experimental testing standards and the high homologous temperature of solder alloys (Th > 0.5T m even at room temperature), there are very large discrepancies in both the tensile and creep properties provided in current databases for both lead-free and Sn-Pb solder alloys. In this research, mechanical measurements of isothermal aging effects and the resulting changes in the materials behavior of lead-free solders were performed. A novel specimen preparation procedure was developed where the solder uniaxial test specimens are formed in high precision rectangular cross-section glass tubes using a vacuum suction process. Using specimens fabricated with the developed procedure, isothermal aging effects and viscoplastic material behavior evolution have been characterized for 95.5Sn-4.0Ag-0.5Cu (SAC405) and 96.5Sn-3.0Ag-0.5Cu (SAC305) lead-free solders, which are commonly used as the solder ball alloy in lead-free BGAs and other components. Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Up to 40% reduction in tensile strength was observed for water quenched specimens after two months of aging at room temperature. Creep deformation also increased dramatically with increasing aging durations. Microstructural changes during room temperature aging were also observed and recorded for the solder alloys and correlated with the observed mechanical behavior changes. Aging effects at elevated temperatures for up to 6 months were also investigated. Thermal aging caused significant tensile strength loss and deterioration of creep deformation. The thermal aging results also showed that after an initial tensile strength drop, the Sn-Pb eutectic solder reached a relatively stable stage after 200 hours of aging. However, for SAC alloy, both the tensile and

  20. Elastic properties of zinc, cadmium, bismuth, thallium, tin, lead and their binary alloys with indium

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed

  1. Molybdenum-A Key Component of Metal Alloys

    Science.gov (United States)

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  2. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  3. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  4. Microstructures and mechanical properties of age-formed 7050 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, J.F.; Zhen, L.; Jiang, J.T.; Yang, L.; Shao, W.Z.; Zhang, B.Y.

    2012-01-01

    Highlights: ► Age-forming leads to the grain elongation in 7050 alloy. ► Age-forming varies the texture components in 7050 alloy. ► Age-forming promotes precipitates growth and PFZ enlargement in 7050 alloy. ► Age-forming induces to descend apparently elongation in 7050 alloy. ► The effect of age-forming on microstructure and properties is discussed in-depth. - Abstract: The effects of age-forming on microstructures and mechanical properties of 7050 Al alloy were investigated in this work. The alloy was subjected to age-forming as well as stress-free ageing at 160 °C for 6, 12, 18 and 24 h, and its microstructures were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). It was shown that creep might lead to grain elongation during age-forming, and the applied stress induces the coarsening of precipitates in 7050 Al alloy. The texture in the alloy was also influenced by age-forming. Consequently, the differences in microstructures result in differences in mechanical properties of age-forming versus traditional stress-free ageing. The ultimate tensile strength of age-formed samples were slightly lower than that of stress-free aged samples, while the yield strength of age-formed samples were apparently lower than that of stress-free aged samples. Specifically, the elongation of samples age-formed displays apparently decrease.

  5. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  6. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  7. Decagonal quasicrystalline phase in as-cast and mechanically alloyed Al–Cu–Cr alloys

    International Nuclear Information System (INIS)

    Shevchukov, A.P.; Sviridova, T.A.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Churyukanova, M.N.; Zhang, D.; Li, Z.

    2014-01-01

    Highlights: ► Microstructure of as-cast Al–Cu–Cr alloys was investigated. ► Composition of decagonal quasicrystalline phase was determined. ► Single-phase decagonal quasicrystalline powder was obtained. ► Phase composition changes during heating were controlled using DSC and X-ray diffraction. -- Abstract: Microstructure and phase composition of three Al-rich as-cast alloys of Al–Cu–Cr system were investigated by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The decagonal quasicrystalline phase is contained in all alloys under study and has grains with faceted shape, its composition lies in the range of 71–73 at.% Al, 11–12 at.% Cu and 15–18 at.% Cr. The heating in calorimeter of the mechanically alloyed Al 73 Cu 11 Cr 16 powder up to 600 °C leads to the formation of the pure decagonal phase. Total thermal effect in the temperature range 250–600 °C corresponding to the quasicrystalline phase formation is about 15 kJ/mol

  8. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Science.gov (United States)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  9. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  10. An Influence Study of Hydrogen Evolution Characteristics on the Negative Strap Corrosion of Lead Acid Battery

    Directory of Open Access Journals (Sweden)

    Zhong Guobin

    2015-01-01

    Full Text Available Negative strap corrosion is an important reason for the failure of valve regulated lead acid battery. This paper selected the Pb-Sb alloy material and Pb-Sn alloy material, made an investigation on the negative corrosion resistance and hydrogen evolution of these two alloy materials by scanning electron microscope analysis, metallographic analysis, chemical study and linear sweep voltammetry, and discussed the influence of lead alloy hydrogen evolution on the negative strap corrosion. The results showed that the hydrogen evolution reaction rates of the alloys had an impact on the corrosion areas with the maximum thickness of the alloys and the depth of corrosion layers. Greater hydrogen evolution reaction rate can lead to shorter distance between the corrosion area with the maximum thickness and the liquid level; whereas the greater corrosion layer thickness can bring aggravated risk of negative strap corrosion failure.

  11. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  12. Gamma rays shielding parameters for white metal alloys

    Science.gov (United States)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  13. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  14. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Lam, L.T. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Huynh, T.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Haigh, N.P. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Douglas, J.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Rand, D.A.J. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Lakshmi, C.S. [Pasminco Research Centre, Boolaroo, NSW (Australia); Hollingsworth, P.A. [Pasminco Research Centre, Boolaroo, NSW (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia); Manders, J. [Pasminco Ltd., Melbourne, VIC (Australia); Rice, D.M. [Pasminco Ltd., Melbourne, VIC (Australia)

    1995-01-01

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO{sub 1.1}); a central layer (PbO{sub 1.8}.PbSO{sub 4}); a porous outer layer n(PbO{sub 1.8}).PbSO{sub 4}, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to {approx}0.09 wt.%) does not affect the self-discharge behaviour of batteries. (orig.)

  15. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz , M.; Pelletier , J.; Vannes , A.; Bignonnet , A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  16. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  17. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  18. Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    Directory of Open Access Journals (Sweden)

    Mathias Göken

    2011-11-01

    Full Text Available The formation of alloys by particle reinforcement during accumulative roll bonding (ARB, and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 µΩ∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 µΩ∙cm/at.% was obtained.

  19. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  20. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  1. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  2. Numerical simulation of heat-transfer and insoluble corrosion product deposition in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Fang Xiaolu; Lin Daping; Ru Xiaolong

    2015-01-01

    As the primary coolant of ADS (accelerator driven sub-critical system), the safety of reactor will be threatened and the lifetime of the reactor will be shortened by appearing of the tiny particles in LBE (lead-bismuth eutectic) alloy. To this end, numerical simulation with the code of FLUENT was used to research the deposition distribution of insoluble corrosion products in rectangular channel. The standard k-ε model was selected to predict the turbulence variation in the rectangular channel. The discrete phase model (DPM) was used to track the trajectory of the particles. It is found that the deposition efficiency is positively correlated with the temperature difference between the fluid and cold wall. The near wall region with a high concentration of particulate matter and low temperature is in favor of particulate matter deposition on the wall. At the same time, the high turbulence kinetic near wall region is not conducive to the deposition of particulate matter. A secondary flow phenomenon occurs under the influence of boundary wall, namely that there are eight symmetrical regions in the radial direction. (authors)

  3. Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

    International Nuclear Information System (INIS)

    Was, Gary S.; Jones, J.W.; Pollock, T.

    2009-01-01

    The objective of the proposed research is to define strategies for the improvement of alloys for structural components, such as the intermediate heat exchanger and primary-to-secondary piping, for service at 1000 degree C in the He environment of the NGNP. Specifically, we will investigate the oxidation/carburization behavior and microstructure stability and how these processes affect creep. While generating this data, the project will also develop a fundamental understanding of how impurities in the He environment affect these degradation processes and how this understanding can be used to develop more useful life prediction methodologies

  4. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.

    2009-01-01

    ) and thermodynamic calculations using the CALPHAD approach. The amount of the alloying elements in the materials was chosen to be close to the respective eutectic composition and the nominal compositions were the following: Sn-3.7Ag-0.7Cu, Sn-1.0Ag-0.5Cu-1Bi (in wt.%). Thermal effects during melting and solidifying...... were experimentally studied by the DSC technique. The microstructure of the samples was determined by the light microscopy and the composition of solidified phases was obtained by the energy-dispersive X-ray spectroscopy, respectively. The solidification behaviour under equilibrium conditions...

  5. Titrimetric determination of tungsten in its alloys with tantalum

    International Nuclear Information System (INIS)

    Elinson, S.V.; Nezhnova, T.I.

    1982-01-01

    Titrimetric method of tungsten determination in tantalum base alloys has been developed. The method permits to determine 5-10% tungsten in the alloys with relative standard deviation of 0.013. The conditions are created by application of precipitation from homogeieous solutions or by the method of appearing reagents at pH values, which condition gradual hydrolytic precipitation of tantalum, and sodium tungstate remains in the solution and is not sorbed on tantalum hydroxide. After separation of tantalum oxide tungsten is precipitated in the form of lead tungstate by the excess of ti trated solution of lead salt during boiling and then at the background of lead tungstate precipitate without its separation lead excess is titrated by EDTA in the presence of mixed indicator-4-(2-pyridylazo)resocinol and xylenole orange in acetate buffer solution

  6. Low activation vanadium alloys

    International Nuclear Information System (INIS)

    Witzenburg, W. van.

    1991-01-01

    The properties and general characteristics of vanadium-base alloys are reviewed in terms of the materials requirements for fusion reactor first wall and blanket structures. In this review attention is focussed on radiation response including induced radioactivity, mechanical properties, compatibility with potential coolants, physical and thermal properties, fabricability and resources. Where possible, properties are compared to those of other leading candidate structural materials, e.g. austenitic and ferritic/martensitic steels. Vanadium alloys appear to offer advantages in the areas of long-term activation, mechanical properties at temperatures above 600 deg C, radiation resistance and thermo-hydraulic design, due to superior physical and thermal properties. They also have a potential for higher temperature operation in liquid lithium systems. Disadvantages are associated with their ability to retain high concentrations of hydrogen isotopes, higher cost, more difficult fabrication and welding. A particular concern regarding use of vanadium alloys relates their reactivity with non-metallic elements, such as oxygen and nitrogen. (author). 33 refs.; 2 figs.; 2 tabs

  7. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  8. TEM of nanostructured metals and alloys

    International Nuclear Information System (INIS)

    Karnthaler, H.P.; Waitz, T.; Rentenberger, C.; Mingler, B.

    2004-01-01

    Nanostructuring has been used to improve the mechanical properties of bulk metals and alloys. Transmission electron microscopy (TEM) including atomic resolution is therefore appropriate to study these nanostructures; four examples are given as follows. (1) The early stages of precipitation at RT were investigated in an Al-Mg-Si alloy. By high resolution TEM it is shown that the precipitates lie on (0 0 1) planes having an ordered structure. (2) In Co alloys the fronts of martensitic phase transformations were analysed showing that the transformation strains are very small thus causing no surface relief. (3) Re-ordering and recrystallization were studied by in situ TEM of an Ni 3 Al alloy being nanocrystalline after severe plastic deformation. (4) In NiTi severe plastic deformation is leading to the formation of amorphous shear bands. From the TEM analysis it is concluded that the amorphization is caused by plastic shear instability starting in the shear bands

  9. SU-E-T-10: A Dosimetric Comparison of Copper to Lead-Alloy Apertures for Electron Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusk, B; Hogstrom, K; Gibbons, J; Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate dosimetric differences of copper compared to conventional lead-alloy apertures for electron beam therapy. Methods: Copper apertures were manufactured by .decimal, Inc. and matching lead-alloy, Cerrobend, apertures were constructed for 32 square field sizes (2×2 – 20×20 cm{sup 2}) for five applicator sizes (6×6–25×25 cm{sup 2}). Percent depth-dose and off-axis-dose profiles were measured using an electron diode in water with copper and Cerrobend apertures for a subset of aperture sizes (6×6, 10×10, 25×25 cm{sup 2}) and energies (6, 12, 20 MeV). Dose outputs were measured for all field size-aperture combinations and available energies (6–20 MeV). Measurements were taken at 100 and 110 cm SSDs. Using this data, 2D planar absolute dose distributions were constructed and compared. Passing criteria were ±2% of maximum dose or 1-mm distance-to-agreement for 99% of points. Results: A gamma analysis of the beam dosimetry showed 93 of 96 aperture size, applicator, energy, and SSD combinations passed the 2%/1mm criteria. Failures were found for small field size-large applicator combinations at 20 MeV and 100-cm SSD. Copper apertures showed a decrease in bremsstrahlung production due to copper's lower atomic number compared to Cerrobend (greatest difference was 2.5% at 20 MeV). This effect was most prominent at the highest energies with large amounts of shielding material present (small field size-large applicator). Also, an increase in electrons scattered from the collimator edge of copper compared to Cerrobend resulted in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV). Conclusion: Apertures for field sizes ≥6×6 cm{sup 2} at any energy, or for small fields (≤4×4 cm{sup 2}) at energies <20 MeV, showed dosimetric differences less than 2%/1mm for more than 99% of points. All field size-applicator size-energy combinations passed 3%/1mm criteria for 100% of points. Work partially

  10. Dimensional analysis of the transition from columnar to equiaxial structure in aluminium-copper and lead-tin alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos E

    2004-01-01

    The importance of directional solidification studies is well known from systematic scientific research undertaken to understand the characteristics of the solidification of alloys. Such studies offer much information about the morphology of the interphase and the distribution of solute during solidification. Most alloys grow while attaining dendritic interphases. So considerable effort has been expended to understand the dendritic growth characteristics under controlled solidification conditions. A treatment that can quantitatively explain all the available test data and that correctly includes the physics of the problem is not yet available. This work carries out a theoretical analysis of columnar and equiaxial growth and of dendritic spacing under different conditions of solidification of the test pieces. The basic parameters that are used characterize a given alloy system. Next, we define non-dimensional parameters, that are used to formulate the final result of our problem regardless of the specific alloy being studied. We present the important functional relationships of our study, including the physical interpretation of the results obtained in the first work (CW)

  11. Synthesis and crytallization of amorphous In-Te alloys

    International Nuclear Information System (INIS)

    Vengrenovich, R.D.; Lopatnyuk, I.A.; Mikhal'chenko, V.P.; Kasiyan, I.M.; Geshko, E.I.

    1988-01-01

    Tendency of Te-In alloys with indium content from 5 to 40 % to amorphization is investigated. It is marked that in this interval of concentrations the alloys have the tendency to subcooling even at cooling velocities equalling only 0.2-0.3 K/s. Maximal subcooling ΔT=70 deg takes place for the eutectic composition. Tendency of Te-In alloys to vitrification is explained by the character to interatomic interactions in a liquid, the interactions promote the formation of molecular clusters in it in cooling, that leads to fast increase of viscosity and to increase of T g amorphization temperature

  12. Numerical simulation of freckle formation in directional solidification of binary alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  13. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.

    1990-01-01

    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  14. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  15. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  16. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    International Nuclear Information System (INIS)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-01-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si 0.5 Ge 0.5 . It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si 0.5 Ge 0.5 transistors by 45% compared to conventional lead methods

  17. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    International Nuclear Information System (INIS)

    Krajewski, W K; Piwowarski, G; Krajewski, P K; Greer, A L

    2016-01-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt

  18. Assessment of the influence of Al–2Nb–2B master alloy on the grain refinement and properties of LM6 (A413) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, L., E-mail: leandro.bolzoni@brunel.ac.uk; Nowak, M.; Hari Babu, N.

    2015-03-25

    Cast aluminium alloys are important structural materials but their performances are not optimised due to the lack of appropriate grain refiners. In this study, the effect of the addition of a novel Nb-based grain refiner on the microstructural features and mechanical behaviour of the LM6 alloy (A413) is studied. Specifically, the effect of Nb–B inoculation is assessed over a great range of cooling rates (2–100 °C/s). It is found that Nb-based compounds (i.e., NbB{sub 2} and Al{sub 3}Nb) are potent heterogeneous nucleation sites for aluminium and this leads to a significant refinement of the microstructural features. The refinement is not hindered by the formation of silicides, as it happens when using Al–Ti–B master alloys, because niobium silicides form at much higher temperature. It is concluded that the Al–2Nb–2B master alloy is a very effective refiner especially at slow cooling rate and the refinement of the grain size leads to improved performances (homogeneous fine grain structure, mechanical properties and porosity)

  19. Influence of alloying elements on the marine corrosion of low alloy steels

    International Nuclear Information System (INIS)

    Dajoux, E.; Malard, S.; Lefevre, Y.; Kervadec, D.; Gil, O.

    2005-01-01

    The study of steel marine corrosion leads to the survey of the parameters having an influence on this phenomenon. These parameters may be dependent on the seawater environment or on steel characteristics. Thus it appears that an experimental procedure could be set up in order to simulate immersion conditions in natural seawater. The system allows fifteen different steels with compositions ranging from carbon steels to stainless steels to be tested during some 14 months in natural seawater with or without microbiological activity. Electrochemical and gravimetric measurements are performed on immersed steel samples. Microbiological analyses are carried out either on the metallic surface and on the liquid medium. Possible influences of alloying elements and bacteria are studied. After a two-month immersion, first results show an influence of the chromium content on the steel corrosion resistance and on marine bacteria behaviour. They also reveal that the bio-film formed onto the carbon steel and low alloy steels surfaces tends to slow down the generalized corrosion or to increase localized corrosion depending on the steel alloying elements content. (authors)

  20. Effect of lead and silicon on localized corrosion of Alloy 800 in steam generator crevice environments

    International Nuclear Information System (INIS)

    Lu, Y.C.; Wright, M.D.; Cleland, R.D.

    2001-09-01

    The Alloy 800 tubes used in CANDU 6 steam generators have not experienced significant corrosion damage to date, which may be attributed to successful water chemistry control strategies. However, it is known that Alloy 800, like other steam generator (SG) tubing materials, is not immune to corrosion, especially pitting, under some plausible but off-specification operating scenarios. Electrochemical measurements provide information on corrosion susceptibility and rate, which are known to be a function of water chemistry. Using laboratory data in combination with chemistry monitoring and diagnostic software it is possible to assess the impact of plant operating conditions on SG tube corrosion for plant life management (PLIM). In this context, this paper discusses the results of electrochemical measurements made to elucidate the corrosion behaviour of Alloy 800 SG tubes under conditions simulating those plausible in SG crevices. In addition to crevice pH, the influence of PbO, acting alone or in combination with SiO 2 , on localized corrosion such as pitting or stress corrosion-cracking (SCC) was determined. Possible transient chemistry regimes that could significantly shorten expected tube lifetimes have been identified from the data analysis. Of equal significance, the results also support the position that under normal, near neutral pH and low dissolved oxygen conditions, pitting and cracking of Alloy 800 steam generator tubing will not be initiated. (author)

  1. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    International Nuclear Information System (INIS)

    Yamaura, Shin-ichi; Nakajima, Takashi; Satoh, Takenobu; Ebata, Takashi; Furuya, Yasubumi

    2015-01-01

    Highlights: • The as-forged Fe 25 Co 75 alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe 25 Co 75 alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe 1−x Co x (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe 25 Co 75 alloy was 108 ppm and that of the as-cold rolled Fe 25 Co 75 alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe 25 Co 75 alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe 25 Co 75 and Fe 20 Co 80 alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction

  2. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  3. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  4. Recovery of leaded-frame metals from integrated circuit package; Shuseki kairo package kara no lead frame kinzoku no kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Rokukawa, N.; Sakamoto, H. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-12-25

    Discussions were given on separation and recovery of leaded-frame metals from an integrated circuit (IC) package. A printed wiring board in an electronic device is mounted with an IC package molded with an IC as a major component, and composed of IC chips, leaded-frame metals (the pin section retains the IC chips safely in a mold, and plays a role of terminal with an external circuit), and mold material (thermally hardened and reinforced resin). Quantity of IC packages discarded as a result of the deterioration due to aging is increasing year after year. IC package test pieces were crushed in a mortar, selected of metals manually, and classified by using a magnet and a sieve. The leaded-frame metals were easily separated from the mold material by crushing, and capable of being recovered by using a magnet. However, since the recovered leaded-frame metals are alloys having different compositions, how each metal component could be separated and refined is an important problem to be solved. For the time being, the metals may be utilized as structural materials for building materials by melting and alloying the leaded-frame metals. 10 refs., 7 tabs.

  5. Development of new positive-grid alloy and its application to long-life batteries for automotive industry

    Science.gov (United States)

    Furukawa, Jun; Nehyo, Y.; Shiga, S.

    Positive-grid corrosion and its resulting creep or growth is one of the major causes of the failure of automotive lead-acid batteries. The importance of grid corrosion and growth is increasing given the tendency for rising temperatures in the engine compartments of modern vehicles. In order to cope with this situation, a new lead alloy has been developed for positive-grids by utilizing an optimized combination of lead-calcium-tin and barium. In addition to enhanced mechanical strength at high temperature, the corrosion-resistance of the grid is improved by as much as two-fold so that the high temperature durability of batteries using such grids has been demonstrated in both hot SAE J240 tests and in field trials in Japan and Thailand. A further advantage of the alloy is its recycleability compared with alloys containing silver. The new alloy gives superior performance in both 12-V flooded and 36-V valve-regulated lead-acid (VRLA) batteries.

  6. Fabrication technology for lead-alloy Josephson devices for high-density integrated circuits

    International Nuclear Information System (INIS)

    Imamura, T.; Hoko, H.; Tamura, H.; Yoshida, A.; Suzuki, H.; Morohashi, S.; Ohara, S.; Hasuo, S.; Yamaoka, T.

    1986-01-01

    Fabrication technology for lead-alloy Josephson devices was evaluated from the viewpoint of application to large-scale integrated circuits. Metal and insulating layers used in the circuits were evaluated, and optimization of techniques for deposition or formation of these layers was investigated. Metallization of the Pb-In-Au base electrode and the Pb-Bi counterelectrode was studied in terms of optimizing the deposited films, to improve the reliability of junction electrodes. The formation of the oxide barrier was studied by in situ ellipsometry. SiO/sub x/ deposited in oxygen was developed as the insulation layer with less defect density than conventional SiO. A liftoff technique using toluene soaking was developed, and patterns with a minimum line width of 2 μm were consistently reproduced. The characteristics of each element in the circuits were evaluated for test vehicles. For the junction, the following items were evaluated: controllability of the critical current I/sub c/, junction quality, I/sub c/ uniformity, junction yield, and thermal cycling and storage stability. For the peripheral elements, integrity of lines and contacts, and characteristics of resistors were evaluated. 8-kbit memory cell arrays with a full vertical structure were fabricated to evaluate these technologies in combination. The continuity of each metal layer and insulation between metal layers were evaluated with an autoprober at room temperature. For selected chips, cell characteristics have been measured, and their I/sub c/ uniformity and production yields for cells are discussed. Normal operation of the memory cells was confirmed for all of the 24 accessible cells on a chip

  7. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  8. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions

    International Nuclear Information System (INIS)

    Lu, B.T.; Tian, L.P.; Zhu, R.K.; Luo, J.L.; Lu, Y.C.

    2011-01-01

    The effects of Ca 2+ and Mg 2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 o C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca 2+ and Mg 2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca 2+ + Mg 2+ . The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.

  10. Spin glass transition in canonical AuFe alloys: A numerical study

    International Nuclear Information System (INIS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-01-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments. -- Highlights: ► By simulation we investigated the abnormal critical exponents observed in canonical SG alloys. ► The critical exponents obtained from our simulations agree well with those measured from experiments. ► Our results strongly support that RKKY interactions lead to SG transitions at finite temperatures.

  11. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu, E-mail: heyuyhe@gmail.com; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-11-24

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si{sub 0.5}Ge{sub 0.5}. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si{sub 0.5}Ge{sub 0.5} transistors by 45% compared to conventional lead methods.

  12. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  13. Conditioning of cladding waste by press compaction and encapsulation in low-melting metal alloys

    International Nuclear Information System (INIS)

    Broothaerts, J.; Casteels, F.; Daniels, A.; De Regge, P.; Huys, D.; Leurs, A.

    1985-01-01

    The wetting of waste components by lead- and zinc-based alloys has been examined. The lead-based metals, either low or high alloyed, did not achieve acceptable wetting of fresh or oxidized zircaloy surfaces in the temperature range of 350 0 C to 550 0 C for exposure times up to 5 hours. The corrosion resistance of candidate embedment alloys on the basis of lead and zinc has been examined in two synthetic interstitial clay-waters, in direct contact with the clay, in a synthetic Asse brine solution and in contact with wet salt deposits. A unit compaction and embedment of active hulls at the scale of 50 to 100 g has been constructed and installed in a shielded cell. The compaction of irradiated hulls necessitates the use of slightly higher pressures to achieve the densification factor reached for inactive zircaloy. Batches of zircaloy and of stainless steel hulls have been compacted and embedded in lead alloys for leaching experiments using the natural water present in the Boom clay geological formation. A 3 meganewton compaction press has been installed in a mock-up shielded facility and its operation and maintenance by remote handling with telemanipulators has been studied

  14. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  15. Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy

    Directory of Open Access Journals (Sweden)

    Ganesh Ramesh

    2011-01-01

    Statistical Analysis Used: The Student t-test was used. Results: When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 < 2.048 leading to the conclusion that castability between alloys A and B is insignificant. Therefore we conclude that both the alloys have the same castability. Conclusions: Using the above-mentioned materials and following the method to test castability, we were able to derive favorable results. As the results were satisfactory, we can conclude that the castability of the indigenous alloy is on par with the imported alloy.

  16. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  17. Precipitation in a lead calcium tin anode

    International Nuclear Information System (INIS)

    Pérez-González, Francisco A.; Camurri, Carlos G.; Carrasco, Claudia A.; Colás, Rafael

    2012-01-01

    Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 °C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn 3 particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitates and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: ► The distance between precipitates in a lead alloy is recorded. ► The relationship between the distance and the cooling rate is established. ► It is found that the strengthening of the alloy depends on the distance between precipitates.

  18. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors

    International Nuclear Information System (INIS)

    2002-06-01

    All prototype, demonstration and commercial liquid metal cooled fast reactors (LMFRs) have used liquid sodium as a coolant. Sodium cooled systems, operating at low pressure, are characterised by very large thermal margins relative to the coolant boiling temperature and a very low structural material corrosion rate. In spite of the negligible thermal energy stored in the liquid sodium available for release in case of leakage, there is some safety concern because of its chemical reactivity with respect to air and water. Lead, lead-bismuth or other alloys of lead, appear to eliminate these concerns because the chemical reactivity of these coolants with respect to air and water is very low. Some experts believe that conceptually, these systems could be attractive if high corrosion activity inherent in lead, long term materials compatibility and other problems will be resolved. Extensive research and development work is required to meet this goal. Preliminary studies on lead-bismuth and lead cooled reactors and ADS (accelerator driven systems) have been initiated in France, Japan, the United States of America, Italy, and other countries. Considerable experience has been gained in the Russian Federation in the course of development and operation of reactors cooled with lead-bismuth eutectic, in particular, propulsion reactors. Studies on lead cooled fast reactors are also under way in this country. The need to exchange information on alternative fast reactor coolants was a major consideration in the recommendation by the Technical Working Group on Fast Reactors (TWGFRs) to collect, review and document the information on lead and lead-bismuth alloy coolants: technology, thermohydraulics, physical and chemical properties, as well as to make an assessment and comparison with respective sodium characteristics

  19. Structural transformations in quenched Fe-Ga alloys

    International Nuclear Information System (INIS)

    Lograsso, T.A.; Ross, A.R.; Schlagel, D.L.; Clark, A.E.; Wun-Fogle, M.

    2003-01-01

    It has been speculated that the large increase in magnetostriction in Fe-Ga alloys results from local short-range ordering of the Ga atoms along specific crystallographic directions in the disordered Fe structure. The structural transitions associated with different cooling rates from the high temperature disordered state were investigated with X-ray diffraction of oriented single crystals of Fe-19 at% Ga. Results are presented for long-range ordering during slow cooling and indirect evidence of local short-range ordering of Ga atoms in the disordered state when the alloys are quenched is also presented. In the latter case, the short-range ordering of Ga atoms leads to a tetragonal distortion of the lattice. The dependence of the magnetostrictive response of Fe-Ga alloys on thermal history has been found to be directly related to these structural transformations in Fe-19 at% Ga alloys and experimental support for the proposed magnetostriction model based on Ga-Ga pairing along [100] crystallographic directions is presented

  20. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  1. Interaction of hydrogen with Pb83Li17 eutectic alloy

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Taxak, Manju; Krishnamurthy, N.

    2011-01-01

    Liquid Metal blankets are attractive candidates for both near-term and long-term fusion applications. Lead-lithium alloy appears to be promising for the use in self cooled breeding blanket, which has inherent simplicity with candidate material liquid lithium serving as both breeder and coolant. The crucial issues in case of lead lithium are the permeation loss of tritium (T) to the coolant and surroundings and the formation of new phase LiH/LiT, which eventually change the physical properties. Present investigation is based on the interaction process of hydrogen with the alloy and the relevant changes in physical properties. (author)

  2. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    Science.gov (United States)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  3. On the use of tin-lithium alloys as breeder material for blankets of fusion power plants

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.

    2000-01-01

    Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f /SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure

  4. Features of ultrafine-grained structure forming in Zr-1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N.; Prosolov, Konstantin A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russian Federation)

    2013-07-01

    Ultrafine-grained structure forming by the method combined reversible hydrogenation and hot pressing in Zr-1Nb alloy was investigated. Preliminary hydrogenation to concentrations of (0.14–0.4) % at 873 K is found to lead to yield strength decreasing in Zr-1Nb alloy during hot pressing by 1,5–2 times. During uniaxial compression at (70–72) % under isothermal conditions at a temperature of 873 K in Zr-1Nb alloy, hydrogenated to concentration of 0.22 %, homogeneous ultrafine grained structure with an average grain size of 0,4 P m was formed. Key words: zirconium alloy, ultrafine-grained structure, hydrogen.

  5. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  6. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  7. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  8. Nonlinear dynamics of a pseudoelastic shape memory alloy system - theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; A Savi, M.; Santos, Ilmar

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilit...

  9. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  10. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  11. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  12. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  13. Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting

    International Nuclear Information System (INIS)

    Choi, Bong-Jae; Kim, Young-Jig; Sung, Si-Young

    2012-01-01

    The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and B4C leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

  14. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  15. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  16. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  17. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharat; Sundar, C.S.; Raj, Baldev

    2010-01-01

    Nanostructured ferritic alloys derive their strength from the dispersion of oxide nanoclusters in the ferritic matrix. We have explored the relative role of minor alloying elements like Ti and Zr on the stability of nanoclusters of vacancy-Y-Ti-O by density functional theory calculations and shown that the binding energy of these clusters increases when we replace Ti with Zr. This could imply faster nucleation of the nanoclusters which, in turn, may lead to finer dispersion of nanoclusters resulting in improved performance of ferritic alloys. Further, we show a core/shell structure for these nanoclusters in which the core is enriched in Y, O, Ti while the shell is enriched in Cr.

  18. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  19. Precipitation in a lead calcium tin anode

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Francisco A., E-mail: fco.aurelio@inbox.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico); Camurri, Carlos G., E-mail: ccamurri@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Carrasco, Claudia A., E-mail: ccarrascoc@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-02-15

    Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 Degree-Sign C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn{sub 3} particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitates and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: Black-Right-Pointing-Pointer The distance between precipitates in a lead alloy is recorded. Black-Right-Pointing-Pointer The relationship between the distance and the cooling rate is established. Black-Right-Pointing-Pointer It is found that the strengthening of the alloy depends on the distance between precipitates.

  20. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  1. Interaction of alumina with liquid Pb{sub 83}Li{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Uttam, E-mail: uttamj@barc.gov.in [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Abhishek; Sonak, Sagar; Kumar, Sanjay [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, Ratikant [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Krishnamurthy, Nagaiyar [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    Highlights: • The role of oxygen in the interaction of alumina with Pb{sub 83}Li{sub 17} alloy was studied. • Li of Pb{sub 83}Li{sub 17} alloy undergoes oxidation even in flowing high pure argon atmosphere. • It was seen that alumina reacts with Pb{sub 83}Li{sub 17} alloy at 550 °C to form LiAlO{sub 2} compound. • The reaction is rapid in the presence of oxygen and happens more slowly in the presence of flowing argon. - Abstract: Eutectic lead lithium (Pb{sub 83}Li{sub 17}) alloy is being considered a coolant, neutron multiplier and tritium breeder for International Thermonuclear Experimental Reactor (ITER) and Fusion Power Reactors (FPR). In order to reduce the magneto-hydrodynamic drag (MHD) and to prevent corrosion of structural materials due to the flow of lead lithium (Pb{sub 83}Li{sub 17}) alloy, alumina (Al{sub 2}O{sub 3}) is proposed as a candidate ceramic coating material. Interaction of liquid Pb{sub 83}Li{sub 17} alloy with Al{sub 2}O{sub 3} at the operating temperature of these reactors is therefore an important issue. The present paper deals with the characterization of Pb{sub 83}Li{sub 17} alloy and its interaction with Al{sub 2}O{sub 3} at the reactor operating temperature. The interaction was studied using EPMA, XRD and thermal analysis technique. The result indicates that alumina can interact with Pb{sub 83}Li{sub 17} alloy at 550 °C even in high purity argon atmosphere. The role of oxygen in the interaction process has also been discussed.

  2. Behavior of Sn-0.7Cu-xZn lead free solder on physical properties and micro structure

    Science.gov (United States)

    Siahaan, Erwin

    2017-09-01

    The issues to substitute Tin-Lead Solders is concerning the health and environmental hazards that is caused by lead, and also legislative actions around the world regarding lead toxicity, which has prompted the research community to attempt to replace solder alloys for the traditional Sn-Pb alloys lead which has been used by industrial worker throughout history because it is easily extracted and refined at a relatively low energy cost and also has a range of useful properties. Traditional industry lead has been used in soldering materials for electronic applications because it has low melting point and a soft, malleable nature, when combined with tin at the eutectic composition which causes the alloy to flow easily in the liquid state and solidifies over a very small range of temperature. One of the potential candidate to replace tin-lead solder is Sn-Cu-Zn eutectic alloy as it has a lower melting temperature. Consequently, it is of interest to determine what reactions can occur in ternary systems derived from the Sn-Cu-Zn eutectic. One such system is Sn-0.7Cu-xZn. The specimen was elaborated on physical properties. The chemical content was analyzed by using Shimadzu XRD and melting point was analyzed by using Differential Scanning Calorimeter ( DSC ). The results has shown that the highest addition of Zinc content (15%Zn) will decrease the melting temperatur to 189°C compared to Sn-Pb at 183°C Increasing the amount of Zn on Sn0.7Cu-xZn alloys will decrease Cu3Sn intermetallic coumpound.

  3. Mechanical alloying nanotechnology, materials science and powder metallurgy

    CERN Document Server

    El-Eskandarany, M Sherif

    2015-01-01

    This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new a

  4. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  5. Application of High Entropy Alloys in Stent Implants

    Science.gov (United States)

    Alagarsamy, Karthik

    High entropy alloys (HEAs) are alloys with five or more principal elements. Due to these distinct concept of alloying, the HEA exhibits unique and superior properties. The outstanding properties of HEA includes higher strength/hardness, superior wear resistance, high temperature stability, higher fatigue life, good corrosion and oxidation resistance. Such characteristics of HEA has been significant interest leading to researches on these emerging field. Even though many works are done to understand the characteristic of these HEAs, very few works are made on how the HEAs can be applied for commercial uses. This work discusses the application of High entropy alloys in biomedical applications. The coronary heart disease, the leading cause of death in the United States kills more than 350,000 persons/year and it costs $108.9 billion for the nation each year in spite of significant advancements in medical care and public awareness. A cardiovascular disease affects heart or blood vessels (arteries, veins and capillaries) or both by blocking the blood flow. As a surgical interventions, stent implants are deployed to cure or ameliorate the disease. However, the high failure rate of stents has lead researchers to give special attention towards analyzing stent structure, materials and characteristics. Many works related to alternate material and/or design are carried out in recent time. This paper discusses the feasibility of CoCrFeNiMn and Al0.1CoCrFeNi HEAs in stent implant application. This work is based on the speculation that CoCrFeNiMn and Al0.1CoCrFeNi HEAs are biocompatible material. These HEAs are characterized to determine the microstructure and mechanical properties. Computational modeling and analysis were carried out on stent implant by applying CoCrFeNiMn and Al0.1CoCrFeNi HEAs as material to understand the structural behavior.

  6. Superconducting pinning in BCC niobium-base alloys

    International Nuclear Information System (INIS)

    Hu, S.

    1981-01-01

    The structure dependence of critical current density J/sub c/ in superconducting alloys Nb--Zr and Nb--Ti was studied by means of x-ray analysis and tensile test. Experimental results indicate that, in the absence of second phase particles, annealing increases J/sub c/ in deformed alloys due to rearrangement of dislocations into cell structure and the cell walls are effective pinning centers for magnetic flux. In the precipitation process of second phase particles, new dislocations are formed due to the relaxation of coherent stress field. These new dislocations increases the dislocation density and the flux pinning ability of the cell walls, which in turn lead to a further increase of J/sub c/. The mechanism that causes precipitates to increase the current-carrying ability in Nb--Zr and Nb--Ti alloys is therefore the same as that of cold-work deformation

  7. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  8. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  9. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  10. The corrosion behaviour and structure of amorphous and thermally treated Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Raicheff, R.; Zaprianova, V.; Petrova, E.

    2003-01-01

    The corrosion behaviour of magnetic amorphous alloys Fe 78 B 13 Si 9 , Fe 81 B 13 Si 4 C 2 and Fe 67 Co 18 Bi 4 S 1 obtained by rapid quenching from the melts are investigated in a model corrosive environment of 1N H 2 SO 4 . The structure of the alloys, is, characterized by DTA, SEM, TEM, X-ray and electron diffraction techniques. The dissolution kinetics of the,alloys is studied using gravimetric and electrochemical polarization measurements. It is established that the corrosion rate of the amorphous Fe 67 Co 18 Bt 4 S 1 alloy is up to 50 times lower than that of Fe 78 Bi 3 Si 9 alloy and the addition of cobalt leads to a considerable reduction of the rates of both partial corrosion reactions, while the addition of carbon results only in a moderate decrease (2-3 times) of the corrosion rate. It is also shown that the crystallization of the amorphous Fe 78 B 13 Si 9 alloy (at 700 o C for 3 h) leads to formation of multiphase structure consisting of crystalline phases α-Fe and Fe 3 (B,Si). After crystallization an increase of the rate of both hydrogen evolution and anodic dissolution reactions is observed which results in a considerable (an order of magnitude) increase of the corrosion rate of the alloy. (Original)

  11. Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing

    International Nuclear Information System (INIS)

    Azimi, Amin; Shokuhfar, Ali; Zolriasatein, Ashkan

    2014-01-01

    Nanostructured Al–7.8 wt% Zn–2.6 wt% Mg–2 wt% Cu–0.1 wt% Zr alloy was mechanically alloyed (MA) from elemental powders and consolidated by hot press technique. The effect of the milling time and hot pressing process on microstructure was investigated by means of X-ray diffraction measurements (XRD) and analytical and scanning electron microscopy (SEM). Furthermore mechanical properties of samples with different MA time as well as pure aluminum were investigated by microhardness and compression tests. The results show that an Al–Zn–Mg–Cu–Zr homogenous supersaturated solid solution with a crystallite size of 27 nm was obtained after 40 h of milling time. Microstructure refinement and morphological changes of powders from flake to spherical shape were observed by increasing milling time. Phase and microstructural characterization of high density bulk nanostructured samples revealed that increasing milling time up to 40 h leads to formation of MgZn 2 precipitation in the alloy matrix. With increasing milling time, density of the samples and crystalline size decrease. Significant enhancement of hardness and compressive strength is observed in the aluminum alloy by increasing milling time up to 40 h which is much higher than pure aluminum. Crystallite size refinement in pure aluminum samples from micro- to nanoscales resulted in 107% and 100% improvement in compressive strength and hardness, respectively. Furthermore the compressive strength and hardness of Al–Zn–Mg–Cu–Zr alloy nanostructured samples increased to 179% and 172%, respectively, compared to nanostructured pure Al, which was produced as reference specimen. 40 h of MA was the optimum case for preparing such an Al alloy and more milling up to 50 h led to deterioration of mechanical properties

  12. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  13. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    International Nuclear Information System (INIS)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei; Dong, Peng; Wang, Wen-xian; Ding, Min

    2016-01-01

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al 2 O 3 nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al 2 O 3 /Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al 2 O 3 nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al 2 O 3 nanoparticles increased with the increasing weight percentages of Al 2 O 3 nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al 2 O 3 nanoparticles.

  14. Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

    Science.gov (United States)

    Böttcher, J.; Jahn, M.; Tatzko, S.

    2017-12-01

    Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.

  15. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  16. Evaluation of SCC susceptibility of alloy 800 under CANDU SG secondary-side conditions

    International Nuclear Information System (INIS)

    Liu, S.; Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Therefore, constant extension rate tests were carried out for Alloy 800 under various steam generator crevice chemistry conditions at applied potentials. These tests were designed to evaluate the stress corrosion cracking susceptibility of Alloy 800 under CANDU( steam generator operating conditions. Based on the experimental results, the recommended electrochemical corrosion potential/pH zone for Alloy 800 determined by electrochemical polarization measurements was verified with the respect of stress corrosion cracking susceptibility. The effects of lead contamination on the stress corrosion cracking susceptibility of Alloy 800 tubing were also evaluated. The experimental results from constant extension rate tests obtained under applied potentials suggest that Alloy 800 has good performance inside much of a previously recommended electrochemical corrosion potential/pH zone determined by electrochemical analysis. Alloy 800 is not susceptible to stress corrosion cracking under normal CANDU steam generator operating conditions. However, Alloy 800 may be susceptible to stress corrosion cracking under near-neutral crevice chemistry conditions in the presence of oxidants. In addition, stress corrosion cracking susceptibility is increased by lead contamination. This observation suggests that the previously defined electrochemical corrosion potential limit under near-neutral crevice conditions could be modified to minimize stress corrosion cracking of Alloy 800. The test results from this work also suggest that the pH dependency of the stress corrosion cracking susceptibility of Alloy 800

  17. Lead corrosion and transport in simulated secondary feedwater

    International Nuclear Information System (INIS)

    McGarvey, G.B.; Ross, K.J.; McDougall, T.E.; Turner, C.W.

    1998-01-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of,lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is due to low levels of lead although few if any failures have been experimentally linked to lead when sub-parts per billion levels are present in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the three principal corrosion products in the secondary feedwater; magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values less than that of the feedwater (9-10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces following different treatment conditions will be used to propose a model for tile transport and probable fate of lead in the secondary feedwater system. (author)

  18. Lead corrosion and transport in simulated secondary feedwater

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ross, K.J.; McDougall, T.E. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of,lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is due to low levels of lead although few if any failures have been experimentally linked to lead when sub-parts per billion levels are present in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the three principal corrosion products in the secondary feedwater; magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values less than that of the feedwater (9-10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces following different treatment conditions will be used to propose a model for tile transport and probable fate of lead in the secondary feedwater system. (author)

  19. Structural disordering of de-alloyed Pt bimetallic nanocatalysts

    DEFF Research Database (Denmark)

    Spanos, Ioannis; Dideriksen, Knud; Kirkensgaard, Jacob Judas Kain

    2015-01-01

    composition affects their electrocatalytic performance. The results show that upon contact with acid environment the Co leaches out of the particles leading to almost identical compositions, independent of the initial differences. Surprisingly the data show a clear trend in ORR activity, although the PtxCo1-x...... nanoparticles almost completely de-alloy during acid leaching, i.e. under reaction conditions in a fuel cell. To scrutinize the resulting particle structure after de-alloying we used pair distribution function (PDF) analysis and X-ray diffraction (XRD) gaining insight into the structural disorder and its...... dependence on the initial metal composition. Our results suggest that not only the ORR activity, but also the corrosion resistance of the synthesized NPs, are dependent on the structural disorder resulting from the de-alloying process....

  20. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  1. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  2. The degradation of zirconium alloys in nuclear reactors - a review

    International Nuclear Information System (INIS)

    Lim, D.; Graham, N.A.

    1986-01-01

    This report presents the findings of a survey of available non-Canadian literature on the oxidation and hydriding of zirconium alloys. Much of the literature was found to address the Zircaloys, particularly when used as fuel cladding subjected to a radioactive and oxidizing environment. Hydriding of Zircaloys is mainly attributed to oxidation. The survey revealed that Zr-Nb alloys have been included in some investigations; however, data on the long-term degradation of Zr-2.5 wt% Nb, in particular, were scarce. The reviewed literature did not lead to conclusions regarding the potential for accelerated hydriding due to corrosion at crevices and/or second-phase particles, nor did it lead to conclusions as to the potential for a 'breakaway' in oxidation and hydrogen acquisition in long service life of Zr-Nb alloys. Specific information on service experience in U.S.S.R. power reactors could not be obtained; however, most of the information surveyed leads to the conclusion that fuel channels having Zr-2.5 wt% Nb pressure tubes should perform satisfactorily with respect to degradation from corrosion and hydriding provided they are installed correctly and are not operated under conditions that are far removed from those anticipated in design. 91 refs

  3. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  4. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  5. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  6. The distribution trends and site preferences of alloying elements in precipitates within a Zr alloy: A combined first-principles and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Luan, B.F., E-mail: bfluan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wang, J.M.; Qiu, R.S.; Tao, B.R.; He, W.J. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhang, X.Y.; Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, Q., E-mail: qingliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2016-09-05

    Energy dispersive X-ray spectroscopy in scanning transmission electron microscope (STEM-EDS) technique and first-principles calculation are jointly utilized to investigate the distribution trends and site preferences of alloying elements in the precipitates within Zr-1.0Cr-0.4Fe-0.4Mo-0.4Bi alloy. Based on selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS) results, the precipitates within the studied alloy are confirmed to be ZrCr{sub 2}-based Laves phase with FCC (C15) type structure. The STEM-EDS elemental mapping is acquired to clarify the distribution trends of alloying elements in precipitates, i.e. Fe>Mo>Bi. To better verify this distribution behavior, substitutional formation energies and equilibrium concentrations of ternary alloying elements in ZrCr{sub 2} Laves phase are calculated by first-principles. The calculated results show a good consistence with the STEM-EDS results. In addition, the site preferences of ternary alloying elements in ZrCr{sub 2} Laves phase are predicted by the calculation of transfer energies. Finally, the reasons accounting for different distribution trends and site preferences of alloying elements in ZrCr{sub 2} Laves phase are discussed in terms of density of states, which attributed to the pseudogap effect and hybridizations between atoms. - Highlights: • Clarified the distribution trends of Fe>Mo>Bi in precipitates by STEM-EDS. • Verified the experimental results by first-principles calculation. • Predicted the site preferences of alloying elements by first-principles calculation. • Hybridization and pseudogap lead to the strong distribution and site preferences.

  7. Self-diffusion in Zr-Cr and Zr-Fe alloys

    International Nuclear Information System (INIS)

    Patil, R.V.; Tiwari, G.P.; Sharma, B.D.

    1981-01-01

    Self-diffusion studies in a series of zirconium-rich alloys containing 2.05, 3.49, 4.08 and 7.86 at %Cr and 0.98, 1.35, 1.64, 3.54 and 6.37 at.%Fe have been carried out in the temperature range 1173-1518 K, using standard serial-sectioning technique. The temperature dependence of self-diffusion coefficients in all these alloys could be described by Arrhenius expressions of the type D = D 0 exp (- Q/RT). The data have been analysed on the basis of current concepts of alloy diffusion. An analysis based on the vacancy mechanism leads to negative values of the correlation factors. The possibility of interstitial-vacancy pair and ω-phase embryos being rate-controlling mechanisms is also discussed. (author)

  8. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  9. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    International Nuclear Information System (INIS)

    Menezes-Filho, José Antonio; Souza, Karine O. Fraga de; Rodrigues, Juliana L. Gomes; Santos, Nathália Ribeiro dos; Bandeira, Matheus de Jesus; Koin, Ng Lai; Oliveira, Sérgio S. do Prado; Godoy, Ana Leonor P. Campos

    2016-01-01

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m 2 /30 days (37–37,967) and 43.2 μg Pb/m 2 /30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely associated

  10. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    Energy Technology Data Exchange (ETDEWEB)

    Menezes-Filho, José Antonio, E-mail: antomen@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Souza, Karine O. Fraga de, E-mail: karinefraga11@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Rodrigues, Juliana L. Gomes, E-mail: juuhrodrigues@icloud.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Santos, Nathália Ribeiro dos, E-mail: nathalia-rib@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Bandeira, Matheus de Jesus, E-mail: matheusbandeira1@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Koin, Ng Lai, E-mail: nglaikoin@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Oliveira, Sérgio S. do Prado, E-mail: sergiosprado.33@gmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Godoy, Ana Leonor P. Campos, E-mail: leonor.godoy@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); and others

    2016-07-15

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m{sup 2}/30 days (37–37,967) and 43.2 μg Pb/m{sup 2}/30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely

  11. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  12. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  13. Strain softening during tension in cold drawn Cu–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Wen, S.; Li, S.L.; Zhu, X.D. [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Shang, X.J. [Jinan Baoshida Industrial Development Co., Ltd, Jinan, Shandong 250061 (China)

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed to be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.

  14. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    International Nuclear Information System (INIS)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2016-01-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg_1_0In_9_0, Hg_3_0In_7_0_,_. Hg_5_0In_5_0, Hg_7_0In_3_0, and Hg_9_0Pb_1_0) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  15. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  16. Microstructure and mechanical properties of as-cast Zr-Nb alloys.

    Science.gov (United States)

    Kondo, Ryota; Nomura, Naoyuki; Suyalatu; Tsutsumi, Yusuke; Doi, Hisashi; Hanawa, Takao

    2011-12-01

    On the basis of the microstructures and mechanical properties of as-cast Zr-(0-24)Nb alloys the effects of phase constitution on the mechanical properties and magnetic susceptibility are discussed in order to develop Zr alloys for use in magnetic resonance imaging (MRI). The microstructures were evaluated using an X-ray diffractometer, an optical microscope, and a transmission electron microscope; the mechanical properties were evaluated by a tensile test. The α' phase was dominantly formed with less than 6 mass% Nb content. The ω phase was formed in Zr-(6-20)Nb alloys, but disappeared from Zr-22Nb. The β phase dominantly existed in Zr-(9-24)Nb alloys. The mechanical properties as well as the magnetic susceptibility of the Zr-Nb alloys varied depending on the phase constitution. The Zr-Nb alloys consisting of mainly α' phase showed high strength, moderate ductility, and a high Young's modulus, retaining low magnetic susceptibility. Zr-Nb alloys containing a larger volume of ω phase were found to be brittle and, thus, should be avoided, despite their low magnetic susceptibility. When the Zr-Nb alloys consisted primarily of β phase the effect of ω phase weakened the mechanical properties, thereby leading to an increase in ductility, even with an increase in magnetic susceptibility. The minimum value of Young's modulus was obtained for Zr-20Nb, because this composition was the phase boundary between the β and ω phases. However, the magnetic susceptibility of the alloy was half that of Ti-6Al-4V alloys. Zr-Nb alloys consisting of α' or β phase have excellent mechanical properties with low magnetic susceptibility and, thus, these alloys could be useful for medical devices used in MRI. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Monitorizing nitinol alloy surface reactions for biofouling studies

    International Nuclear Information System (INIS)

    Dinu, C.Z.; Dinca, V.C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-01-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities

  18. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  19. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  20. Effect of trace elements on the interface reactions between two lead-free solders and copper or nickel substrates

    Directory of Open Access Journals (Sweden)

    Soares D.

    2007-01-01

    Full Text Available Traditional Sn-Pb solder alloys are being replaced, because of environmental and health concerns about lead toxicity. Among some alternative alloy systems, the Sn-Zn and Sn-Cu base alloy systems have been studied and reveal promising properties. The reliability of a solder joint is affected by the solder/substrate interaction and the nature of the layers formed at the interface. The solder/substrate reactions, for Sn-Zn and Sn-Cu base solder alloys, were evaluated in what concerns the morphology and chemical composition of the interface layers. The effect of the addition of P, at low levels, on the chemical composition of the layers present at the interface was studied. The phases formed at the interface between the Cu or Ni substrate and a molten lead-free solder at 250ºC, were studied for different stage times and alloy compositions. The melting temperatures, of the studied alloys, were determined by Differential Scanning Calorimetry (DSC. Identification of equilibrium phases formed at the interface layer, and the evaluation of their chemical composition were performed by Scanning Electron Microscopy (SEM/EDS. Different interface characteristics were obtained, namely for the alloys containing Zn. The obtained IML layer thickness was compared, for both types of alloy systems.

  1. Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy.

    Science.gov (United States)

    Ramesh, Ganesh; Padmanabhan, T V; Ariga, Padma; Subramanian, R

    2011-01-01

    Since 1907 casting restorations have been in use in dentistry. Numerous companies have been manufacturing and marketing base metal alloys. Gold was a major component of casting alloys. But alloys with less than 65% gold tarnished easily and the increase in cost of gold post-1970s lead to the revival of base metal alloys such as nickel-chromium and cobalt-chromium alloys which were in use since 1930s. This study was conducted to evaluate and compare the castability between an indigenous alloy and an imported alloy, as imported base metal alloys are considered to be expensive for fabrication of crowns and bridges. This study was conducted to evaluate and compare the castability (for the accurate fabrication of crowns and bridges) between an indigenous base metal alloy-Non-ferrous Materials Technology Development Centre (NFTDC), Hyderabad (Alloy A) -and an imported base metal alloys (Alloy B). Castability measurement was obtained by counting the number of completely formed line segments surrounding the 81 squares in the pattern and later calculating the percentage values. The percentage obtained was taken as the castability value for a particular base metal alloy. The percentage of castability was determined by counting only the number of completely cast segments in a perfect casting (81 × 2 = 162), and then multiplying the resulting fraction by 100 to give the percentage completeness. The Student t-test was used. When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 indigenous alloy is on par with the imported alloy.

  2. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  3. Kinetic study on recovery of metal values in anode slime from used lead batteries

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.; Nagasaka, T. [Tohoku Univ., Sendai (Japan). Dept. of Environmental Studies; Ono, J.; Hino, M. [Tohoku Univ., Sendai (Japan). Dept. of Metallurgy

    2004-07-01

    Oxidation experiments were conducted with pure antimony and antimony-lead bismuth alloys to examine the oxidation kinetics and mechanisms used to treat the anode slime produced during lead electrorefining and recovery of antimony from used lead batteries. In order to recycle and recover valuable metals from the used lead batteries, the oxidation experiments were conducted with pure liquid antimony at temperatures between 973 and 1373 K. The study showed that the gas phase mass transfer step is the basic mechanisms that controls the oxidation rate for pure antimony. It was noted that the oxidation rate of the alloy was identical to that of the pure antimony, suggesting that an oxidation reaction of the anode slime proceeds at the same rate as pure antimony. This is one of the advantages of treating anode slime through oxidation. Mass transfer in the gas phase was the rate-determining step in the alloy oxidation reaction. It was concluded that a higher oxygen partial pressure and sufficient gas flow rate at temperature of 1073 K is needed to conserve energy and recovery antimony oxide. 13 refs., 2 tabs., 12 figs.

  4. Cytocompatibility of a free machining titanium alloy containing lanthanum.

    Science.gov (United States)

    Feyerabend, Frank; Siemers, Carsten; Willumeit, Regine; Rösler, Joachim

    2009-09-01

    Titanium alloys like Ti6Al4V are widely used in medical engineering. However, the mechanical and chemical properties of titanium alloys lead to poor machinability, resulting in high production costs of medical products. To improve the machinability of Ti6Al4V, 0.9% of the rare earth element lanthanum (La) was added. The microstructure, the mechanical, and the corrosion properties were determined. Lanthanum containing alloys exhibited discrete particles of cubic lanthanum. The mechanical properties and corrosion resistance were slightly decreased but are still sufficient for many applications in the field of medical engineering. In vitro experiments with mouse macrophages (RAW 264.7) and human bone-derived cells (MG-63, HBDC) were performed and revealed that macrophages showed a dose response below and above a LaCl3 concentration of 200 microM, while MG-63 and HBDC tolerated three times higher concentrations without reduction of viability. The viability of cells cultured on disks of the materials showed no differences between the reference and the lanthanum containing alloy. We therefore propose that lanthanum containing alloy appears to be a good alternative for biomedical applications, where machining of parts is necessary.

  5. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  6. Microstructure evolution of 7050 Al alloy during age-forming

    International Nuclear Information System (INIS)

    Chen, Junfeng; Zou, Linchi; Li, Qiang; Chen, Yulong

    2015-01-01

    The microstructure evolution of the 7050 Al alloy treated by age-forming was studied using a designed device which can simulate the age-forming process. The grain shape, grain boundary misorientation and grain orientation evolution of 7050 Al alloy during age-forming have been quantitatively characterized by electron backscattering diffraction technique. The results show that age-forming produced abundant low-angle boundaries and elongated grains, which attributed to stress induced dislocation movement and grain boundary migration during the age-forming process. On the other side, the stress along rolling direction caused some unstable orientation grains to rotate towards the Brass and S orientations during the age-forming process. Hence, the intensity of the rolling texture orientation in age-formed samples is enhanced. But this effect decays gradually with increasing aging time, since stress decreases and precipitation hardening occurs during the age-forming process. - Highlights: • Quantitative analysis of grain evolution of 7050 Al alloys during age-forming • Stress induces some grain rotation of 7050 Al alloys during age-forming. • Creep leads to elongate grain of 7050 Al alloys during age-forming. • Obtains a trend on texture evolution during age-forming applied stress

  7. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  8. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  9. Hydroxyapatite coating on AZ91 magnesium alloy via sol-gel method

    OpenAIRE

    Albayrak, Sevda; Çinici, Hanifi; Çalın, Recep; Cömert, Canser

    2018-01-01

    Producinga material lighter than available biomaterials, having corrosion-resistance tobiological attacks and histocompatible similar to the bone structure in orderto use in biomedical applications is the purpose of this study. Lightness isextremely important in biomedical applications because stainless steel and manyof the similar heavy metallic alloys can lead to infection by causing harm totissues around the implant when it is used in the body. Although the lightnessof AZ91 Mg alloy is an ...

  10. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    Science.gov (United States)

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  11. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    Directory of Open Access Journals (Sweden)

    Mohamed F. Ibrahim

    2016-01-01

    Full Text Available The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be, where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt% Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  12. Tensile properties of a dual-axial forged Ti–Fe–Cu alloy containing boron

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu., E-mail: zadorozhnyyvlad@gmail.com [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Shchetinin, I.V.; Chirikov, N.V. [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2014-09-22

    In the present work we introduce a micro/nano-structured α+β Ti-based low-alloy produced by the tilt-casting method and subjected to subsequent thermo-mechanical treatment. After hot dual-axial forging at 900 °C, subsequent heating at 700 °C and water quenching a Ti{sub 94}Fe{sub 3}Cu{sub 3}+1000 ppm of boron alloy, containing inexpensive alloying elements, showed an ultimate tensile strength value of about 950 MPa and percentage elongation of about 5.2%. It is shown that the intensive forging treatment and subsequent heat treatment are leading to significantly improved mechanical properties of such an alloy compared to the as-cast state.

  13. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  14. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  15. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  16. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  17. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  18. Synthesis and Characterization of Two Component Alloy Nanoparticles

    Science.gov (United States)

    Tabatabaei, Salomeh

    Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can

  19. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  20. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    Verbeek, B.H.

    1979-01-01

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  1. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.-S.; Wu, H.-R.; Wang, Y.-Y.; Wan, C.-C. [National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Chemical Engineering

    2000-04-28

    The electrochemical performance of AB{sub 2}-type (Ti{sub 0.35}Zr{sub 0.65}Ni{sub 1.2}V{sub 0.6}Mn{sub 0.2}Cr{sub 0.2}) and AB{sub 5}-type (MmB{sub 4.3}(Al{sub 0.3}Mn{sub 0.4}){sub 0.5}) hydrogen storage alloys modified by hot KOH etching and electroless nickel coating has been investigated. It is found that the alloy modified with hot KOH solution shows quick activation but at the expense of cycle-life stability. The alloy coated with nickel was effectively improved in both cycle-life stability and discharge capacity. Both the exchange and limiting current densities were increased by modifying the alloys by hot KOH solution dipping or electroless nickel coating as compared with untreated alloy electrode. The electrode with higher exchange current density and limiting current density leads to increased high-rate dischargeability. A duplex surface modified alloy (i.e., alloy first treated with hot KOH solution and then coated with nickel) has been developed, which performs satisfactorily with respect to both quick activation and long cycle life. In addition, the high-rate dischargeability for the electrode with duplex surface modification is superior to that of electrode solely treated with KOH etching or Ni plating. (orig.)

  2. Recent developments in metal and alloy fabrication. Influence on the utilization

    International Nuclear Information System (INIS)

    1983-01-01

    The program of the colloquium includes three parts. In the first part are given developments of metals and alloys elaboration leading to a better productivity, a more precise chemical composition of alloys a greater homogeneity of micro and macrostructure and a decrease of inclusion contents. These improvement in quality are obtained by smelting, refining, ingot solidification and hot working (forging and rolling). The second part shows the consequences of fabrication processes on uses and analyses with more details these improvements by few examples: stainless steels for nuclear industry microalloyed steels, aluminum and titanium alloys. The third part treats chemical analysis to follow the evolution of alloy composition during fabrication and to modify eventually the composition of the melt. New analysis methods are necessary for their adjustment to the nature and the quantity of elements and obtain the required accuracy [fr

  3. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges

    Directory of Open Access Journals (Sweden)

    T. R. Allen

    2007-01-01

    Full Text Available Anticipated developments in the consumer energy market have led developers of nuclear energy concepts to consider how innovations in energy technology can be adapted to meet consumer needs. Properties of molten lead or lead-bismuth alloy coolants in lead-cooled fast reactor (LFR systems offer potential advantages for reactors with passive safety characteristics, modular deployment, and fuel cycle flexibility. In addition to realizing those engineering objectives, the feasibility of such systems will rest on development or selection of fuels and materials suitable for use with corrosive lead or lead-bismuth. Three proposed LFR systems, with varying levels of concept maturity, are described to illustrate their associated fuels and materials challenges. Nitride fuels are generally favored for LFR use over metal or oxide fuels due to their compatibility with molten lead and lead-bismuth, in addition to their high atomic density and thermal conductivity. Ferritic/martensitic stainless steels, perhaps with silicon and/or oxide-dispersion additions for enhanced coolant compatibility and improved high-temperature strength, might prove sufficient for low-to-moderate-temperature LFRs, but it appears that ceramics or refractory metal alloys will be necessary for higher-temperature LFR systems intended for production of hydrogen energy carriers.

  4. Lead corrosion and transport in simulated secondary feedwater

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ross, K.J.; McDougall, T.E. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Turner, C.W

    1999-07-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is caused by low levels of lead although few, if any, failures have been experimentally linked to lead when it is present in sub-parts per billion in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the 3 principal corrosion products in the secondary feedwater: magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values that are lower than the pH of the feedwater (9 to 10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces after different treatment conditions will be used to propose a model for the transport and probable fate of lead in the secondary feedwater system. (author)

  5. Grain Refinement of Commercial EC Grade 1070 Aluminium Alloy for Electrical Application

    OpenAIRE

    Hassanabadi, Massoud

    2015-01-01

    The aluminium alloys for electrical conductivity applications are generally not grain refinedsince the addition of grain refiners drops the electrical conductivity by introducing impuritiesinto the melt. Non-grain refined aluminium may lead to bar fracture and cracks during themetalworking process. The present study focuses to find an optimum balance between the grain refiner addition andthe electrical conductivity of commercial EC grade 1070 aluminium alloy for electricalapplication. In orde...

  6. Fiscal 1999 leading research report. High strain-rate super-plasticity (Leading research); 1999 nendo kosoku chososei kenkyu hokokusho. Sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For solving the global warming problem and constructing the resource recycling society, a demand for highly recyclable light-weight Mg alloys is increasing for energy saving and recycling improvement, in particular, for automobiles and electrical appliances. However, use of Mg materials is limited because its poor workability. This research targets development of the material with a rich recyclability and a rich workability for forming complex shapes, and its working technology. Leading research was made on development of the continuous high-strain rate (more than 10{sup -2}/s) super- plasticity material forming process from raw materials to products of Mg alloys, and establishment of the production technology free from technological barriers. The research result showed that for the recognition of Mg alloy as low- environment load super light-weight industrial material, establishment of the composite resource-saving energy-saving production process including recycling and reusing is necessary at the same time as establishment of the high- strain rate super-plasticity material forming process. (NEDO)

  7. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  8. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...

  9. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  10. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  11. 76 FR 60083 - Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan and Romania

    Science.gov (United States)

    2011-09-28

    ... Alloy Seamless Standard, Line, and Pressure Pipe From Japan and Romania Determinations On the basis of... pressure pipe from Japan and Romania would be likely to lead to continuation or recurrence of material... regarding small- diameter carbon and alloy seamless standard, line, and pressure pipe from Romania...

  12. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments

    International Nuclear Information System (INIS)

    Chen, Jian; Asmussen, R. Matthew; Zagidulin, Dmitrij; Noël, James J.; Shoesmith, David W.

    2013-01-01

    Highlights: ► We investigated the corrosion behavior of a metal alloy in six reference solutions. ► Majority of rhenium used as a technetium surrogate contained within a Fe 2 Mo phase. ► This prototype alloy exhibited generally passive behavior in all environments. ► Passivity breakdown events can occur and lead to localized corrosion. - Abstract: The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99 Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe 2 Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.

  13. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  14. Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Vijayakumar, J.; Mohan, S.; Yadav, S. Sunil

    2011-01-01

    Highlights: → The electrodeposited Ni-Co alloys are mostly used in magnetic sensors and it has good mechanical and corrosion resistance properties. → The effect of dicarboxylic acid leads to preferred (2 0 0) crystalline orientation, this may improve magnetic properties dicarboxylic acid can alter the elemental composition of Ni-Co alloy. → Dicarboxylic acid acts as a good brightner. - Abstract: Nickel-cobalt alloys were deposited from sulfate electrolyte with oxalic, malonic and succinic acids as additives and their microstructure and mechanical properties were studied. The crystal structure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. The crystal structure and surface morphology analysis showed that the addition of dicarboxylic acid leads to (2 0 0) crystal face and the surface were more compact and uniform due to the grain refining. Ni 60 -Co 40 alloy was achieved when succinic acid is used as additive.

  15. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  16. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  17. Derivative spectrophotometric determination of trace lead in alloys ...

    African Journals Online (AJOL)

    diethylaminophenol-ammonium tetraphenylborate with microcrystalline naphthalene or by a column method in the pH range 4.0–6.0 from a large volume of aqueous solutions of various samples. After filtration, the solid mass consisting of the lead complex and ...

  18. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  19. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    breakdown at low stress levels. The technologies for production of shape memory alloys are induction melting, vacuum melting, vacuum arc melting, following hot and cold working (forging, rolling, wire drawing. In addition, rapid solidification methods, like melt spinning and continuous casting have been developed. These methods are characterized by high cooling rates. High cooling rates allow very short time for diffusion processes and may lead to extremely fine microstructure, better homogeneity etc. SMAs have found applications in many areas due to their thermomechanical and thermoelectrical properties (biomedical applications, engineering industry, electrical industry. In this paper, a review of shape memory alloys, properties and applications of mentioned materials is presented.

  20. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  1. Electrochemical polarization measurements on pitting corrosion susceptibility of nickel-rich Alloy 825

    International Nuclear Information System (INIS)

    McCright, R.D.; Fleming, D.L.

    1991-10-01

    Alloy 825 contains approximately 40% Ni, 30% Fe, 20% Cr, 3.5% Mo, 2% Cu, and 1% Ti. Alloy 825 has a number of performance features that make it attractive as a candidate material for nuclear waste containers. However, under certain environmental conditions Alloy 825 is susceptible to localized forms of corrosion, and the focus of this paper is determination of those conditions. Electrochemical polarization was used to determine the critical potential for passive film breakdown, a process which leads to localized corrosion attack. Results indicated that quite high levels of chloride ion concentrations coupled with low pH are required to lower the critical potential to approach the corrosion potential

  2. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    Science.gov (United States)

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  4. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  5. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    Science.gov (United States)

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  7. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  8. Titanium alloys. Advances in alloys, processes, products and applications

    International Nuclear Information System (INIS)

    Blenkinsop, P.A.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in 'older' alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments are underway aimed at specific engineering and process requirements, both in the aerospace and non-aerospace sectors. Both the advanced high temperature and conventional alloy developments are considered, before the paper goes on to assess the potential of new processes and products, like spray-forming, metal matrix composites and shaped-plate rolling. (orig.)

  9. High-temperature deformation of a mechanically alloyed niobium-yttria alloy

    International Nuclear Information System (INIS)

    Chou, I.; Koss, D.A.; Howell, P.R.; Ramani, A.S.

    1997-01-01

    Mechanical alloying (MA) and hot isostatic pressing have been used to process two Nb alloys containing yttria particles, Nb-2 vol.%Y 2 O 3 and Nb-10 vol.%Y 2 O 3 . Similar to some thermomechanically processed nickel-based alloys, both alloys exhibit partially recrystallized microstructures, consisting of a 'necklace' of small recrystallized grains surrounding much larger but isolated, unrecrystallized, cold-worked grains. Hot compression tests from 1049 to 1347 C (0.5-0.6T MP ) of the 10% Y 2 O 3 alloy show that MA material possesses a much higher yield and creep strength than its powder-blended, fully recrystallized counterpart. In fact, the density-compensated specific yield strength of the MA Nb-10Y 2 O 3 exceeds that of currently available commercial Nb alloys. (orig.)

  10. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  11. Microstructure and mechanical properties of Sn-9Zn-xAl{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Dong, Peng; Wang, Wen-xian [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Ding, Min, E-mail: dingmin@tyut.edu.cn [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-15

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al{sub 2}O{sub 3}/Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al{sub 2}O{sub 3} nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al{sub 2}O{sub 3} nanoparticles increased with the increasing weight percentages of Al{sub 2}O{sub 3} nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al{sub 2}O{sub 3} nanoparticles.

  12. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  13. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Chitaykin, V.I.; Gromov, B.F.; Grigoryv, O.G.; Dedoul, A.V.; Toshinsky, G.I.; Dragunov, Yu.G.; Stepanov, V.S.

    2000-01-01

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  14. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  15. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  16. Effect of deformation and annealing on mechanical properties of nickel-rhenium alloys

    International Nuclear Information System (INIS)

    Mashkova, V.M.

    1978-01-01

    Studied have been the mechanical properties of nickel-rhenium alloys, depending on the extent of deformation and heat treatment leading to softening. The mechanical properties of the alloys have been estimated by the results of the tensile tests of wire samples. The softening of the alloy at different temperatures is judged about by the variation in hardness. The results of the study indicate that the most abrupt reduction in the hardness of the cold-hardened metal occurs at 900-1,000 deg C and the hold-time of 1 min. Increase in the hold-time at such temperature almost does not reduce the hardness. It is established that in order to soften nickel-rhenium alloys in the process of the cold-deformation at brief annealings in the air the hold-time should not exceed 5 min at 800-900 deg C

  17. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  18. Theory of neutron scattering in disordered alloys

    International Nuclear Information System (INIS)

    Yussouff, M.; Mookerjee, A.

    1984-08-01

    A comprehensive theory of thermal neutron scattering in disordered alloys is presented here. We consider in detail the case of substitutional random binary alloy with random changes in mass and force constants; and for all values of the concentration. The cluster CPA formalism in argumented space developed here is free from analytical difficulties for the Green function, performs correct averaging over random atomic scattering lengths and employs a self-consistent medium for the calculations. For easy computation, we describe the graphical representation of the resolvent where the approximation steps can be depicted as closed paths in augmented space. Our results for scattering cross sections, both coherent and incoherent, include new types of terms and these lead to asymmetric line shapes for the coherent scattering. (author)

  19. Lead-free soldering: Investigation of the Cu-Sn-Sb system along the Sn:Sb = 1:1 isopleth

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Borzone, G., E-mail: borzone@chimica.unige.it [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Zanicchi, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy)

    2011-02-03

    Research highlights: > In the electronics industry, the solder alloys commonly used for assembly belong to the Sn-Pb system. Fulfilment of the EU RoHS (reduction of hazardous substances) requires the development of new lead-free alloys for applications in electronics, with the same or possibly better characteristics than the traditional Sn-Pb alloys. > This research concerns the investigation of the constitutional properties of the Cu-Sn-Sb system which is considered as lead-free replacement for high-temperature applications. - Abstract: The Cu-Sn-Sb system has been experimentally investigated by a combination of optical microscopy, differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). DSC was used to identify a total number of five invariant ternary reactions and the Sn:Sb = 1:1 isopleth section up to 65 at.% Cu was constructed by combining the DSC data with the EPMA analyses of annealed alloys and literature information. The composition limits of the binary phases were detected.

  20. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  1. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  2. Rare earth concentration in the primary Si crystal in rare earth added Al-21 wt. % Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.Y.; Kim, G.H. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Moon, I.G.; Choi, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Metallurgical Engineering

    1998-07-03

    Al-Si alloys containing more than about 12 wt. % Si exhibit a hypereutectic microstructure, normally consisting of a primary silicon phase in an eutectic matrix. The primary silicon in normal hypereutectic alloys is usually very coarse and thus leads to poor properties to these alloys. Therefore, alloys with a predominantly coarse primary silicon crystal must be modified to ensure adequate mechanical strength and ductility. Further improvement of mechanical properties of these alloys can be achieved by the modification of eutectic microstructure. Therefore, development of a modifier or refiner that can produce both fine primary and eutectic Si is a major factor which can lead to significant enhancement of mechanical properties in hypereutectic Al-Si alloys. Refinement of primary silicon is usually achieved by the addition of phosphor to the melt. On the other hand, it is reported that the rare earth (RE) elements are capable of modifying the eutectic structure of cast Al-Si alloys. According to the literature, Phosphor acts as a heterogeneous nucleation site of Si crystal by forming AlP intermetallic particles at high temperature, i.e., above liquidus temperature of Al-Si alloy. Unlike phosphor, RE was not known to form a stable compound with Al that can act as a nucleation site at high temperature. Therefore, the role of RE as a refiner should be considered by examining the behavior of RE as a solute in the melt. The distribution of RE within the primary Si and in the matrix of the alloy will provide a clue to the role of RE on the modification of primary Si during solidification.

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  4. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  5. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Md. Muktadir; Shorowordi, Kazi Mohammad; Sharif, Ahmed, E-mail: asharif@mme.buet.ac.bd

    2014-02-05

    Highlights: • Ni-added Sn-Zn-Bi were characterized metallographically, thermally and mechanically. • The volume fraction of α-Zn phase increased with both Bi and Ni in Sn-Zn-Bi alloys. • Micron-sized Ni particles reacted with neither Sn nor Zn to form intermetallics. • Better combination of thermal and mechanical properties can be achieved with Ni. -- Abstract: Micron-sized Ni particle-reinforced Sn–8Zn–3Bi composite solders were prepared by mechanically dispersing Ni particles into Sn–8Zn–3Bi alloy and the bulk properties of the composite solder alloy were characterized metallographically, thermally and mechanically. Different percentage of Ni particle viz. 0.25, 0.5 and 1 wt.% were added in the liquid Sn–8Zn–3Bi alloy and then cast into the metal molds. Melting behavior was studied by differential thermal analyzer (DTA). Microstructural investigation was carried out by both optical and scanning electron microscope. Tensile properties were determined using an Instron Universal Testing Machine at a strain rate 3.00 mm/min. The results indicated that the Ni addition increased the melting temperature of Sn–8Zn–3Bi alloy. The addition of Ni was also found to increase the solidification range. In the Sn–8Zn–3Bi alloy, needle-shaped α-Zn phase was found to be uniformly distributed in the β-Sn matrix. However, it was found that the small amount of Ni addition in Sn–8Zn–3Bi alloy refined the Zn needles throughout the matrix. Also an enhanced precipitation of Zn in the structure was observed with the addition of Ni. All these structural changes improved the mechanical properties like tensile strength and hardness of the newly developed quaternary alloy.

  7. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  8. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  9. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  10. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  11. Computational Materials Program for Alloy Design

    Science.gov (United States)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  12. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  13. Characterization of the microstructure of tin-silver lead free solder

    Energy Technology Data Exchange (ETDEWEB)

    Hurtony, Tamás, E-mail: hurtony@ett.bme.hu [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary); Szakál, Alex; Almásy, László [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Len, Adél [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Faculty of Engineering and Information Technology, University of Pécs (Hungary); Kugler, Sándor [Department of Theoretical Physics, Budapest University of Technology and Economics (Hungary); Bonyár, Attila; Gordon, Péter [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary)

    2016-07-05

    Reliability and lifetime are the two most relevant design considerations in the production of safety critical assemblies. For example in a modern automobile dozens of electronic assemblies are integrated in which thousands of solder joints are mounting the electronic components to the printed circuit boards. There exists no standardised and universal observation method for characterising the fine microstructure of such solder joints. Previously we have developed a new method for the quantitative characterization of lead-free solder alloys and in present study the validity of the proposed method is demonstrated. Microstructure of Sn-3.5Ag lead free solder alloy was investigated by electrochemical impedance spectroscopy. Solder samples were solidified with different cooling rates in order to induce differences in the microstructure. Microstructure of the ingots was revealed by selective electrochemical etching. Electrochemical impedance spectra (EIS) were measured before and after the selective etching process. The complex impedance spectra contain information about microstructure of the solder alloys. Comparison and modelling of two EIS spectra allowed obtaining a characteristic parameter of surface structure of the etched specimens. The EIS measurements were complemented with small angle neutron scattering measurements and scanning electron microscopy, in order to correlate the EIS parameter with the magnitude of the interface of the β-Sn and Ag{sub 3}Sn phases.

  14. Giant thermal expansion and α-precipitation pathways in Ti-alloys.

    Science.gov (United States)

    Bönisch, Matthias; Panigrahi, Ajit; Stoica, Mihai; Calin, Mariana; Ahrens, Eike; Zehetbauer, Michael; Skrotzki, Werner; Eckert, Jürgen

    2017-11-10

    Ti-alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10 -6 to -95.1×10 -6  °C -1 ) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″ lean and α″ iso . Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-alloys in general.

  15. Alloys of uranium and aluminium with low aluminium content

    International Nuclear Information System (INIS)

    Cabane, G.; Englander, M.; Lehmann, J.

    1955-01-01

    Uranium, as obtained after spinning in phase γ, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase α) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl 2 ) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl 2 particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  16. Repassivation potential for localized corrosion of Alloys 625 and C22 in simulated repository environments

    International Nuclear Information System (INIS)

    Cragnolino, G.A.; Dunn, D.S.; Sridhar, N.

    1998-01-01

    Two corrosion resistant nickel-based alloys, 625 and C22, have been selected by the US Department of Energy as candidate materials for the inner container of high-level radioactive waste packages. The susceptibility of these materials to localized corrosion was evaluated by measuring the repassivation potential as a function of solution chloride concentration and temperature using cyclic potentiodynamic polarization and lead-in-pencil potential step test methods. At intermediate Cl- concentrations, e.g., 0.028--0.4 M, the repassivation potential of alloy 625 is greater than that for alloy 825 and is dependent on the Cl- concentration. However, at higher concentrations, the repassivation potential is slightly less than that for alloy 825 and is weakly dependent on Cl- concentration. The repassivation potentials for alloy C-22 under all test conditions are considerably higher than those of either alloy 625 or 825 and are in the range where oxygen evolution is expected to occur

  17. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  18. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  19. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  20. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  1. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  2. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  3. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot

    International Nuclear Information System (INIS)

    Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama

    2013-01-01

    Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phase

  4. Thermomechanical processing of In-containing β-type Ti-Nb alloys.

    Science.gov (United States)

    Pilz, Stefan; Geissler, David; Calin, Mariana; Eckert, Jürgen; Zimmermann, Martina; Freudenberger, Jens; Gebert, Annett

    2018-03-01

    In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing β-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased β-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58GPa ((Ti-40Nb)-3.5In) and 56GPa ((Ti-36Nb)-3.5In) compared to 60GPa as determined for Ti-40Nb. For both In-containing alloys the ultimate tensile strength is in the range of 560MPa. Due to the suppressed α'' formation, (Ti-40Nb)-3.5In exhibits a linear elastic deformation behavior during tensile loading together with a low Young's modulus and is therefore promising for load-bearing implants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Thermodynamic Behavior of Lead-Antimony Alloy in Vacuum Distillation

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    The distribution of metals in Pb-Sb ailoy during vacuum distillation was calculated.The composition curve of vapor-liquid phases determined by this work is different from those of. other researchers.The curve intersects the diagonal at C.The compositions of vapor and liquid at C are identical.The antimony content of vapor on the left of C is less than that of liquid,and the vapor on the right-side of C contains more antimony.These characteristics can be applied to the elimination of antimony from crude lead or the elimination of lead from crude antimony.The position of C moves rightwards with temperature increment.The discrepency among the compositions of C suggested by diffrent authors was explained.

  6. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  7. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  8. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chubin [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China); Pan, Fusheng; Chen, Xianhua [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Luo, Ning [Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China)

    2017-06-15

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement. (orig.)

  9. Tuning Low Cycle Fatigue Properties of Cu-Be-Co-Ni Alloy by Precipitation Design

    Directory of Open Access Journals (Sweden)

    Yanchuan Tang

    2018-06-01

    Full Text Available As material for key parts applied in the aerospace field, the Cu-Be-Co-Ni alloy sustains cyclic plastic deformation in service, resulting in the low cycle fatigue (LCF failure. The LCF behaviors are closely related to the precipitation states of the alloy, but the specific relevance is still unknown. To provide reasonable regulation of the LCF properties for various service conditions, the effect of precipitation states on the LCF behaviors of the alloy was investigated. It is found that the alloy composed fully of non-shearable γ′ precipitates has higher fatigue crack initiation resistance, resulting in a longer fatigue life under LCF process with low total strain amplitude. The alloy with fine shearable γ′I precipitates presents higher fatigue crack propagation resistance, leading to a longer fatigue life under LCF process with high total strain amplitude. The cyclic stress response behavior of the alloy depends on the competition between the kinematic hardening and isotropic softening. The fine shearable γ′I precipitates retard the decrease of effective stress during cyclic loading, causing cyclic hardening of the alloy. The present work would help to design reasonable precipitation states of the alloy for various cyclic loading conditions to guarantee its safety in service.

  10. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    -processing.2 Increasing concentration of the electrolyte leads to the thicker MAO-layer of higher microhardness and lower porosity.3 Deformation-heat treatment of AK12D alloy samples using a scheme "forging + quenching + aging" before the MAO leads to deteriorated quality of formed layer.

  11. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  12. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  13. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  14. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  15. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  16. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  17. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  18. Surface tension and wetting behaviour of Bi-In-Sn alloys

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Ahmad Badri Ismail; Soong, T.K.; Chin, Y.T.; Luay Bakir Hussain

    2007-01-01

    Concerns about possible landfill contamination, influent discharge from production process are one of the reasons convert from lead-containing electronics to lead-free containing. The surface and interfacial properties of Bi-In-Sn lead-free solder system as a basic system of multicomponent alloys proposed as lead-free solder materials have been studied. The surface tension of Bi-In-Sn lead-free solder system of melting temperature 60 degree Celsius has been measured the temperature range 80 degree Celsius and 140 degree Celsius. The study of the wetting behaviour of Bi-In-Sn lead-free solder system on a Cu substrate has been performed by measuring contact angle on various metal substrates by Optical Microscopy with software. (author)

  19. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms

    International Nuclear Information System (INIS)

    Marchetti-Sillans, L.

    2007-11-01

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale (∼ 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr 2 O 3 nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr 2 O 3 nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary media and to tackle some

  20. Structure and properties of Al-Mg-Li-Zr system alloys

    International Nuclear Information System (INIS)

    Fridlyander, I.N.; Dolzhanskij, Yu.M.; Sandler, V.S.; Tyurin, .V.; Nikol'skaya, T.I.

    1977-01-01

    Studied were the structure and mechanical properties of the Al-Mg-Li-Zr alloy system (including 01420 alloy) containing 1.6-5.3%Li and 1.0-8.8%Mg). Electron microscopic studies of 01420 alloy conducted after heating at 450 deg C for 4 hours revealed non-uniformly distributed precipitations of a metastable phase ZrAl 3 , having spherical and needle-like configurations. These precipitations, together with zirconium contained in the solid solution, retard recrystallization. The introduction of 0.1-0.2% Zr decreases the limiting solubility of magnesium and lithium in the aluminium solid solution and leads to the formation of disperse equilibrium (S and, possibly, γ) phases with the size of 0.1-0.5 mcm. These phases were observed in the alloys containing (>=) 4% Mg and 1.9-3.5% Li. The method of planned experiment was used to study the principles governing the variation of the mechanical properties of the alloys subjected to water hardening and after aging at 170 deg C for 16 hours. It was established that the strength properties of the hardened alloys become higher, and the relative elongation decreases with the content of lithium and especially magnesium. It would be more proper to assess strengthening in the course of aging according to variation in the yield point and hardness. The effect of aging determined by the yield point depends on the content of lithium and is practically independent of the concentration of magnesium

  1. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  2. Bandgap engineering of lead-free double perovskite Cs_2AgBiBr_6 through trivalent metal alloying

    International Nuclear Information System (INIS)

    Du, Ke-zhao; Mitzi, David B.; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa

    2017-01-01

    The double perovskite family, A_2M"IM"I"I"IX_6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH_3NH_3PbI_3. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs_2AgBiBr_6 as host, band-gap engineering through alloying of In"I"I"I/Sb"I"I"I has been demonstrated in the current work. Cs_2Ag(Bi_1_-_xM_x)Br_6 (M=In, Sb) accommodates up to 75 % In"I"I"I with increased band gap, and up to 37.5 % Sb"I"I"I with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs_2Ag(Bi_0_._6_2_5Sb_0_._3_7_5)Br_6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Solidification of eutectic system alloys in space (M-19)

    Science.gov (United States)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  4. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  5. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  6. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  7. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  8. Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.

    In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.

  9. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  10. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  11. Reducing thermal conductivity of binary alloys below the alloy limit via chemical ordering

    International Nuclear Information System (INIS)

    Duda, John C; English, Timothy S; Jordan, Donald A; Norris, Pamela M; Soffa, William A

    2011-01-01

    Substitutional solid solutions that exist in both ordered and disordered states will exhibit markedly different physical properties depending on their exact crystallographic configuration. Many random substitutional solid solutions (alloys) will display a tendency to order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions will result in major crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. Consequently, the dominant scattering mechanism in ordered alloys will be different than that in disordered alloys. In this study, we present a hypothesis that ordered alloys can exhibit lower thermal conductivities than their disordered counterparts at elevated temperatures. To validate this hypothesis, we investigate the phononic transport properties of disordered and ordered AB Lennard-Jones alloys via non-equilibrium molecular dynamics and harmonic lattice dynamics calculations. It is shown that the thermal conductivity of an ordered alloy is the same as the thermal conductivity of the disordered alloy at ∼0.6T melt and lower than that of the disordered alloy above 0.8T melt .

  12. Phase evolution and thermal stability of 2 Mg–Cu alloys processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, C., E-mail: carola.martinezu@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Ordoñez, S., E-mail: stella.ordonez@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y CRIDESAT, Av. Copayapu 485, Casilla de Correo 240, Copiapó (Chile); Serafini, D. [Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 307, Santiago (Chile); Iturriza, I. [CEIT, Manuel de Lardizábal 15, 20018 San Sebastián, España (Spain); Bustos, O. [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile)

    2013-12-25

    Highlights: •Study of phase evolution of elemental powders Mg and Cu by mechanical alloying. •The presence of an amorphous precursor which crystallizes to Mg{sub 2}Cu can be observed. •Establishing the sequence of phase transformations leading to the formation of Mg{sub 2}Cu. •The feasibility to obtain Mg{sub 2}Cu by means two possible routes has been established. -- Abstract: Phase evolution during mechanical alloying (MA) of elemental Mg and Cu powders and their subsequent heat treatment is studied. Elemental Mg and Cu powders in a 2:1 atomic ratio were mechanically alloyed in a SPEX 8000D mill using a 10:1 ball-to-powder ratio. X-ray diffraction (XRD) shows that the formation of the intermetallic Mg{sub 2}Cu takes place between 3 and 4 h of milling, although traces of elemental Cu are still present after 10 h of milling. The thermal behavior of different powder mixtures was evaluated by differential scanning calorimetry (DSC). The combination of DSC, heat treatment and XRD has shown a sequence of phase transformations that results in the intermetallic Mg{sub 2}Cu from an amorphous precursor. This amorphous phase is converted into Mg{sub 2}Cu by heating at low temperature (407 K). Short MA times and the formation of the amorphous precursor, together with its subsequent transformation into Mg{sub 2}Cu at low temperatures; represent an advantageous alternative route for its preparation.

  13. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  14. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  15. Zr inclusions in actinide—Zr alloys: New data and ideas about how they form

    International Nuclear Information System (INIS)

    Janney, Dawn E.; O'Holleran, Thomas P.

    2015-01-01

    High-Zr inclusions are common in actinide—Zr alloys despite phase diagrams indicating that these alloys should not contain a high-Zr phase. The inclusions may contain enough Zr to cause significant differences between bulk compositions and those of inclusion-free areas, leading to possible errors in interpreting data if the inclusions are not considered. This paper presents data from high-Zr inclusions in a complex U—Np—Pu—Am—Zr—RE alloy. It is suggested that the high-Zr inclusions nucleated as high-Zr solid solutions at interfaces with high-actinide RE liquids, then unmixed to form nanometer-scale high-actinide sub-inclusions.

  16. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  17. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  18. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  19. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells

    International Nuclear Information System (INIS)

    Grillo, Claudia A.; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A.

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. - Highlights: • A metal disk setup is better in simulating in vivo situations than extracts and salts. • The biodegradation process and cell metabolism were interdependent. • Zn (100 μM) and Mg (8.2 × 10"3 μM) mixtures are more toxic than single Zn or Mg. • Insoluble degradation products of Mg showed high negative effect on cell viability.

  20. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  1. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    International Nuclear Information System (INIS)

    Gebhardt, Thomas; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-01-01

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition–structure–property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  2. Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys

    International Nuclear Information System (INIS)

    Kulkarni, U.D.

    2004-01-01

    The quenched in state of short range order (SRO) in binary Ni-Mo alloys is characterized by intensity maxima at {1 (1/2) 0} and equivalent positions in the reciprocal space. Ternary addition of a small amount of Al to the binary alloy, on the other hand, leads to a state of SRO that gives rise to intensity maxima at {1 0 0} and equivalent, in addition to {1 (1/2) 0} and equivalent, positions in the selected area electron diffraction patterns. Different geometric patterns of streaks of diffuse intensity, joining the SRO maxima with the superlattice positions of the emerging long range ordered (LRO) structures or in some cases between the superlattice positions of different LRO structures, are observed during the SRO-to-LRO transitions in the Ni-Mo-based and other 1 (1/2) 0 alloys. Monte Carlo simulations have been carried out here in order to shed some light on the atomic structures of the SRO and the SRO-to-LRO transition states in these alloys

  3. Surface and bulk characterization of molten In and In-Sn alloys

    Directory of Open Access Journals (Sweden)

    Ricci E.

    2011-05-01

    Full Text Available In this work a double contribution to the characterization of molten In and In-Sn alloys considered as main components of an important class of lead free solder materials is shown: the study of the influence of oxygen on the capillary phenomena and the XRD investigation of the structure of liquid in a range of temperatures around that of liquidus. The surface tension behaviour of In-Sn binary alloys at different compositions, in terms of effective oxygen pressure, were compared with the data of pure In and the theoretical predictions, revealing that the lower oxidizability of indium was shown to control indium–tin alloys with a tin content up to about 80 at% , due to the presence of the most volatile oxide In2O. From the XRD spectra the radial distribution functions (RDF have been determined for each alloys. Experiments of High Temperature X-ray diffraction (HT-XRD showed that atomic clustering forms in the melt immediately before the appearing of the first solid. The structure of clusters is correlated to that of solid.

  4. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  5. Mechanism study of c.f.c Fe-Ni-Cr alloy corrosion in supercritical water

    International Nuclear Information System (INIS)

    Payet, M.

    2011-01-01

    microstructure surfaces lead to thin chromium rich oxide layers thanks to either diffusion short circuiting or increasing Cr oxide nucleation site. The nature of the surface is a determining factor in the steel instance. The same parameter breeds different effects for the Ni-based alloy. Machined surfaces lead to internal oxidation on alloy 690 even if a thin Cr and Mn rich oxide scale is formed. Competitive diffusion of oxygen and Cr species through the diffusion short circuit paths of the alloy is suggested. This work proposes oxide growth mechanisms for each case. Finally the conditions leading to the formation of chromium-rich protective oxide films in supercritical water are discussed. (author) [fr

  6. Transport of lead to crack tips in steam generator tubes

    International Nuclear Information System (INIS)

    Adler, G.D.; Marks, C.R.; Fruzzetti, K.

    2009-01-01

    The mechanisms by which lead is transported from its ultimate source to steam generator tubes and into cracks are not well understood and, to date, a comprehensive evaluation of possible mechanisms has not previously been performed. Specifically, local lead concentrations up to 20 wt. percent have been measured at crack tips, and it is not fully understood how lead concentrations of this magnitude occur, since lead concentrations in SG feedwater are typically quite low (on the order of a few parts per trillion). Additionally, there is evidence that at secondary side conditions, lead is essentially entirely adsorbed onto solid surfaces. Furthermore, if lead were present in the liquid phase, it would not be expected to be in a form that would facilitate concentration in a crevice (crack) by electrochemical means. There has previously been some speculation that lead transport to crack tips may occur through surface diffusion of adsorbed species. It has also been postulated that lead transport may occur via diffusion through the oxide layer along crack walls or via diffusion of lead out of the bulk Alloy 600 to grain boundaries exposed to secondary water by advancing cracks. However, there have been no critical evaluations of these hypotheses. With the current state of knowledge, it is difficult for utilities to determine whether additional efforts to further reduce the inventory of lead in the secondary system are justified. Furthermore, specific sources of lead that are especially likely to accelerate SCC cannot be identified (e.g., significant masses of lead are present in SG deposits, but it is not known if this lead can be transported to crack tips). The work presented in this paper quantitatively evaluates (based on the published literature, not new experimental work) a number of hypothesized lead transport mechanisms, including: Liquid phase diffusion; Electrochemically influenced diffusion of cations and anions; Bulk alloy diffusion; Surface diffusion; Solid

  7. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  8. Element segregation behavior of aluminum-copper alloy ZL205A

    Directory of Open Access Journals (Sweden)

    Fan Li

    2014-11-01

    Full Text Available In aluminum-copper alloy, the segregation has a severe bad effect on the alloying degree, strength and corrosion resistance. A deeper understanding of element segregation behavior will have a great significance on the prevention of segregation. In the study, the element segregation behavior of ZL205A aluminum-copper alloy was investigated by examining isothermally solidified samples using scanning electron microscopy and energy dispersive spectroscopy. The calculated results of segregation coefficients show that Cu and Mn are negative segregation elements; while Ti, V and Zr are positive segregation elements. The sequence of element segregation degree from the greatest to the least in ZL205A alloy is Cu, Mn, V, Ti, Zr and Al. The density of residual liquid is expected to increase with a decrease in the quenching temperature ranging from 630 ºC to 550 ºC. The calculated results confirm that the quenching temperature has an insignificant effect on the liquid density; and the variation of density is mainly due to element segregation. Consequently, segregations of Al, Cu and Mn lead to an increase in density, but Ti, V and Zr present the opposite effect. The contribution of each element to the variation of the liquid density was analyzed. The sequence of contributions of alloying elements to the variation of total liquid density is Cu﹥Al﹥Mn﹥V﹥Ti﹥Zr.

  9. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  10. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  11. Fundamental investigation of point defect interactions in FE-CR alloys

    International Nuclear Information System (INIS)

    Wirth, B.D.; Lee, H.J.; Wong, K.

    2008-01-01

    Full text of publication follows. Fe-Cr alloys are a leading candidate material for structural applications in Generation TV and fusion reactors, and there is a relatively large database on their irradiation performance. However, complete understanding of the response of Fe-Cr alloys to intermediate-to-high temperature irradiation, including the radiation induced segregation of Cr, requires knowledge of point defect and point defect cluster interactions with Cr solute atoms and impurities. We present results from a hierarchical multi-scale modelling approach of defect cluster behaviour in Fe-Cr alloys. The modelling includes ab initio electronic structure calculations performed using the VASP code with projector-augmented electron wave functions using PBE pseudo-potentials and a collinear treatment of magnetic spins, molecular dynamics using semi-empirical Finnic-Sinclair type potentials, and kinetic Monte Carlo simulations of coupled defect and Cr transport responsible for microstructural evolution. The modelling results are compared to experimental observations in both binary Fe-Cr and more complex ferritic-martensitic alloys, and provide a basis for understanding a dislocation loop evolution and the observations of Cr enrichment and depletion at grain boundaries in various irradiation experiments. (authors)

  12. Determination of crystalline texture in aluminium - uranium alloys by neutron diffraction

    International Nuclear Information System (INIS)

    Azevedo, A.M.V. de.

    1978-01-01

    Textures of hot-rolled aluminum-uranium alloys and of aluminum were determined by neutron diffraction. Sheets of alloys containing 8.0, 21.5 and 23.7 wt pct U, as well as pure aluminum, were obtained in a stepped rolling process, 15% reduction each step, 75% total reduction. During the rolling the temperature was 600 0 C. Alloys with low uranium contents are two phase systems in which an intermetallic compound UAl 4 , orthorhombic, is dispersed in a pure aluminum matrix. The addition of a few percent of Si in such alloys leads to the formation of UAl 3 , simple cubic, instead of UAl 4 . The Al -- 23.7 wt pct U alloy was prepared with 2,2 wt pct of Si. The results indicate that the texture of the matrix is more dependent on the uranium concentration than on the texture of the intermetallic phases. An improvement in the technique applied to texture measurements by using a sample fully bathed in the neutron beam is also presented. The method takes advantage of the low neutron absorption of the studied materials as well as of the neglibible variation in the multiple scattering which occurs in a conveniently shaped sample having a weakly developed texture. (Author) [pt

  13. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  14. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  15. Mechanical properties of ultra-fine grained structure formed in Al-Li alloys

    International Nuclear Information System (INIS)

    Adamczyk-Cieslak, B.; Lewandowska, M.; Mizera, J.; Kurzydlowski, K.J.

    2004-01-01

    This paper describes the mechanical properties (microhardness, yield stress) of two model Al-Li alloys by the Equal-Channel-Angular-Extrusion (ECAE) process. The applied ECAE process reduced the grain size from an initial value of ∼300 μm to a value of ∼0.7 μm leading to profound increase of plastic flow resistance. Such an increase is related to the grain size refinement and strengthening due to Li atoms in solid solution. Microhardness data confirm the Hall - Petch relation for grain sizes not available so far in Al-Li alloys. (author)

  16. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    Kostyuk, K.O.; Kostyuk, V.O.

    2015-01-01

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T 2 B, TiB, TiB 2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  17. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  18. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  19. Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V.; Kaloshkin, S.D.; Gunderov, D.V.; Afonina, E.A.; Brodova, I.G.; Stolyarov, V.V.; Baldokhin, Yu.V.; Shelekhov, E.V.; Tomilin, I.A

    2004-07-15

    Aluminium-based Al-Fe alloys with Fe content of 2, 8, and 10 wt.% were prepared by rapid quenching (RQ) from the melt at a rate of 10{sup 6} K/s. Structure of the alloys was examined by X-ray diffraction (XRD) and Moessbauer spectroscopy. Phase transformations of RQ alloys by high pressure torsion (HPT) were studied. Dependences of phase composition on the intensity of HPT were investigated. Microhardness measurements of HPT alloys show a considerable structural heterogeneity of specimens, the dependence of microhardness on the radius of the pills was found out. Phase composition and microhardness during the heating were investigated. At the initial step of heating (120-150 deg. C), an increase in microhardness was observed, whereas further heating leads to a decrease in the microhardness.

  20. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  1. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    Science.gov (United States)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  2. Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system

    Science.gov (United States)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.

    2018-04-01

    The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.

  3. The effects of microstructural stability on the compressive response of two cast aluminum alloys up to 300 °C

    International Nuclear Information System (INIS)

    Shower, Patrick T.; Technology Division; University of Tennessee, Knoxville, TN; Roy, Shibayan; Technology Division; Indian Institute of Technology; Hawkins, Charles Shane; Technology Division)

    2017-01-01

    Here in this study, the high temperature compressive response of cast aluminum alloys 319 and RR350 is compared in light of their microstructures. The 319 alloy is widely used in thermally critical automotive applications and provides a baseline for comparison with the RR350 alloy, whose microstructural stability at high homologous temperatures was recently reported. Cylindrical compression samples from each alloy were tested at four temperatures up to 300 °C at a constant true strain rate that was varied over four orders of magnitude. Although both alloys are strengthened by metastable precipitates (nominally Al 2 Cu) in the as-aged condition, their mechanical response diverges at temperatures greater than 250 °C as the strengthening precipitates evolve in the 319 alloy and retain their as-aged morphology in the RR350 alloy. Deformation mechanisms of each alloy are examined using microstructural analysis and empirical activation energy calculations. The stability of the θ' phase in the RR350 alloy leads to effective precipitation hardening at homologous temperatures up to 0.6 and an extensive regime of grain boundary controlled deformation.

  4. Effects of irradiation on ferritic alloys and implications for fusion reactor applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-07-01

    This paper reviews the ADIP irradiation effects data base on ferritic (martensitic) alloys to provide reactor teams with an understanding of how such alloys will behave for fusion reactor first wall applications. Irradiation affects dimensional stability, strength and toughness. Dimensional stability is altered by precipitation and void swelling. Swelling as high as 25% may occur in some ferritic alloys at 500 dpa. Irradiation alters strength both during and following irradiation. Irradiation at low temperatures leads to hardening whereas at higher temperatures and high exposures, precipitate coarsening can result in softening. Toughness can also be adversely affected by irradiation. Failure can occur in ferritic in a brittle manner and irradiation induced hardening causes brittle failure at higher temperatures. Even at high test temperatures, toughness is reduced due to reduced failure initiation stresses. 39 refs

  5. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  6. NASA-DoD Lead-Free Electronics Project

    Science.gov (United States)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  7. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  8. First principle investigations on Boron doped Fe2VAl Heusler alloy

    International Nuclear Information System (INIS)

    Venkatesh, Ch.; Srivastava, S.K.; Rao, V.V.

    2014-01-01

    The role of atomic size of sp-element is investigated through theoretical calculations and basic experiments to understand the physical properties of Boron doped Fe 2 VAl alloy. The results of ab-initio calculations on ordered L2 1 structure of Fe 2 VAl 1-x B x (x=0, 0.5, 1) alloys have been compared to understand the role of sp-element size on the hybridization among their respective valance states. Interestingly, semi-metallic and paramagnetic like ground states were found in the Boron doped alloys in similar to Fe 2 VAl, eliminating the role of size of the doppent sp-atom. These calculations result in hybridization where the covalent distribution of valance states among the atoms is responsible to produce a finite pseudo-gap at the Fermi level. The observed features could be explained on the basis of covalent theory of magnetism in which an amount of spectral weight transfer occurs in the DOS spectrum among the same spin orbitals, leading to symmetric distribution of bonding and anti-bonding states. However, the obtained experimental findings on Boron doped alloys are in contrast with these calculations, indicating that experimentally the alloy formation into an ideal L2 1 lattice does not happen while doping with Boron. Further, the micro structural analysis shows Boron segregation across the grain boundaries that may form magnetic inhomogeneities in the lattice of Boron doped Fe 2 VAl alloys which preferably cause these experimental anomalies

  9. Formation of chemical compounds under vacuum plasma-arc deposition of nickel and its alloy onto piezoceramics

    International Nuclear Information System (INIS)

    Grinchenko, V.T.; Lyakhovich, T.K.; Prosina, N.I.; Khromov, S.M.

    1988-01-01

    The phase composition of the transition layer appearing during vacuum-arc coating of nickel and nickel alloy with copper on barium titanate and lead zirconate-titanate is identified. During vacuum plasma-arc coating of nickel and its alloy at the boundary with barium titanate and lead zirconate-titanate the Ni 2 Ti 4 O compound appears which has the crystal lattice type identical with substrate with the parity of lattice parameters. The transition layer contains nickel oxides and NiTiO 3 in the case of barium titanate. When titanate content in substrate increases the zone of reaction diffusion increases in value and becomes more complicate in composition

  10. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  11. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  12. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  13. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qian; Wang Xiaoguang; Qi Zhen [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Wang Yan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jiwei Road 106, Jinan 250022 (China); Zhang Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn

    2009-11-01

    Nanoporous gold (NPG) ribbons have been fabricated through electrochemical dealloying of melt-spun Al-Au alloys with 20-50 at.% Au in a 10 wt.% NaCl aqueous solution under potential control at room temperature. The microstructures of NPG were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) analysis. The microstructures of the NPG ribbons strongly depend upon the phase constitutions of the starting Al-Au alloys. The single-phase Al{sub 2}Au or AlAu intermetallic compound can be fully dealloyed, resulting in the formation of NPG with a homogeneous porous structure. The separate dealloying of Al{sub 2}Au and AlAu in the two-phase Al-45 Au alloy leads to the formation of NPG composites (NPGCs). In addition, the dealloying of the Al-20 Au alloy comprising {alpha}-Al and Al{sub 2}Au leads to the formation of NPG with bimodal channel size distributions. According to the ligament size, the surface diffusivity of Au adatoms along the alloy/electrolyte interface has been evaluated and increases with increasing applied potential. The dealloying mechanism in the neutral NaCl solution has been explained based upon pourbaix diagram and chloride ion effect.

  14. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  15. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  16. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  17. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  18. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  19. Influence of the P content on the transport parameters of hydrogen in Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Peñalva, I., E-mail: igor.penalva@ehu.es [University of the Basque Country (UPV/EHU), Department of Nuclear Engineering & Fluid Mechanics, Faculty of Engineering, Alda. Urquijo s/n, 48013 Bilbao (Spain); Alberro, G.; Legarda, F. [University of the Basque Country (UPV/EHU), Department of Nuclear Engineering & Fluid Mechanics, Faculty of Engineering, Alda. Urquijo s/n, 48013 Bilbao (Spain); Ortiz, C.J.; Vila, R. [CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Gas permeation technique was used to study hydrogen diffusive transport parameters. • Four Fe alloys were analyzed to study the influence of the P content. • Increase in the P content leads to smaller values of permeability and diffusivity. • Trapping effects were observed at temperatures below 473 K for alloys containing P. - Abstract: In this work, the hydrogen transport parameters of permeability (ϕ), diffusivity (D) and Sieverts’ constant (K{sub S}) were experimentally measured in four Fe alloys supplied by the European Fusion Development Agreement (EFDA), by means of the gas evolution permeation technique. The samples had controlled chemical alloying element contents and microstructure. The experimental temperature range explored was from 423 K to 823 K and the high purity hydrogen loading pressures from 10{sup 3} Pa to 1.5·10{sup 5} Pa. The main objective of this work was to determine the influence of the P content of the alloy in the transport parameters of hydrogen. Two of the samples, pure Fe and FeC, contained negligible quantities of P (less than 5 ppm in weight), whereas the other two, FeP and FeCP, had the same metallurgical composition as their corresponding pair, with the only difference in the phosphorus content (89 ppm in weight and 88 ppm in weight, respectively). The experimental permeation results were analyzed using a non-linear least square fitting. The final resulting values of the aforementioned transport parameters were paired off in order to determine the effect of the P content: pure Fe versus FeP and FeC versus FeCP. We observed that the permeability obtained for all the samples follows an Arrhenius law in each case. In general terms, the increase of the P content in the alloy leads to smaller values of the permeability showing a decrease in the permeation activation energy. Regarding diffusivity and Sieverts’ constant, trapping effects have been observed for the alloys containing P. This phenomenon was

  20. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  1. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  2. Investigation of transient photoresponse of WSSe ternary alloy crystals

    Science.gov (United States)

    Chauhan, Payal; Solanki, G. K.; Tannarana, Mohit; Pataniya, Pratik; Patel, K. D.; Pathak, V. M.

    2018-05-01

    Transition metal chalcogenides have been studied intensively in recent time due to their tunability of electronic properties by compositional change, alloying and by transforming bulk material into crystalline 2D structure. These changes lead to the development of verities of next generation opto-electronic device applications such as solar cells, FETs and flexible detectors etc. In present work, we report growth and characterization of crystalline ternary alloy WSSe by direct vapour transport technique. A photodetector is constructed using grown crystals to study its transient photoresponse under polychromatic radiation. The WSSe crystals are mechanically exfoliated to thickness of 3 µm and the lateral dimension of prepared sample is 2.25 mm2. The time-resolved photoresponse is studied under polychromatic illumination of power density ranging from 10 to 40 mW/cm2. The photo response is also studied under different bias voltages ranging from 0.1 V to 0.5 V. The typical photodetector parameters i.e. photocurrent, rise and fall time, responsivity and sensitivity are evaluated and discussed in light of the ternary alloy composition.

  3. Experiments with the low-melting indium-bismuth alloy system

    International Nuclear Information System (INIS)

    Krepski, R.P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored

  4. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  5. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  6. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    International Nuclear Information System (INIS)

    Bichler, L.; Ravindran, C.

    2010-01-01

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the α-Mg phase resulted in segregation of Al 2 RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  7. Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels

    International Nuclear Information System (INIS)

    Hawk, J.A.; Simmons, J.W.; Rawers, J.C.

    1994-01-01

    Alloying stainless steels with nitrogen has distinct advantages. Nitrogen is a strong austenite stabilizer and a potent solid-solution strengthener, and nitrogen has greater solubility than carbon iron. This study investigates the relationship among nitrogen concentration, precipitate microstructure, and abrasive wear using two high-nitrogen stainless steel alloys: Fe-19Cr-5Mn-5Ni-3Mo (SS1) and Fe-16Cr-7Mn-5Ni(SS2). Alloy SS1 contained 0.7 wt% N and was solution annealed at 1,150 C, thereby dissolving the nitrogen interstitially in the austenite. Subsequent aging, or cold work and aging, at 900 C led to the grain-boundary, cellular, and transgranular precipitation of Cr 2 N. Alloy SS2 was remelted in a high-pressure (200 MPa) N 2 atmosphere, leading to a spatial gradient of nitrogen in the alloy in the form of interstitial nitrogen and Cr 2 N and CrN precipitates. Nitrogen contents varied from a low of approximately 0.7 wt% at the bottom of the billet to a high of 3.6 wt% at the top. Nitrogen in excess of approximately 0.7 wt% formed increasingly coarser and more numerous Cr 2 N and CrN precipitates. The precipitate morphology created in alloy SS1 due to aging, or cold work and aging, had little effect on the abrasive wear of the alloy. However, a decrease in the abrasive wear rate in alloy SS2 was observed to correspond to the increase in number and size of the Cr 2 N and CrN precipitates

  8. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Lay, Matthew D.H., E-mail: mlay@fbrice.com [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia); Easton, Mark A., E-mail: mark.easton@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sweet, Lisa, E-mail: lisa.sweet@monash.edu [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Zhu, Suming, E-mail: suming.zhu@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Parson, Nick C., E-mail: nick.parson@riotinto.com [Rio Tinto Alcan, Arvida Research and Development Centre, 1955, Mellon Blvd, Jonquière, Québec G7S 4K8 (Canada); Hill, Anita J., E-mail: anita.hill@csiro.au [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia)

    2016-01-15

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  9. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    International Nuclear Information System (INIS)

    Strobel, Katharina; Lay, Matthew D.H.; Easton, Mark A.; Sweet, Lisa; Zhu, Suming; Parson, Nick C.; Hill, Anita J.

    2016-01-01

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  10. A comparison of fingerprint sweat corrosion of different alloys of brass.

    Science.gov (United States)

    Sykes, Stephanie; Bond, John W

    2013-01-01

    Fingerprint sweat from 40 donors was deposited onto samples of five α and α + β phase brasses, comprising five alloys with different copper and zinc concentrations, two of which also had the addition of small concentrations of lead. Visual grading of the visibility of the corrosion revealed that brasses with the least amount of zinc produced the most visible and fully formed fingerprints from the most donors. Consideration of previously reported mechanisms for the corrosion of brass suggests red copper (I) oxide as a likely corrosion product for low zinc brasses, and a consideration of the color, composition, and solubility of fingerprint sweat corrosion products suggests that copper (I) oxide produces good contrast and visibility with the brass substrate. Scanning electron microscope images of the corrosion of all five alloys confirmed the enhanced contrast between corroded and uncorroded areas for low zinc alloys. © 2012 American Academy of Forensic Sciences.

  11. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  12. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  13. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  14. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  15. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    Science.gov (United States)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  16. The influence of lead on stress corrosion cracking of steam generator tubing

    International Nuclear Information System (INIS)

    Ryan Curtis Wolfe

    2015-01-01

    Lead (Pb) is present at low concentrations on the secondary side of steam generators, but is known to accumulate in steam generator sludge and become concentrated in crevices and cracks. Pb is known to have played a role in the degradation of Alloy 600MA tubing, necessitating the replacement of those steam generators. There is new evidence which indicates that Pb has also played a role in the stress corrosion cracking (SCC) of Alloy 600TT. Furthermore. laboratory testing indicates that advanced tubing alloys such as Alloy 690TT and Alloy 800NG area also susceptible to this attack. In response to these vulnerabilities, utilities are attempting to manufacture tubing using processes which will impart optimal corrosion resistance, fabricate and operate SG's to minimize stress in the tubing, undertake efforts to identify and remove the sources of Pb, reduce the existing inventory of Pb using chemical or mechanical cleaning processes, and maintain rigorous chemistry controls. Research is warranted to qualify chemical methods to mitigate PbSCC that may be observed in service. This presentation will review work performed through the Electric Power Research Institute (EPRI) to address the issue of Pb-assisted stress corrosion cracking of steam generator tubing. (author)

  17. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  18. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  19. Monitoring alloy formation during mechanical alloying process by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom; Noraizam Md Diah; Mazli Mustapha

    2002-01-01

    Monitoring alloying (MA) is a novel processing technique that use high energy impact ball mill to produce alloys with enhanced properties and microscopically homogeneous materials starting from various powder mixtures. Mechanical alloying process was originally developed to produce oxide dispersion strengthened nickel superalloys. In principal, in high-energy ball milling process, alloy is formed by the result of repeated welding, fracturing and rewelding of powder particles in a high energy ball mill. In this process a powder mixture in a ball mill is subjected to high-energy collisions among balls. MA has been shown to be capable of synthesizing a variety of materials. It is known to be capable to prepare equilibrium and non-equilibrium phases starting from blended elemental or prealloyed powders. The process ability to produce highly metastable materials such as amorphous alloys and nanostructured materials has made this process attractive and it has been considered as a promising material processing technique that could be used to produce many advanced materials at low cost. The present study explores the conditions under which aluminum alloys formation occurs by ball milling of blended aluminum and its alloying elements powders. In this work, attempt was made in producing aluminum 2024 alloys by milling of blended elemental aluminum powder of 2024 composition in a stainless steel container under argon atmosphere for up to 210 minutes. X-ray diffraction together with thermal analysis techniques has been used to monitor phase changes in the milled powder. Results indicate that, using our predetermined milling parameters, alloys were formed after 120 minutes milling. The thermal analysis data was also presented in this report. (Author)

  20. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levo, E. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Fridlund, C.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland)

    2017-07-15

    Single-phase multicomponent alloys of equal atomic concentrations (“equiatomic”) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  1. Microstructure of a commercial W–1% La{sub 2}O{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn; Xu, Zhiqiang; Cui, Kai; Yu, Jie

    2014-12-15

    W–1% La{sub 2}O{sub 3} alloy is considered as the most promising material for plasma-facing components of fusion reactors. The microstructure of a commercial W–1% La{sub 2}O{sub 3} alloy was investigated using optical and transmission electron microscopes. The microstructure of pure tungsten can be improved significantly by fabrication of W–1% La{sub 2}O{sub 3} alloys. W–1% La{sub 2}O{sub 3} alloys can be produced with no porosities and cracks, and with various oxide phases dispersed in alloy matrix. La{sub 2}O{sub 3} with different crystal structures, La{sub 6}W{sub 2}O{sub 15}, WO{sub 2}, WO{sub 3} and W{sub 3}O{sub 8} phases were identified in as-forged W–1% La{sub 2}O{sub 3} alloy. Long strip-like La{sub 2}O{sub 3} has a very large size, whereas spherical La{sub 6}W{sub 2}O{sub 15}, navicular WO{sub 3}, hexagonal W{sub 3}O{sub 8} and short rod-like La{sub 2}O{sub 3} are smaller particles. Most identified phases have a heterogeneous distribution. Forging leads to a more dispersive distribution of large-sized La{sub 2}O{sub 3} particles but not of fine WO{sub 3} particles compared with rolling. The mechanical properties of the alloys are also discussed.

  2. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    Science.gov (United States)

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  3. Spray cast Al-Si base alloys for stiffness and fatigue strength requirements

    International Nuclear Information System (INIS)

    Courbiere, M.; Mocellin, A.

    1993-01-01

    Hypereutectic AlSiFe spray-cast alloys exhibit properties similar to those of metal-matrix composite (MMC's) : high Young's modulus and a low coefficient of thermal expansion. These physical properties can be adjusted by changing the Si content of the alloy. The refinement of the microstructure is produced by formation of a large amount of nuclei in the spray. Consolidation done by extrusion (bars, tubes or profiles) and/or forging leads to high mechanical properties, especially very good dynamic properties. High fatigue properties coupled with high modulus, good high temperature behaviour and low thermal expansion, allow their use for applications in the automotive industry. In opposition to MMC's, these materials present the advantage of easy recycling and easy machinability as it is the case for the conventional AlSi alloys. The low oxygen content allows quality joining with conventional arc welding techniques. (orig.)

  4. Behavior of the Pb–Li alloy impurities by ICP-MS

    International Nuclear Information System (INIS)

    Conde, E.; Barrado, A.I.; Pascual, L.; Fernández, M.; Salazar, J.M. Gómez de; Barrena, M.I.; Quiñones, J.

    2014-01-01

    Highlights: • In the new test blanket modules (TBM), Pb–Li alloy plays a key role in the new commercial fusion reactors functionality. • It is important to have a complete characterization to define their physicochemical properties and their regenerative function inside the blanket. • Methodology developed is a key tool that allows performing quality control procedures. • It is essential to determine concentrations of major and trace elements presents in Pb–Li alloy. It allows performing quality control procedures. • The inductively coupled plasma mass spectrometry (ICP-MS) is a highly sensitive technique, so enables very low detection limits. - Abstract: The ITER and DEMO projects are developing new test blanket modules (TBM), such as HCLL where the Li–Pb alloy plays a key role in the new commercial fusion reactors functionality. Lithium–lead eutectic alloy has no known uses outside of fusion technology, so the available databases of this material are currently incomplete. It is very important, within the material specifications, to have a complete characterization in order to define their chemical and physical properties, because any variation in the alloy composition has significant consequences in their behavior, and therefore in their regenerative function inside the blanket. This report provides a procedure to perform a wide material characterization, assessing the concentrations of major elements, as well as a review of trace level impurities that can be found both in the eutectic alloy as in starting materials. In this determination inductively coupled plasma mass spectrometry (ICP-MS) technique plays an important role, because as a highly sensitive technique it allows very low detection limits

  5. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  6. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  7. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  8. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  9. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, F.H.; Al Kahtani, Saleh

    2013-01-01

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si) 3 (Zr, Ti), Al 3 CuNi and Al 9 NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  10. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  11. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  12. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  13. Compositional disorder, magnetism, and their interplay in metallic alloys

    International Nuclear Information System (INIS)

    Johnson, D.D.; Staunton, J.B.; Pinski, F.J.; Gyorffy, B.L.; Stocks, G.M.

    1992-01-01

    Chemical disorder leads to a variety of intriguing phenomena in alloys which have yet to be fully understood, particularly those phenomena occurring when chemical and magnetic effects interplay with one another. For example, magnetic order gives rise to chemical ordering in alloys, as in Ni-rich NiFe alloys. Two examples of the interplay of chemical disorder and magnetism will be discussed. Our recently developed ab-initio Landau (mean-field) theory for calculating the chemical-chemical, magneto-chemical, and magnetic-magnetic correlation functions in substitutional random alloys is used to describe electronic/magnetic mechanisms (e.g. in FeV) which give rise to the chemical short-range order as determined by neutron, X-ray, or electron diffuse scattering intensities. New developments within this approach that account for charge rearrangement effect will be mentioned. These calculations are performed within the multiple-scattering framework, developed by Korringa, Kohn, and Rostoker (KKR), combined with the coherent potential approximation (CPA) to describe the disorder. This approach allows a first-principles description of the electronic structure of the high-temperature, chemically disordered state and its instability to ordering a low temperatures. This paper reports that this method provides not only a direct comparison of diffuse scattering data with theory but a means to understand more fully the underlying mechanisms which drive chemical and/or magnetic ordering

  14. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  15. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  16. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2014-12-01

    Full Text Available Multi-pass equal-channel angular pressing (EACP was applied to produce ultrafine-grained (UFG Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD routes were investigated by microscopic observation, tensile and electric tests. The results show that the Cu-Mg alloy after multi-pass ECAP at 473 K obtains ultrafine grains, higher strength and desired conductivity. More passes of ECAP leads to finer grains and higher strength, but increasing ECAP temperature significantly lower the strength increment of the UFG alloy. Grain refinement via continuous SPD processing can endow the Cu-Mg alloy superior strength and good conductivity characteristics, which are advantageous to high-speed electrification railway systems.

  17. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  18. Atmospheric corrosion of metals in tropics and subtropic. 2. Corrosion resistance of different metals and alloys

    International Nuclear Information System (INIS)

    Strekalov, P.V.

    1993-01-01

    Data from 169 sources concerning corrosion of different metals, alloys and means of protection, obtained for a 30-year period (up to 1987) in different continent including Europe (Bulgaria, Spain, Italy, France, USSR); America (USA, Panama, Cuba, Venezuela, Brasil, Argentine); Africa (Nigeria, SAR); Australia, New Zeland, Papua-Newguinea, Philippines, are systemized. Actual results of full-scal atmospheric testings of iron, zinc, copper, cadmium, aluminium, tin, lead, carbon, low-alloys. Stainless steels, cast irons, halvanic coatings, copper, aluminium, nickel, titanium, magnesium alloys are presented. Data on the fracture rate can be used for creating the data base in banks on atmospheric resistance of metal materials

  19. Electronic structure of metallic alloys through Auger and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kleiman, G.G.; Rogers, J.D.; Sundaram, V.S.

    1981-01-01

    A review is presented of experimental results of electron spectroscopy studies for various series of transition metal alloys as well as a model for their interpretation which leads to the possibility for the first time to determine independently relative variations in the dipole barrier and Fermi energy contributions to the work function. (L.C.) [pt

  20. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  1. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  2. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    Science.gov (United States)

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  3. Compressive performance and crack propagation in Al alloy/Ti{sub 2}AlC composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, D.A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Hu, L. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Kan, W.H.; Proust, G. [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Foley, M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Karaman, I.; Radovic, M. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-08-30

    Composite materials comprising a porous Ti{sub 2}AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti{sub 2}AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti{sub 2}AlC phase interfaces are key considerations in the design of high performance metal/Ti{sub 2}AlC phase composites.

  4. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  5. Infrared photoconductivity and photovoltaic response from nanoscale domains of PbS alloyed with thorium and oxygen

    Science.gov (United States)

    Arad-Vosk, N.; Beach, R.; Ron, A.; Templeman, T.; Golan, Y.; Sarusi, G.; Sa'ar, A.

    2018-03-01

    Thin films of lead sulfide alloyed with thorium and oxygen were deposited on GaAs substrates and processed to produce a photo-diode structure. Structural, optical and electrical characterizations indicate the presence of small nanoscale domains (NDs) that are characterized by dense packaging, high quality interfaces and a blue-shift of the energy bandgap toward the short wavelength infrared range of the spectrum. Photocurrent spectroscopy revealed a considerable photoconductivity that is correlated with excitation of carriers in the NDs of lead sulfide alloyed with thorium and oxygen. Furthermore, the appearance of a photovoltaic effect under near infrared illumination indicates a quasi-type II band alignment at the interface of the GaAs and the film of NDs.

  6. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  7. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  8. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  9. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  10. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  11. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  12. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  13. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  14. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  15. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  16. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  17. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  18. Development of Combinatorial Methods for Alloy Design and Optimization

    International Nuclear Information System (INIS)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-01-01

    conducted by placing library specimens in highly corrosive aqueous environments, with the corrosion resistance assessed using surface profilometry to measure the local surface recession relative to inert markers. Collectively, the suite of newly developed tools and techniques paves the way for combinatorial design, discovery, and optimization of a wide variety of alloys, thus leading to improved materials in manner that crosscuts the needs of a large number of energy intensive industries. Among those that would be directly impacted are: aluminum, chemicals, forest products, glass, metal casting, petroleum, steel, forging, heat treating, and welding

  19. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available ),. 559-563. [2] T. Tomida, K. Nakata, S. Saji, T. Kubo, T, Formation of metal matrix composite layer on aluminium alloy with TiC-Cu powder by laser surface alloying process; Surface and Coatings Technology; vol. 142-144, 2001, 585-589. [3] L. A. B...

  20. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  1. Irradiation assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Mills, W.J.; Lebo, M.R.; Bajaj, R.; Kearns, J.J.; Hoffman, R.C.; Korinko, J.J.

    1994-01-01

    In-reactor testing of bolt-loaded precracked compact tension specimens was performed in 360 degree C water to determine effect of irradiation on the SCC behavior of HTH Alloy X-750 and direct aged Alloy 625. Out-of-flux and autoclave control specimens provided baseline data. Primary test variables were stress intensity factor, fluence, chemistry, processing history, prestrain. Results for the first series of experiments were presented at a previous conference. Data from two more recent experiments are compared with previous results; they confirm that high irradiation levels significantly reduce SCC resistance in HTH Alloy X-750. Heat-to-heat differences in IASCC were related to differences in boron content, with low boron heats showing improved SCC resistance. The in-reactor SCC performance of Alloy 625 was superior to that for Alloy X-750, as no cracking was observed in any Alloy 625 specimens even though they were tested at very high K 1 and fluence levels. A preliminary SCC usage model developed for Alloy X-750 indicates that in-reactor creep processes, which relax stresses but also increase crack tip strain rates, and radiolysis effects accelerate SCC. Hence, in-reactor SCC damage under high flux conditions may be more severe than that associated with postirradiation tests. In addition, preliminary mechanism studies were performed to determine the cause of IASCC In Alloy X-750

  2. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  3. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  4. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy

    International Nuclear Information System (INIS)

    Su Juanhua; Dong Qiming; Liu Ping; Li Hejun; Kang Buxi

    2005-01-01

    The effects of aging processes on the properties and microstructure of Cu-0.3Cr-0.15Zr-0.05Mg lead frame alloy were investigated. Aging precipitation phase was dealt with by transmission electronic microscope (TEM). After solid solution was treated at 920 deg. C and aged at 470 deg. C for 4 h, the fine precipitation of an ordered compound CrCu 2 (Zr, Mg) is found in copper matrix as well as fine Cr and Cu 4 Zr. Along the grain boundary, there are larger chromium. The hardness and electrical conductivity can reach 109 HV and 80% IACS, respectively. Sixty percent cold-rolled deformation prior to aging at 470 deg. C enhances the hardness of the alloy. The coherent precipitates Cr in copper matrix and the dislocations pinned by the fine precipitates are responsible for maximum strengthening of the alloy. So the hardness 165 HV and electrical conductivity 79.2% IACS are available

  5. Electrochemical hydrogen storage behaviour of as-cast and as-spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Hou, Zhonghui; Hu, Feng [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Qi, Yan; Zhao, Dongliang [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research

    2016-09-15

    La-Mg-Ni-Mn-based AB{sub 2}-type La{sub 1-x}Ce{sub x}MgNi{sub 3.5}Mn{sub 0.5} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning. X-ray diffraction and scanning electron microscopy revealed that the experimental alloys consisted of a major phase LaMgNi{sub 4} and a secondary phase LaNi{sub 5}. The Ce substitution for La and melt spinning refined the grains of the alloys clearly. Electrochemical tests showed that the as-cast and as-spun alloys exhibited excellent activation capability. With the increase in the spinning rate and Ce content, the discharge capacities of the alloys initially increased and then decreased, whereas their cycle stabilities always increased. Moreover, the electrochemical kinetics of the alloys initially increased and then decreased with the growth of Ce content and spinning rate. The major reason leading to the capacity degradation of the alloy electrodes was determined to be the pulverisation of the alloy particles and the corrosion and oxidation of the alloy surface.

  6. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  7. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys

    International Nuclear Information System (INIS)

    Fatih Kilicaslan, M.; Yilmaz, Fikret; Hong, Soon-Jik; Uzun, Orhan

    2012-01-01

    The effects of cobalt addition on microstructure and mechanical properties of Al–20Si–5Fe–XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al–Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  8. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  9. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  10. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  11. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinxin; Wang, Hongying; Li, Fangbing; Li, Muqin; Zhang, Erlin; Yang, Ke

    2014-01-01

    The antibacterial activity, the cytotoxicity and the cell function of a sintered Ti-10 wt% Cu alloy were investigated in order to assess the suitability of the alloy for biomedical application. The antibacterial activity of the alloy was investigated by a plate-count method and the cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell function was monitored by measuring the AKP activity. The Cu ion released from the Ti–Cu alloy was also measured by an inductively coupled plasma spectrometer at different immersion durations. The results show that the antibacterial rates of the alloy against Escherichia coli and Staphylococcus aureus increase with an increase in the incubation duration. After 7 h of incubation, the alloy showed an antibacterial rate of 91.66% against S. aureus and 99. 01% against E. coli. With a further extension of incubation time to 24 h, the antibacterial rate increased to 100% against S. aureus and 99.93% against E. coli. No cytotoxicity was observed on the alloy by a CKK8 test during three days of incubation in comparison with commercially available pure titanium (cp-Ti). AKP test results showed a significantly high AKP value (p = 0.001 < 0.01) on the Ti–Cu alloy on day 1. The Cu ion release was thought to contribute to the strong antibacterial property, but the Cu ion did not lead to cell cytotoxicity. Strong antibacterial activity and good cell biocompatibility suggest that the Ti–Cu alloy could reduce bacterial infection and have a potential application as an implant material. (paper)

  12. The effects of zirconium and beryllium on microstructure evolution, mechanical properties and corrosion behaviour of as-cast AZ63 alloy

    International Nuclear Information System (INIS)

    Jafari, Hassan; Amiryavari, Peyman

    2016-01-01

    Alloying elements are able to strongly modify the microstructure characteristics of Mg–Al–Zn alloys which dominate mechanical and corrosion properties of the alloys. In this research, the individual effects of Zr and Be additions on the microstructure, mechanical and corrosion properties of as-cast AZ63 alloy were explored. The results revealed that the addition of Zr leads to microstructure refinement in as-cast AZ63 alloy, resulting in improved tensile and hardness properties. 0.0001 and 0.001 wt% Be containing cast AZ63 alloy exhibited microstructure coarsening, while morphological alteration from sixford symmetrical to irregular shape grain was observed for the alloy containing 0.01 and 0.1 wt% Be. No specific Be compound was detected. In addition, mechanical properties of AZ63 alloy containing Zr was improved due to the microstructure modification, while Be containing alloy responded reverse behaviour. The corrosion resistance of AZ63 alloy was improved after the addition of Zr and Be due to the grain refinement and passivation effects, respectively. However, when the Zr content exceeds 0.5 wt%, the formation of Al 2 Zr affected the corrosion resistance. In other words, AZ63–0.5Zr alloy provided the lowest corrosion rate.

  13. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  14. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Grandjean, A.

    1996-01-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom 3 . Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  15. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  16. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  17. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Pinaev, S.S.; Muraviev, E.V.; Romanov, P.V.

    2005-01-01

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10 -5 Ohm·m 2 for steels and 5,0x10 -6 - 5,0x10 -5 Ohm·m 2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  18. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  19. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    International Nuclear Information System (INIS)

    Dasgupta, Rupa; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-01

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  20. Physical properties of lead free solders in liquid and solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mhiaoui, Souad

    2007-04-17

    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  1. Fracture of Shape Memory Alloys

    OpenAIRE

    Miyazaki, Shuichi; Otsuka, Kazuhiro

    1981-01-01

    The initiation and the propagation of cracks during both quenching and deformation in polycrystalline Cu-Al-Ni alloys have been investigated under various conditions. The fracture surfaces of Ti-Ni and Cu-Al-Ni alloys were also observed by a scanning electron microscope. From these results, it was concluded that the brittleness of Cu-Al-Ni alloy and other β phase alloys are due to large elastic anisotropy and large grain sizes, while that the large ductility in Ti-Ni alloy being due to the sm...

  2. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Liu Xiangfa; Ding Haimin

    2009-01-01

    Because flake-like TiAl 3 particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl 3 particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of α-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption

  3. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  4. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    Science.gov (United States)

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear tex