WorldWideScience

Sample records for le cycle thorium

  1. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  2. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  3. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  4. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive owing to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Rapidly increasing uranium prices, public reluctance for widespread Pu recycling and expected delays for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, problems associated with reprocessing and waste handling, particularly with re-fabrication by remote handling of 233 U, are certainly not appreciably more difficult than for Pu recycling. To divert from uranium as a nuclear energy source it seems worth while intensifying future efforts for closing the Th/ 233 U fuel cycle. HTGRs are particularly promising for economic application. However, further research and development activities should not concentrate on this reactor type alone. Light- and heavy-water-moderated reactors, and even future fast breeders, may just as well take advantage of a demonstrated thorium fuel cycle. (author)

  5. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    2005-05-01

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  6. Thoron and associated risks in the handling of thorium compounds; Le thoron et les risques associes dans la manipulation des composes du thorium

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J; Billard, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10{sup -7} {mu}c/cm{sup 3}. However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [French] 1. Le thoron et ses descendants se degagent constamment des composes du thorium et leur radioactivite peut presenter un danger pour les personnes qui sont amenees a les respirer. 2. Par analogie avec le radon, la teneur maximum admissible dans l'air de thoron et de ses descendants a ete fixee a 10{sup -7} {mu}c/cm{sup 3}. Mais, les differences de comportement du radon et de son depot actif d'une part, du thoron et de ses descendants d'autre part, ont paru suffisantes pour justifier une etude plus complete. Il semblait en effet probable, contrairement a ce qui se produit pour le radon, qu'en un meme point, la teneur en thoron + thorium A puisse differer notablement de la teneur en

  7. Thoron and associated risks in the handling of thorium compounds; Le thoron et les risques associes dans la manipulation des composes du thorium

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J.; Billard, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10{sup -7} {mu}c/cm{sup 3}. However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [French] 1. Le thoron et ses descendants se degagent constamment des composes du thorium et leur radioactivite peut presenter un danger pour les personnes qui sont amenees a les respirer. 2. Par analogie avec le radon, la teneur maximum admissible dans l'air de thoron et de ses descendants a ete fixee a 10{sup -7} {mu}c/cm{sup 3}. Mais, les differences de comportement du radon et de son depot actif d'une part, du thoron et de ses descendants d'autre part, ont paru suffisantes pour justifier une etude plus complete. Il semblait en effet probable, contrairement a ce qui se produit pour le radon, qu'en un meme point, la teneur en thoron + thorium A puisse

  8. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  9. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  10. Advanced thorium cycles in LWRs and HWRs

    International Nuclear Information System (INIS)

    Radkowsky, A.

    The main aspects of advanced thorium cycles in LWRs and HWRs are reviewed. New concepts include the seed blanket close packed heavy water breeder, the light water seed blanket thorium burner and self-induced thorium cycle in CANDU type reactors. (author)

  11. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  12. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233 U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  13. Thorium cycles and proliferation

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1979-01-01

    This paper analyzes several prevalent misconceptions about nuclear fuel cycles that breed fissile uranium-233 from thorium. Its main conclusions are: U-233, despite the gamma radioactivity of associated isotopes, is a rather attractive material for making fission bombs, and is a credible material for subnational as well as national groups to use for this purpose; (2) pure thorium cycles, which in effect merely substitute U-233 for Pu, would take many decades and much U to establish, and offer no significant safeguards advantage over Pu, cycles; (3) denatured Th-U cycles, which dilute the U-233 with inert U-238 to a level not directly usable in bombs, are not an effective safeguard even against subnational bomb-making; (4) several other features of mixed Th-U cycles are rather unattractive from a safeguards point of view; (5) thus, Th cycles of any kind are not a technical fix for proliferation (national or subnational) and, though probably more safeguardable than Pu cycles, are less so than once-through U cycles that entail no reprocessing; (6) while thorium cycles have some potential technical advantages, including flexibility, they cannot provide major savings in nuclear fuel resources compared to simpler ways of saving neutrons and U; and (7) while advocates of nuclear power may find Th cycles worth exploring, such cycles do not differ fundamentally from U cycles in any of the respects--including safeguards and fuel resources--that are relevant to the broader nuclear debate, and should not be euphorically embraced as if they did

  14. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  15. Heavy water reactors on the denatured thorium cycles

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the denatured U-233/Thorium fuel cycle for use in early comparisons of alternate nuclear systems. The once-through uranium fuel cycle is discussed in a companion paper. In presenting this preliminary information at this time, it is recognized that there are several other denatured thorium fuel cycles of potential interest, such as the U-235/thorium cycle which could be implemented at an earlier date. Information on these alternate cycles is currently being developed, and will be provided to INFCE when available

  16. Thorium nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  17. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de

    1981-01-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discussed. (Author) [pt

  18. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de.

    1981-02-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve reactor doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discused. (Author) [pt

  19. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  20. Present state and perspective of research on thorium cycle

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1994-01-01

    For the prosperity of Japan and the welfare of mankind in the world, enormous quantity of energy is required in 21st century, and the general circumstances of energy and nuclear power are described. In addition to the present nuclear power using mostly 235 U and the plutonium produced from 238 U, it is the thorium cycle that 233 U produced from the third nuclear fuel, thorium, is used for electric power generation as an energy source. In this report, the 'General research on thorium cycle as a promising energy source in and after 21st century' is outlined, which has been advanced by accepting the subsidy of scientific research expense of the Ministry of Education. The features of the thorium cycle and the nuclear data and the nuclear characteristics in comparison with uranium-plutonium reactors are described. The trend of the research and development in the world and in Japan is reported. Two general researches were carried out for five years from fiscal year 1988 to 1992 on the thorium cycle. The results of the research on the nuclear data, the design of thorium reactors, the criticality experiment and analysis, thorium hybrid, thorium fuel, molten salt, fuel reprocessing and radiation safety are reported. (K.I.)

  1. Growth scenarios with thorium fuel cycles in pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    Since India has generous deposits of thorium, the availability of thorium will not be a limiting factor in any growth scenario. It is fairly well accepted that the best system for utilisation of thorium is the heavy water reactor. The growth scenarios possible using thorium in HWRs are considered. The base has been taken as 50,000 tons of natural uranium and practically unlimited thorium. The reference reactor has been assumed to be the PHWR, and all other growth scenarios are compared with the growth scenario provided by the once-through natural cycle in the PHWR. Two reactor types have been considered: the heavy water moderated, heavy water cooled, pressure tube reactor, known as the PHWR; and the heavy water moderated and cooled pressure vessel kind, similar to the ATUCHA reactor in Argentina. For each reactor, a number of different fuel cycles have been studied. All these cycles have been based on thorium. These are: the self-sustaining equilibrium thorium cycle (SSET); the high conversion ratio high burnup cycle; and the once through thorium cycle (OTT). The cycle have been initiated in two ways: one is by starting the cycle with natural uranium, reprocessing the spent fuel to obtain plutonium, and use that plutonium to initiate the thorium cycle; the other is to enrich the uranium to about 2-3% U-235 (the so-called Low Enriched Uranium or LEU), and use the LEU to initiate the thorium cycle. Both cases have been studied, and growth scenarios have been projected for every one of the possible combinations. (author). 1 tab

  2. Light water reactors with a denatured thorium fuel cycle

    International Nuclear Information System (INIS)

    1978-05-01

    Discussed in this paper is the performance of denatured thorium fuel cycles in PWR plants of conventional design, such as those currently in operation or under construction. Although some improvement in U 3 O 8 utilization is anticipated in PWRs optimized explicitly for the denatured thorium fuel cycle, this paper is limited to a discussion of the performance of denatured thorium fuels in conventional PWRs and consequently the data presented is representative of the use of thorium fuel in existing PWRs or those presently under construction. In subsequent sections of this paper, the design of the PWR, its performance on the denatured thorium fuel cycle, safety, accident and environmental considerations, and technological status and R and D requirements are discussed

  3. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  4. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    Hyland, B.; Hamilton, H.

    2011-01-01

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO 2 ) based fuel offers both fuel performance and safety advantages over urania (UO 2 ) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO 2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  5. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  6. U.S. leans toward denatured thorium cycle

    International Nuclear Information System (INIS)

    Smock, R.

    1977-01-01

    Denatured thorium appears to be the most promising among the nonproliferating alternatives to the plutonium cycle, which the Carter Administration is trying to cancel. Criteria for a better system include uranium utilization comparable to current light water reactors and minimal separation of fissile material into the waste stream. Comparisons with other systems conclude that thorium is preferable because it can lead to an acceptable fast breeder. The thorium cycle can be placed in energy centers for sensitive facilities and can also be introduced into ongoing light water systems. Reprocessing can be handled in the centers, where thorium can be mixed with plutonium for use in reactors within the center, while light water reactors operate on the outside. Any fuel leaving the center would be unsuitable for weapons. Later adaptation to in-center fast breeders will extend energy supplies, although a thorium breeder will be less efficient than a plutonium fast breeder. Denatured thorium is a technical answer to a complex political problem, but those in the nuclear industry see the U.S. goal of a nonproliferating fuel as futile in the light of world politics and breeder efforts in other countries

  7. Spectral shift controlled reactors, denatured U-233/thorium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents technical and economic data on the SSCR which may be of use in the International Fuel Cycle Evaluation Program to intercompare alternative nuclear systems. Included in this paper are data on the denatured U-233/thorium cycle. This cycle shows a proliferation advantage over more classical thorium fuel cycle (e.g., highly-enriched U-235/thorium or plutonium/thorium) due to the elimination of chemically-separable, concentrated fissile material from unirradiated nuclear fuel. The U-233 is denatured by mixing with depleted uranium to a concentration no greater than 12 w/o. An exogenous source of U-233 is assumed in this paper, since U-233 does not occur in nature and only a limited supply has been produced to date for research and development work

  8. Once-through thorium cycles in Candu reactors

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1982-01-01

    In once-through thorium cycles pure thorium fuel bundles can be irradiated conjointly with uranium fuel bundles in a CANDU reactor with parameters judiciously chosen such that the overall fuel cycle cost is competitive with other possibilities - notably low-enriched uranium. Uranium 233 can be created and stockpiled for possible future use with no imperative that it be used unless future conditions warrant, and a stockpile can be begun independently of the state of reprocessing technology. The existence and general properties of these cycles are discussed

  9. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  10. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  11. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  12. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  13. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  14. Determination of natural thorium in urines; Dosage du thorium dans les urines

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, L; Jammet, H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A procedure for the quantitative analysis of thorium in urine is described. After precipitation with ammonium hydroxide, dissolution of the precipitate, extraction at pH 4-4.2 with cupferron in chloroformic solution and mineralization, a colorimetric determination of thorium with thorin is performed. It is thus possible to detect about 2 {gamma} of thorium in the sample. (author) [French] Cet article decrit une technique de dosage du thorium dans l'urine. Apres precipitation par l'ammoniaque, remise en solution, extraction a pH 4-4,2 par le cupferron en solution chloroformique et mineralisation, le thorium est dose par colorimetrie avec le thorin. Cette methode permet de deceler environ 2 {gamma} de thorium dans l'echantillon. (auteur)

  15. Feasibility and desirability of employing the thorium fuel cycle for power generation - 254

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2010-01-01

    Thorium fuel cycle for nuclear power generation has been considered since the very start of the nuclear power era. In spite of a very large amount of research, experimentation, pilot scale and prototypic scale installations, the thorium fuel was not adopted for large scale power generation [1,2]. This paper reviews the developments over the years on the front and the back-end of the thorium fuel cycle and describes the pros and cons of employing the thorium fuel cycle for large generation of nuclear power. It examines the feasibility and desirability of employing the thorium fuel cycle in concert with the uranium fuel cycle for power generation. (authors)

  16. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  17. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  18. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  19. Evaluation of plutonium, uranium, and thorium use in power reactor fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.

    1977-01-01

    The increased cost of uranium and separative work has increased the attractiveness of plutonium use in both uranium and thorium fuel cycles in thermal reactors. A technology, fuel utilization, and economic evaluation is given for uranium and thorium fuel cycles in various reactor types, along with the use of plutonium and 238 U. Reactors considered are LWRs, HWRs, LWBRs, HTGRs, and FBRs. Key technology factors are fuel irradiation performance and associated physical property values. Key economic factors are unit costs for fuel fabrication and reprocessing, and for refabrication of recycle fuels; consistent cost estimates are utilized. In thermal reactors, the irradiation performance of ceramic fuels appears to be satisfactory. At present costs for uranium ore and separative work, recycle of plutonium with thorium rather than uranium is preferable from fuel utilization and economic viewpoints. Further, the unit recovery cost of plutonium is lower from LWR fuels than from natural-uranium HWR fuels; use of LWR product permits plutonium/thorium fueling to compete with uranium cycles. Converting uranium cycles to thorium cycles increases the energy which can be extracted from a given uranium resource. Thus, additional fuel utilization improvement can be obtained by fueling all thermal reactors with thorium, but this requires use of highly enriched uranium; use of 235 U with thorium is most economic in HTGRs followed by HWRs and then LWRs. Marked improvement in long-term fuel utilization can be obtained through high thorium loadings and short fuel cycle irradiations as in the LWBR, but this imposes significant economic penalties. Similar operating modes are possible in HWRs and HTGRs. In fast reactors, use of the plutonium-uranium cycle gives advantageous fuel resource utilization in both LMFBRs and GCFRs; use of the thorium cycle provides more negative core reactivity coefficients and more flexibility relative to use of recycle fuels containing uranium of less than 20

  20. The Thorium-Cycle: safe, abundant power for the new millennium

    Science.gov (United States)

    Don, May; George, Kim; Peter, Mcintyre; Charles, Meitzler; Robert, Rogers; Akhdior, Sattarov; Mustafa, Yavuz

    2001-10-01

    A design has been developed for using accelerator-driven thorium fission to produce electric power. A thorium-cycle reactor works by electro-breeding. A pattern of thorium fuel rods is supported in a vessel containing molten lead. A beam of high-energy (1 GeV) protons is targeted in the center of the vessel, and produces a copious flux of energetic neutrons by spallation. The neutrons transmute the thorium nuclei two steps up the periodic table to U233, which fissions rapidly to produce thermal energy. The lead serves as the spallation target, the moderator, and the heat exchange medium to transfer heat from the core to steam exchangers above the core. The thorium cycle has several important advantages over current uranium-cycle fission technology: it is intrinsically stable it cannot melt down; it eats its own waste; it cannot produce bomb-grade isotopes; and there are sufficient thorium reserves to supply the entire Earth’s energy economy for the next millennium. The concept of a thorium-cycle power reactor was first proposed by Rubbia in 1995. Key problems in the original concept were the proton injector (15 MW beam power), reliability of accelerator systems, and parasitic absorption of neutrons by fission products during the life of the core. We have addressed all three problems in a design for a flux-coupled stack of isochronous cyclotrons, delivering a pattern of 7 independent beams to the core. An interdisciplinary collaboration is being formed to develop the concept to a serious design.

  1. Introduction of Thorium in the Nuclear Fuel Cycle. Short- to long-term considerations

    International Nuclear Information System (INIS)

    Allibert, M.; Merle-Lucotte, E.; Ghetta, V.; Ault, T.; Krahn, S.; Wymer, R.; Croff, A.; Baron, P.; Chauvin, N.; Eschbach, R.; Rimpault, G.; Serp, J.; Bergeron, A.; Bromley, B.; Floyd, M.; Hamilton, H.; Hyland, B.; Wojtaszek, D.; McDonald, M.; Collins, E.; Cornet, S.; Michel-Sendis, F.; ); Feinberg, O.; Ignatiev, V.; Hesketh, K.; Kelly, J.F.; Porsch, D.; Vidal, J.; Taiwo, T.; Uhlir, J.; Van Den Durpel, L.; Van Den Eynde, G.; Vitanza, C.; Butler, Gregg; Cornet, Stephanie; Dujardin, Thierry; Greneche, Dominique; Nordborg, Claes; Rimpault, Gerald; Van Den Durpel, Luc; Michel-Sendis, Franco

    2015-01-01

    Since the beginning of the nuclear era, significant scientific attention has been given to thorium's potential as a nuclear fuel. Although the thorium fuel cycle has never been fully developed, the opportunities and challenges that might arise from the use of thorium in the nuclear fuel cycle are still being studied in many countries and in the context of diverse international programmes around the world. This report provides a scientific assessment of thorium's potential role in nuclear energy both in the short to longer term, addressing diverse options, potential drivers and current impediments to be considered if thorium fuel cycles are to be pursued. (authors)

  2. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  3. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  4. Some thorium fuel cycle strategies

    International Nuclear Information System (INIS)

    Duret, M.F.; Hatton, H.

    1979-02-01

    The report deals with the problem of introducing an advanced nuclear fuel cycle based on thorium in Canada. It is pointed out that timing and introduction rate are important considerations, certain choices of these variables leading to undesirable business fluctuations in some of the industries involved in the production of nuclear energy. (author)

  5. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In all these cycles thorium is the main fertile component of the fuel and all assume recycling of the uranium component. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30,000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93% U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is ''denatured''. The effects of varying the fuel burnup and the recycle delay time are discussed for the reference cases. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally supplied fissile material. The special case of ''self sufficient equilibrium thorium cycles'', which require no external source of fissile material for equilibrium operation, is also treated

  6. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  7. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, Steven [Vanderbilt Univ., Nashville, TN (United States); Ault, Timothy [Vanderbilt Univ., Nashville, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-30

    The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.

  8. Activities of the research committee on thorium cycle in atomic energy society of Japan

    International Nuclear Information System (INIS)

    Hohki, Shiro

    1985-01-01

    In 1978 the Research Committee on Thorium Cycle was established as one of committees of the Atomic Energy Society of Japan, and the Committee published a report titled 'The Thorium Cycle - Present Status and Future Prospect' in October 1980 as a result of investigations on the status of the thoirum cycle in Japan as well as that in overseas. Based on this investigation, the Committee is intending to evaluate synthetically the thorium utilization in Japan under the prospect for the middle and long term by intensifying the activities of the Committee. Furthermore, from this viewpoint, the author supplements comments on following three points: (1) Reasons why the thorium utilization has not received positive evaluation in Japan; (2) Reasons why Japan has to pay attention to thorium; (3) How the technology on thorium should be developed in Japan. (author)

  9. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  10. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30 000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93 percent U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is 'denatured'. The effects of varying the fuel burnup and the recycle delay time are discussed. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally-supplied fissile material. The special case of 'self-sufficient equilibrium thorium cycles', which require no external source of fissile material for equilibrium operation, is also treated. (author)

  11. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  12. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  13. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  14. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  15. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  16. Review of Brazilian activities related to the thorium fuel cycle and production of thorium compounds at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Freitas, Antonio A.; Mindrisz, Ana C.

    2013-01-01

    The Brazilian's interest in the nuclear utilization of thorium has started in the 50's as a consequence of the abundant occurrence of monazite sands. Since the sixties, IPEN-CNEN/SP has performed some developments related to the thorium fuel cycle. The production and purification of thorium compounds was carried out at IPEN for about 18 years and the main product was the thorium nitrate with high purity, having been produced over 170 metric tons of this material in the period, obtained through solvent extraction. The thorium nitrate was supplied to the domestic industry and used for gas portable lamps (Welsbach mantle). Although the thorium compounds produced have not been employed in the nuclear area, several studies were conducted. Therefore, those activities and the accumulated experience are of strategic importance, on one hand due to huge Brazilian thorium reserves, on the other hand by the resurgence of the interest of thorium for the Generation IV Advanced Reactors. This paper presents a review of the Brazilian research and development activities related to thorium technology. (author)

  17. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  18. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  19. Performance of Energy Multiplier Module (EM2) with long-burn thorium fuel cycle

    International Nuclear Information System (INIS)

    Choi, Hangbok; Schleicher, Robert; Gupta, Puja

    2015-01-01

    Energy Multiplier Module (EM 2 ) is a helium-cooled fast reactor being developed by General Atomics for the 21 st century grid. It is designed as a modular plant with a net electric output of 265 MWe with an evaporative heat sink and 240 MWe with an air-cooled heat sink. EM 2 core performance is examined for the baseline loading of low-enriched uranium (LEU) as fissile material with depleted uranium (DU) as fertile material and compared to the alternate LEU with thorium loading. The latter has two options: a heterogeneous loading of thorium fuel in the place of DU that produces a longer fuel cycle, and homogeneously mixed thorium-uranium fuel loading. Compared to the baseline LEU/DU core, the cycle length of both thorium options is reduced due to higher neutron absorptions by thorium. However, for both, heterogeneous and homogenous thorium loading options, the fuel cycle length is over 24 years without refueling or reshuffling of fuel assemblies. The physics properties of the EM 2 thorium core are close to those of the baseline core which constitute low excess reactivity, negative fuel temperature coefficient, and very small void reactivity. However, unlike the case of baseline EM 2 , the homogeneous thorium fuel loading provides additional advantage in reducing the power peaking of the core, which in turn reduces the cladding material neutron damage rate by 23%. It is interpreted that the relatively slow 233 U buildup as compared to 239 Pu for baseline core retards reactivity increase without the need for a complicated fuel loading pattern of the heterogeneous fuel loading, while maintaining the peak power density low. Therefore both the heterogeneous and homogeneous thorium loading options will be feasible in the EM 2

  20. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    International Nuclear Information System (INIS)

    Gangotra, Suresh; Grover, R.B.; Ramakumar, K.L.

    2013-01-01

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U 232 associated with U 233 . This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U 233 fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site

  1. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, Suresh, E-mail: sgangotra@yahoo.co.in; Grover, R.B.; Ramakumar, K.L.

    2013-09-15

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U{sup 232} associated with U{sup 233}. This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U{sup 233} fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site.

  2. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  3. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  4. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  5. Once-through thorium fuel cycle evaluation for TVA's Browns Ferry-3 Boiling Water Reactor

    International Nuclear Information System (INIS)

    Hopkins, G.C.

    1982-05-01

    This report documents benchmark evaluations to test thorium lattice predictive methods and neutron cross sections against available data and summarizes specific evaluations of the once-through thorium cycle when applied to the Browns Ferry-3 BWR. It was concluded that appreciable uncertainties in thorium cycle nuclear data cloud the ability to reliably predict the fuel cycle performance and that power reactor irradiations of ThO 2 rods in BWRs are desirable to resolve uncertainties. Benchmark evaluations indicated that the ENDF/B-IV data used in the evaluations should cause an underprediction of U-233/ThO 2 fuel reactivity, and, therefore, the results of the preliminary evaluations completed under the program should be conservative

  6. Cycle thorium et réacteurs à sel fondu. Exploration du champ des paramètres et des contraintes définissant le "Thorium Molten Salt Reactor"

    OpenAIRE

    Mathieu , Ludovic

    2005-01-01

    Producing nuclear energy in order to reduce the anthropic CO2 emission requires major technological advances. Nuclear plants of IVth generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this...

  7. A study of uranium-thorium mixed lattices; Etude de reseaux mixtes uranium - thorium

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Eckert, R; Mazancourt, R de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Some subcritical experiments have been carried out during the charging of the pile G1 by introducing thorium bars in a regular lattice into the pile. The spreading out of these experiments over a period of three months has permitted: a) work on a pile gradually increasing in size and b) measurements on comparable charges in so far that they have either the same number of bars of thorium, or the same concentration of thorium. From the measurements at constant charge and at constant concentration, it is possible by extrapolation to determine the critical charges and concentrations. The values obtained have showed that the material Laplacian of the lattice depends linearly on the thorium concentration and must cancel out for a concentration T = 8.8 {+-} 0.3 per cent by volume. These results have been found, to a very good approximation, by a simple calculation. (author) [French] Des experiences sous-critiques ont ete effectuees au cours du chargement de la pile G1 en introduisant des barres de thorium reparties suivant un reseau regulier dans la pile. L'etalement de ces experiences sur trois mois a permis d'operer sur une pile de plus en plus grosse et de faire un grand nombre de mesures sur des chargements comparables par le fait qu'ils avaient soit le meme nombre de barres de thorium, soit la meme concentration en thorium. A partir des mesures a chargement constant et a concentration constante, il a ete possible de determiner par extrapolation les chargements et concentrations critiques. Les valeurs obtenues ont montre que le laplacien matiere moyen du reseau dependait lineairement de la concentration en thorium, et devrait s'annuler pour une concentration T = 8,8 {+-} 0,3% en volume. Ces resultats ont ete retrouves avec une tres bonne approximation par un calcul elementaire. (auteur)

  8. Different periods of uranium and thorium occurrence in Madagascar (1960); Cycles uraniferes et thoriferes a Madagascar (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In Madagascar, the first typical occurrences of thorium and uranium are about 500 million years old. Previously thorium and uranium were rather concentrated in the granitic and charnockitic zones, chiefly in minerals such as monazite, apatite and zircon. At the end of the Precambrian period, metasomatic granites occur especially in the anticlinal series (Andriba orthite granite). The granitization is followed by the formation of the main pegmatitic areas in the Island with Th-U niobotantalates, uraninite and beryl. The pegmatites are well developed in the synclinal series with a poor migmatization or no migmatization at all. In the same time a large uranium and thorium province with uranothorianite deposits appears within the calcomagnesian series of the Southern part of Madagascar. Later, large amounts of monazite were carried down to the detritic Karroo sediments during tile erosion of the metamorphic precambrian rocks. Monazite has been concentrated again by frequent marine incursions, till the present time. In the medium Karroo, near Folakara, uranium minerals occur in direct relation with carbonaceous material. Finally we must note the uranium occurrence in the pleistocene carbonaceous shales of Antsirabe basin, in contact with crystalline rocks. (author) [French] A Madagascar, le premier cycle uranifere et thorifere bien caracterise se situe aux alentours de 500 millions d'annees. Auparavant, le thorium et l'uranium sont concentres de preference dans les zones granitiques et charnockites sous forme de monazite, apatite ou zircon. Vers la fin du Precambrien, se produisent des granitisations metasomatiques, surtout dans les zones anticlinales (type Andriba a orthite). La fin de cette granitisation s'accompagne de la formation des principaux champs pegmatitiques de l'Ile a niobotantalates uraniferes, uraninite et beryl, qui se developpent de preference dans les series synclinales peu ou pas migmatisees. A cette meme epoque s'individualise au sein des series

  9. Remarks on the thorium cycle

    International Nuclear Information System (INIS)

    Teller, E.

    1978-01-01

    The use of thorium and neutrons to make 233 U would provide energy for many thousands of years. Thorium is more abundant than uranium and 233 U is the best fissile material for thermal neutron reactors. Four approaches to the use of thorium are worth developing: heavy water moderated reactors with conversion ratios greater than 0.9, such as modified CANDU with lower cost of separating D 2 O and 235 U; molten salt breeder reactors, from which fission products and excess fuel may be continuously removed; fusion-fission hybrids that produce adequate tritium and excess neutrons for sustenance and 233 U production in a subcritical thorium 233 U blanket; and by fission-initiated thermo-nuclear explosions in cavities in salt beds one mile below the earth's surface, yielding 233 U from the excess neutrons and thorium and decontaminated steam for power production. (author)

  10. The low enriched fuel cycle in the GA 1160 MW design and the switch-over to thorium

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.

    1974-03-15

    Calculations for the GA 1160 MW HTR are presented. The aim of these investigations was to compare the Low Enriched Uranium (LEU) cycle and the Thorium cycle for the GA 1160 MW HTR both using the same GA designed integral block fuel element. The total fuel cycle cost for the equilibrium cycle comes out to be about 16% cheaper for the Thorium cycle than for the Low-Enriched cycle. However, these favorable results for the thorium cycle are completely dependent on the availability of reprocessing and refabrication facilities, for costs comparable with the costs used for these investigations. The possibility of starting the reactor on a LEU 3 year cycle and later switching over to a thorium 4 year cycle was investigated. No cost penalties were found to be paid during the switch-over. The problems of local power peaks and age factors were not investigated in greater detail as only integral physical quantities were obtained from the neutron physics calculations. However, no indications of any problem in the switch-over phase were given. Elaborate 3-dimensional methods are necessary for further investigation of these types of problems.

  11. Elements for evaluation of the potential of the thorium cycle in Argentina

    International Nuclear Information System (INIS)

    Corcuera, R.M.

    1987-01-01

    A comprehensive review of the most important elements to be taken into account for the evaluation and, eventually, the implementation of the introduction of thorium cycle strategies in argentinian heavy-water type power plants, and also of the associated development of the external fuel cycle, is presented. Particularly, the up-dated situations summarized here cover resources and prices of natural uranium and thorium, development of the various stages of the external fuel cycle, description of the most important strategies and their capabilities for the best use of mineral resources and, finally, the economic implications and the global comparison of those strategies. Various data and parameter values are added to those given in AECL's external reports. Some appendices are devoted to the definitions of a 'global fuel-cycle conversion factor' and to the analysis of the effective use of mineral resources, taking into account fissile and fertile material losses in the external fuel cycle., for the different cases of fuel conversion and breeding. (Author) [es

  12. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  13. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  14. A competitive thorium fuel cycle for pressurized water reactors of current technology

    International Nuclear Information System (INIS)

    Galperin, A.; Radkowsky, A.; Todosow, M.

    2002-01-01

    Two important issues may influence the development and public acceptance of the nuclear power worldwide: a reduction of proliferation potential and spent fuel disposal requirements of the nuclear fuel cycle. Both problems may be addressed effectively by replacement of uranium by thorium fertile part of the fuel. A practical and competitive fuel design to satisfy the described design objectives and constraints may be achieved by seed-blanket core, proposed by A. Radkowsky and implemented in Shippingport reactors. The main idea is to separate spatially the uranium part of the core (seed) from the thorium part of the core (blanket), and thus allow two separate fuel management routes for uranium and thorium parts of the fuel. The uranium part (seed) is optimized to supply neutrons to the subcritical thorium blanket. The blanket is designed to generate and bum insitu 233 U. (author)

  15. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  16. A method for the quantitative determination of uranium-233 in an irradiated thorium rod; Une methode de dosage de l'uranium 233 contenu dans un barreau de thorium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bathellier, A; Sontag, R; Chesne, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A rapid method for the quantitative determination of uranium-233 in irradiated thorium is described. A 30 per cent solution of trilaurylamine in xylene is used to extract the uranium from an aqueous hydrochloric acid solution and separate it from the thorium. This may be followed by {alpha} counting or fluorimetry. The practical operating conditions of the separation are discussed in detail. (author) [French] Une methode rapide de dosage de l'uranium-233 contenu dans le thorium irradie est decrite. Elle utilise la trilauryfamine a 30 pour cent dans le xylene pour extraire l'uranium d'une dissolution aqueuse chlorhydrique et le separer du thorium. Le comptage {alpha} ou la fluorimetrie sont alors possibles. Les conditions operatoires de la separation sont discutees et precisees. (auteur)

  17. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  18. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  19. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  20. A review of the potential for actinide redistribution in CANDU thorium cycle fuels

    International Nuclear Information System (INIS)

    Cameron, D.J.

    1978-02-01

    Actinide redistribution resulting from large radial temperature gradients is an accepted feature of the technology of fast reactor (U,Pu)O 2 fuels. A thorium cycle in CANDU reactors would require the use of oxide fuels with two or more components, raising the question of actinide redistribution in these fuels. The mechanisms proposed to explain redistribution in (U,Pu)O 2 fuels are reviewed, and their relevance to fuels based on ThO 2 is discussed. The fuel primarily considered is (Th,U)O 2 but some reference is made to (Th,Pu)O 2 . At this early stage of thorium fuel cycle technology, it is not possible to consider quantitatively the question of redistribution in specific fuels. However, some guidelines can be presented to indicate to fuel engineers conditions which might result in significant redistribution. It is concluded that redistribution is probably of little concern in high density, CANDU, thorium cycle fuel whose centre temperature is limited to 2350 K. If this centre temperature is exceeded, or if the fuel contains substantial inter-connected porosity, the potential for redistribution is significant and warrants more serious study. (author)

  1. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    These disadvantages of thorium fuel cycle were seemingly the reasons why that ... According to the data of figure 2, maximum (equilibrium) content of 233U in ..... Self-sufficient mode is related with rather big effort in the extraction of isotopes of.

  2. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Todosow, M.; Raitses, G.; Galperin, A.

    2009-01-01

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  3. Method to evaluate covariance data for the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Kawano, T.; Chadwick, M.B.

    2003-01-01

    This power point presentation gives an overview about the evaluation strategy for the experimental data for the thorium-uranium fuel cycle. Uncertainties, error propagation and calculation methods are outlined. Covariance evaluation tools and computer codes have been developed and results are presented

  4. Estimates of particle- and thorium-cycling rates in the northwest Atlantic Ocean

    International Nuclear Information System (INIS)

    Murnane, R.J.; Sarmiento, J.L.; Cochran, J.K.

    1994-01-01

    The authors provide least squares estimates of particle-cycling rate constants and their errors at 13 depths in the Northwest Atlantic Ocean using a compilation of published results and conservation equations for thorium and particle cycling. The predicted rates of particle aggregation and disaggregation vary through the water column. The means and standard deviations, based on lognormal probability distributions, for the lowest and highest rates of aggregation (β 2 ) and disaggregation (β -2 ) in the water column are 8±27 y -1 2 -1 , and 580±2000 y -1 -2 3 ±10 4 y -1 . Median values for these rates are 2.1 y -1 2 -1 , and 149 y -1 -2 -1 . Predicted rate constants for thorium adsorption (k 1 = 5.0±1.0x10 4 m 3 kg -1 y -1 ) and desorption (k -1 = 3.1±1.5 y -1 ) are consistent with previous estimates. Least squares estimates of the sum of the time dependence and transport terms from the particle and thorium conservation equations are on the same order as other terms in the conservation equations. Forcing this sum to equal zero would change the predicted rates. Better estimates of the time dependence of thorium activities and particle concentrations and of the concentration and flux of particulate organic matter would help to constrain estimates of β 2 and β -2 . 46 refs., 8 figs., 5 tabs

  5. Determination of dose equivalent and risk in thorium cycle

    International Nuclear Information System (INIS)

    Ney, C.L.V.N.

    1988-01-01

    In these report are presented the calculations of dose equivalent and risk, utilizing the dosimetric model described in publication 30 of the International Comission on Radiological Protection. This information was obtained by the workers of the thorium cycle, employed at the Praia and Santo Amaro Facilities, by assessing the quantity and concentration of thorium in the air. The samples and the number of measurements were established through design of experiments techniques, and the results were evaluated with the aid of variance analysis. The estimater of dose equivalent for internal and external radiation exposure and risk associated were compared with the maximum recommended limits. The results indicate the existence of operation areas whose values were above those limits, requiring so an improvement in the procedures and services in order to meet the requirements of the radiological protetion. (author) [pt

  6. Design study of a PWR of 1300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, J.G.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and of the thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. Reactor core design calculations were performed for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM-2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. No technical problem that precluded the utilization of any of the options analyzed was found. The savings in uranium ore introduced by the thorium cycle with fuel recycling ranges from 13% to 52% as compared with the usual uranium once-through cycle; the SWU savings goes from 13% to 22%. (Author) [pt

  7. Analysis of thorium and uranium fuel cycles in an iso-breeder lead fast reactor using extended-EQL3D procedure

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Krepel, Jiri; Cammi, Antonio; Franceschini, Fausto; Mikityuk, Konstantin; Ricotti, Marco Enrico

    2013-01-01

    Highlights: ► Extension of EQL3D procedure to calculate radio-toxicity and decay heat. ► Characterization of uranium- and thorium-fueled LFR from BOL to equilibrium. ► Safety improvements for a LFR in a closed thorium cycle. ► Advantages of thorium-fueled LFR in terms of decay heat and radio-toxicity generation. ► Safety, decay heat and radio-toxicity concerns for a Th–Pu beginning-of-life core. - Abstract: Use of thorium in fast reactors has typically been considered as a secondary option, mainly thanks to a possible self-sustaining thorium cycle already in thermal reactors and due to the limited breeding capabilities compared to U–Pu in the fast neutron energy range. In recent years nuclear waste management has become more important, and the thorium option has been reconsidered for the claimed potential to burn transuranic waste and the lower build-up of hazardous isotopes in a closed cycle. To ascertain these claims and their limitations, the fuel cycle isotopic inventory, and associated waste radio-toxicity and decay heat, should be quantified and compared to the case of the uranium cycle using realistic core configurations, with complete recycle of all the actinides. Since the transition from uranium to thorium fuel cycles will likely involve a transuranic burning phase, this transition and the challenges that the evolving fuel actinide composition presents, for instance on reactor feedback parameters, should also be analyzed. In the present paper, these issues are investigated based on core physics analysis of the Lead-cooled Fast Reactor ELSY, performed with the fast reactor ERANOS code and the EQL3D procedure allowing full-core characterization of the equilibrium cycle and the transition cycles. In order to compute radio-toxicity and decay heat, EQL3D has been extended by developing a new module, which has been assessed against ORIGEN-S and is presented here. The capability of the EQL3D procedure to treat full-core 3D geometries allowed to

  8. Fabrication of thorium nitrate at the factory at the Bouchet; Fabrication du nitrate de thorium pur a l'usine du Bouchet

    Energy Technology Data Exchange (ETDEWEB)

    Braun, C; Lorrain, Ch; Mahut, R; Mariette, R; Muller, J; Prugnard, J [Commissariat a l' Energie Atomique, Usine du Bouchet, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A urano-thorianite mineral from Madagascar is industrially treated at the factory of the Bouchet in order to obtain pure thorium in the form of the nitrate and a uranium concentrate in the form of uranate. The required factory was designed and constructed in 1955 and 1956 by the firm Potasse et Engrais Chimiques (P.E.C.) on behalf of the French Atomic Energy authority. The mineral which has previously undergone a gravimetric sorting and enrichment at the mine, is in the form of a heavy rock (the density can be as high as 10), having a cubic structure. It consists principally of a mixture of thorium oxide and uranium oxide and contains between 50 and 75 per cent thorium and between 5 and 20 per cent of uranium. On the same sample a high content in either thorium or uranium in general corresponds to a low content in the other of the two metals; this rule is not however always obeyed absolutely. Among other elements present we shall only mention the Pb, Fe, Ce, Ra and other radioactive elements, since their presence influences the treatment of the mineral. We shall first briefly describe the process, which has already been described in previous publications, we consider to be worthy of attention. (author)Fren. [French] Le minerai d'uranothorianite en provenance de Madagascar est traite industriellement a l'Usine du Bouchet en vue de l'obtentionn sel de thorium pur, le nitrate, et d'un concentre d'uranium, un uranate. L'etude et la construction de l'atelier destine a cet effet ont ete realisees en 1955 et 1956 par la Societe Potasse et Engrais chimiques pour le Commissariat a l'Energie atomique. Le minerai, scheide ou enrichi a la mine par voie gravimetrique, se presente comme une roche dense (la densite peut atteindre 10), de structure cubique. Il est constitue essentiellement d'un melange d'oxyde de thorium et d'oxyde d'uranium qui titre 50 a 75 pour cent de Th et 5 a 20 pour cent d'uranium. A une forte teneur d'un element correspond dans le meme minerai une basse

  9. Advanced plutonium management in PWR - complementarity of thorium and uranium cycles

    International Nuclear Information System (INIS)

    Ernoult, Marc

    2014-01-01

    In order to study the possibility of advanced management of plutonium in existing reactors, 8 strategies for plutonium multi-recycling in PWRs are studied. Following equilibrium studies, it was shown that, by using homogeneous assemblies, the use of thorium cannot reduce the plutonium inventory of equilibrium cycle or production of americium. By distributing the different fuel types within the same assembly, some thoriated strategies allow however lower inventories and lower production americium best strategies using only the uranium cycle. However, in all cases, low fuel conversion theories in PWRs makes it impossible to lower resource consumption more than a few percent compared to strategies without thorium. To study the transition, active participation in development of the scenario code CLASS has been taken. It led to the two simulation scenarios among those studied in equilibrium with CLASS. These simulations have shown discrepancies with previously simulated scenarios. The major causes of these differences were identified and quantified. (author)

  10. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978

  11. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978.

  12. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  13. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  14. Preliminary study on characteristics of equilibrium thorium fuel cycle of BWR

    International Nuclear Information System (INIS)

    Waris, A.; Kurniadi, R.; Su'ud, Z.; Permana, S.

    2007-01-01

    One of the main objectives behind the transuranium recycling ideas is not merely to utilize natural resource that is uranium much more efficiently, but to reduce the environmental impact of the radio-toxicity of the nuclear spent fuel. Beside uranium resource, there is thorium which has three times abundance compared to that of uranium which can be utilized as nuclear fuel. On top of that thorium is believed to have less radio-toxicity of spent fuel since its produce smaller amount of higher actinides compared to that of uranium. However, the studies on the thorium utilization in nuclear reactor in particular in light water reactors (LWR) are not performed intensively yet. Therefore, the aim of the present study is to evaluate the characteristics of thorium fuel cycle in LWR, especially boiling water reactor (BWR). To conduct the comprehensive investigations we have employed the equilibrium burnup model (1-3). The equilibrium burnup model is an alternative powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor1). We have employed 1368 nuclides in the equilibrium burnup calculation where 129 of them are heavy metals (HMs). This burnup code then is coupled with SRAC cell calculation code by using PIJ module to compose an equilibrium-cell burnup code. For cell calculation, 26 HMs, 66 fission products (FPs) and one pseudo FP have been utilized. The JENDL 3.2 library has been used in this study. References: 1. A. Waris and H. Sekimoto, 'Characteristics of several equilibrium fuel cycles of PWR', J. Nucl. Sci. Technol., 38, p.517-526, 2001 2. A. Waris, H. Sekimoto, and G. Kastchiev, Influence of Moderator-to-Fuel Volume Ratio on Pu and MA Recycling in Equilibrium Fuel Cycles of

  15. Waste arisings from a high-temperature reactor with a uranium-thorium fuel cycle

    International Nuclear Information System (INIS)

    1979-09-01

    This paper presents an equilibrium-recycle condition flow sheet for a high-temperature gas-cooled reactor (HTR) fuel cycle which uses thorium and high-enriched uranium (93% U-235) as makeup fuel. INFCE Working Group 7 defined percentage losses to various waste streams are used to adjust the heavy-element mass flows per gigawatt-year of electricity generated. Thorium and bred U-233 are recycled following Thorex reprocessing. Fissile U-235 is recycled one time following Purex reprocessing and then is discarded to waste. Plutonium and other transuranics are discarded to waste. Included are estimates of volume, radioactivity, and heavy-element content of wastes arising from HTR fuel element fabrication; HTR operation, maintenance, and decommissioning; and reprocessing spent fuel where the waste is unique to the HTR fuel cycle

  16. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  17. Once-through uranium thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Ozdemir, S.; Cubukcu, E.

    2000-01-01

    In this study, the performance of the once-through uranium-thorium fuel cycle in CANDU reactors is investigated. (Th-U)O 2 is used as fuel in all fuel rod clusters where Th and U are mixed homogeneously. CANDU reactors have the advantage of being capable of employing various fuel cycle options because of its good neutron economy, continuous on line refueling ability and axial fuel replacement possibility. For lattice cell calculations transport code WIMS is used. WIMS cross-section library is modified to achieve precise lattice cell calculations. For various enrichments and Th-U mixtures, criticality, heavy element composition changes, diffusion coefficients and cross-sections are calculate. Reactor core is modeled by using the diffusion code CITATION. We conclude that an overall saving of 22% in natural uranium demand can be achieved with the use of Th cycle. However, slightly enriched U cycle still consumes less natural Uranium and is a lot less complicated. (author)

  18. Thorium utilization

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B [Oak Ridge National Lab., TN (USA)

    1978-01-01

    Some of the factors that provide incentive for the utilization of thorium in specific reactor types are explored and the constraints that stand in the way are pointed out. The properties of thorium and derived fuels are discussed, and test and reactor operating experience is reviewed. In addition, symbiotic systems of breeder and converter reactor are suggested as being particularly attractive systems for energy production. Throughout the discussion, the High-Temperature Gas-Cooled Reactor and Molten Salt Reactor are treated in some detail because they have been developed primarily for use with thorium fuel cycles.

  19. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  20. Fuel cycle performance indices in a high-converting LWR core design with once-through thorium fuel cycle

    International Nuclear Information System (INIS)

    Kim, Myung-Hyun; Kim, Kwan-Hee; Kim, Young-il

    2004-01-01

    A design concept of pressure-tube type light water cooled reactor (HCPLWR) core was proposed as a thermal high-conversion reactor using a thorium based once-through cycle strategy. In a previous work, fuel cycle economics and nuclear safety were confirmed. In this work, HCPLWR was evaluated in the aspects of proliferation resistance and transmutation capability. Evaluation was done as a direct comparison of indices with PWR, CANDU and Radkowsky Thorium Fuel (RTF). Conversion ratio was measured by fissile inventory ratio and fissile gain. Proliferation resistance of plutonium composition from spent seed and blanket fuels was measured by bare critical mass, spontaneous neutron source rate, and thermal heat generation rate. For the evaluation of long-lived minor actinide transmutation was measured by a new parameter, effective fission half-life. Two-dimensional calculation for the assembly-wise unit module showed each parameter values. Even though conversion capability of HCPLWR was higher than one of RTF, it was concluded that current HCPLWR design was not favorable than RTF. Design optimization is required for the future work. (author)

  1. Thorium fuel cycle development activities in India (a decade of progress: 1981-1990)

    International Nuclear Information System (INIS)

    Basu, T.K.; Srinivasan, M.

    1990-01-01

    The report comprises of 72 papers on various aspects of thorium fuel cycle. These papers report the research work carried out at the Bhabha Atomic Research Centre, Bombay and other units of the Department of Atomic Energy during the decade 1981-1990. figs., tabs

  2. Comparison of two thorium fuel cycles for use in light water prebreeder/breeder reactor systems (AWBA Development Program)

    International Nuclear Information System (INIS)

    Merriman, F.C.; McCoy, D.F.; Boyd, W.A.; Dwyer, J.R.

    1983-05-01

    Light water prebreeder/breeder conceptual reactor systems have been developed which have the potential to significantly improve the fuel utilization of present generation light water reactors. The purpose of this study is to describe and compare two possible types of thorium fuel cycles for use in these light water prebreeder and breeder concepts. The two types of thorium fuel cycles basically differ in the fuel rod design used in the prebreeder cores and the uranium isotopic concentration of fuel supplied to the breeder cores

  3. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    Saraceno; Marcos.

    1978-10-01

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author) [es

  4. Analysis of Uranium and Thorium in Radioactive Wastes from Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Gunandjar

    2008-01-01

    The assessment of analysis method for uranium and thorium in radioactive wastes generated from nuclear fuel cycle process have been carried out. The uranium and thorium analysis methods in the assessment are consist of Titrimetry, UV-VIS Spectrophotometry, Fluorimetry, HPLC, Polarography, Emission Spectrograph, XRF, AAS, Alpha Spectrometry and Mass Spectrometry methods. From the assessment can be concluded that the analysis methods of uranium and thorium content in radioactive waste for low concentration level using UV-VIS Spectrometry is better than Titrimetry method. While for very low concentration level in part per billion (ppb) can be used by Neutron Activation Analysis (NAA), Alpha Spectrometry and Mass Spectrometry. Laser Fluorimetry is the best method of uranium analysis for very low concentration level. Alpha Spectrometry and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) methods for isotopic analysis are favourable in the precision and accuracy aspects. Comparison of the ICP-MS and Alpha Spectrometry methods shows that the both of methods have capability to determining of uranium and thorium isotopes content in the waste samples with results comparable very well, but the time of its analysis using ICP-MS method is faster than the Alpha Spectrometry, and also the cost of analysis for ICP-MS method is cheaper. NAA method can also be used to analyze the uranium and thorium isotopes, but this method needs the reactor facility and also the time of its analysis is very long. (author)

  5. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  6. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  7. An assessment of once-through homogeneous thorium fuel economics for light water reactors

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Yoo, Jae Woon

    2001-01-01

    The fuel economics of an once-through homogeneous thorium fuel concept for PWR was assessed by doing a detailed core analysis. In addition to this, the fuel economics assessment was also performed for two other ways enhancing the economic potential of thorium fuel; thorium utilization in the mixed core with uranium fuel assembly and Duplex thorium fuel concepts. As a results of fuel economics assessment, the thorium fuel cycle does not show any economic incentives in preference to uranium fuel cycle under the 18-months fuel cycle for PWR. However, the utilization of thorium is the mixed core with uranium fuel assembly and Duplex thorium fuel cycle and show superior fuel economics to uranium fuel under the longer fuel cycle scheme. The economic potential of once-through thorium fuel cycle is expected to be increased further by utilizing the Duplex thorium fuel in the mixed core with uranium fuel assembly

  8. Thorium Energy for the World

    CERN Document Server

    Revol, Jean-Pierre; Bourquin, Maurice; Kadi, Yacine; Lillestol, Egil; De Mestral, Jean-Christophe; Samec, Karel

    2016-01-01

    The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy ...

  9. Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (Thorium Molten-Salt nuclear energy synergetics)

    International Nuclear Information System (INIS)

    Furukawa, K.; Furuhashi, A.; Chigrinov, S.E.

    1996-01-01

    Thorium fuel-cycle has benefit on not-only trans-U element reduction but also their incineration. The disadvantage of high gamma activity of fuel, which is useful for improving the resistance to nuclear proliferation and terrorism, can overcome by molten fluorides fuel, and practically by THORIMS-NES, symbiotically coupled with fission Molten-Salt Reactor (FUJI) and fissile-producing Accelerator Molten-Salt Breeder (AMSB). This will have wide excellent advantages in global application, and will be deployed by incinerating Pu and Producing 233 U. Some details of this strategy including time schedule are presented. 14 refs, 2 figs, 4 tabs

  10. A review on the status of development in thorium-based nuclear fuels

    International Nuclear Information System (INIS)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C.Y.

    2000-02-01

    Thorium as an alternative nuclear energy source had been widely investigated in the 1950s-1960s because it is more abundant than uranium, but the studies of thorium nuclear fuel cycle were discontinued by political and economic reasons in the 1970s. Recently, however, renewed interest was vested in thorium-based nuclear fuel cycle because it may generate less long-lived minor actinides and has a lower radiotoxicity of high level wastes after reprocessing compared with the thorium fuel cycle. In this state-of the art report, thorium-based nuclear cycle. In this state-of the art report, thorium-based nuclear fuel cycle and fuel fabrication processes developed so far with different reactor types are reviewed and analyzed to establish basic technologies of thorium fuel fabrication which could meet our situation. (author)

  11. Thorium research and development in Turkey

    International Nuclear Information System (INIS)

    Güngör, Görkem

    2015-01-01

    Turkey has a great potential regarding thorium resources. Thorium exploration activities have been done in the past mainly by state organizations for determining the thorium resources in Turkey. Thorium occurs as complex mineral together with barite, fluorite and rare earth elements (REE). The increase in global demand for REE creates the opportunity for REE production which will also produce thorium as a by-product. The development of nuclear energy program in Turkey provides the stimulus for research and development activities in nuclear technologies. The final declaration of the workshop emphasizes the importance of thorium reserves in Turkey and the necessity for thorium exploration and development activities in order to determine the feasibility of thorium mining and fuel cycle in Turkey. These activities should be conducted together with the development of technologies for separation of these complex minerals and purification of thorium, REE and other minerals to be utilized as commercial products. There are advanced academic research studies on thorium fuel cycle which should be supported by the industry in order to commercialize the results of these studies. Turkey should be integrated to international R and D activities on ADS which is expected to commercialize on medium term. The legislative framework should be developed in order to provide the industrial baseline for nuclear technologies independent from nuclear regulatory activities

  12. A data base for PHW reactor operating on a once-through, low enriched uranium-thorium cycle

    International Nuclear Information System (INIS)

    Lungu, S.

    1984-04-01

    The study of a detailed data base for a new once-through uranium-thorium cycle using low enriched uranium (4 and 5,5% wt. U-235) and distinct UO 2 and ThO 2 fuel channels has been performed. With reference to a standard 638 MWe CANDU-type PHWR with 380 channels, evaluation of economics, fuel behaviour and safety has been performed. The Feinberg-Galanin method (code FEINGAL) has been used for calculation of axial flux distribution. All parameters have been provided by LATREP code following up the irradiation history. Economical assessment has shown that this fuel cycle is competitive with the natural uranium fuel cycle for 1979-based values of the parameters. Fuel behaviour and safety features modelling has shown that core behaviour of the uranium-thorium reactor under abnormal and accident conditions would be at least as good as that of the standard natural uranium reactor

  13. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  14. Thorium based fuel options for the generation of electricity: Developments in the 1990s

    International Nuclear Information System (INIS)

    2000-05-01

    The IAEA has maintained an interest in the thorium fuel cycle and its worldwide utilization within its framework of activities. Periodic reviews have assessed the current status of this fuel cycle, worldwide applications, economic benefits, and perceived advantages with respect to other nuclear fuel cycles. Since 1994, the IAEA convened a number of technical meetings on the thorium fuel cycle and related issues. Between 1995 and 1997 individual contributions on the thorium fuel cycle were elicited from experts from France, Germany, India, Japan, the Russian Federation and the USA. These contributions included evaluations of the status of the thorium fuel cycle worldwide; the new incentives to use thorium due to large stockpiles of plutonium produced in nuclear reactors; new reactor concepts utilizing thorium; strategies for thorium use; and an evaluation of toxicity of the thorium fuel cycle waste compared to that from other fuel cycles. The results of this updated evaluation are summarized in this publication

  15. Environmental implications of thorium use in selected nuclear fuel cycles. Final

    International Nuclear Information System (INIS)

    Buckley, D.W.; Simmons, G.L.; Ziskind, R.A.

    1978-01-01

    The objective of this study was to assess the environmental implications of the nuclear fuel cycle associated with the highly enriched uranium concept of the High Temperature Gas Cooled Reactor. Model fuel cycles were constructed for the HTGR and a reference light water reactor (LWR) cycle. Mass flows were developed, control technology cases proposed and costed, effluents determined, and population doses calculated. Emphasis was given to the intercomparison of the fuel cycles to delineate areas which show pronounced departure. The dose commitment received by the population both within and outside a radius of 50 miles of each facility was determined. The 100 year population dose commitments due to a single year's plant operation was selected to facilitate intercomparison among fuel cycle components. No account was taken for long term waste sources associated with the fuel cycle such as mill tailing piles or terminal waste storage (study groundrule). The resource utilization and radionuclide activity of various fuel cycle options for using thorium in a Pressurized Water Reactor were studied. These data were contrasted with similar results obtained for a uranium fuel PWR

  16. Thorium-based nuclear fuel: current status and perspectives

    International Nuclear Information System (INIS)

    1987-03-01

    Until the present time considerable efforts have already been made in the area of fabrication, utilization and reprocessing of Th-based fuels for different types of reactors, namely: by FRG and USA - for HTRs; FRG and Brazil, Italy - for LWRs; India - for HWRs and FBRs. Basic research of thorium fuels and thorium fuel cycles are also being undertaken by Australia, Canada, China, France, FRG, Romania, USSR and other countries. Main emphasis has been given to the utilization of thorium fuels in once-through nuclear fuel cycles, but in some projects closed thorium-uranium or thorium-plutonium fuel cycles are also considered. The purpose of the Technical Committee on the Utilization of Thorium-Based Nuclear Fuel: Current Status and Perspective was to review the world thorium resources, incentives for further exploration, obtained experience in the utilization of Th-based fuels in different types of reactors, basic research, fabrication and reprocessing of Th-based fuels. As a result of the panel discussion the recommendations on future Agency activities and list of major worldwide activities in the area of Th-based fuel were developed. A separate abstract was prepared for each of the 9 papers in this proceedings series

  17. Nuclear energy from thorium

    International Nuclear Information System (INIS)

    Coote, G.E.

    1977-06-01

    Relevant topics in nuclear and reactor physics are outlined. These include: the thorium decay series; generation of fissile from fertile nuclides, in particular U-233 from Th-232; the princiiples underlying thermal breeder reactors; the production of U-232 in thorium fuel and its important influence on nuclear safeguards and the recycling of U-233. Development work is continuing on several types of reactor which could utilise thorium; each of these is briefly described and its possible role is assessed. Other tipics covered include safety aspects of thorium oxide fuel, reprocessing, fabrication of recycle fuel and the possibility of denaturing U-233 by adding natural uranium. It is concluded that previoue arguments for development of the thorium cycle are still valid but those relating to non-proliferation of weapons may become even more compelling. (auth.)

  18. Contribution to the study of the conversion PWR type reactors to the thorium cycle

    International Nuclear Information System (INIS)

    Martins Filho, J.R.

    1980-01-01

    The use of the thorium cycle in PWR reactors is discussed. The fuel has been calculated in the equilibrium condition for a economic comparison with the uranium cycle (in the same condition). First of all, a code named EQUILIBRIO has been developed for the fuel equilibrium calculation. The results gotten by this code, were introduced in the LEOPARD code for the fuel depletion calculation (in the equilibrium cycle). Same important physics details of fuel depletion are studied, for instance: the neutron balance, power sharing, fuel burnup, etc. The calculations have been done taking as reference the Angra-1 PWR reactor. (Author) [pt

  19. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-01-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  20. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  1. Basic analysis and comparison among GCFR and LMFBR characteristics in thorium cycle by difusion theory in one energy group

    International Nuclear Information System (INIS)

    Sabundjian, G.; Ishiguro, Y.

    1982-01-01

    A preliminary study of the neutronic characteristics of fast of fast breeding reactors with thorium cycle, is done, using models and simplified methods of reactor analysis, aiming to meet an adequate type of breeder reactor with an efficient thorium utilization, that is abundant at Brazil. Basic methods of cross section and reactor calculations are studied, and they are applied for the analysis of GCFRs and LMFBRs breeding characteristics. (E.G.) [pt

  2. A novel concept of QUADRISO particles Part III: applications to the plutonium-thorium fuel cycle

    International Nuclear Information System (INIS)

    Talamo, A.

    2009-01-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the 233 U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233 U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233 U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  3. Toxicology of thorium cycle nuclides

    International Nuclear Information System (INIS)

    Ballou, J.E.

    1984-01-01

    The purpose of this project is to investigate the biological hazards associated with uranium-thorium breeder fuels and fuel recycle process solutions. Initial studies emphasize the metabolism and long-term biological effects of inhaled 233 U- 232 U nitrate and oxide fuel materials and of 231 Pa, a major, long-lived, radioactive waste product. 1 figure, 3 tables

  4. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles

  5. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  6. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  7. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  8. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  9. A proposal for rational thorium utilization: thorims-nes

    International Nuclear Information System (INIS)

    Kurukawa, K.; Erbay, L. B.

    1997-01-01

    In this study, a globally applicable system depending on a new philosophy has been introduced for solving the problems connected with nuclear safety, ratio-waste, anti-nuclear proliferation and terrorism and public/institutional acceptance and economy. This rational thorium breeding fuel-cycle system named as THORIMS-NES (Thorium Molten- Salt Nuclear Energy Synergetics ) appears to be particularly promising and can be the way of nuclear power development. THORIMS-NES depends on three principles: I. Thorium utilization, II. Application of molten-fluoride fuel technology and III. Separation of fissile producing breeders and power producing reactors. Thorium fuel cycle has benefit on the reduction of trans-U elements and for recycling fuels produced by all kinds of military, research and industrial reactors. A system for the realization of THORIMS-NES has been introduced by the explanation of connections/relations between facilities. In this study, the status of countries/groups working on Th and Th fuel cycle has been summarized. Additionally, the resultant announcement of the International Conference on Thorium Molten Salt Reactor Development (8-11 April, 1997, Santa Monica) has been mentioned to present the cooperation of scientists and engineers for the realization of THORIMS-NES

  10. Thorium as an energy source. Opportunities for Norway; Thorium som energikilde - Muligheter for Norge

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  11. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  12. Inhalation exposures at a thorium refinery

    International Nuclear Information System (INIS)

    Mausner, L.F.

    1982-01-01

    There is a current interest in the metabolism and health effects of thorium due to its potential use in the 232 Th - 233 U nuclear fuel cycle. The airborne concentrations of thorium, thoron daughters and rare earths in a plant which produced thorium and rare earth chemicals from 1932 to 1973 were calculated from past records of alpha counting and air filter samples. This analysis showed that high airborne concentrations of 232 Th, 220 Rn, 212 Pb, 212 Bi and rare earth elements were sometimes reached during plant operations. Limited measurements on autopsy samples of former employees of the plant showed increased tissue concentrations of thorium and rare earths. (U.K.)

  13. Status of thorium technology

    International Nuclear Information System (INIS)

    Garg, R.K.; Raghavan, R.V.; Karve, V.M.; Narayandas, G.R.

    1977-01-01

    Although a number of studies have been conducted in various countries to evolve reactor systems based on thorium fuel cycle, its use, so far, is limited to only a few reactors. However, for countries having large reserves of thorium, its utilization is of great significance for their nuclear power programmes. Reasonably assured world resources of thorium in the lower price range have been estimated at more than 500,000 tons of ThO 2 . While most of these resources are in placer deposits in various parts of the world, some vein deposits and uranium ores are other important sources of thorium. Monazite, the most important mineral of thorium, is found in the beach sand deposits along with other heavy minerals like ilmenite, rutile, zircon, and sillimanite etc. Mining of these deposits is usually carried out by suction dredging and separation of monazite from other minerals is effected by a combination of magnetic, electrostatic and gravity separation techniques. Chemical processing of monazite is carried out either by sulphuric acid or caustic treatment, followed by separation of the rare earths and thorium by partial precipitation or leaching. The thorium concentrate is further processed to obtain mantle grade thorium nitrate by chemical purification steps whereas solvent extraction using TBP is adopted for making nuclear-grade material. The purified thorium nitrate is converted to the oxide usually by precipitation as oxalate followed by calcination. The oxide is reduced directly with calcium or converted to the chloride or fluoride and then reduced by calcium or magnesium to obtain thorium metal. Various fuel designs based on the metal or its alloys, mixed oxides or carbides, and dispersed type fuel elements have been developed and accordingly, different fabrication techniques have been employed. Work on irradiation of thorium containing fuel elements and separation of U 233 is being carried out. This paper reviews the status of thorium technology in the world with

  14. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  15. Potential for the near-term use of the thorium cycle in a sustainable way

    International Nuclear Information System (INIS)

    Wider, H.; Tucek, K.; Carlsson, J.

    2007-01-01

    Nuclear sustainability is generally believed to be only reachable through the building of many fast breeder reactors. This paper shows that there is another possibility by using existing reactors that are either thermal breeders or have at least a high conversion ratio and considerably smaller critical masses than fast systems. Earlier it was believed that thermal molten salt breeders could eventually use the thorium / 233U cycle, which doesn't generate minor actinides and is therefore a cleaner fuel cycle. In the meantime, it has become rather clear that CANDU reactors that use heavy water cooling can also be self-breeders. The CANDU reactors could generate themselves 233U in thorium targets and could become selfsustaining after 12 years. However, additional 233U could also be generated in LWRs and fast reactors. It is shown that this generation of 233U will allow a faster large-term nuclear expansion than fast reactors alone. There could actually be a synergy between thermal and fast breeders if the latter are run with Pu/Minor Actinides/Th fuel, which burns the minor actinides and generates sizeable amounts of 233U. The main problem is still the necessary reprocessing on which India is working and intends to have in 10 years a large scale reprocessing facility available. However, there is at least an existing method for removing the 233U by the fluoride volatility method and to further use it in CANDUs. For the preparation of the use of 233U, we should attempt to run thorium subassemblies in CANDUs, LWRs, and fast reactors. Besides breeding 233U or at least having a high conversion ratio, CANDUs have the further advantage that they don't need a pressure vessel and therefore could be built in large numbers faster than LWRs. (author)

  16. Toxicity of thorium cycle nuclides

    International Nuclear Information System (INIS)

    Ballou, J.E.

    1986-01-01

    The purpose of this project is to investigate the biological hazards associated with uranium-thorium breeder fuels and fuel recycle process solutions. Initial studies emphasize the metabolism and long-term biological effects of inhaled 233 U- 232 U nitrate and oxide fuel materials and of 231 Pa, a major, long-lived, radioactive waste product. Rats were used as test animals. Dose-response relationships for malignant lung-tumor and bone-tumor induction after 232 UO 2 (NO 3 ) 2 inhalation are discussed. 2 figures, 1 table

  17. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future

  18. The use of thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1982-04-01

    The use of thorium as an alternative or supplementary nuclear fuel is examined and compared with uranium. A description of various reactor types and their suitability to thorium fuel, and a description of various aspects of the fuel cycle from mining to waste disposal, are included. Comments are made on the safety and economics of each aspect of the fuel cycle and the extension of the lifetime of nuclear fuel

  19. Thorium fuels for heavy water reactors. Romanian experience

    International Nuclear Information System (INIS)

    Glodeanu, F.; Mirion, I.; Mehedinteanu, S.; Balan, V.

    1984-01-01

    The renewed interest in thorium fuel cycle due to the increased demand for fissile materials has resulted in speeding up the related research and development activities. For heavy water reactors the thorium cycles, especially SSET, are very promising and many efforts are made to demonstrate their feasibility. In our country, at INPR, the research and development activity has been initiated in the following areas: the conceptual design of thorium bearing fuel elements; fuel modelling; nuclear grade thorium dioxide powder technology; mixed oxide fuel technology. In the design area, the key factors in performance limitation, especially at extended burnup have been accounted and different remedies proposed. An irradiation programme has been settled and will start this year. The modelling activities are focused on mixed oxide behaviour and material data measurements are in progress. In the nuclear grade thorium powder technology area, a good piece of work has been done to develop an integrated technology for monasite processing (thorium being a by-product in lanthanides extraction). As regards the mixed oxide fuel technology, efforts have been made to obtain (ThU)O 2 pellets with good homogeneity and high density at different compositions. Besides the mixing powders route, other non-conventional technologies for refabrication like: microspheres, pellet impregnation and clay extrusion are studied. Experimental fuel rods for irradiation testing have been manufactured. (author)

  20. On the radiology of thorium-uranium electro breeding

    International Nuclear Information System (INIS)

    Gai, E.V.; Rabotnov, N.S.; Shubin, Y.N.

    1995-01-01

    Radiological problems arising in thorium-uranium electro-breeding with thorium accelerator target are discussed. Following radiological problems are discussed and evaluated in simplified model calculations: U-232 formation, accumulation of light Th isotopes in (n, xn) reactions on thorium target: accumulation of the same nuclides in final repository after alpha-decay of uranium isotopes. The qualitative comparison of U-Pu and U-Th fuel cycles is performed. The problems seem to be serious enough to justify detailed quantitative investigation. (authors)

  1. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  2. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  3. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Wenner, M. [Westinghouse Electric Company, Cranberry Township, PA (United States); Fiorina, C. [Polytechnic of Milano, Milan (Italy); Paul Sherrer Institute (Switzerland); Huang, M.; Petrovic, B. [Georgia Technology University, Atlanta, GA (United States); Krepel, J. [Paul Sherrer Institute (Switzerland)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energy ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially

  4. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  5. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides; L'hydrolyse du dicarbure de thorium et des dicarbures mixtes d'uranium et de thorium

    Energy Technology Data Exchange (ETDEWEB)

    Del Litto, B [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-09-01

    satisfaisante par un mecanisme reactionnel faisant intervenir des groupements radiculaires C - C. De la meme maniere l'hydrolyse d'alliages ternaires uranium-thorium-carbone conduit a la formation d'hydrures de carbone gazeux et condenses. La variation de la composition de la phase gazeuse en fonction de la teneur en uranium de l'alliage a permis de suggerer une hypothese sur la distance carbone- carbone dans la structure cristalline de celui-ci. La variation de la teneur en methane nous a amene d'autre part a discuter la nature des phases dans les alliages uranium-carbone et uranium-thorium-carbone riches en carbone. Nous sommes arrives a la conclusion que ces alliages doivent renfermer une proportion de monocarbure fonction du rapport: Th/(Th + U). La forme du diagramme uranium-carbone proposee est susceptible d'expliquer certains phenomenes observes dans le systeme ternaire uranium-thorium-carbone. (auteur)

  6. Evaluation of thorium based nuclear fuel. Chemical aspects

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.)

  7. Evaluation of thorium based nuclear fuel. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.).

  8. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  9. Reprocessed and combined thorium fuel cycles in a PER system with a micro heterogeneous approaches

    International Nuclear Information System (INIS)

    Monteiro, Fabiana B.A.; Castro, Victor F.; Faria, Rochkhudson B. de; Pereira, Claubia; Fortini, Angela

    2015-01-01

    A micro heterogeneous approaches were used to study the behavior of reprocessed fuel spiked with thorium in a PWR fuel element considering (TRU-Th) cycle. The goal is to achieve a higher burnup using three different configurations to model the fuel element using SCALE 6.0. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a spent PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment. The spent fuel remained in the cooling pool for five years and then reprocessed using the UREX+ technique. Three configurations of micro heterogeneous approaches were analyzed, and the k inf and plutonium evolution during the burnup were evaluated. The preliminary results show that the behavior of advanced fuel based on transuranic elements spiked with thorium, and micro heterogeneous approach are satisfactory in PWRs, and the configuration that use a combination of Th and TRU (configuration 1) seems to be the most promising once has higher values for k inf during the burnup, compared with other configurations. (author)

  10. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  11. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  12. A review of the current status of nuclear data for major and minor isotopes of thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2000-03-01

    In this paper, we present a critical overview of the status of the available nuclear data of isotopes of thorium fuel cycle, viz., 230 Th, 232 Th, 231 Pa, 233 Pa, 232 U, 233 U and 234 U. Induced in the main body of the paper is a critical analysis of information contained in the two basic evaluated nuclear data files JENDL-3.2 and ENDF/B-VI (Rev.5) recently released by the IAEA/NDS as a result of truly international efforts. In some of the cases, the information and data given in EXFOR is examined to get an idea of the status of measured nuclear data of these isotopes. Some comments regarding gaps in experimental data as of 1999 are included in the discussion. Most of these experimental data were those generated two decades ago. In addition, generally, these experimental data are very limited in comparison to the voluminous nuclear data generated for the uranium-plutonium cycle. Experimental data is absent in most of the cases and, in such cases, evaluated cross sections in the two basic evaluated nuclear data files JENDL-3.2 and ENDF/B-VI(Rev.5) are based upon theoretical models and nuclear systematics. Some of these differences between JEF-2.2 and its source ENDF/B-V that were carried over to ENDF/B-VI(Rev.5) are explained. The role and the importance of 231 Pa and 233 Pa in the thorium fuel cycle in advanced concepts such as the Energy Amplifier are mentioned. New calculations of criticality property of 231 Pa and 233 Pa are presented using the neutron reaction data of JENDL-3.2 and ENDF/B-VI(Rev.5). The possible influence of 230 Th is examined with respect to its cross sections and production of 231 Pa in a typical Indian PHWR environment. The quality assurance in design and safety studies in nuclear energy in the next few decades and centuries require new and improved data with high accuracy and energy resolution. As a starter, the nuclear data of the set of isotopes of thorium fuel cycle discussed in this paper is a challenging sample for consideration as a

  13. Thorium as an energy source. Opportunities for Norway

    International Nuclear Information System (INIS)

    2008-01-01

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  14. Thorium as an energy source. Opportunities for Norway

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  15. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  16. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  17. A review on the heterogeneous thorium fuel concept for PWR applications

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H.

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10δ18%, but the SWU utilization factor decreased by 6-δ11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost, the capcity

  18. A review on the heterogeneous thorium fuel concept for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10{delta}18%, but the SWU utilization factor decreased by 6-{delta}11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost

  19. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  20. Evaluation of thorium based nuclear fuel. Extended summary

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Bultman, J.H.; Konings, R.J.M.; Wichers, V.A.

    1995-04-01

    Application of thorium based nuclear fuels has been evaluated with emphasis on possible reduction of the actinide waste. As a result three ECN-reports are published, discussing in detail: - The reactor physics aspects, by comparing the operation characteristics of the cores of Pressurized Water Reactors and Heavy Water Reactors with different fuel types, including equilibrium thorium/uranium free, once-through uranium fuel and equilibrium uranium/plutonium fuel, - the chemical aspects of thorium based fuel cycles with emphasis on fuel (re)fabrication and fuel reprocessing, - the possible reduction in actinide waste as analysed for Heavy Water Reactors with various types of thorium based fuels in once-through operation and with reprocessing. These results are summarized in this report together with a short discussion on non-proliferation and uranium resource utilization. It has been concluded that a substantial reduction of actinide radiotoxicity of the disposed waste may be achieved by using thorium based fuels, if very efficient partitioning and multiple recycling of uranium and thorium can be realized. This will, however, require large efforts to develop the technology to the necessary industrial scale of operation. (orig.)

  1. Anticipated radiological impacts from the mining and milling of thorium for the nonproliferative fuels

    International Nuclear Information System (INIS)

    Meyer, H.R.; Till, J.E.

    1978-01-01

    Recent emphasis on proliferation-resistant fuel cycles utilizing thorium--uranium-233 fuels has necessitated evaluation of the potential radiological impact of mining and milling thorium ore. Therefore, an analysis has been completed of hypothetical mine-mill complexes using population and meteorological data representative of a thorium resource site in the Lemhi Pass area of Idaho/Montana, United States of America. Source terms for the site include thorium-232 decay chain radionuclides suspended as dusts and radon-220 and daughters initially released as gas. Fifty-year dose commitments to maximally exposed individuals of 2.4 mrem to total body, 9.5 mrem to bone, and 35 mrem to lungs are calculated to result from facility operation. Radium-228, thorium-228, thorium-232 and lead-212 (daughter of radon-220) are found to be the principal contributors to dose. General population doses for a 50-mile radius surrounding the facility are estimated to be 0.05 man-rem to total body, 0.1 man-rem to bone, and 0.7 man-rem to lungs. Generally speaking, the results of this study indicate that the radiological aspects of thorium mining and milling should pose no significant problems with regard to implementation of thorium fuel cycles

  2. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  3. Measurements of Fission Cross Sections for the Isotopes relevant to the Thorium Fuel Cycle

    CERN Multimedia

    2002-01-01

    The present concern about a sustainable energy supply is characterised by a considerable uncertainty: the green house effect and foreseeable limits in fossil fuel resources on the one hand, the concern about the environmental impact of nuclear fission energy and the long term fusion research on the other hand, have led to the consideration of a variety of advanced strategies for the nuclear fuel cycle and related nuclear energy systems. The present research directories concern such strategies as the extension of the life span of presently operating reactors, the increase of the fuel burn-up, the plutonium recycling, and in particular the incineration of actinides and long-Lived fission products, the accelerator driven systems (ADS), like the "Energy Amplifier" (EA) concept of C. Rubbia, and the possible use of the Thorium fuel cycle. The detailed feasibility study and safety assessment of these strategies requires the accurate knowledge of neutron nuclear reaction data. Both, higher fuel burn-up and especiall...

  4. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  5. Norms of radiation protection in uranium and thorium production cycles. Normas de protecao radiologica nos ciclos de producao do uranio e torio

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    A deliberation aiming to complement the basic norms of radiation protection for applying to uranium and thorium production cycle is presented. The activitires of excavation, remotion, storage, and physical and chemical processing of the ores, are included. The transport of radioactive materials into the establishments is governed by these norms. (M.C.K.).

  6. Uranium and thorium cycles for sodium fast reactors: Neutronic aspects and associated wastes

    International Nuclear Information System (INIS)

    Brizi, J.

    2010-10-01

    Sodium fast reactors (SFR-Na) with uranium 238/plutonium 239(U/Pu) cycle, its technical feasibility has already proven, allow to overcome the problem of natural uranium resources in achieving the regeneration of the fuel fissile element. In addition, a waste management can be performed to reduce the radiotoxicity of actinides produced by the reactor in transmuting the AM in the core (homogeneous transmutation). Another alternative to minimize waste is to use another couple fertile-fissile: the thorium 232 and the uranium 233 (Th/U). The comparison is performed on neutronic and safety aspects and on waste production, in using an evolutive Monte Carlo. Although one does not disclose real clear advantages concerning the radiotoxicity of wastes for a particular cycle, the Th/U cycle reduces the radiotoxicity during periods when it is the highest. The homogeneous transmutation minimizes significantly for both cycles, radiotoxicity of wastes, with different factors depending on the considered time period. However, it is done to the detriment of an important increase of AM in the core. If we consider the nuclear stop, the inventory of the reactor core becomes a waste. The gain provided by the transmutation, taking into account both the core and accumulated waste radio-toxicities, will be quantified, and shows the transmutation does not provide a significant gain if the burning of main fissile elements is not considered when the nuclear is stopped. (author)

  7. Tritium production in thorium by 135 MeV protons

    International Nuclear Information System (INIS)

    Lefort, M.; Simonoff, G.; Tarrago, X.; Bibron, R.

    1960-01-01

    We have measured the cross-section of tritium production by bombardment of thorium by 135 MeV protons in the Orsay synchro-cyclotron. The tritium was separated from the targets by heating in a graphite crucible with a high-frequency generator, under hydrogen gas pressure. Tritiated water was synthesised and the tritium was measured with liquid scintillator. A value of 19.5 ± 0.05 mbarns was obtained for the tritium-cross section and ten percent of tritons have energies higher than 35 MeV. This large cross-section is attributed to a double pick-up process. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 959, dec 1959 [fr

  8. Aspects on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-11-01

    Some of the main problems of the Th - PHWR cycles are analyzed. With respect to the burnup limitations introduced by SSET cycle conditions and the burnup sensitivities of this reference cycle, estimates are presented using an integrated neutron-heavy element balance method. A PHWR of 1 GW(e) very similar to the CANDU current design was selected. In the case of 0.5% uranium losses, 11000 MWD/tHE and 13000 MWD/tHE were considered for U-235, respectively, for the Pu initialization of the cycle, the corresponding inventory being 4 t U-235/GW(e) and 5 t Pu (with 72% fissile content) per GW(e) for one year delay time between reactor out to reactor in, 66% capacity factor, 27 MW (fission)/tHE medium specific power. The following aspects are also analyzed: Safety problems associated with low delayed neutron fraction values; High and intermediate burnup fuel elements conceptual problems; Specific problems of thorium reprocessing; Specific problems for radioactive wastes and thorium storage; U-232 content evaluations and related fuel fabrication problems

  9. Control rod studies for alternative fuel cycles in the GA 1160 MW(e) high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, H. J.

    1975-06-15

    The control system, which is investigated in this paper for both the low enriched uranium high enriched uranium/thorium fuel cycles, has been developed to control the General Atomics (GA) thorium fuel cycle 1160 MW(e) reactor. It has been shown in this investigation that its effectiveness in the low enriched and subsequent thorium cycle switch-over reactor is equivalent to the effectiveness in the thorium cycle. The shutdown margin in the low enriched core is even higher compared to the thorium core, mainly due to the presence of Pa-233 in the thorium cycle. As long as the fuel cycle for the thorium cycle is not closed with the recycling of U-233, the low enriched cycle will offer an attractive alternative. It was found that the GA 1160 MW(e) control system has enough built-in control rod capacity to accommodate the low enriched uranium cycle and to perform a later switch-over to a thorium-based fuel cycle.

  10. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    Linardi, M.

    1987-01-01

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233 U and 232 U and 232 Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author) [pt

  11. Recovering of thorium contained in wastes from Thorium Purification Plant

    International Nuclear Information System (INIS)

    Brandao Filho, D.; Hespanhol, E.C.B.; Baba, S.; Miranda, L.E.T.; Araujo, J.A. de.

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author)

  12. Conversion rate for PWR reactors in thorium cycle

    International Nuclear Information System (INIS)

    Angelkorte, G.M.

    1980-01-01

    This work concerns to the determination of the conversion-rate for a PWR reactor with an enrichment of 7.47%, considering a cell, geometrically equal to Angra I, composed by Thorium and U-238 in a 1:1 relation. The study was performed considering neutrons of one and two groups of energy, according to the suggestion from other authors sup(1,2). It was also performed a study about the production and consumption of fissile material. (author)

  13. Fixation and separation of the elements thorium and uranium using anion exchange resins in nitrate solution; Fixation et separation des elements thorium et uranium par les resines echangeuses d'anions en milieu nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Korgaonkar, V. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO{sub 3}){sub 6}{sup 2-} and UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} in solution these elements are present in the form of complexes having the general formula: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO{sub 3}. From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author) [French] On etudie l'echange du thorium et de l'uranium entre une resine anion base forte et un solvant mixte eau + ethanol charge en ions nitrates. On a suppose que, dans la resine, le thorium et l'uranium sont fixes sous forme de complexes Th(NO{sub 3}){sub 6}{sup 2-} et UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} en solution, ces elements sont engages dans des complexes de formule generale: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} On a pu degager une loi de variation des coefficients de partage du thorium et de l'uranium en fonction des concentrations des diverses especes en solution et de l'anion complexant NO{sub 3}{sup -}. On en a deduit les conditions operatoires optimales necessaires pour separer les deux elements a partir de leurs melanges. Enfin, dans ces conditions, on a etudie l'influence de quelques elements genants: Ba, Bi, Ce, La, Mo, Pb, Zr. La methode preconisee peut etre

  14. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    Hartanto, Donny

    2010-02-01

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  15. Studies on the preparation of thorium metal sponge from thorium oxalate

    International Nuclear Information System (INIS)

    Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.; Gurumurthy, K.R.; Raghavan, R.V.

    1978-01-01

    The results of investigations carried out on the production of high purity thorium metal sponge, starting with thorium oxalate are presented. The flow sheet includes chlorination of thorium oxalate, purification of raw thorium tetrachloride, magnesium reduction of anhydrous thorium tetrachloride, slag metal separation, vacuum distillation for removal of residual MgCl 2 and excess magnesium, and consolidation of the metal sponge. Studies have been carried out to investigate the optimum chlorination efficiency and chlorine utilization attainable using different chlorinating agents, and to compare the quality of the sponge obtained with single and double distilled chloride. The overall process efficiency under optimum conditions was 81%. The thorium metal button, prepared from the sponge by arc-melting, analysed : O 2 - 847, N 2 - 20, C - 179, Mg - 100, Fe - 49, Ni<50, Al - 11, Cr - 7 (expressed in parts per million parts of thorium). The button could be further purified by electron beam melting to improve its ductility. (author)

  16. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Lainetti, Paulo E.O.

    2013-01-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope 233 U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO 2 because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO 2 has higher corrosion resistance than UO 2 , besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt

  17. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose A.; Lainetti, Paulo E.O., E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope {sup 233}U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO{sub 2} because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO{sub 2} has higher corrosion resistance than UO{sub 2}, besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the

  18. Thorium-applications and handling

    International Nuclear Information System (INIS)

    Reichelt, A.

    1993-01-01

    The most important aspects concerning the natural occurrence and extraction of thorium are presented the topics covered are: natural isotopes, occurence in minerals, thorium-activity-content of naturally occuring materials, the resulting radiation exposure, extraction of thorium from ores, time-dependent activity after separation. The sources of radiation exposure due to Thorium, caused by human activity, can be divided into two categories, namely, those in which thorium is deliberately added to (consumer) products in order to improve their usefullness, and those in which the thorium is present accidentally and unwanted due to the naturally occuring thorium in the material used in the manufacturing processes. Some examples of such products and substances will be presented and results about their specific thorium activity will be discussed. Experimental data from a currently running research programme, will be presented, and will include results concerning the radiation occupational exposure due to phosphate fertilizers, thorium impregnated gas mantles and the use of thoriated TIG-Electrodes in arc welding. (orig.) [de

  19. Analysis on specific nuclear data for reactors physics computations applied to CANDU reactors using thorium-based fuels

    International Nuclear Information System (INIS)

    Visan, Iuliana E.

    2010-01-01

    The purpose of this work is to analyze the evaluated nuclear data from ENDF libraries IAEA69 (69 energy groups library) and IAEA172 (172 energy groups library), respectively, in WIMS library format and to represent neutron fission yield, absorption and fission cross-section dependence for 233 Uranium, 232 Thorium isotopes and some actinides of interest on the incident energy. Our interest for these two isotopes is mainly based on the importance of 233 Uranium as 'fissile nucleus' in Thorium-Uranium fuel cycle. Nowadays, nuclear data evaluation for the actinides generated in Thorium-Uranium fuel cycle is seen as a world-wide priority. The fissile nucleus, 233 Uranium 'plays' the same function in Thorium-Uranium fuel cycle as the 235 Uranium in 'the classic' Uranium-Plutonium fuel cycle. As opposed to natural Uranium which contains 0.7 % of the fissile isotope 235 Uranium, natural Thorium doesn't contain fissile isotopes, being composed entirely by the fertile isotope 232 Thorium. Graphical evolutions of interest parameters versus the incident energy are presented. Our interest was also to observe the behavior of these nuclear data for fast, resonance and thermal energy groups, respectively. The ENDF nuclear data libraries are constantly up-dated, so that we can observe an improvement of the IAEA172 library, which disposes of evaluated nuclear data at higher energies (about 20 MeV), as opposed to IAEA69 library (which includes evaluated nuclear data below 10 MeV). Based on our graphical representation, a good agreement between the considered libraries has been observed, sustaining nuclear data validity. (authors)

  20. Historical and perspectives of thorium compounds production and purification at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Abrao, A.; Freitas, Antonio A.; Carvalho, Fatima M.S. de; Bergamaschi, Vanderlei S.; Cunha, Edgar F.; Ayoub, Jamil M.S.; Mindrisz, Ana C.

    2000-01-01

    The production and purification of some thorium compounds has been performed in the IPEN in the last 15 years. Some raw materials have been employed in this production, obtained from the monazite exploitation in industrial scale that it was performed in Sao paulo during the period 1948 until 1994. More than 160 t of high purity thorium nitrate were produced, purified by the solvent extraction process. The thorium nitrate has been supplied for the Brazilian portable gaslight industry to the production of Welsbach Mantle. Nowadays, a new facility is being designed and built. The main concern is the recovering of the production capacity, lost after some years of operation without suitable maintenance. This activity has an important strategic role, considering the huge Brazilian thorium resources and the renewed interest in thorium fuel cycle. This paper describes a brief historical background of thorium activities in the IPEN as well as their perspectives. (author)

  1. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  2. A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor

    International Nuclear Information System (INIS)

    Kim, G.; May, D.; McIntyre, P.; Sattarov, A.

    2001-01-01

    Designs for thorium-cycle power reactors require a proton driver capable of 1 GeV energy and 10 MW total power. For this purpose we have prepared a preliminary design for the magnetic structure for a stack of 5 super-conducting isochronous cyclotrons, each delivering 2 MW beam power. By achieving the required power with multiple independent apertures rather than pushing beyond currently achieved limits, we hope to arrive at a design that is cost-minimum and reliable. Each sector magnet consists of a flux-coupled stack of cold-iron inserts supported within a single warm-iron, in a fashion inspired by the new Riken heavy-ion cyclotron. We have developed a preliminary field design in which in-plane fields are cancelled in all 5 apertures and the field-map is appropriate for the focusing optics of the sector cyclotron

  3. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as

  4. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  5. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  6. Assessment of thorium and thoron decay products in air - thorium plant

    International Nuclear Information System (INIS)

    Dhandayutham, R.; Gohel, C.O.; Shetty, P.N.; Savant, P.B.; Rao, D.V.V.

    1977-01-01

    For the evaluation of radiation dose to the lungs in a thorium plant, it is necessary to estimate the concentration of thorium, thoron and its daughter products in air. Methods employed in estimating thorium and its decay products and 'working level' are presented. (M.G.B.)

  7. Determination of sulfate in thorium salts using gravimetric technique with previous thorium separation

    International Nuclear Information System (INIS)

    Silva, C.M. da; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A simple analytical method to analyze sulfates in thorium salt, is presented. The method is based on the thorium separation as hydroxide. The gravimetric technique is used to analyze the sulfate in the filtered as barium sulfate. Using this method, the sulfate separation from thorium has been reach 99,9% yield, and 0,1% precision. This method is applied to thorium salts specifically thorium sulfate, carbonate and nitrate. (author). 5 refs, 2 tabs

  8. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  9. Self-Sustaining Thorium Boiling Water Reactors

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-01-01

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  10. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  11. Transformation of thorium sulfate in thorium nitrate by ion exchange resin

    International Nuclear Information System (INIS)

    Pereira, W.

    1991-01-01

    A procedure for transforming thorium sulfate into thorium nitrate by means of a strong cationic ion exchanger is presented. The thorium sulfate solution (approximately 15 g/L Th (SO 4 ) 2 ) is percolate through the resin and the column is washed first with water, with a 0,2 M N H 4 OH solution and then with a 0.2 M N H 4 NO 3 solution in order to eliminate sulfate ion. Thorium is eluted with a 2 M solution of (N H 4 ) 2 CO 3 . This eluate is treated with a solution of nitric acid in order to obtain the complete transformation into Th (NO 3 ) 4 . The proposed procedure leads to good quality thorium nitrate with high uranium decontamination. (author)

  12. Basic analysis and a comparison of the characteristics GCFRs and the LMFBR with the thorium cycle in one-group diffusion theory

    International Nuclear Information System (INIS)

    Sabundjian, G.; Ishiguro, Y.

    1991-09-01

    A preliminary study of neutronics of thorium cycle fast breeder reactor has been done using simplified reactor models and analyses methods with the aim of finding a type of breeder reactor suitable for an efficient utilization of thorium that is abundant in Brazil. Basic methods of cross section processing and reactor calculation are studied and applied to analyse breeding characteristics of GCFRs and LMFBRs. The GCFR is fueled with oxide pins and cooled with helium. The LMFBR is fueled with thin metallic pins to achieve high power densities. Neutronics characteristics are determined as functions of the average power density and the fuel volume fraction. Results show that a high power density and a high fuel volume fraction are desirable to achieve short doubling times, that the GCFR is inferior to the LMFBR in regard to the doubling time and that the LMFBR can achieve reactor doubling times ten years with an average power density of ∼ 600MW/m 3 and fuel volume fraction of 40%. (author)

  13. Radkowsky Thorium Fuel Project

    International Nuclear Information System (INIS)

    Todosow, Michael

    2006-01-01

    In the early/mid 1990's Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a uranium-based central 'driver' zone, surrounded by a 'blanket' zone containing uranium and thorium. Therefore, the SBU could be retrofit without significant modifications into existing/next generation PWRs. The objective was to improve the proliferation and waste characteristics of the current once-through fuel cycle. The objective of a series of projects funded by the Initiatives for Proliferation Prevention program of the U.S. Department of Energy (DOE-IPP) - BNL-T2-0074,a,b-RU 'Radkowsky Thorium Fuel (RTF) Concept' - was to explore the characteristics and potential of this concept. The work was performed under several BNL CRADAs (BNL-C-96-02 and BNL-C-98-15) with the Radkowsky Thorium Power Corp./Thorium Power Inc. and utilized the technical and experimental capabilities in the Former Soviet Union (FSU) to explore the potential of this concept for implementation in Russian pressurized water reactors (VVERs), and where possible, also generate data that could be used for design and licensing of the concept for Western PWRs. The Project in Russia was managed by the Russian Research Center-?'Kurchatov Institute' (RRC-KI), and included several institutes (e.g., PJSC 'Electrostal', NPO 'LUCH' (Podolsk), RIINM (Bochvar Institute), GAN RF (Gosatomnadzor), Kalininskaja NPP (VVER-1000)), and consisted of the following phases: Phase-1 ($550K/$275K to Russia): The objective was to perform an initial review of all aspects of the concept (design, performance, safety, implementation issues, cost, etc.) to confirm feasibility/viability and identify any 'show-stoppers'; Phase-2 ($600K/$300K to Russia

  14. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1989-01-01

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  15. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  16. A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow

    International Nuclear Information System (INIS)

    Furukawa, K.; Arakawa, K.; Erbay, L. B.

    2007-01-01

    For global survival in this century, we urgently need to launch a completely new global nuclear fission industry. To get worldwide public acceptance of nuclear energy, improvements are essential not only on safety, radio-waste management and economy but also especially nuclear proliferation resistance and safeguards. However, such global fission industry cannot replace the present fossil fuel industry in the next 50 years, unless the doubling-time of nuclear energy is less than 10 years, preferably 5-7 years. Such a doubling-time cannot be established by any kind of classical 'Fission Breeding Power Station' concept. We need a symbiotic system which couples fission power reactors with a system which can convert fertile thorium to fissile U-233, such as a spallation or D/T fusion (if and when it becomes available). For such a purpose, THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System] has been proposed, which is composed of simple thermal fission power stations (FUJI) and fissile producing Accelerator Molten-Salt Breeder (AMSB). Its system functions are very ambitious, delicate and complex, but can be realized in the form of simple hardware applying the multifunctional 'single-phase molten-fluoride' circulation system. This system has no difficulties relating with 'radiation-damage', 'heat-removal' and 'chemical processing' owing to the simple 'idealistic ionic liquid' character. FUJI is size-flexible (economical even in smaller sizes), fuel self-sustaining without any continuous chemical processing and without core-graphite replacement, and AMSB is based on a single-fluid molten-salt target/blanket concept, which solves most engineering difficulties such as radiation-damage, heat-removal etc., except high-current proton accelerator development. Several AMSBs are accommodated in the regional centers (several ten sites in the world) with batch chemical processing plants including radio-waste management. The integrated thorium breeding fuel cycle is

  17. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  18. Radiological implications of plutonium recycle and the use of thorium fuels in power reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, H. F.

    1976-01-15

    As economically attractive sources of natural uranium are gradually depleted attention will turn to recycling plutonium or to the use of thorium fuels. The radiological implications of these fuel cycles in terms of fuel handling and radioactive waste disposal are investigated in relation to a conventional /sup 235/U enriched oxide fuel. It is suggested that a comparative study of this nature may be an important aspect of the overall optimization of future fuel cycle strategies. It is shown that the use of thorium based fuels has distinct advantages in terms of neutron dose rates from irradiated fuels and long term proportional to decay heating commitment compared with conventional uranium/plutonium fuels. However, this introduces a ..gamma.. dose rate problem in the fabrication and handling of unirradiated /sup 233/U fuels. For both plutonium and thorium fuels these radiological problems increase during storage of the fuel prior to reactor irradiation. The novel health physics problems which arise in the handling and processing of thorium fuels are reviewed in an appendix.

  19. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  20. The indispensable role of thorium for creating a sustainable society

    International Nuclear Information System (INIS)

    Kamei, T.

    2012-01-01

    Several approaches are required in parallel for constructing a sustainable society. One of them is to fight against global warming. The other one is to make this world nuclear weapon free. Nuclear power has been used for peaceful purpose because nuclear power produces electricity without emitting CO 2 . Nearly 15% of world electricity is produced by nuclear power. Through nuclear power plant has a possibility of severe accident such as Fukushima Daiichi, its advantage is still valuable for the world. President Obama's speech in Prague in 2009 brought a impact to the world to move toward the world without nuclear weapon. The remaining subject is how to treat dismantled fissionable materials. Existing nuclear power plants utilize uranium because only uranium contains natural occurring fissionable material, uranium-235. The spent uranium fuel contains fissionable plutonium-239. Thus, uranium fuel cycle always accompanies possibility of nuclear proliferation. Thorium plays an important role for both solving global warming and nuclear weapon. Fertile thorium can be used as nuclear fuel by support of fissionable plutonium-239 from spent uranium fuel or weapon head. Preliminary calculation indicates that the USA's and Russia's dismantle nuclear weapon enable to start more than 10 GWe of thorium nuclear power plants. In addition, plutonium-239 obtained from uranium fuel is available of 392 GWe of thorium nuclear power. Uranium-233 coming from thorium is also a fissionable but it is hard to be used for weapon because of its accompanied gamma-ray. Thorium itself is now obtained as by-product of rare-earth mining, which is used for high-tech products including photovoltaic cell, wind-mill, and hybrid-vehicle. However, thorium is not taken care adequately and becomes environmental hazard. Both to take care of environment, to support implementation of high-tech product and to make the world without nuclear weapon, a comprehensive role of thorium will be presented

  1. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  2. A thorium breeder reactor concept for optimal energy extraction from uranium and thorium

    International Nuclear Information System (INIS)

    Jagannnathan, V.; Lawande, S.V.

    1999-01-01

    An attractive thorium breeder reactor concept has been evolved from simple physics based guidelines for induction of thorium in a major way in an otherwise enriched uranium reactor. D 2 O moderator helps to maximise reactivity for a given enrichment. A relatively higher flux level compared to LWRs offers the advantage of higher rate of 233 U production in thoria rods. Thus fresh thoria clusters consider no feed enrichment. In an equilibrium core, a full batch of pure thoria clusters are loaded during each fuel cycle. They undergo irradiation for about one year duration. By this time they accumulate nearly 70% of the asymptotic stable concentration of 233 U, if they face a flux level of the order of 10 14 n/cm 2 /sec. In the next fuel cycle, these thoria rods in ring cluster form are juxtaposed with the fresh enriched fuel rods, also in ring cluster form. Such integrated fuel assemblies are then irradiated for four or five fuel cycles, at the end of which U as well as Th rods attain a reasonably high burnup of about 30-32 MWD/kg. The core characteristics are quite attractive. The core excess reactivity remains low due to large thoria inventory which makes the net burnup reactivity load to be below 1%. The core is capable of being operated in an annual batch mode of operation like a LWR. The control requirement during power operation is negligible. Xenon over-ride requirement is low and can be managed by partial withdrawal of a few thoria clusters. Void reactivity is nearly zero or negative by the optimum design of the fuel cluster. Reactivity changes due to temperatures of fuel, coolant and moderator are also small. (author)

  3. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    Moraes, A.

    1977-01-01

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  4. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  5. Review of thorium-U233 cycle thermal reactor benchmark studies (AWBA Development Program)

    International Nuclear Information System (INIS)

    Ullo, J.J.; Hardy, J. Jr.; Steen, N.M.

    1980-03-01

    A survey is made of existing integral experiments for U233 systems and thorium-uranium based fuel systems. The aim is to understand to what extent they give a consistent test of ENDF/B-IV nuclear data. A principal result is that ENDF/B-IV leads to an underprediction of neutron leakage. Results from testing alternate thorium data sets are presented. For one evaluation due to Leonard, the results depict a possible growing discrepancy between measured integral parameters such as rho 02 and I 232 and the differential data, which underpredicts these parameters. Sensitivities to other nuclear data components, notably the fission neutron spectrum, were determined. A new harder U233 spectrum significantly reduces a bias trend in K/sub eff/ vs leakage

  6. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2001-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. he existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  7. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2000-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. The existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  8. Assessment of the thorium and uranium fuel cycle in the fast breeder and the high temperature reactor

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    1977-01-01

    This report assesses the fissile fuel economy of the uranium and thorium cycle in the advanced reactors currently under development, the fast breeder reactor (FBR) and the high temperature reactor (HTR). It is shown by means of detailed burnup calculations that replacing UO 2 with ThO 2 or Th-metal as the radial blanket breeding material will not have any significant imapct on the breeding and burnup properties of the FBR. A global, analytical investigation is performed to study the fissile fuel economy of the many fissile fuel cycles possible in the HTR. Here it is demonstrated that the optimum conversion ratio of CR 3 O 8 ) demands are evaluated for a country such as the FRG under the assumptions of different future reactor strategy scenarios. Here it is demonstrated that the employement of both HTRs and FBRs can lead to a practically resource independent energy supply system within the next 40 to 60 years. However only through the large scale employement of the fast breeder can the future nuclear resource requirements be assured. (orig.) [de

  9. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  10. Proposed plan for critical experiments supporting thorium fuel cycle development

    International Nuclear Information System (INIS)

    Gore, B.F.

    1978-09-01

    A preliminary plan is proposed for critical experiments to provide data needed for the recycle of thorium based nuclear fuels. The sequence of experimentation starts with well moderated solutions followed by highly concentrated low moderated solutions. It then progresses through lattices moderated by water, by water plus soluble poisons, and by fissile solutions, to solutions poisoned by raschig rings and soluble poisons. Final experiments would treat lattices moderated by poisoned fissile solution, and arrays of stored fissile units

  11. Role of thorium in ensuring long term energy security to India

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    Role of nuclear power in ensuring energy security to the world is inevitable due to a) dwindling fossil fuel resources and b) need for minimising green house gas emission that poses the risk of global climate change. India, keeping in mind its limited uranium and vast thorium resources, is pursuing a three stage nuclear power programme. The first stage is based on reactors that use uranium as fuel. It comprises of the indigenous Pressurised Heavy Water Reactors using natural uranium as fuel and light water reactors that employ enriched uranium as fuel and are to be set up in technical collaboration with other countries. The second stage is based on fast breeder reactors that employ plutonium derived from reprocessing of spent fuel from the first stage reactors. The third stage envisages reactors which will employ thorium based fuel after its irradiation in the second stage reactors. This programme is sequential in nature and has an ultimate objective of securing long term energy security to India through judicial use of its thorium resources. Thorium based reactors offer advantages in terms of better neutronic characteristics of thorium, it being better fertile host for plutonium disposition and better thermo-mechanical properties and slower fuel deterioration of thorium oxide. It is planned to introduce thorium in the Indian Nuclear Power Programme after sufficient (about 200 GWe) capacity build-up in the second stage. DAE is a global leader in the development of the entire thorium fuel cycle. It has a mature technology for extraction of thorium and preparation of thoria pellets. It has long back carried out irradiation of thoria pellets in its research reactors and also in PHWRs, post irradiation examination and reprocessing of irradiated thoria, fabrication of 233 U based fuel. It has KAMINI - the world's only operating reactor employing 233 U as fuel. An Advanced Heavy Water Reactor (AHWR) has been designed as a technology demonstrator for large scale

  12. Thorium: Issues and prospects in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia. walareqi@yahoo.com (Malaysia)

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  13. Thorium: Issues and prospects in Malaysia

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-01-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment

  14. Thorium: Issues and prospects in Malaysia

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  15. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  16. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    International Nuclear Information System (INIS)

    Josephs, J.M.

    1980-01-01

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison is made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10 9 over a 30 year period assuming a 200 gigawatt supply of electrical power

  17. Thorium as a substitute for uranium

    International Nuclear Information System (INIS)

    Hunt, H.

    1977-01-01

    Reference is made to the paper by E. Teller in Atom, February 1977, who suggested that it appears, at least theoretically, that the use of a thorium cycle in thermal reactors would give enough nuclear fuel for a long time to come, and so avoid the need for using Pu in fast reactors. This appears at first sight to be an attractive proposition, but loses some of this attraction on close examination. Reasons for this are discussed. (U.K.)

  18. Design study of a PWR of 1.300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, G.J.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. The PWR of 1300 MWe from KWU (Angra-2 type) is taken as the reference reactor for the study. Reactor core design calculations for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM 2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. (Author) [pt

  19. Actinide production in different HTR-fuel cycle concepts

    International Nuclear Information System (INIS)

    Filges, D.; Hecker, R.; Mirza, N.; Rueckert, M.

    1978-01-01

    At the 'Institut fuer Reaktorentwicklung der Kernforschungsanlage Juelich' the production of α-activities in the following HTR-OTTO cycle concepts were studied: 1. standard HTR cycle (U-Th); 2. low enriched HTR cycle (U-Pu); 3. near breeder HTR cycle (U-Th); 4. combined system (conventional and near breeder HTR). The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The calculations were performed by the short depletion code KASCO and the well-known ORIGEN program

  20. Systematic study on Thorium fuel

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kimura, Itsuro; Iwata, Shiro; Furuya, Hirotaka; Suzuki, Susumu.

    1988-01-01

    Introduced is the activities of the Joint Research Project Team on Thorium Fuel organized by mainly university researchers in Japan and supported by the Ministry of Education, Science and Culture for seven years since 1980. Four major groups were organized; (1) nuclear data, reactor physics and design, (2) nuclear fuel, (3) down stream and (4) biological effects of thorium. The first group covered measurements and analysis on nuclear data of thorium related nuclides, experiment and analysis on nuclear characteristics of thorium containing cores, basic engineering on a thorium molten salt reactor, and designs of several types of reactors. Fabrication and irradiation tests of thorium oxide fuel, and basic studies on new type thorium fuels (e.g. carbide and nitride) were studied by the second group. The third group covered the use of solutions in reprocessing of spent fuel, behavior of fission products, immobilization of high level radioactive waste, and continuous reprocessing for a molten salt reactor. The fourth group performed the trace study for patients who had been intravascularly injected with thorotrast for diagnosis of war injuries during the Second World War. (author)

  1. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  2. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    International Nuclear Information System (INIS)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-01-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  3. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1964-04-01

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might he reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  4. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1964-04-15

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might be reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  5. Investigation of the use of thorium in LWRs for improving reactor core performance

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah

    2012-01-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins

  6. Investigation of the use of thorium in LWRs for improving reactor core performance

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Cheuk Wah

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins.

  7. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  8. Thorium and health: state of the art; Thorium et sante: etat de l'art

    Energy Technology Data Exchange (ETDEWEB)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-07-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  9. Comparison of control rod effectiveness for thorium and low-enriched fuel cycles in the GA-1, 160 MW(e) design

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Hans Joachim

    1974-03-15

    In an investigation of the properties of the Thorium-Uranium (Th) and the Low-Enriched Uranium (LEU) fuel cycles it is also necessary to compare the effectiveness of the control rods in a reactor system operating with these sorts of fuel. Furthermore, it is under consideration to start a reactor with LEU fuel and switch-over to a Th cycle. It is also of interest to look at the switch-over phase in respect to the control rod effectiveness. The various fuel cycles have been studied for the same fuel element and control rod design, namely the one of GA's commercially available 1,160 MW(e) reference power station. This paper gives the first results on the control rod calculations and is presented mainly in two parts. Part 1 describes spectral effects which have been investigated by cell calculations with a discrete ordinates transport code. The main result is the higher effectiveness of a rod in a Th-cycle compared with a LEU-cycle. Part 2 reports on reactor calculations with a diffusion code and shows that this advantage can partially disappear in the reactor because of the spatial flux distribution. This effect has to be studied in further investigations for a full understanding.

  10. Potentialities of the molten salt reactor concept for a sustainable nuclear power production based on thorium cycle in epithermal spectrum

    International Nuclear Information System (INIS)

    Nuttin, Alexis

    2002-01-01

    In the case of a significant nuclear contribution to world energy needs, the problem of present nuclear waste management pose the sustainability of the PWR fuel cycle back into question. Studies on storage and incineration of these wastes should therefore go hand in hand with studies on innovative systems dedicated to a durable nuclear energy production, as reliable, clean and safe as possible. We are here interested in the concept of molten salt reactor, whose fuel is liquid. This particularity allows an online pyrochemical reprocessing which gives the possibility to overcome some neutronic limits. In the late sixties, the MSBR (Molten Salt Breeder Reactor) project of a graphite-moderated fluoride molten salt reactor proved thus that breeding is attainable with thorium in a thermal spectrum, provided that the online reprocessing is appropriate. By means of simulation tools developed around the Monte Carlo code MCNP, we first re-evaluate the performance of a reference system, which is inspired by the MSBR project. The complete study of the pre-equilibrium transient of this 2,500 MWth reactor, started with 232 Th/ 233 U fuel, allows us to validate our reference choices. The obtained equilibrium shows an important reduction of inventories and induced radio-toxicities in comparison with the other possible fuel cycles. The online reprocessing is efficient enough to make the system breed, with a doubling time of about thirty years at equilibrium. From the reference system, we then test different options in terms of neutron economy, transmutation and control of reactivity. We find that the online reprocessing brings most of its flexibility to this system, which is particularly well adapted to power generation with thorium. The study of transition scenarios to this fuel cycle quantifies the limits of a possible deployment from the present French power stock, and finally shows that a rational management of the available plutonium would be necessary in any case. (author)

  11. Neutronic and Isotopic Simulation of a Thorium-TRU's fuel Closed Cycle in a Lead Cooled ADS

    International Nuclear Information System (INIS)

    Garcia-Sanz, J. M.; Embid, M.; Fernandez, R.; Gonzalez, E. M.; Perez-Parra, A.

    2000-01-01

    The FACET group at CIEMAT is studying the properties and potentialities of several lead-cooled ADS designs for actinide and fission product transmutation. The main characteristics of these systems are the use of lead as primary coolant and moderator and fuels made by transuranics inside a thorium oxide matrix. The strategy assumed in this simulation implies that every discharge of the ADS will be reprocessed and would produce four waste streams: fission and activation products, remaining ''232 Th, produced ''233 U and remaining TRU's. The ''233 U is separated for other purposes; the remaining TRU are recovered altogether and mixed with the adequate amount of ''232 Th and fresh TRUs coming from LWR spent fuel. The simulations performed in this study have been focused primarily in the evolution of the fuel isotopic composition during and after each ADS burn-up cycle. (Author) 10 refs

  12. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  13. Thermoluminescence and sintering of ultra-pure {alpha} alumina doped with zirconium, thorium, calcium or cerium; Thermoluminescence et frittage de l'alumine {alpha} ultra-pure dopee par le zirconium, le thorium, le calcium, ou le cerium

    Energy Technology Data Exchange (ETDEWEB)

    Ferey, F

    2002-01-01

    Thermoluminescence is a technique of identification of the point defects that appear in a solid consecutively to its fabrication. The synthesis parameters of {alpha}-alumina that will be taken into account here are the atmosphere during thermal treatment (oxidising or reducing), and the effect of the dopants: zirconium, thorium, calcium or cerium. The aim of this work is to correlate the point defects to the reactivity of the powder, especially its sintering. The TL mechanisms of the dosimetric peak of {alpha}-alumina, around 200 deg C, were clarified: the trap is an aggregate of 2 point defects (V{sub al}-V{sub O}), and the recombination centre is Cr{sup 3+}. The sensibilizing effect observed for thorium, or for cerium under reducing atmosphere, is attributed to the presence of a large emission band in the blue-green domain. Chromium is the main impurity at the origin of the E' peak (360 deg C) of {alpha}-alumina. It is acting as trap and also as recombination centre. A mechanism of transfer of energy between Cr{sup 3+} and Ti{sup 4+} is also presented in order to explain the increase of the TL intensity of the E' peak when doping by a tetravalent cation. In the case of doping by calcium, TL allows the revelation of the phase CaAl{sub 12}O{sub 19}. A quenching was observed for {alpha}Al{sub 2}O{sub 3}:Ca and {alpha}Al{sub 2}O{sub 3}:Ce under reducing atmosphere. It is attributed to oxygen vacancies for the doping by calcium, and to the presence of Ce{sup 3+} for the doping by cerium. The alumina prepared under reducing conditions exhibit a perturbation of kinetics during sintering, and also abnormal grain growth in doped samples. This unusual kinetic is explained by a decrease in the concentration of aluminium vacancies under reducing atmosphere, conducting indirectly to a greater segregation of Si{sup 4+} at the grain boundaries, and to the formation of a liquid phase at the surface of grains. This phenomenon is amplified in the case of doping by

  14. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  15. Study on thorium removal from effluent by electrocoagulation

    International Nuclear Information System (INIS)

    Nath, Baidurjya; Swaroopa Lakshmi, Y.V.; Tiwari, S.K.; Setty, D.S.; Kalyanakrishnan, G.; Saibaba, N.

    2015-01-01

    Coagulation-flocculation, membrane separation and ion-exchange are traditional methods for treatment of radioactive wastewater generated primarily from the front end processes of the fuel cycle. Electrocoagulation presents a robust and novel alternative to conventional coagulation process. The present study involves the establishment of electrocoagulation as a treatment process for thorium bearing non-process effluents in batch mode. This involved an electrolytic reactor with iron electrodes. The non-process effluent was subjected to coagulation and floatation by Fe(II) ions dissolved from the anode with the resultant flocs floating on the surface after being captured by hydrogen gas bubbles generated at the cathode. The effect of various operational parameters like initial pH, residence time, current density and initial thorium concentration on the removal efficiency was investigated. Maximum decontamination factor obtained was of the order of 10 4 . (author)

  16. Radiological significance of thorium processing in manufacturing

    International Nuclear Information System (INIS)

    Davis, M.W.

    1985-01-01

    The study of thorium processing in manufacturing comprised monitoring programs at a plant where thorium dioxide was in use and another where the use of thorium nitrate had been discontinued. The measurements of the solubility in simulated lung fluid proved that both materials belonged in the Y Class with dissolution half-times greater than 500 days. Bioassay measurements of 20 subjects from both facilities proved that in vitro monitoring methods, urine, feces, hair and nails analysis were not sufficient indicators of thorium uptake. In vivo monitoring by phoswich and large sodium iodide detectors were proven to be good methods of determining thorium lung burdens. The thoron in breath technique was shown to have a lower limit of sensitivity than lung counting, however, due to lack of information regarding the thoron escape rate from the thorium particles in the lungs the method is not as accurate as lung counting. Two subjects at the thorium dioxide facility had lung burdens of 21+- 16 Bq and 29+- 24 Bq Th 232 and one at the thorium nitrate facility had a lung burden of 37+- 13 Bq. Improvements in the procedures and use of a glove box were among the recommendations to reduce the inhalation of thorium by workers at the thorium dioxide facility. Decontamination of several rooms at the thorium nitrate facility and sealing of the walls and floors were recommended in order to reduce the escape of thoron gas into the room air. The risk to non Atomic Radiation Workers was primarily due to thoron daughters in air while gamma radiation and thorium in air were less important. Conversely, at the thorium dioxide facility the inhalation of thorium in air was the most significant exposure pathway

  17. Economic Effect on the Plutonium Cycle of Employing {sup 235}U in Fast Reactor Start-Up; Incidence Economique du Demarrage des Reacteurs Rapides a l'Aide d'Uranium-235 sur le Cycle du Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Van Dievoet, J.; Egleme, M.; Hermans, L. [BELGONUCLEAIRE, Bruxelles (Belgium)

    1967-09-15

    factors, inventory factors) from one cycle to another, with a comparative study of the use of {sup 235}U in thermal and fast reactors, variations in the discounted fuel cycle costs from one cycle to another, and weight and characteristics of the recycled fuel, of the additional fuel required and of excess fuel. (author) [French] Le memoire presente les premiers resultats d'une etude entreprise dans le cadre d'un contrat d'association Euratom-Belgique et destinee a evaluer l'interet de l'alimentation de reacteurs rapides en uranium-235. Plusieurs possibilites se presentent pour le demarrage d'un reacteur rapide a l'aide d'uranium-235. 1. Le reacteur peut etre alimente en permanence avec de l'uranium enrichi, le plutonium produit servant a demarrer et a alimenter d'autres reacteurs; dans ce cas, l'uranium est recycle dans le reacteur en y ajoutant de l'uranium enrichi. 2. Le plutonium produit dans le reacteur peut etre partiellement recycle dans celui-ci, ainsi que l'uranium; dans ce cas, le reacteur se transforme progressivement en un reacteur au plutonium. Ces deux cas peuvent etre combines pour un reacteur a plusieurs zones d'enrichissement, ou l'on peut appliquer simultanement les deux politiques a des zones differentes, c'est-a-dire: alimenter, par exemple, la zone interne en uranium enrichi et recycler le plutonium dans la zone externe. Le mode de traitement du combustible irradie rend egalement le probleme complexe, selon que l'on traite ensemble ou separement le coeur et les couvertures axiales; de meme, pour un reacteur a plusieurs zones d'enrichissement, celles-ci peuvent etre traitees ensemble ou separement. Les calculs sont effectues a l'aide d'un code de calcul utilisant, pour lavpartie relative aux caracteristiques des reacteurs successifs, les coefficients d'equivalence definis par Baker and Ross et, pour la partie economique, la methode du cout actualise du cycle du combustible. Dans la premiere phase des travaux, une analyse approcheedu phenomene a ete

  18. Uranium and thorium mining and milling: material security and risk assessment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Zaitseva, L.

    2005-01-01

    Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or

  19. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  20. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  1. Contribution to the geochemical knowledge of the uranium-radium and thorium families in the southern Vosges. Applications of some results in the prospecting of uranium deposits; Contribution a la connaissance geochimique des familles uranium-radium et du thorium dans les Vosges meridionales. Application de certains resultats en prospection des gisements d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jurain, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This work's aim is to lead to a more accurate knowledge of the geochemistry of the Uranium-Radium and Thorium families in the Southern Vosges and to apply some of the results to the prospecting of uraniferous deposits: It has been showed: a bond between Calcium-Magnesium and Uranium-Thorium in the calco-alkaline granites. The host minerals of Uranium and Thorium are hornblende, biotite, titanite and epidote. a concentration of Uranium, at present time with secular disequilibrium in a thermal zone where the satellite mineralizations form an epithermal paragenesis. a disequilibrium of the Uranium-Radium family in the supergene minerals of the lead (phosphate and vanadate) showing the present circulations of Uranium. a bond between the radon grade of the spring waters and Uranium-Radium of the rocks. Such a relation allow to realize a prospecting method based on the determination of radioactive gases from the cold spring-waters of a common country. (author) [French] L'etude presentee ici a pour but de conduire a une connaissance plus precise de la geochimie des familles Uranium-Radium et Thorium dans les Vosges meridionales et d'appliquer certains resultats a la prospection des gites uraniferes. Il a ete mis en evidence: une liaison Calcium-Magnesium et Uranium-Thorium dans des granites calco-alcalins. Les mineraux hotes de l'Uranium et du Thorium sont: la hornblende, la biotite, le sphene, l'epidote. une concentration actuelle de l'Uranium en desequilibre seculaire dans une zone thermale ou les mineralisations satellites constituent une paragenese epithermale. un desequilibre de la famille Uranium-Radium dans des mineraux supergenes du plomb (phosphates et vanadates) prouvant les circulations actuelles de l'Uranium. une liaison entre la teneur en Radon des eaux de sources et celle en Uranium-Radium des roches. Une telle liaison permet de realiser une methode de prospection fondee sur le dosage du gaz radioactif des eaux de sources froides d'une region quelconque

  2. Contribution to the geochemical knowledge of the uranium-radium and thorium families in the southern Vosges. Applications of some results in the prospecting of uranium deposits; Contribution a la connaissance geochimique des familles uranium-radium et du thorium dans les Vosges meridionales. Application de certains resultats en prospection des gisements d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jurain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    This work's aim is to lead to a more accurate knowledge of the geochemistry of the Uranium-Radium and Thorium families in the Southern Vosges and to apply some of the results to the prospecting of uraniferous deposits: It has been showed: a bond between Calcium-Magnesium and Uranium-Thorium in the calco-alkaline granites. The host minerals of Uranium and Thorium are hornblende, biotite, titanite and epidote. a concentration of Uranium, at present time with secular disequilibrium in a thermal zone where the satellite mineralizations form an epithermal paragenesis. a disequilibrium of the Uranium-Radium family in the supergene minerals of the lead (phosphate and vanadate) showing the present circulations of Uranium. a bond between the radon grade of the spring waters and Uranium-Radium of the rocks. Such a relation allow to realize a prospecting method based on the determination of radioactive gases from the cold spring-waters of a common country. (author) [French] L'etude presentee ici a pour but de conduire a une connaissance plus precise de la geochimie des familles Uranium-Radium et Thorium dans les Vosges meridionales et d'appliquer certains resultats a la prospection des gites uraniferes. Il a ete mis en evidence: une liaison Calcium-Magnesium et Uranium-Thorium dans des granites calco-alcalins. Les mineraux hotes de l'Uranium et du Thorium sont: la hornblende, la biotite, le sphene, l'epidote. une concentration actuelle de l'Uranium en desequilibre seculaire dans une zone thermale ou les mineralisations satellites constituent une paragenese epithermale. un desequilibre de la famille Uranium-Radium dans des mineraux supergenes du plomb (phosphates et vanadates) prouvant les circulations actuelles de l'Uranium. une liaison entre la teneur en Radon des eaux de sources et celle en Uranium-Radium des roches. Une telle liaison permet de realiser une methode de prospection fondee sur le dosage du gaz radioactif des eaux de sources

  3. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  4. Investigation of thorium hydroxotrifluoroacetates

    International Nuclear Information System (INIS)

    Andryushin, V.G.; Samatov, A.V.; Chuklinov, R.N.; Shmidt, V.S.

    1984-01-01

    The precipitation process of thorium hydroxotrifluoroacetates in the Th(NO 3 ) 4 -HNO 3 -CF 3 COOH-NH 4 OH-H 2 O system in the pH range from 0.1 to 8.6 at a 100 g/l thorium concentration in it has been investigated. The curve of the pH dependence of the main thorium salts solubility in the pH=4.4 range exhibits a local maximum, the position of the latter being in complete accordance with its earlier established relation to the parameter of the ligand anion nucleophility. The composition of isolated hydroxotrifluoroacetate hydrates corresponds to the generic formula Th(OH)sub(x)(CFsub(3)COO)sub(4-x)xnHsub(2)O, where 3.0 >= x >= 1.5, and n=1.0-6.0. The density of the crystals obtained is measured and the thermal stability is studied. It is established, that, for the thorium hydroxotrifluoroacetate hydrates, the same general regularities in the effect of degree of hydrolysis and hydration on the position of decomposition temperature effects and on the density of compounds hold, as has been previously found in studying thorium- and plutonium hydroxosalts

  5. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  6. Drying characteristics of thorium fuel corrosion products

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.-E. E-mail: rzl@inel.gov

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 deg. C. Complete removal of chemisorbed water requires heating above 1000 deg. C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  7. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de

    2008-01-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T 1/2 =5.7y), known as meso thorium and Thorium-228(T 1/2 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  8. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  9. Minerals yearbook, 1991: Thorium. Annual report

    International Nuclear Information System (INIS)

    Hedrick, J.B.

    1992-10-01

    Domestic mine production data for thorium-bearing monazite are developed by the U.S. Bureau of Mines from a voluntary survey of U.S. operations entitled, 'Rare Earths, Thorium, and Scandium.' The one mine to which a survey form was sent responded, representing 100% of domestic production. Mine production data for thorium are withheld to avoid disclosing company proprietary data. Statistics on domestic thorium consumption are developed by surveying various processors and end users, evaluating import-export data, and analyzing Government stockpile shipments

  10. Thorium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main occurences of the thorium minerals of the Argentine Republic which have not been exploited, due to their reduced volume, are described. The thoriferous deposits have three genetic types: pegmatitic, hydrothermal and detritic, being the most common minerals: monazite, thorite and thorogummite. The most important thorium accumulations are located in Salta, being of less importance those of Cordoba, Jujuy and San Juan. (M.E.L.) [es

  11. Technology assessment HTR. Part 6. The radiological risks associated with the thorium-fuelled High Temperature Reactor. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Van Hienen, J.F.A.

    1996-06-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuel led LWR cycle was used. The structure of the report is as follows. In Chapter 2 the general methodology for assessing the radiological risks associated with nuclear installations is described. An overview is given of the measures commonly used to quantify these risks. In Chapter 3 an overview is given of the different stages of the reference uranium fuel led LWR cycle and the thorium fuel led HTGR cycle. In Chapter 4 a stage-by-stage analysis is given of the radiological risks associated with the two fuel cycles. Finally, in Chapter 5 an evaluation is made of the radiological risks associated with the LWR and HTGR cycles and with thorium and uranium fuels. In Appendix A the production and releases of 14 C for LWR and HTGR fuel cycle facilities is considered in detail. 11 figs., 10 tabs., 10 refs

  12. The Influences of Percent of Tributyl Phosphate and Ratio of Feed and Solvent on the Uranium-Thorium Extraction of Thorex Process

    International Nuclear Information System (INIS)

    Setyadji, Moch; Endang Susiantini

    2002-01-01

    The investigation of uranium and thorium extraction in water phase of thorex process first cycle using tributyl phosphate diluted in kerosine as extractant has been done. The one stage extractor was used. The effects of percent of tributyl phosphate and ratio of feed and solvent on the extraction efficiency and distribution coefficients of uranium and thorium were studied. The result of experiment showed that percent of tributyl phosphate and ratio of feed and solvent very influence on the extraction efficiency and distribution coefficients of uranium and thorium. The best results were reached at about 55% of tributyl phosphate and ratio of feed and solvent was 1:3. The extraction efficiencies of uranium and thorium and distribution coefficients of uranium and thorium at the condition above were 90% , 90.4% , 9.0 and 9.4. (author)

  13. Studies on the feasibility of the LWRs waste-thorium in-core fuel cycle in the Gas Turbine-Modular Helium Reactor

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    The capability to operate on LWRs waste constitutes one of the major benefits of the Gas Turbine-Modular Helium Reactor; in this paper, it has been evaluated the possibility to incinerate the LWRs waste and to simultaneously breed fissile 233 U by fertile thorium. Since a mixture of pure 239 Pu-thorium has shown a quite poor neutron economy, the LWRs waste-thorium fuel performance has been also tested when plutonium and thorium are allocated in different TRISO particles. More precisely, when fissile and fertile actinides share the same TRISO kernel, the resonance at 0.29eV of the fission and capture microscopic cross sections of 239 Pu diminishes also the absorption rate of fertile 232 Th and thus it degrades the breeding process. Consequently, in the present studies, two different types of fuel have been utilized: the Driver Fuel, made of LWRs waste, and the Transmutation Fuel, made of fertile thorium. Since, in the thermal neutron energy range, the microscopic capture cross section of 232 Th is about 80-100 times smaller than the fission one of 239 Pu, setting thorium in particles with a large kernel and LWRs waste in particles with a small one makes the volume integrated reaction rates better equilibrated. At the light of the above consideration, which drives to load as much thorium as possible, for the Transmutation Fuel they have been selected the JAERI TRISO particles packed 40%; whereas, for the Driver Fuel they have been tested different packing fractions and kernel radii. Since no configuration allowed the reactor to work, the above procedure has been repeated when fertile particles are packed 20%; the latter choice permits over one year of operation, but the build up of 233 U represents only a small fraction of the depleted 239 Pu. Finally, the previous configuration has been also investigated when the fertile and fissile fuels share the same kernel or when the fertile fuel axially alternates with the fissile one. (author)

  14. A new method for determination of trace amount thorium-spectrophotometric determination of thorium in aqueous phase by chlorophosphonazo-mA

    International Nuclear Information System (INIS)

    Xia Yuanxian; Qian Hesheng

    1986-01-01

    In this paper the spectrophotometric method for determination of trace amount of thorium in weak acidic medium by chlorophosphonazo-mA is described. The composition of the complex was estimated to be 1:4 by slope ratio method. The apparent molar absorption of thorium at 675 nm is 9.2 x 10 4 . Beer's law is obeyed for 0-12.0 μg of thorium in 10 ml solution. The coefficient of variation for thorium is 0.88%. The method has been applied to the determination of trace amounts of thorium in the extraction process of thorium

  15. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  16. Technology of getting of microspheric thorium dioxide

    International Nuclear Information System (INIS)

    Balakhonov, V.G.; Matyukha, V.A.; Saltan, N.P.; Filippov, E.A.; Zhiganov, A.N.

    1999-01-01

    There has been proposed a technique for getting granulated thorium dioxide from its salts solutions according to the cryogenic technology by the method of a solid phase conversion. It includes the following operations: dispersion of the initial solution into liquid nitrogen and getting of cryogranules of the necessary size by putting oscillations of definite frequency on a die device and by charging formed drops in the constant electric field; solid phase conversion of thorium salts into its hydroxide by treating cryogranules with a cooled ammonia solution, drying and calcination of hydroxide granules having got granulated thorium dioxide. At the pilot facility there have been defined and developed optimum regimes for getting granulated thorium dioxide. The mechanism of thorium hydroxide cryogranules conversion into thorium dioxide was investigated by the thermal analysis methods. (author)

  17. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  18. Hodgkin's disease following thorium dioxide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, A I; Kirk, M E [McGill Univ., Montreal, Quebec (Canada). Dept. of Pathology; Hutchison, J L [Montreal General Hospital, Quebec (Canada)

    1976-09-04

    Hodgkin's disease occurred in a 53-year-old man who, 25 years previously, had undergone cerebral angiography, for which thorium dioxide suspension (Thorotrast) was used. Deposits of thorium dioxide were noted in reticuloendothelial cells in various locations. An association between thorium dioxide administration and the subsequent development of malignant tumours and neoplastic hematologic disorders has previously been reported.

  19. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  20. 'Once through' cycles in the pebble bed HTR

    International Nuclear Information System (INIS)

    Teuchert, E.

    1977-12-01

    In the pebble bed HTR the 'Once Through' cycles achieve a favorable conservation of uranium resources due to their high burnup and due to the relatively low fissile inventory. A detailed study is given for cycles with highly enriched uranium and thorium, 20% enriched uranium and thorium, and for the low (approximately 8%) enriched cycle. The recommended cycle is based on the known THTR fuel element in the Th/U (93%) cycle. The variant with separate Seed elements and Breed elements presents the best pioneer in view of later recycling and thermal breeding. The minimum proliferation risk is achieved in the Th/U (20%) cycle basing on the fuel element type of the AVR, due to the low amount and high denaturization of the disloaded plutonium. (orig.) [de

  1. Magellanic Clouds Cepheids: Thorium Abundances

    Directory of Open Access Journals (Sweden)

    Yeuncheol Jeong

    2018-03-01

    Full Text Available The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC and the Small Magellanic Cloud (SMC, namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

  2. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  3. Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2012-11-01

    Full Text Available The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2 up to a fourth-order stream (67 km2. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon, Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was

  4. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  5. Thorium and health: state of the art

    International Nuclear Information System (INIS)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-01-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  6. Competitive biosorption of thorium and uranium by actinomycetes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Tsuruta, Takehiko

    2002-01-01

    The competitive biosorption of thorium and uranium by actinomycetes was examined. Of the actinomycetes tested, Streptomyces levoris showed the highest ability to sorb both thorium and uranium from aqueous systems. Thorium sorption was not affected by co-existed uranium, while uranium sorption was strongly hindered by co-existed thorium. The amounts of both thorium and uranium sorbed by Streptomyces levoris cells increased with an increase of the solution pH. Although the equilibrium isotherm of uranium biosorption is in similar manner as that of thorium biosorption, uranium was sorbed much faster than thorium. Biosorption isotherm of each metal ion could be well fitted by Langmuir isotherm taking the ionic charge of metal ions into account. The Langmuir isotherm for binary system did not explain completely the competitive biosorption of thorium and uranium by Streptomyces levoris. However, the results suggested that the ion species of both metals in the cells should be Th(OH) 2 2+ and UO 2 2+ , respectively. (author)

  7. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  8. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  9. Determination of natural thorium in urines

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Jammet, H.

    1959-01-01

    A procedure for the quantitative analysis of thorium in urine is described. After precipitation with ammonium hydroxide, dissolution of the precipitate, extraction at pH 4-4.2 with cupferron in chloroformic solution and mineralization, a colorimetric determination of thorium with thorin is performed. It is thus possible to detect about 2 γ of thorium in the sample. (author) [fr

  10. Separation and purification of uranium product from thorium in thorex process by precipitation technique

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Mukherjee, A.; Dhumwad, R.K.

    1989-01-01

    A sequential precipitation technique is reported for the separation of uranium and thorium present in the uranium product stream of a single cycle 5 per cent TBP Thorex Process. It involves the precipitation of thorium as oxalate in 1M HNO 3 medium at 60-70degC and after filtration, precipitation of uranium as ammonium diuranate at 80-90degC from the oxalate supernatant. This technique has several advantages over the ion-exchange process normally used for treating these products. In order to meet the varying feed conditions, this method has been tested for feeds containing 10 g/1 uranium and 1-50 g/1 thorium in 1-6M HNO 3 . Various parameters like feed acidities, uranium and thorium concentrations, excess oxalic acid concentrations in the oxalate supernatant, precipitation temperatures, precipitate wash volumes etc. have been optimised to obtain more than 99 per cent recovery of thorium and uranium as their oxides with less than 50 ppm uranium losses to ammonium diuranate filtrate. The distribution patterns of different fission products and stainless steel corrosion products during various steps of this procedure have also been studied. For simulating the actual Thorex plant scale operation, experiments have been conducted with 25g and 100g lots of uranium per batch. (author). 6 tabs., 8 figs., 22 refs

  11. Utilization of thorium in thermal reactors

    International Nuclear Information System (INIS)

    Srinivasan, K.R.; Nakra, A.N.

    1978-01-01

    Large deposits of thorium are found in India. 233 U produced by neutron capture in 232 Th is a more valuable fuel for thermal reactors than the plutonium that results from capture in 238 U. These two facts are the main reasons for the interest in utilizing thorium in power reactors. But natural thorium does not contain any fissile material and its capture cross section is nearly two and a half times that of 238 U. These have made the fuelling cost high. However, in certain conditions and certain types of reactors the costs are comparable with those using uranium fuel. The relative cost effectiveness of different fuels is discussed. Apart from long term interest, the short term interest of using thorium fuel in RAPP type reactors is also briefly described. Finally the reactor physics experiments using thorium fuel and their comparison with calculations are presented. (author)

  12. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  13. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  14. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  15. Potential of axial fuel management strategies in thorium-fuelled CANDU's

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1978-06-01

    Three axial fuel management strategies are compared for use in a CANDU-PHW reactor operating on a self-sufficient, equilibrium thorium cycle. Two of these strategies are familiar ones for uranium reactors, and the third seeks to take advantage of the nuclear characteristics of the Th 232 → U 233 transmutation chain to improve the economics of the fuel cycle by periodically removing the fuel from the reactor. This results in an approximately 50% increase in burnup and an approximately 15% decrease in heavy element fuel inventory at a channel power of 6 MW, relative to the other strategies. (author)

  16. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides

    International Nuclear Information System (INIS)

    Del Litto, B.

    1966-09-01

    The hydrolysis of thorium dicarbide leads to the formation of a complex mixture of gaseous and condensed carbon hydrides. The temperature, between 25 and 100 deg. C, has no influence on the nature and composition of the gas phase. The reaction kinetics, however, are strongly temperature dependent. In a hydrochloric medium, an enrichment in hydrogen of the gas mixture is observed. On the other hand a decrease in hydrogen and an increase in acetylene content take place in an oxidizing medium. The general results can be satisfactorily interpreted through a reaction mechanism involving C-C radical groups. In the same way, the hydrolysis of uranium-thorium-carbon ternary alloys leads to the formation of gaseous and condensed carbon hydrides. The variation of the composition of the gas phase versus uranium content in the alloy suggests an hypothesis about the carbon-carbon distance in the alloy crystal lattice. The variation of methane content, on the other hand, has lead us to discuss the nature of the various phases present in uranium-carbon alloys and carbon-rich uranium-thorium-carbon alloys. We have reached the conclusion that these alloys include a proportion of monocarbide which is dependent upon the ratio. Th/(Th + U). We put forward a diagram of the system uranium-carbon with features proper to explain some phenomena which have been observed in the uranium-thorium-carbon ternary diagram. (author) [fr

  17. Thorium-230 contamination

    International Nuclear Information System (INIS)

    Noey, K.C.; Liedle, S.D.; Hickey, C.R.; Doane, R.W.

    1989-01-01

    The authors are currently performing radiological surveys on approximately ninety properties in the St. Louis, Missouri area as part of the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program. The properties involved are the St. Louis Airport Site, Latty Avenue Properties, St. Louis Downtown Site, Coldwater Creek, and the associated roads and vicinity properties. The primary radioactive contaminant on these properties is thorium-230. Since field instrumentation is not available to detect the presence of alpha-emitting contamination in soil, soil samples are being collected and sent to an analytical laboratory for analysis. Thorium-230 analysis is costly and time-consuming, and as a result, soil sample analysis results are not available to help direct the field sampling program. This paper provides discussion of the manner in which the properties became radioactively contaminated, followed by a discussion of the difficulties associated with the detection of thorium-230. Finally, new methodologies for detecting alpha-emitting radionuclides in the field are described

  18. Small molten-salt reactors with a rational thorium fuel-cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Mitachi, Kohshi; Kato, Yoshio

    1992-01-01

    In the fission-energy utilization for solving global social and environmental problems including the 'Greenhouse Effect' in the next century, a new strategy should be introduced considering high safety and economy, simplicity, size-flexibility, anti-nuclear proliferation and terrorism, high temperature heat supply, etc., aiming to establish a rational breeding fuelcycle. Thorium Molten-Salt Nuclear Energy Synergetics based on [I] Th utilization, [II] fluid-fuel concept and [III] separation of fissile breeding and power generation functions would be one of the most promising approach. A design study of a standard Molten-Salt Reactor: FUJI-II (350 MWth, 155-161 MWe) ensuring fuel self-sustaining nature (conversion-ratio ∝ 1.0) in spite of small-size, and pilot-plant miniFUJI-II has been proceeded. (orig.)

  19. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  20. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  1. High priority nuclear data request list. The data for long-lived fission products, minor actinides and the thorium cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, J. [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France)

    2002-07-01

    This workshop is organised by the Research Group GEDEON together with CERN, OECD-NEA and the CFDN (French Committee for Nuclear Data). It is the continuation of the one at CERN on September 21 and 22, 1998, jointly organised with EC, GEDEON and OCDE-NEA. This last one is centred on the CERN proposal of a facility for neutron production up to 250 MeV, devoted to neutron data measurements. The first aim of the Paris workshop is to identify the present status of specific nuclear data relevant to innovative options (accelerator driven system - ADS and thorium) in the nuclear fuel cycle, beyond what has been gathered for standard reactors (PWR, FBR) and for the associated fuel cycles based on uranium and plutonium. The following topics were presented and discussed: 1. extension of present evaluated nuclear data files beyond 20 MeV needed to correctly describe the high energy part (up to approximately 200 MeV) of the spallation process used to generate the external neutrons needed for the sub-critical assemblies; 2. differential and integral cross section data in relation with the use of a thorium based; 3. the same for minor actinides and some long-lived fission residues likely to be destroyed in reactors; 4. the same for new type of materials such as lead or lead-bismuth, to be used as spallation target or as cooling, in relation with corrosion and irradiation effects. Beyond these specific issues, ADS will also take advantage of better known nuclear data coming from the existing reactors in operation. Very recent results related to spallation target physics such as neutron and residues production from heavy targets were also presented at this workshop. One very important aim of this workshop is also to bring physicists from different origin, especially from CERN, to cooperate in a program on nuclear data in relation with innovative options. This document brings together two articles entitled ''high priority nuclear data request list. The data for long lived

  2. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    CANDU reactor's high neutron economy to reuse spent LWR fuel without the need to separate, then enrich the contained fissile material. Thorium, can provide a significant extension to uranium resources in the longer term. It is of shorter-term interest in those countries possessing extensive thorium, resources, but lacking indigenous uranium reserves. The once-through thorium (OTT) cycle provides a bridge between current uranium-based fuel cycles, and a thorium, fuel cycle based on recycle of 233 U . The optimal OTT cycle is economical today, in terms both of money and uranium resources. This cycle creates a mine of valuable 233 U, safeguarded in the spent fuel, for future recovery predicated by economic or resource considerations. AECL has recently devised practical OTT strategies. (author)

  3. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    CANDU reactor's high neutron economy to reuse spent LWR fuel without the need to separate, then enrich the contained fissile material. Thorium can provide a significant extension to uranium resources in the longer term. It is of shorter-term interest in those countries possessing extensive thorium resources, but lacking indigenous uranium reserves. The once-through thorium (OTT) cycle provides a bridge between current uranium-based fuel cycles, and a thorium fuel cycle based on recycle of 233 U . The optimal OTT cycle is economical today, in terms both of money and uranium resources. This cycle creates a mine of valuable 233 U, safeguarded in the spent fuel, for future recovery predicated by economic or resource considerations. AECL has recently devised practical OTT strategies. (author)

  4. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  5. Thorium Th

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting thorium from monazites and determining it photometrically and complexometrically are described. Monazite is decomposed by fusion with sodium peroxide, then thorium and the totality of lanthanides are precipitated in the form of oxalates. After the oxalates have been broken down, thorium is determined photometrically with the aid of arsenazo 1, quercetin of 1-2(-pyridylazo)-resorcin. It takes 25 to 30 minutes to photometrically determine Th in monazites with the aid of arsenazo 2 (error: 3 to 5%). Arsenazo 2 is recommended for analysis of monazites containing 20 to 30% of lanthanides. Arsenazo 3 permits determining Th in zircon and in Nb-containing materials. In this case, the determination is possible in strongly acidic solutions, the ratio of arsenazo 3 to Th being 7.5:1. Arsenazo 3 can also be used in determining trace amounts of Th (1x10 -5 to 1x10 -4 %) in rocks, as well as in extraction-photometric determination of Th traces. The dyed compound of Th with arsenazo 3 is extracted with isoamyl alcohol in the presence of diphenylguanidinium chloride and monochloroacetic acid. The method permits determining Th at 1:5x10 8 (0.002 g/ml) dilution. Also described is the iodate-complexometric method for determining Th

  6. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  7. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  8. Thorium in occupationally exposed men

    International Nuclear Information System (INIS)

    Stehney, A. F.

    1999-01-01

    Higher than environmental levels of 232 Th have been found in autopsy samples of lungs and other organs from four former employees of a thorium refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Examination of the distribution of thorium among the organs revealed poor agreement with the distribution calculated from the dosimetric models in Publication 30 of the International Commission on Radioprotection (ICRP). Concentrations in the lungs relative to pulmonary lymph nodes, bone or liver were much higher than calculated from the model for class Y thorium and the exposure histories of the workers. Much better agreement was found with more recently proposed models in Publications 68 and 69 of the ICRP. Radiation doses estimated from the amounts of thorium in the autopsy samples were compatible with health studies that found no significant difference in mortality from that of the general population of men in the US

  9. Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi

    Directory of Open Access Journals (Sweden)

    Prayitno

    2017-11-01

    Full Text Available Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.

  10. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  11. Symbiotic energy demand and supply system based on collaboration between rare-earth and thorium utilization

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progressive economic growth as well as prodigious consumption of energy are expected among Asian countries. Nuclear power has myriad advantages, among them particularly being its status as a low carbon technology and therefore nuclear power would make a significant contribution to curtailing CO 2 emissions. However, the prospects for nuclear power are hindered by some unresolved problems: perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes. Thorium utilization as a nuclear fuel will serve as a cornerstone of circumventing such problems, because thorium produces less radioactive waste (i.e. less plutonium) and thus safety, which is of paramount concern, will be enhanced. The deployment of electric vehicles (EVs) as an alternative to supplant gasoline engine cars in the transportation network, will significantly contribute in the reduction of global CO 2 emissions. Rare-earth materials such as neodymium and dysprosium will be essential as a new material for electric automobiles. Thorium is often obtained as a by-product of rare-earth metals, but it is still not utilized as a nuclear fuel currently due to the lack of its own fissionable isotopes and as such, it cannot be employed in the production of nuclear weapons. Recent trends of nuclear disarmament and accumulation of plutonium from uranium fuel cycle can propel the deployment of thorium. The implementation capacity of thorium nuclear power is estimated to be about 392 GWe at 2050. The utilization of thorium will both help to provide clean energy and to supply rare-earth materials for clean automobiles. In order for us to effect the commercial deployment of thorium resources, establishment of an international framework to supply resources from developing countries as well as to supply technology from developed countries is indeed imperative. Herein, the author propose 'The Bank

  12. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  13. Conceptual design of a passively safe thorium breeder Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    Highlights: • This work proposes three possible designs for a thorium Pebble Bed Reactor. • A high-conversion PBR (CR > 0.96), passively safe and within practical constraints. • A thorium breeder PBR (220 cm core) in practical regime, but not passively safe. • A passively safe breeder, requiring higher fuel reprocessing and recycling rates. - Abstract: More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3 g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30 g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600 °C. Results show that high conversion ratios (CR > 0.96) and passive safety can be combined in

  14. Group cross sections in the resolved resonance region calculated for a CANDU-PHW reactor operating on closed thorium-uranium and thorium-plutonium-uranium fuel cycles

    International Nuclear Information System (INIS)

    Hamel, D.; Wilkin, G.B.

    1979-09-01

    Group cross sections in the resolved resonance region are commonly computed for each nuclide independently of other resonance nuclides present in the fuel mixture. While this technique is usually entirely adequate for uranium fuel cycles, it is necessary to establish its legitimacy for closed thorium fuel cycles topped with fissile uranium or plutonium by analysis of a number of representative cases. At the same time cross sections originating from WIMS (Winfrith Improved Multigroup Scheme) calculations are compared with values computed in this study. In this context, particular attention is paid to the adequacy of the lower boundary for the WIMS resonance treatment. All calculations are based on heavy nuclide cross sections from the ENDF/B-IV data compilaton (Evaluated Nuclear Data File). Appreciable interaction effects have been determined for all nuclides except for 232 Th. In most cases, these are due to the strong 232 Th resonance doublet at 21.8 eV and 23.5 eV but some effects also result from resonances of 234 U (5.19 eV, 48.75 eV), 236 U (5.45 eV), 242 Pu (2.67 eV) and others. The influence of mutual interaction on the infinite lattice multiplicaton factor is very small in comparison to the effects of self-shielding. WIMS cross sections do not always compare well with the values computed in the study, but discrepancies are in most cases related to the different sources of data. Interaction effects are not explicitly taken into account in WIMS. Several nuclides ( 233 Pa, 233 U, 240 Pu, 242 Pu) show appreciable self-shielding below the WIMS resonance region and are therefore not treated adequately. The impact of these discrepancies on the multiplication factor is relatively small, however, because of error cancellation. (author)

  15. Thoron and associated risks in the handling of thorium compounds

    International Nuclear Information System (INIS)

    Pradel, J.; Billard, F.

    1959-01-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10 -7 μc/cm 3 . However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [fr

  16. Synthesis and characterization of thorium(IV) and uranium(IV) complexes with Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Radoske, Thomas; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    We report herein the synthesis and characterization of several imine complexes of tetravalent thorium (Th(IV)) and uranium (U(IV)). The ligands investigated in this study are a Schiff base type, including the well-known salen ligand (H{sub 2}Le, Fig. 1). The complexation in solution was investigated by NMR measurements indicating paramagnetic effects of unpaired f-electrons of U(IV) on the ligand molecule. We also determined the solid-state molecular structures of the synthesized complexes by single crystal X-ray diffraction. The synthesized complexes show an eight-fold coordination geometry around the actinide center surrounded by two tetradentate ligands with 2N- and 2O-donor atoms.

  17. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility; Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium a n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Ferrant, L

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  18. The importance of thorium in the context of the generation in advanced reactors and the IPEN's experience

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Mindrisz, Ana C.; Freitas, Antonio A.

    2011-01-01

    thorium compounds and IPEN accumulated since the 60's a wide experience in the purification of thorium, obtained primarily from the monazite processing. Studies were also conducted on obtaining nuclear fuel based on thorium, the reduction of ThF 4 to metallic thorium, neutronic studies and proposition of reactor concepts based on the element. It should also be recorded that there was at IPEN, during this period, the production in pilot scale of over one hundred and seventy metric tons of thorium nitrate with high purity. In this paper, we present briefly the experience accumulated at IPEN-CNEN/SP-Brazil and the different areas that comprise the Thorium Fuel Cycle, and the possibilities and advantages of thorium use in the IV Generation Advanced Reactors. (author)

  19. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  20. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  1. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  2. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  3. Competitive biosorption of thorium and uranium by Micrococcus luteus

    International Nuclear Information System (INIS)

    Nakajima, A.; Tsuruta, T.

    2004-01-01

    Eighteen species of bacteria were screened for abilities to adsorb thorium and uranium. High adsorption capacity was observed for thorium by Arthrobacter nicotianae and Micrococcus luteus, and for uranium by Arthrobacter nicotianae. The adsorption of both thorium and uranium by Micrococcus luteus cells was rapid, was affected by the solution pH, and obeyed the Langmuir adsorption isotherm for binary systems in a competitive manner taking the ionic charge of the metal ion into account. The thorium selectivity in the competitive adsorption is assumed to be caused by the faster adsorption and the slower desorption rates of thorium than those of uranium. (author)

  4. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  5. Recovering of thorium contained in wastes from Thorium Purification Plant; Reaproveitamento do torio contido em residuos provenientes da Usina de Purificacao do Torio

    Energy Technology Data Exchange (ETDEWEB)

    Brandao Filho, D; Hespanhol, E C.B.; Baba, S; Miranda, L E.T.; Araujo, J.A. de

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author).

  6. Towards proliferation-resistant thorium fuels

    International Nuclear Information System (INIS)

    Alhaj, M. Yousif; Mohamed, Nader M.A.; Badawi, Alya; Abou-Gabal, Hanaa H.

    2017-01-01

    Thorium-plutonium mixture is proposed as alternative nuclear reactor fuel to incinerate the increasing stockpile plutonium. However, this fuel will produce an amount of uranium with about 90% 233U at applicable discharge burnups (60GWD/MTU). This research focuses on proposing an optimum non proliferative thorium fuel, by adding a small amount of 238U to reduce the attractiveness of the resultant uranium. Three types of additive which contain 238U were used: 4.98% enriched, natural and depleted uranium. We found that introducing uranium to the fresh thorium-plutonium fuel reduces its performance even if the uranium was enriched up to 5%. While uranium admixtures reduce the quality of the reprocessed uranium, it also increases the quality of the plutonium. However, this increase is very low compared to the reduced quality of uranium. We also found that using uranium as admixture for thorium-plutonium mixed fuel increases the critical mass of the extracted uranium by a factor of two when using only 1% admixture of uranium. The higher the percentage of uranium admixture the higher the critical mass of the reprocessed one.

  7. Polarographic determination of trace amounts of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Zaofan Zhao; Xiaohua Cai; Peibiao Li; Handong Yang

    1986-07-01

    A sensitive linear-sweep polarographic method for the determination of thorium is described. It is based on the thorium complex with Xylidyl Blue I (XBI) in a medium containing ethylenediamine, 1, 10-phenanthroline, oxalic acid and ninhydrin, at pH 10.5-11.5. The complex has been proved to be Th(XBI)/sub 2/, with log ..beta..'=9.6. The method can be used to determine trace amounts of thorium over the range 3.5x10/sup -8/-3x10/sup -6/M. The detection limit is 1x10/sup -8/M. A solvent extraction procedure is necessary to eliminate interference from several cations. The method has been applied to determination of traces of thorium in minerals, with good results.

  8. Thorium exposure in a niobium mine

    International Nuclear Information System (INIS)

    Fonseca, Adelaide M. Gondin da

    1995-01-01

    The workers involved in the mineral process to obtain Nb-Fe alloy are exposure to thorium. Internal contamination with radioactive materials is a common problem. This is caused by presence of U and Th and their natural decay series associated with the mine ore. The examples are the workers at the niobium mine located in the state of Goias. Twenty mine workers were evaluated using in vitro bioassay techniques. Samples of urine and feces from occupationally exposed mine workers were analyzed for thorium isotopes. The fecal samples corresponding to one complete excretion and urine sample corresponding to a 24 hours collection were analyzed using alpha spectrometry. The results of thorium excretion (feces) have shown that in all the samples the 228 Th excretions in high than 232 Th. Thorium concentration in all the urine samples were below limit of detection that is approximately 1 mBq/l. (author). 3 refs., 1 fig., 1 tab

  9. Parametric study of a thorium model

    International Nuclear Information System (INIS)

    Lourenco, M.C.; Lipsztein, J.L.; Szwarcwald, C.L.

    2002-01-01

    Models for radionuclides distribution in the human body and dosimetry involve assumptions on the biokinetic behavior of the material among compartments representing organs and tissues in the body. One of the most important problem in biokinetic modeling is the assignment of transfer coefficients and biological half-lives to body compartments. In Brazil there are many areas of high natural radioactivity, where the population is chronically exposed to radionuclides of the thorium series. The uncertainties of the thorium biokinetic model are a major cause of uncertainty in the estimates of the committed dose equivalent of the population living in high background areas. The purpose of this study is to discuss the variability in the thorium activities accumulated in the body compartments in relation to the variations in the transfer coefficients and compartments biological half-lives of a thorium-recycling model for continuous exposure. Multiple regression analysis methods were applied to analyze the results. (author)

  10. Extractive spectrophotometric determination of thorium

    International Nuclear Information System (INIS)

    Venkatesan, M.; Gopalakrishnan, V.; Ramanujam, A.; Nadkarni, M.N.

    1981-01-01

    An extractive spectrophotometric method has been standardized for the analysis of 0.2 to 1.6 milligrams of thorium present in nitric acid solutions. The method involves the extraction of thorium from nitric acid solutions into 0.5 M thenoyl trifluoro acetone (HTTA) in benzene and its direct estimation from the organic extract by spectrophotometry as Thoron colour complex. In this method, interference due to iron upto 5 milligrams can be suppressed by adding ascorbic acid in the ratio of 1:2 prior to HTTA extraction. Uranium(VI) does not interefere even when present in 2000 times the amount of thorium. Plutonium and cerium do not interfere at one milligram level whereas zirconium interferes in this method. The overall error variation and precision of this method has been determined to be +- 3.5%. (author)

  11. Thorium fuel performance assessment in HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J. [Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen, D-52072 Aachen (Germany); Kania, M.J.; Nabielek, H. [Forschungszentrum Jülich, D-52425 Jülich (Germany); Verfondern, K., E-mail: k.verfondern@fz-juelich.de [Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-05-01

    Thorium as a nuclear fuel is receiving renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTR development employed thorium together with high-enriched uranium. After 1980, most HTR fuel systems switched to low-enriched uranium. After completing fuel development for AVR and THTR with BISO coated particles, the German program expanded efforts on a new program utilizing thorium and high-enriched uranium TRISO coated particles for advanced HTR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of LTI inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with HTI-BISO coatings. The improved performance of the HEU (Th,U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 °C in normal operations and 1600 °C in accidents, with burnups up to 13% FIMA and fast fluences to 8 × 10{sup 25} m{sup −2} (E > 16 fJ), the results exceed the design limits on manufacturing and operational requirements for the German HTR Modul concept, which were: <6.5 × 10{sup −5} for manufacturing; <2 × 10{sup −4} for normal operating conditions; and <5 × 10{sup −4} for accident conditions. These

  12. Optimization of Heterogeneous Fuel Designs for Utilization of Thorium In PWRs To Enhance Proliferation Resistance and Reduce Waste

    International Nuclear Information System (INIS)

    Todosow, M.; Galperin, A.

    2002-01-01

    This paper presents a summary of the first stage of the project aimed to examine heterogeneous core design options for the implementation of the thorium- 233 U fuel cycle in pressurized water reactors (PWRs) and to identify the core design and fuel management strategies that will maximize the benefits from inclusion of thorium in the fuel. The project is carried out within a framework of Nuclear Energy Research Initiative (NERI) supported by the US Department of Energy (1). Principal investigators are M. Todosow from Brookhaven National Laboratory and M. Kazimi from Massachusetts Institute of Technology with contributions from Kurchatov Institute (Russia) and Ben-Gurion University of the Negev (Israel). The fuel cycle assessment concentrates on key measures of performance in several important areas including proliferation characteristics of the spent fuel, reliability, safety, cost, environmental impact, and licensing issues

  13. The ''Le Bouchet'' affair - lessons to be learned

    International Nuclear Information System (INIS)

    Lallement, R.

    1993-01-01

    From 1990 to 1992 the French Atomic Energy Commission (CEA) experienced a tumultuous conflict involving many different parties: environmentalist associations, local elected officials, regional or national media, government entities, and national elected officials. The object of this conflict was an area used for the storage of radium-containing waste generated by the Le Bouchet plant about 50 kilometers south of Paris. In the 1950s, the Le Bouchet plant processed uranium and thorium ore as well as uranium concentrates to produce the uranium required for the first fuels used in the reactors of the French nuclear energy program. It was also at Le Bouchet that the first milligrams of plutonium from the fuel of France's first nuclear reactor, Zoe, were extracted. The conflict highlighted broad issues as well as specific aspects of radioactive waste management. Specifically, it raised such concerns as the legal problem of defining low-level radioactive waste, public questions about the harmfulness of radioactivity, the demand to know where all low level radioactive waste storage facilities are located with a concomitant refusal to accept them anywhere, and the new requirements for communication with the affected populations and all their representatives. (author)

  14. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  15. Thorium: An energy source for the world of tomorrow ?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. The ThEC13 conference organized by iThEC at CERN last October has shown that thorium is seriously considered by developing countries as a key element of their energy strategy. Developed countries are also starting to move in the same direction. How thorium could make nuclear energy (based on thorium) acceptable to society will be discussed. Thorium can be used both to produce energy and to destroy nuclear waste. As thorium is not fissile, one elegant option is to use an accelerator, in so-called “Accelerator Driven Systems (ADS)”, as suggested by Carlo Rubbia. CERN’s important contributions to R&D on thorium related issues will be mentioned as well as the main areas where CERN could contribute to this field in the future.

  16. Thorium oxide dissolution kinetics for hydroxide and carbonate complexation

    International Nuclear Information System (INIS)

    Jardin, R.; Curran, V.; Czerwinski, K.R.

    2002-01-01

    The purpose of this project was to determine the kinetics and thermodynamics of thorium oxide dissolution in the environment. Solubility is important because it establishes an upper concentration limit on the concentration of a dissolved radionuclide in solution L1. While understanding the behavior of thorium fuels in the proposed repository at Yucca Mountain is most applicable, a more rigorous study of thorium solubility over a wide pH range was performed so that the data could also be used to model the behavior of thorium fuels in any environmental system. To achieve this, the kinetics and thermodynamics of thorium oxide dissolution under both pure argon and argon with P CO2 of 0. 1 were studied under the full pH range available in each atmosphere. In addition, thorium oxide powder remnants were studied after each experiment to examine structural changes that may affect kinetics

  17. The thorium phosphate diphosphate as matrix for radioactive waste conditioning: radionuclide immobilization and behavior under irradiation; Le phosphate diphosphate de thorium, matrice pour le conditionnement des dechets radioactifs: immobilisation de radionucleides, comportement sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pichot, Erwan [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-13

    The aim of this work was to perform successively the decontamination of liquid solutions and the final immobilization of radionuclide storage using the same matrix. For this, thorium phosphate-diphosphate (TPD) of the formula Th{sub 4}P{sub 6}O{sub 23}, is proposed as a very resistant to water corrosion matrix. A new compound, thorium phosphate hydrogeno-phosphate (TPHP) of the formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), nH{sub 2}O with n=3-7 was synthesized and characterized. Heated at 1100 deg.C it is transformed into the TDP. Ion exchange properties of TPHP were investigated. The exchange yields of imponderable caesium, strontium and americium ion onto TPHP (NaNO{sub 3} 0.1 M media at pH=6) are equal to 60% for the first one and 100% for the two others. The results interpreted in terms of ion-exchange led to determine selectivity coefficient values for each cation and suggested that only hydrated ions are exchanged. While the TPD is proposed for the high level nuclear waste storage, the irradiation effects, particularly structural modifications were studied using both {gamma} irradiation and charged particle irradiation. ESR and TL methods were carried out in order to identify radicals created during gamma radiation exposure. Correlation between ESR and TL experiments performed at room temperature clearly show three of PO{sub 3}{sup 2-} species and one POO{center_dot} species of free radicals. We have shown that Au-ion irradiation in the range of MeV energy involved TPD structure and chemical modifications. Important sputtering was interpreted in terms of local thermal chemical decomposition. We have shown, at room temperature, that the amorphization dose for heavy ion irradiation is between 0.1 to 0.4 dpa. (author) 146 refs., 46 figs., 21 tabs.

  18. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  19. A preliminary assessment of thorium as a fuel for thermal reactors

    International Nuclear Information System (INIS)

    Duret, M.F.; Halsall, M.J.

    1965-08-01

    This report presents a preliminary survey of the contributing factors to total fuel cost, for a variety of potentially economic fuel cycles. U 238 and Th 232 are considered as fertile materials with enrichments of U 235 , U 233 and plutonium. The total fuel cost comprises: (a) a fuel supply cost which is derived from a manufacturing cost and the fuel burnup, (b) as spent fuel credit, and (c) inventory charges. The interrelation of these three factors and their dependence on reactor flux, fuel burnup, the heat rating of the fuel and the interest rate are considered for each combination of fertile and fissile material. Results show inventory charges, spent fuel credit (hence processing costs) and fabrication costs have an important effect on the fuelling cost. In addition, using highly rated thorium-based fuels will affect reactor capital costs. Further, more detailed studies of reactor design, fuel design and fuel management schemes are now required to verify the attraction of using thorium as a reactor fuel. (author)

  20. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  1. Thorium research activities in Japan

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2015-01-01

    The nuclear energy policy in Japan is based on the Uranium-Plutonium fuel cycle with Light Water Reactors (LWR) and Fast Breeder Reactors (FBR). After the accident at Fukushima-Daiichi Nuclear Power Plant, the Japanese government recognizes the importance to ensure the flexibility for future nuclear power generation and then, it was specified in the latest Japanese strategic energy plan. Two research groups related to thorium fuelled nuclear systems and fuel cycle was set up in the Atomic Energy Society of Japan in 2013. One is a 'Research Committee on Nuclear Applications of Molten Salt'. The committee was established to discuss the current molten-salt technology including molten-salt cooled reactor, molten-salt fuelled reactor, accelerator driven system, fusion reactor blankets and dry reprocessing processes. Throughout two years discussion, the committee summarizes a current state of the art and issues of molten-salt application systems. Committee also discussed the handling technologies for molten-salt reactors especially in China and United Kingdom, issues of molten-salt application to fusion reactor, dry reprocessing of spent nuclear fuel, and non-nuclear application of molten-salt. Term of the committee will be extended for further research activities

  2. Fabrication routes for Thorium and Uranium233 based AHWR fuel

    International Nuclear Information System (INIS)

    Danny, K.M.; Saraswat, Anupam; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun

    2011-01-01

    India's economic growth is on a fast growth track. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear Energy is best suited to meet this demand without causing undue environmental impact. Considering the large thorium reserves in India, the future nuclear power program will be based on Thorium- Uranium 233 fuel cycle. The major characteristic of thorium as the fuel of future comes from its superior fuel utilization. 233 U produced in a reactor is always contaminated with 232 U. This 232 U undergoes a decay to produce 228 Th and it is followed by decay chain including 212 Bi and 208 Tl. Both 212 Bi and 208 Tl are hard gamma emitters ranging from 0.6 MeV-1.6 MeV and 2.6 MeV respectively, which necessitates its handling in hot cell. The average concentration of 232 U is expected to exceed 1000 ppm after a burn-up of 24,000 MWD/t. Work related to developing the fuel fabrication technology including automation and remotization needed for 233 U based fuels is in progress. Various process for fuel fabrication have been developed i.e. Coated Agglomerate Pelletisation (CAP), impregnation technique (Pellet/Gel), Sol Gel Micro-sphere Pelletisation (SGMP) apart from Powder to Pellet (POP) route. This paper describes each process with respect to its advantages, disadvantages and its amenability to automation and remotisation. (author)

  3. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  4. Thorium: An energy source for the world of tomorrow

    Directory of Open Access Journals (Sweden)

    Revol J.-P.

    2015-01-01

    Full Text Available To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. Nuclear energy, which produces no green house gases and no air pollution, should be a leading candidate. How nuclear energy, based on thorium rather than uranium, could be an acceptable solution is discussed. Thorium can be used both to produce energy and to destroy nuclear waste. The thorium conference, organized by iThEC at CERN in October 2013, has shown that thorium is seriously considered by some major developing countries as a key element of their energy strategy. However, developed countries do not seem to move fast enough in that direction, while global cooperation is highly desirable in this domain. Thorium is not fissile. Various possible ways of using thorium will be reviewed. However, an elegant option is to drive an “Accelerator Driven System (ADS” with a proton accelerator, as suggested by Nobel Prize laureate Carlo Rubbia .

  5. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    International Nuclear Information System (INIS)

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-01-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  6. Nuclear raw materials; Matieres premieres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, J. [Division of Nuclear Power and Reactors, International Atomic Energy Agency, Vienna (Austria)

    1970-01-15

    It is clear that in the next decades there will be a substantial and increasing demand for uranium to fuel nuclear power stations. In a developing country, the discovery and development of uranium resources can be of importance either for the development of national nuclear power or for the commercial export of uranium. As the time taken between the start of a uranium exploration program and the uranium production stage.may be of the order of 6 - 10 years, it is now opportune to start new exploration so that advantage of the increased demand in the mid-1970s may be achieved. Thorium will also be of interest, but in the more distant future when the thorium cycle for advanced converters and breeder reactors is fully developed [French] Il est certain qu' au cours des prochaines décennies la demande d'uranium pour les centrales nucléaires sera importante et ne cessera de croître. Dans un pays en voie de développement, la découverte et la mise en valeur de ressources d'uranium peut avoir une grande importance, soit en vue de produire de l'énergie nucléoélectrique, soit en vue d'exporter l'uranium. Etant donné que les délais entre le démarrage d'un programme de prospection de l'uranium et le début de la production peuvent être de l'ordre de six ans, il est actuellement opportun de commencer les opérations d'exploration pour pouvoir profiter de la demande accrue qui s' affirmera vers le milieu de la prochaine décennie. Le thorium présentera aussi un certain intérêt, mais à plus long terme. Il faut pour cela que le cycle du thorium pour convertisseurs avancés et surgénérateurs ait été pleinement développé. (author)

  7. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  8. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  9. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  10. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  11. Measurement of thorium content in gas mantles produced in India

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, P K [Bhabha Atomic Research Centre, Mumbai (India). Radiological Physics Div.; Chury, A J; Venkataraman, G [Bhabha Atomic Research Centre, Mumbai (India). Radiation Protection Services Div.

    1994-04-01

    Incandescent gas mantles, processed with thorium nitrate, were monitored for thorium content, using a 2 inch thick Nal(Tl) detector and detecting medium energy gamma radiations emitted by thorium daughters. Thirty different brands, manufactured in the country have been counted and most of them were found to contain thorium within the permissible limit specified by Atomic Energy Regulatory Board (AERB). (author). 5 refs., 1 fig., 3 tabs.

  12. Proposal and application of methodology for monitoring workers occupationally exposed to Thorium-232 and its decay products

    International Nuclear Information System (INIS)

    Dantas, Bernardo Maranhao

    1993-08-01

    Thorium-232 is the parent of one of the naturally occurring decay series and is widely spread on the earth's crust, being also present in higher concentrations at some deposits located mainly in Brazil and India. The occupational exposure to this radionuclide may occur in several steps of the thorium cycle. In Brazil, there is a large number of workers that should be monitored because they manipulate directly or indirectly different kinds of ores, raw materials and products containing significant amounts of thorium in its composition. In this study, the techniques developed specifically for the in vivo and in vitro monitoring of these workers are presented together with the application of these techniques to a group of selected workers classified as occupationally exposed. It is also presented the methodology by which the results obtained with these measurements are interpreted with the objective of identifying the main pathways of incorporation and reducing the internal doses to values as low as reasonably achievable. (author)

  13. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  14. Environmental and radiological aspects of thorium processing in India

    International Nuclear Information System (INIS)

    Rudran, Kamala; Paul, A.C.; Pillai, P.M.B.; Saha, S.C.; Vidyasagar, D.; Sawant, Pramilla D.

    1997-01-01

    India has an active programme for using thorium as third stage self- sustaining nuclear fuel. A significant amount of thorium is also used in the gas mantle industry. The presently estimated monazite deposits amounting to five million tonnes are distributed in the beach sands of south western and eastern coasts and some areas in Andhra Pradesh. The sands are processed for recovery of rare earth minerals and thorium. The mineral processing and thorium separation involves hazards to workers from exposure to radiation, radioactive and silica bearing dusts as well as from conventional chemicals used in the processing. Releases of wastes from the plants may necessitate environmental surveillance. The present paper reviews the hazards envisaged, steps taken to mitigate such hazards and achievements in this regard in the thorium industry in India. (author)

  15. Extraction of thorium from solution using tribenzylamine

    International Nuclear Information System (INIS)

    Whitehead, N.E.; Ditchburn, R.G.

    1975-01-01

    A method is described for isolating thorium from solutions in a state sufficiently pure for alpha spectroscopy. It parallels the method described by Moore and Thern (Radiochemical Radioanalytical Letters 19(2), 117-125, 1974), but uses tribenzylamine instead of Adogen 364. The method involves extracting thorium from a solution in 8M nitric acid, into a 6% w/v solution of tribenzylamine in toluene. The thorium is concentrated in a third, interfacial layer which forms. This layer is isolated, diluted with chloroform, and back extracted with 10M HC1. Overall yields range between 83 and 90% for one extraction. The acidic solution is taken down to near dryness, diluted until the pH is 2 and extracted into 1.2 ml of thenoyltrifluoroacetone in toluene. This solution is evaporated onto a stainless steel disk, flamed, and the disk may be used for alpha spectroscopy of thorium isotopes. (auth.)

  16. The environmental behaviour of uranium and thorium

    International Nuclear Information System (INIS)

    Sheppard, M. I.

    1980-08-01

    Uranium and thorium have had many uses in the past, and their present and potential use as nuclear fuels in energy production is very significant. Both elements, and their daughter products, are of environmental interest because they may have effects from the time of mining to the time of ultimate disposal of used nuclear fuel. To assess the impact on the environment of man's use and disposal of uranium and thorium, we must know the physical, chemical and biological behaviour of these elements. This report summarizes the literature, updating and extending earlier reviews pertaining to uranium and thorium. The radiological properties, chemistry, forms of occurrence in nature, soil interactions, as well as distribution coefficients and mode of transport are discussed for both elements. In addition, uranium and thorium concentrations in plants, plant transfer coefficients, concentrations in soil organisms and methods of detection are summarized. (auth)

  17. Environmental control technology for mining, milling, and refining thorium

    International Nuclear Information System (INIS)

    Weakley, S.A.; Blahnik, D.E.; Young, J.K.; Bloomster, C.H.

    1980-02-01

    The purpose of this report is to evaluate, in terms of cost and effectiveness, the various environmental control technologies that would be used to control the radioactive wastes generated in the mining, milling, and refining of thorium from domestic resources. The technologies, in order to be considered for study, had to reduce the radioactivity in the waste streams to meet Atomic Energy Commission (10 CFR 20) standards for natural thorium's maximum permissible concentration (MPC) in air and water. Further regulatory standards or licensing requirements, either federal, state, or local, were not examined. The availability and cost of producing thorium from domestic resources is addressed in a companion volume. The objectives of this study were: (1) to identify the major waste streams generated during the mining, milling, and refining of reactor-grade thorium oxide from domestic resources; and (2) to determine the cost and levels of control of existing and advanced environmental control technologies for these waste streams. Six potential domestic deposits of thorium oxide, in addition to stockpiled thorium sludges, are discussed in this report. A summary of the location and characteristics of the potential domestic thorium resources and the mining, milling, and refining processes that will be needed to produce reactor-grade thorium oxide is presented in Section 2. The wastes from existing and potential domestic thorium oxide mines, mills, and refineries are identified in Section 3. Section 3 also presents the state-of-the-art technology and the costs associated with controlling the wastes from the mines, mills, and refineries. In Section 4, the available environmental control technologies for mines, mills, and refineries are assessed. Section 5 presents the cost and effectiveness estimates for the various environmental control technologies applicable to the mine, mill, and refinery for each domestic resource

  18. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/IPEN-SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of σγ 0 = 14.6±0.7 mb was found, quite different from the σγ 0 = 174.2 ± 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  19. The possibility of precipitating thorium soap from aqueous solutions

    International Nuclear Information System (INIS)

    Drathen, H.

    1975-01-01

    The purpose of the analysis was firstly to determine the precipitation process of thorium with soap and the influence of foreign ions, secondly to explain the conditions for the best method of decontaminating waste waters contaminated by thoriuum. The result was that if thorium is precipitated with soap both thorium soaps and thorium hydroxide are formed. The proportion of each substance depends considerably upon the pH value. All the precipitation compounds exist independently. No adsorption or mixed crystal formation took place. By adding bivalent or multivalent cations the one-step decontamination factor increases to more than 20. Quantitatively, the decontamination of thorium contaminated waste waters can be carried out down to a thorium concentration of 10 -5 mol/1. Technical soaps provide the least expensive solution without displaying any qualitative disadvantages. The only disadvantage is that this method cannot be used continuously. Therefore ion exchangers provide a great advantage, although they are very expensive and have a limited capacity. The best solution, then, is a combination of ion exchangers and precipitation with soap. (orig.) [de

  20. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  1. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  2. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium nitrate purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of s ? o = 14.6 +/- 0.7 mb was found, quite different from the s ? o = 174.2 +/- 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  3. Thorium contents in soils, vegetables, cereals, and fruits

    International Nuclear Information System (INIS)

    Frindik, O.

    1989-01-01

    Thorium contents (α-activities of the naturally occurring isotopes Th-228, Th-230, and Th-232) were detrmined in soils, vegetables, cereals, and fruits. The thorium content of plants depends on the degree of contamination by soil resuspension and thus on the specific surface of the plants. The activity of the isotope Th-230 is almost the same as that of the main isotope Th-232. Th-228, with about the same activity as Th-232 in soil, increases to about 10-fold the activity in vegetables, 29-fold in sweet chestnuts and 740-fold in Brazil nuts. Thorium concentration factors from the soil to these vegetable products are calculated; they include the total concentration, not only the soluble portion of thorium. (orig.) [de

  4. Recovery of lead-208 radiogenic of residues of thorium with rare earth

    International Nuclear Information System (INIS)

    Ferreira, J.C.; Freitas, A.A. de; Seneda, J.A.F.; Carvalho, M.S. de; Abrao, A.

    2008-01-01

    In the middle of the years 1970 in IPEN, considerable work for the purification and conversion of uranium and thorium project, the production of thorium nitrate, a pilot scale from different compounds of Thorium was accomplished; This installation of thorium nitrate produced for national marketing, given the industry of incandescent lighting gas mangles.. The method used by this installation was the purification by solvent extraction with pulsed columns. The thorium was in the organic phase, which was reversed as of thorium nitrate with a high degree of purity. The aqueous phase of this chemical process, containing impurities, some not extracted thorium and virtually all rare earths was precipitated in the form of a hydroxide. This was called RETOTER hydroxide (residue of Thorium and Rare Earth). This residue containing thorium, rare earth and some impurities such as lead-208 product of the decay of thorium-232 were stored in the shed of safeguarding IPEN for further recovery of thorium and rare earth. In this work was studied the recovery of lead-208, nuclear material of interest, separating it by the technique of cementation , where it adds zinc metallic to an acid solution of RETOTER, holding up the lead on the surface of the metallic zinc. (author)

  5. Health status and body radioactivity of former thorium workers

    International Nuclear Information System (INIS)

    Stehney, A.F.; Polednak, A.P.; Rundo, J.; Brues, A.M.; Lucas, H.F. Jr.; Patten, B.C.; Rowland, R.E.

    1981-01-01

    The objectives of the study are: (1) to assess possible health effects of employment in the thorium milling industry by comparison of mortality and morbidity characteristics of former thorium workers with those of suitable general populations; (2) to examine disease outcomes by estimated exposure levels of thorium and thoron daughter products for possible radiation-related effects; and (3) to determine the body distribution of inhaled thorium (and daughters) and rare earths in humans by radioactivity measurements in vivo and by analysis of autopsy samples. The principal end points for investigation are respiratory disease and cancers of lung, liver, bone, and bone marrow

  6. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  7. Determination of Uranium and Thorium in Drinking and Seawater

    International Nuclear Information System (INIS)

    Rozmaric Macefat, M.; Gojmerac Ivsic, A.; Grahek, Z.; Barisic, D.

    2008-01-01

    Uranium and thorium are the first members of natural radioactive chain which makes their determination in natural materials interesting from geochemical and radioecological aspect. They are quantitatively determined as elements by spectrophotometric method and/or their radioisotopes by alpha spectrometry and ICP-MS. It is necessary to develop inexpensive, rapid and sensitive methods for the routine researches because of continuous monitoring of the radioactivity level. Development of a new method for the isolation of uranium and thorium from liquid samples and subsequent spectrophotometric determination is described in this paper. It is possible to isolate uranium and thorium from drinking and seawater using extraction chromatography or ion exchange chromatography. Uranium and thorium can be strongly bound on the TRU extraction chromatographic resin from 3 mol dm -3 HNO 3 (chemical recovery is 100 percent) and separated from other interfering elements (sodium, potassium, calcium, strontium etc). Their mutual separation is possible by using anion exchanger Amberlite CG-400 (NO 3 - form). From alcoholic solutions of nitric acid thorium can be strongly bound on the anion exchanger while uranium is much more weakly bound which enables its separation from thorium. After the separation, uranium and thorium are determined by spectrophotometric method with arsenazo III at 652 nm and 662 nm respectively. Developed method enables selection of the optimal mode of isolation for the given purposes.(author)

  8. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  9. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

  10. Bioaccumulation of uranium and thorium from the solution containing both elements using various microorganisms

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2006-01-01

    The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium

  11. Vil løyse global energikrise med thorium

    CERN Multimedia

    Aure, Gyri

    2007-01-01

    A professor from Bergen claims thorium can contribute to save the world from a global energy crisis. He wants Norway to construct the first accelerator driven reactor in the world powered by thorium. (5 pages)

  12. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    Science.gov (United States)

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spallation symbiont and thorium breeding

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The medium term world energy and environment countermeasures for 2020-2070 are not yet clearly established. The forecast of energy situation hereafter, its problems and the measures for solution are considered. World trend is removing borders, and the north-south problems are increasing the importance. The rational and clear idea with the support of concrete technology is required. The demand of energy will increase enormously at the annual rate of 2.3%. The world energy situation was forecast considering the increase of population, and it will be 115 TW at the end of the next century. The present status, problems and the countermeasures in nuclear fission energy technology are explained. The countermeasures should be based on three principles, namely Th-U-233 cycle, the utilization of molten fluoride fuel medium and the separation of molten salt breeders and molten salt reactors. Accelerator molten salt breeders, small molten salt reactors, the nuclear fuel cycle and the annihilation process for radioactive wastes are reported. The perspective that the nuclear energy system, in which the reactor safety, the measures to wastes and others are improved by the spallation-fission symbiont using thorium molten salt as the working medium, can be constructed is shown. (K.I.)

  14. Immobilization of thorium over fibroin by polyacrylonitrile (PAN)

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Eral, M.

    1997-01-01

    This report describes a process for immobilization of thorium over fibroin, which was used as a bio-adsorbant, by polyacrylonitrile. The amounts of thorium in aqueous solutions which may be leached in various aqueous ambients were detected by a spectrophotometer. The results show that polyacrylonitrile processes are feasible to immobilize spent fibroins. The leachability of the materials immobilized with polyacrylonitrile can meet the requirements of storage and final disposal. The leachability of thorium ions from immobilized spent fibroin was rather low for 8 months

  15. Analysis of the thorium inclusion in the fuel of a fast reactor cooled by lead

    International Nuclear Information System (INIS)

    Juarez M, L. C.; Francois L, J. L.

    2017-09-01

    In the present work, we first verified a model of the European reactor cooled with lead (ELFR). The calculations were made with the code Monte Carlo serpent 2.27 and the library of cross sections Jeff-3.1. For this verification, three neutron parameters were compared: the evolution of the neutron multiplication factor, the Doppler constant and the effect of the vacuum fraction of the refrigerant, obtaining a good approximation with the reference values. Subsequently, the inclusion of thorium as a fertile material within the fuel was analyzed and the same neutron parameters were compared with the original fuel. The evolution of criticality for the case of thorium fuel differs significantly with respect to that of the original fuel (without thorium); this is due mainly to the breeding of the fissile isotope 233 U. Therefore, is possible to have a longer fuel cycle, favoring the availability factor of the plant, without compromising the performance of the reactor since both the Doppler constant and the effect of the vacuum fraction of the refrigerant show a similar tendency to those of the original fuel, being negative in both cases. (Author)

  16. Production of thorium nitrate from uranothorianite ores

    International Nuclear Information System (INIS)

    Brodsky, M.; Sartorius, R.; Sousseuer, Y.

    1959-01-01

    The separation of thorium and uranium from uranothorianite ores, either by precipitation or solvent-extraction methods, are discussed, and an industrial process for the manufacture of thorium nitrate is described. Reprint of a paper published in 'Progress in Nuclear Energy' Series III, Vol. 2 - Process Chemistry, 1959, p. 68-76 [fr

  17. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  18. Road-map design for thorium-uranium breeding recycle in PWR - 031

    International Nuclear Information System (INIS)

    Shengyi, Si

    2010-01-01

    The paper was focused on designing a road-map to finally approach sustainable Thorium-Uranium ( 232 Th- 233 U) Breeding Recycle in current PWR, without any other change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. At first, the paper presented some insights to the inherence of Thorium-Uranium fuel conversion or breeding in PWR based on the neutronics theory and revealed the prerequisites for Thorium-Uranium fuel in PWR to achieve sustainable Breeding Recycle; And then, various Thorium-based fuels were designed and examined, and the calculation results further validated the above theoretical deductions; Based on the above theoretical analysis and calculation results, a road-map for sustainable Thorium-Uranium breeding recycle in PWR was outlined finally. (authors)

  19. The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa.

    Science.gov (United States)

    Wang, Dingna; Zhou, Sai; Liu, Li; Du, Liang; Wang, Jianmei; Huang, Zhenling; Ma, Lijian; Ding, Songdong; Zhang, Dong; Wang, Ruibing; Jin, Yongdong; Xia, Chuanqin

    2015-05-01

    The effects of different hydroponic conditions (such as concentration of thorium (Th), pH, carbonate, phosphate, organic acids, and cations) on thorium uptake by Brassica juncea var. foliosa were evaluated. The results showed that acidic cultivation solutions enhanced thorium accumulation in the plants. Phosphate and carbonate inhibited thorium accumulation in plants, possibly due to the formation of Th(HPO4)(2+), Th(HPO4)2, or Th(OH)3CO3 (-) with Th(4+), which was disadvantageous for thorium uptake in the plants. Organic aids (citric acid, oxalic acid, lactic acid) inhibited thorium accumulation in roots and increased thorium content in the shoots, which suggested that the thorium-organic complexes did not remain in the roots and were beneficial for thorium transfer from the roots to the shoots. Among three cations (such as calcium ion (Ca(2+)), ferrous ion (Fe(2+)), and zinc ion (Zn(2+))) in hydroponic media, Zn(2+) had no significant influence on thorium accumulation in the roots, Fe(2+) inhibited thorium accumulation in the roots, and Ca(2+) was found to facilitate thorium accumulation in the roots to a certain extent. This research will help to further understand the mechanism of thorium uptake in plants.

  20. Methodology of simultaneous analysis of Uranium and Thorium by nuclear and atomic techniques. Application to the Uranium and Thorium dosing in mineralogic samples

    International Nuclear Information System (INIS)

    Fakhi, S.

    1988-01-01

    This work concerns essentially the potential applications of 100 kW nuclear reactor of Strasbourg Nuclear Research Centre to neutron activation analysis of Uranium and Thorium. The Uranium dosing has been made using: 239-U, 239-Np, fission products or delayed neutrons. Thorium has been showed up by means of 233-Th or 233-Pa. The 239-U and 233-Th detection leads to a rapid and non-destructive analysis of Uranium and Thorium. The maximum sensitivity is of 78 ng for Uranium and of 160 ng for Thorium. The Uranium and Thorium dosing based on 239-Np and 233-Pa detection needs chemical selective separations for each of these radionuclides. The liquid-liquid extraction has permitted to elaborate rapid and quantitative separation methods. The sensitivities of the analysis after extraction reach 30 ng for Uranium and 50 ng for Thorium. The fission products separation study has allowed to elaborate the La, Ce and Nd extractions and its application to the Uranium dosing gives satisfying results. A rapid dosing method with a sensitivity of 0.35 microgramme has been elaborated with the help of delayed neutrons measurement. These different methods have been applied to the Uranium and Thorium dosing in samples coming from Oklo mine in Gabon. The analyses of these samples by atomic absorption spectroscopy and by the proton induced X-ray emission (PIXE) method confirm that the neutron activation analysis methods are reliable. 37 figs., 14 tabs., 50 refs

  1. Preparation of microcuries of 234-thorium

    International Nuclear Information System (INIS)

    Suner, A.; La Gamma de Batistoni, A.M.; Botbol, J.

    1974-11-01

    A procedure for the preparation of microcuries of 234 Th from hydrochloric acid solutions of uranium (VI) is described. A solution of uranyl chloride in radioactive equilibrium with 234 Th (older than 6 months) and having 232 Th as carrier, is percoled through a Dowex 50 Wx8 (H + ) resin bed, wherein is absorbed 85% of Th and some uranium, which is then desorbed with 10 N HCl. The thorium remains in the column and is extracted later with a 0,025 M SO 4 H 2 plus 1 M SO 4 (NH 4 ) 2 solution. The thorium solution is freed from sulfate by precipitation with ammonia, dissolving the precipitate with 10 N HCl, whose solution is treated with Dowex 2x8 resin. The ion exchanger absorbs the anionic impurities and the thorium obtained is of high chemical and radiochemical purity. (author)

  2. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Science.gov (United States)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  3. Remeasurement of thorium-230 in the pore water of Lacnor tailings

    International Nuclear Information System (INIS)

    Snodgrass, W.J.; Hart, D.R.

    1990-02-01

    A resampling of the Lacnor tailings management area was undertaken under a comprehensive quality assurance programme to establish levels of thorium 230 in pore water. A quality assurance programme was established for field sampling, sample handling and transport, and laboratory procedures and reporting. The external audit was used to evaluate analytical bias (on synthetic and field samples) and precision (by comparison of duplicate-duplicate results). Accuracy was assessed using synthetic samples. The external audit indicates that thorium 230 measurements by the main laboratory are not significantly different from the interlaboratory average within standard statistical limits. The results of the audit are based on measurement of environmental samples and known synthetic samples. This shows that present and previous measurements of thorium 230 varying from 0,1 to 150 Bq/L are valid data. A qualitative interpretation of the controls on thorium 230 geochemistry is provided in terms of control by thorium 232 and thorium dioxide(c) solid phase. Generic dose estimates for consumption of water containing thorium 230 are made but require refinement ot account for the actual pH of the drinking water and the degree of dilution of the pore water. The results of this project indicate that the performance of the laboratory that will conduct future thorium 230 measurements can be assessed satisfactorily with a smaller scale external laboratory assurance programme. The programme should include replicate samples sent to each laboratory and interlaboratory comparison on samples having high and low values of thorium 230

  4. Thorium prospect of placer deposits in Koba area and its surroundings

    International Nuclear Information System (INIS)

    Ngadenin; Fd Dian Indrastomo; Widodo

    2012-01-01

    The objective of the present study of the thorium in placer of Koba, Central Bangka District. Bangka Belitung Province and its surrounding is to find out thorium prospect in alluvial deposits. The study method are geological and radiometrical mapping, grain counting and thorium grade analysis of pan concentrated. Result of the research reveals that lithology of the investigation area compose of meta sandstone unit with radiometric value of 35 c/s - 200 c/s, granite intrusion with radiometric value of 140-550 c/s and alluvial with radiometric value of 40-300 c/s SPP2NF. Content of monazite in the pan concentrated is approximately 7.54 %, content of thorium in pan concentrated of 1410 ppm, covered alluvial deposits of about 400 kilometers square with average thickness 3.77 meters. According to the study thorium prospect in Koba area is feasible to be Based on the type of deposit (placer) which are relatively easy to be mined at low cost, high content of monazite and thorium so that the prospect thorium Koba feasible to develop. (author)

  5. The thorium alloys in aeronautics: from material analysis to regulation application

    International Nuclear Information System (INIS)

    Laroche, P.; Cazoulat, A.; Gerasimo, P.

    1999-01-01

    The thorium handled in aeronautics is a mixing in variable proportion of different thorium isotopes and its daughter products, but the regulation considers only two alpha emitters (Th-232 and Th-228): the thorium being considered as a natural radioactive substance, the legislation and the activities authorised are less restrictive than for artificial elements, it is a paradoxical situation because the thorium has the annual limit of intake the lowest of the regulation. (N.C.)

  6. Tradeoffs in fuel cycle performance for most promising options - 15346

    International Nuclear Information System (INIS)

    Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.

    2015-01-01

    A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233 U instead of just 239 Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows

  7. Validation of main nuclear libraries used in thorium reactors using the Serpent code

    International Nuclear Information System (INIS)

    Faga, Lucas J.

    2017-01-01

    The purpose of this work is to validate the library of the Serpent standard database for systems containing U-233, U-235, Th-232, Pu-239 and Pu-240. The project will support the other projects of the newly created study group of Nuclear Engineering Center (CEN) of Instituto de Pesquisas Energéticas e Nucleares (IPEN), linked to the study of several types of reactors and their application in thorium cycles, a subject that gains more and more visibility, due to strong and potential promises of energy revolution. The results obtained at the end of the simulations were satisfactory, with the multiplication factors being effective close to 100 PCM of the values provided by the benchmarks, as expected for a validated library. The minimum distance between these values was 2 PCM and the maximum of 280 PCM. The final analysis demonstrates that the ENDF / B-VII library has validated nuclear data for the isotopes of interest and may be used in future thorium study group projects

  8. Study on Thorium Hidroxide and Ammonium Diuranate precipitation

    International Nuclear Information System (INIS)

    Damunir; Sukarsono, R; Busron-Masduki; Indra-Suryawan

    1996-01-01

    Thorium hydroxide and ammonium diuranate precipitation studied by the reaction of mixed thorium nitrate and uranyl nitrate using ammonium hydroxide. The purposes of this research was study of pH condition. U/Th ratio and NH 4 OH concentration on the precipitation. Mixed of thorium nitrate and uranyl nitrate 50 ml was reacted by excess ammonium hydroxide 2 - 10 M, pH 4-8, 40-80 o C of temperature and 5 - 100 % ratio of U/Th. The best of precipitation depend on thorium and uranium content on the precipitation. The experiment result for the best condition of precipitation was 25 % of ratio U/Th, pH 6 - 8, 60-80 o C of temperature, and 6 - 10 M concentration of ammonium hydroxide, was produced precipitate by 3,938 - 5,455 weight percent of mean concentration of U and 22,365-31,873 weight percent of mean concentration of Th

  9. Thorium (IV) toxicity of green microalgae from Scenedesmus and Monoraphidium genera

    International Nuclear Information System (INIS)

    Queiroz, Juliana Cristina de

    2009-01-01

    The toxicity of thorium by two green microalgae species, Monoraphidium sp. and Scenedesmus sp was studied. During the toxicity tests, the microalgae cultures were inoculated in ASM-I culture medium in the presence and absence of thorium (cultures at pH 8.0 and 6.0 in the absence of thorium, - control - and at pH 6.0 for thorium concentrations ranging from 0.5 to 100.0 mg/L Th). Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with the help of software developed by the group during the experiments. The difference in pH value in the culture medium did not affect the growth of the microalgae, and pH 6.0 was chosen as a reference in order not to compromise solubility and speciation of thorium in solution. The toxicity of the metal over the species was observed just for thorium concentrations over 50.0 mg/L. A Monoraphidium sp. culture containing 6.25x10 5 microorganisms/mL reached a final concentration of 5.52x10 7 microorganisms/mL in the presence of thorium in the concentration of 10.0 mg/L. If we consider the 100.0 ppm thorium solution reached a final concentration of 8.57x10 6 microorganisms/mL. Control tests indicated a final concentration of 2.51x10 7 microorganisms/mL at the end of the growth. Scenedesmus sp. cells proved to be more resistant to the presence of thorium in solution. Low concentrations of the radionuclide favored the growth of these microalgae. A culture containing 7.65x10 5 microorganisms/mL reached a final concentration of 2.25x10 6 microorganisms/mL, in the absence of thorium in the medium. Toxicological tests indicated a final culture concentration of 5.87x10 6 microorganisms/mL in the presence of 0.5 mg/L thorium. The software used for comparison of direct count method proved to be very useful for the improvement of accuracy of the results obtained and a decrease in the uncertainty in counting. Beyond these advantages it also allowed recording of the data. From the present results one can conclude, that the presence

  10. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility

    International Nuclear Information System (INIS)

    Ferrant, L.

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as 232 Th, 234 U, 233 U, 237 Np, 209 Bi, and nat Pb relative to 235 U et 238 U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  11. Advanced epithermal thorium reactor (AETR) physics; Physique d'un reacteur au thorium, a neutrons epithermiques, de type perfectionne (AETR); Fizika usovershenstvovannog o nadteplovogo torievogo reaktora; Fisica del reactor epitermico de tipo avanzado, alimentado con torio (AETR)

    Energy Technology Data Exchange (ETDEWEB)

    Campise, A. V. [Atomics International, Canoga Park, CA (United States)

    1962-03-15

    The AETR concept is reviewed in reference to existing theory, nuclear parameters, and potential neutron economy. The effect of thorium resonance capture in graphite-moderate d systems with median absorption energies in the range from 0.10 to 100 keV have been studied. Narrow-resonance (NR) and wide-resonance (NRIA) formulations are used to obtain the temperature-dependent effective resonance integral of thorium rods which are expressed as equivalent multi-group cross-sections. The need for nuclear data in the intermediate energy range led to design and con- struction of a critical assembly. Nuclear design of this assembly emphasizes the importance of cross-section data and the theoretical interpretation of these experimental results, both pertinent to the design of an AETR. The accuracy of the analytical techniques has been demonstrated in the analysis of ZPR-III experimental results. Three heat-transfer configurations are compared using doubling time as an optimizing parameter. The effect of Pa{sup 233} and uranium-isotope s production on relative neutron economy, potential breeding ratios, and burn-up characteristics are evaluated in regard to the uncertainties in the nuclear cross-sections. (author) [French] L'auteur analyse la conception de l'AETR du point de vue de la theorie actuelle, des parametres nucleaires et du bilan potentiel de neutrons. On a etudie l'effet de la capture par resonance dans le thorium, dans des systemes ralentis au graphite pour des energies d'absorption moyennes comprises entre 0,10 et 100 keV. On utilise des formules de resonance etroite et de resonance large pour obtenir l'integrale de resonance effective en fonction de la temperature, relative aux barres de thorium dont on tient compte dans ces calculs en les exprimant sous forme des sections efficaces multigroupes equivalentes. Pour obtenir les donnees nucleaires indispensables pour la gamme d'energies intermediaires, on a ete amene a etudier et a construire un ensemble critique. L

  12. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  13. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  14. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors; Comparação de ciclos abertos de urânio e óxidos mistos de tório-urânio utilizando reatores avançados

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Letícia C.; Maiorino, José R., E-mail: goncalves.leticiac@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste.

  15. Thorium Nitrate Stockpile--From Here to Eternity

    International Nuclear Information System (INIS)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry, J. W.; Pecullan, M.; Reilly, F. K.

    2003-01-01

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile

  16. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    International Nuclear Information System (INIS)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.

    2013-01-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  17. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  18. LFTR: in search of the ideal pathway to thorium utilization-development program and current status

    International Nuclear Information System (INIS)

    Soon, Benjamin

    2015-01-01

    Thorium has gained substantial attention as a potential energy source that could rival and eventually replace fossil fuels as humanity's primary energy source. This could not have come at a more opportune time as concerns about global climate change from CO 2 emissions and the approaching spectre of finite fossil fuel resources create serious challenges for the continuation of our advanced industrial societies, which are reliant on readily available and affordable energy. Thorium also potentially represents the catalyst with which the nuclear industry could reinvent itself and finally gain widespread public acceptance. There are many opinions on how to utilize thorium as a fuel, but the question of what constitutes an 'ideal' pathway has mostly been under-emphasized. Many specific characteristics of the thorium fuel cycle can differ significantly depending on the conditions and methodologies of utilization; characteristics such as safety, efficiency, waste profile and volume, and fissile protection can vary greatly according to reactor design and utilization philosophy. With thorium, we have been given an opportunity to start over, a blank slate. Therefore, in imagining the 'Thorium Economy' to come, it behoves the scientific and engineering communities to consider the most 'elegant' solution physically possible-what constitutes the 'ideal' and is it possible to reconcile it with what is both economically and technically practical? The characteristics desired of an 'ideal' nuclear reactor, in the areas of safety, efficiency, economy, and sustainability, and the 5 key design choices that could enable such a reactor will be discussed. This will be followed by an overview of the Liquid Fluoride Thorium Reactor, a 2-fluid Molten Salt Reactor currently under development by Flibe Energy in the United States. LFTR is a direct descendant of the MSRE, which was developed at Oak Ridge National Laboratory (ORNL) in the

  19. Thorium determination by x-ray fluorescence spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1991-11-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP/n-dodecane) solutions is described. The thin film technique for sample preparation and a suitable internal standard had been used. The best conditions for Thorium determination had been established studying some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions. With the established conditions, thorium was concentration range of to 200 g Th/L and in organic solutions (2-63g Th/L) with 1,5% of precision. The accuracy of the proposed method was 3% in aqueous and organic phases. The detection limit was 1,2μg thorium for aqueous solutions and 1,4μg for organic solutions. Uranium, fission products, corrosion products and Thorex reagent components were studied as interfering elements in the thorium analysis. The matrix effect was also studied using the Thorex process simulated solutions. Finally, the method was applied to thorium determination in irradiated thorium solutions with satisfactory results. (author)

  20. Thorium--uranium cycle ICF hybrid concept

    International Nuclear Information System (INIS)

    Frank, T.G.

    1978-01-01

    The results of preliminary studies of a laser-driven fusion-fission hybrid concept utilizing the 232 Th- 233 U breeding cycle are reported. Neutron multiplication in the breeding blanket is provided by a region containing 238 UO 2 and the equilibrium concentration of 239 PuO 2 . Established fission reactor technology is utilized to determine limits on operating conditions for high-temperature fuels and structures. The implications of nonproliferation policies for the operation of fusion-fission hybrid reactors are discussed

  1. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  2. High-quality thorium TRISO fuel performance in HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich GmbH (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH (Germany); Technische Hochschule Aachen (Germany); Nabielek, Heinz; Kania, Michael J.

    2013-11-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10{sup 25} n/m{sup 2} (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10{sup -5} for manufacturing, 2 x 10{sup -4} for normal operating conditions, and 5 x 10{sup -4

  3. High-quality thorium TRISO fuel performance in HTGRs

    International Nuclear Information System (INIS)

    Verfondern, Karl; Allelein, Hans-Josef; Nabielek, Heinz; Kania, Michael J.

    2013-01-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O 2 TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10 25 n/m 2 (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10 -5 for manufacturing, 2 x 10 -4 for normal operating conditions, and 5 x 10 -4 for accident conditions. These

  4. Experiences in running solvent extraction plant for thorium compounds [Paper No. : V-5

    International Nuclear Information System (INIS)

    Gopalkrishnan, C.R.; Bhatt, J.P.; Kelkar, G.K.

    1979-01-01

    Indian Rare Earths Ltd. operates a Plant using thorium concentrates as raw material, employing hydrocarbonate route, for the manufacture of thorium compounds. A small demonstration solvent extraction plant designed by the Chemical Engineering Division, B.A.R.C. is also being operated for the same purpose using a partly purified thorium hydrocarbonate as raw material. In the solvent extraction process, separation of pure thorium is done in mixer settlers using 40% mixture of tri-butyl phosphate in kerosene. Though a comparatively purer raw material of hydrocarbonate than thorium concentrate is used, heavy muck formation is encountered in the extraction stage. Production of nuclear grade thorium oxide has been successful so far as quality is concerned. The quality of thorium nitrate suffers in the yellow colouration and high phosphate content, the former being only partly controlled through the use of pretreated kerosene. When a larger solvent extraction plant is to be designed to use thorium concentrates as raw material, some of the problems encountered will be considered. (author)

  5. Recent trends of plutonium deposition observed in Japan: comparison with naturallithogenic radionuclides, thorium isotopes

    International Nuclear Information System (INIS)

    Hirose, K.; Igarashi, Y.; Aoyama, M.

    2005-01-01

    Plutonium in monthly deposition samples from 2000 to end of 2003 collected to Tsukuba (the Meteorological Research Institute), Japan is reported, together with monthly thorium deposition. The annual deposition of 239,240 Pri during the past 18 years. ranged from 1.7 to 7.8 mBq m -2 y -1 shows no systematic inter-annual variation. However, a maximum annual 239,240 Pu deposition (7.8 mBq m -2 y -1 ) was observed in 2002. On the other hand, monthly 239,240 Pu depositions show a typical seasonal variation with a maximum in spring season (March to April), which corresponds to the seasonal cycle of generation of dust storms in the East Asian arid area. Thorium, which is a typical lithogenic radionuclide, reflects soil-derived particles in the atmospheric dust. The monthly Th deposition showed a typical seasonal trend with a maximum in spring and minimum in summer. The 230 Th/ 232 Th activity ratios in the deposition samples significantly differed from that in surface soils collected in Tsukuba area, which means that a significant part of thorium in deposition samples is not derived from suspension of local soil particles. The result reveals that the resent 239,240 Pu deposition observed in Japan are attributed to resuspension of deposited plutonium; resuspended plutonium originates from the East Asian continent desert and arid areas. These findings suggest that a significant amount of soil dust observed in Tsukuba is attributable to the long-range transport of continental dust from the East Asian arid areas. Plutonium in deposition samples as does thorium would become a proxy of the environmental change in the Asian continent.

  6. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates; Experience Critique pour l'Etude d'un Reacteur a Haute Temperature, Refroidi par un Gaz et son Application a la Determination des Taux d'Absorption du Thorium; Kriticheskij opyt, postavlennyj na vysokotemperaturnom reaktore s gazovym okhlazhdeniem, i primenenie ego dlya opredeleniya stepeni pogloshcheniya toriya; Experimento Critico Efectuado en un Reactor de Elevada Temperatura Refrigerado por Gas y su Aplicacion para Calcular los Indices de Absorcion del Torio

    Energy Technology Data Exchange (ETDEWEB)

    Bardes, R. G.; Brown, J. R.; Drake, M. K.; Fischer, P. U.; Pound, D. C.; Sampson, J. B.; Stewart, H. B. [General Dynamics Corporation,San Diego, CA (United States)

    1964-04-15

    the fact that the thorium is dispersed in graphite and the usual cadmium-ratio technique is difficult to apply. Comparison of experimental and theoretical results shows excellent agreement over a range of variables. In addition, the results of both activation and reactivity measurements of Doppler coefficient are in agreement, a fact which is felt to be significant in view of the disparity between results from these two techniques in the literature. (author) [French] Lors de l'etude du reacteur HTGR a haute temperature refroidi par un gaz, et de son premier prototype a Peach Bottom, la General Atomic Division de la societe General Dynamics a decide qu'il fallait proceder a une experience critique pour obtenir certaines donnees d'entree necessaires pour l'analyse nucleaire. Aux fins de l'etude nucleaire theorique, les besoins particuliers en donnees d'entree relatives aux absorptions par le thorium ont amene les ingenieurs a concevoir un assemblage experimental critique compose d'un reseau central entoure d*une region tampon et d'une region de commande. Ce type.d'assemblage, dans lequel on peut creer le spectre a mesurer dans le reseau central relativement petit ayant la geometrie voulue, permet d'obtenir des donnees d'entree tres diverses pour les etudes de projets nouveaux, au point de vue de l'analyse nucleaire. Le memoire indique les avantages particuliers que presente cette methode par rapport a celle qiu consiste a construire une maquette, ainsi que le role de la theorie pour determiner quelles experiences sont le plus utiles et comment utiliser ensuite ces experiences dans la verification des procedes d'etude. Les auteurs ont mis au point deux methodes relativement nouvelles qui peuvent etre utilisees avec l'assemblage decrit ci-dessus: une methode d'oscillation de la reactivite pour determiner le coefficient Doppler pour le thorium; une methode d'activation pour determiner a la fois l'integrale de resonance pour le thorium disperse dans le graphite et ses

  7. Report on intercomparisons S-14, S-15, and S-16 of the determination of uranium and thorium in thorium ores

    International Nuclear Information System (INIS)

    Pszonicki, L.; Hanna, A.N.; Suschny, O.

    1983-06-01

    Twenty-nine laboratories from 18 countries took part in this intercomparison, organized by the IAEA's Analytical Quality Control Service, to help laboratories engaged in this task to check the reliability of their results. An additional aim was to establish the concentrations of thorium and uranium in three large batches of thorium ores and certifying them as reference materials. The evaluation was based on 438 individual results (108 laboratory means) for thorium, and on 412 individual results (106 laboratory means) for uranium. The number of laboratory means per element and per sample varied from 34 to 38. The methods most frequently used in the determination of both elements were neutron activation analysis and radiometry. They were followed by spectrophotometry and X-ray fluorescence analysis for thorium and by fluorimetry, X-ray fluorescence analysis and spectrophotometry for uranium determination, respectively. The relative uncertainty of all computed overall medians which were used as the best estimations of true values, does not exceed +-10% and +-5% for the concentration values below and above 0.1%, respectively

  8. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  9. Interpretation of thorium bioassay data

    International Nuclear Information System (INIS)

    Juliao, L.M.Q.C.; Azeredo, A.M.G.F.; Santos, M.S.; Melo, D.R.; Dantas, B.M.; Lipsztein, J.L.

    1994-01-01

    A comparison have been made between bioassay data of thorium-exposed workers from two different facilities. The first of these facilities is a monazite sand extraction plant. Isotopic equilibrium between 232 Th and 238 Th was not observed in excreta samples of these workers. The second facility is a gas mantle factory. An isotopic equilibrium between 232 Th and 228 Th was observed in extra samples. Whole body counter measurements have indicated a very low intake of thorium through inhalation. As the concentration of thorium in feces was very high it was concluded that the main pathway of entrance of the nuclide was ingestion, mainly via contamination through dirty hands. The comparison between the bioassay results of workers from the two facilities shows that the lack of Th isotopic equilibrium observed in the excretion from the workers at the monazite sand plant possibly occurred due to an additional Th intake by ingestion of contaminated fresh food. This is presumably because 228 Ra is more efficiently taken up from the soil by plants, in comparison to 228 Th or 232 Th, and subsequently, 228 Th grows in from its immediate parent, 228 Ra. (author) 5 refs.; 3 tabs

  10. Recovery and purification of rare earth elements and thorium

    International Nuclear Information System (INIS)

    Sungur, A.; Saygi, Z.; Yildiz, H.

    1985-01-01

    Rare earth elements and thorium found in the low-grade Eskisehir-Beylikahir ore have been recovered by HCl leaching, Lanthanides and thorium were separated and purified from the leach solutions through the precipitation sequence as double sulphate, hydroxide and oxalate. The Ln 2 O 3 and Th(OH) 4 products, finally obtained contained 36% Ce and 65% Th. The analysis of rare earth elements, thorium and other present ingredients were carried out by instrumental neutron activation analysis, atomic absorption spectroscopy, vis-spectroscopy and gravimetry. (author)

  11. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  12. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  13. Depth-Resolved Cathodoluminescence of Thorium Dioxide

    Science.gov (United States)

    2013-03-01

    plutonium-239 (239Pu)-based nuclear weapons. Thorium also results in less highly radioactive waste in comparison to the uranium fuels. Thorium is four...diameters (1/4 – 3/8”) (Mann & Thompson, 2010). The 99.99% ThO2 powder was placed into the ampoule with a basic mineralizer such as cesium fluoride...conversion ranging from 1 pA/V to 1 mA/V. The electrical noise is further reduced by cooling the PMT housing unit with liquid nitrogen as seen in

  14. Fuel cycle flexibility in Advanced Heavy Water Reactor (AHWR) with the use of Th-LEU fuel

    International Nuclear Information System (INIS)

    Thakur, A.; Singh, B.; Pushpam, N.P.; Bharti, V.; Kannan, U.; Krishnani, P.D.; Sinha, R.K.

    2011-01-01

    The Advanced Heavy Water Reactor (AHWR) is being designed for large scale commercial utilization of thorium (Th) and integrated technological demonstration of the thorium cycle in India. The AHWR is a 920 MW(th), vertical pressure tube type cooled by boiling light water and moderated by heavy water. Heat removal through natural circulation and on-line fuelling are some of the salient features of AHWR design. The physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Our recent efforts have been directed towards a case study for the use of Th-LEU fuel cycle in a once-through mode. The discharged Uranium from Th-LEU cycle has proliferation resistant characteristics. This paper gives the initial core, fuel cycle characteristics and online refueling strategy of Th-LEU fuel in AHWR. (author)

  15. The comparative distribution of thorium and plutonium in human tissues

    International Nuclear Information System (INIS)

    Singh, Narayani P.; Shawki Amin Ibrahim; Cohen, Norman; Wrenn, McDonald E.

    1978-01-01

    Thorium is the most chemically and biologically similar natural element to the manmade element plutonium. Both are actinides, and for both the most stable valency state is +4, and solubility in natural body fluids is low. They are classified together in ICRP Lung Model. The present paper deals with the question of whether or not the analogy between the two actinides in terms of deposition and retention in human tissues is a good one. Preliminary results on the thorium contents ( 228,230 Th and 232 Th) of three sets of human tissues from a western U.S. town containing a uranium tailings pile are compared with the reported values of plutonium content of human tissues from the general populations who are exposed to environmental plutonium from fallout of nuclear detonations. Samples were taken at autopsy where sudden death had occurred. For the three isotopes of thorium, the ratio of the content of each (pCi/organ, normalized by organ weight to ICRP Reference Man) in lung to lymph nodes varies from 2-25 for individuals with a mean of 8; this is similar to that we infer from the literature for 239 , 240 Pu which suggests a ratio of lung to lymph nodes with a mean of approximately 7. However, the relative thorium contents of lung and liver are dissimilar, lung/liver for thorium being 3.5 and for plutonium 0.2 to 0.1. Similarly, the ratios of thorium and plutonium content of liver and bone vary significantly; the ratio for thorium is 0.1 and for plutonium 0.8 to 0.5. The most significant observation at this stage is that the relative accumulation of thorium in human liver is much less than that of plutonium. Some of the plausible reasons will be discussed. (author)

  16. Le détritisme carbonate profond dans le Crétacé inférieur du Sud-Est français. Ses rapports avec l'eustatisme

    OpenAIRE

    Ferry , Serge

    1987-01-01

    Mémoire HS n° 13 - Géologie Alpine : Le détritisme dans le Sud-Est de la France - Colloque Association des Géologues du Sud-est - Grenoble 11-12 décembre 1986; 10 cycles eustatiques sont définis dans le Crétacé inférieur du Sud-Est français. Sur les plates-formes carbonatées, ils correspondent aux principales séquences "klupféliennes" de comblement, pour lesquelles le moteur tectonique (à-coups de subsidence) est mis en doute. Ces cycles ne sont repérables dans les séries de bassin que si l'a...

  17. Economics and utilization of thorium in nuclear reactors

    International Nuclear Information System (INIS)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers

  18. Technical soaps - a possibility of decontaminating thorium-contaminated waste waters

    International Nuclear Information System (INIS)

    Drathen, H.; Erichsen, L. v.

    1977-01-01

    Thorium-contaminated waste waters showing a concentration of thorium higher than 10sup(-5) mol/l can be quantitatively decontaminated by adding soaps. Concentrations of impurity ions of both tap and sea waters have been taken into consideration. As there is no difference between soaps and soap mixtures concerning the quantity of precipitation rates, technical soaps are from the economic point of view best suited for decontaminating thorium-contaminated waste waters. Having a soap concentration of 200% of the stoichiometric amount of thorium and a concentration of impurity ions of 10sup(-2) mol/l, it is assumed that decontamination factors of more than 20 can be reached in one step. (orig.) [de

  19. Heavy water reactors on the once-through uranium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the once-through uranium fuel cycle for use in early comparisons of alternate nuclear systems. The denatured thorium fuel cycle is discussed in a companion paper. Information for this paper was developed under an ongoing program, and more complete reporting of the evaluation of the heavy water reactor and its fuel cycles is planned toward the end of the year

  20. The TMSR as actinide burner and thorium breeder

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Allibert, M.; Ghetta, V.

    2007-01-01

    Molten Salt Reactors (MSRs) are one of the six systems retained by Generation IV as a candidate for the next generation of nuclear reactors. Molten Salt Reactor is a very attractive concept especially for the Thorium fuel cycle which allows nuclear energy production with a very low production of radio-toxic minor actinides. Studies have thus been done on the Molten Salt Breeder Reactor (MSBR) of Oak-Ridge to re-evaluate this concept. They have shown that the MSBR suffers from major drawbacks concerning for example safety and reprocessing, drawbacks incompatible with any industrial development. On the other hand, the advantages of the Thorium fuel cycle were too attractive not to look further into it. With these considerations, we have reassessed the whole concept to propose an innovative reactor called Thorium Molten Salt Reactor (TMSR). Many parametric studies of the TMSR have been carried out, correlating the core arrangement and composition, the reprocessing performances, and the salt composition. In particular, by changing the moderation ratio of the core the neutron spectrum can be modified and placed anywhere between a very thermalized neutron spectrum and a relatively fast spectrum. Even if the epithermal TMSR configurations have not been completely excluded by our calculations, our studies have shown that the reactor design where there is no graphite moderator inside the core appears to be the most promising in terms of safety coefficients, reprocessing requirements, and breeding and deployment capabilities. Larger fissile matter inventories are necessary in such a reactor configuration compared to the thermalized TMSR configurations, but the resulting deployment limitation could be solved by using transuranic elements as initial fissile load. This work is based on the coupling of a neutron transport code called MCNP with the materials evolution code REM. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves

  1. Thorium converter (ThorCon) - a doable molten salt reactor

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2015-01-01

    ThorCon mass-producible nuclear power plants are being built to generate electricity cheaper than coal, at a scale to make a real improvement in world poverty and environment, now. ThorCon irradiated materials and fuel salt are designed to be replaced in four-year cycles with no impact on electricity generation. This flex-fuel plant and its replaceable reactor cans can operate with mixtures of thorium and uranium at multiple enrichments. Fuel salt can be NaF/BeF 2 or LiF/BeF 2 if available. ThorCon's design exceeds current nuclear power safety practice. The team calls for regulatory participation in rigorous testing of a full-scale prototype to develop licensing guidance

  2. Potential use of thorium through fusion breeders in the Indian context

    International Nuclear Information System (INIS)

    Srinivasan, M.; Basu, T.K.; Subba Rao, K.

    1991-01-01

    The Indian Nuclear Programme is based on a three stage strategy: the first stage of about 10 GWe comprises of natural uranium fuelled Pressurised Heavy Water Reactors (PHWRs); the second stage would consist of Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) to be fuelled with plutonium generated in the first stage PHWRs and the third stage is envisaged to be based on advanced converters/breeders operating on the Th/U-233 cycle. It has generally been assumed that the initial inventory of U-233 for the third stage reactors would be generated in the blankets of LMFBRs containing thorium. But the success of this strategy depends crucially on the attainment of LMFBR doubling times as short as 14 years. The progress registered in recent years in the magnetic confinement of fusion plasmas has opened up the prospects of developing Fusion Breeders for the direct conversion of fertile 232 Th into fissile 233 U using the 14 MeV neutron released in the (D-T) fusion reaction. A detailed study of the dependence of the 233 U production characteristics as well as energy cost of fissile fuel production of such systems on parameters such as plasma energy gain Q, blanket neutron multiplication has been carried out. The growth rate dynamics of the symbiotic combination of 233 U generating fusion breeders with PHWRs operating on the Th/U-233 cycle in the so called near-breeder regime has been examined. 95% of the energy generated by PHWRs operating with Th/ 233 U fuel would arise from thorium consumption rather than fission of the initially loaded 233 U. A few sub-engineering breakeven fusion breeders producing U-233 at an energy cost well under 200 MeV per atom are adequate to give the requisite nuclear capacity growth rates in conjunction with such near breeder PHWRs. This corresponds to only a 5% diversion of the grid electrical power for the operation of such fusion breeders. In summary the symbiotic combination of a few fusion breeders with a number of PHWRs gives fresh hopes

  3. Transformation using peroxide of a crude thorium hydroxide in nitrate for mantle grade

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de; Carvalho, Fatima Maria Sequeira de; Ferreira, Joao Coutinho; Abrao, Alcidio

    2002-01-01

    An alternative process for the recovery and purification of thorium starting from a crude thorium hydroxide as the precursor is outlined in this paper. Its composition is 60.1% thorium oxide (ThO 2 ), 18.6% rare earth oxides (TR 2 O 3 ), and common impurities like silicium, iron, titanium, lead and sodium. This material was produced industrially from the monazite processing in Brazil and has been stocked since several years. The crude thorium hydroxide is treated with hot nitric acid and after the digestion and addition of floculant it is filtered for the separation of the insoluble fraction. Using this nitrate solution, the thorium peroxide is precipitated after adjustment of pH and controlled addition of hydrogen peroxide. The final thorium peroxide is dissolved with nitric acid and the resulting thorium nitrate is mantle grade quality. Rare earth elements are recovered from the thorium peroxide filtrate. The main process parameters for the peroxide precipitation, like pH and temperature and main the results are presented and discussed. (author)

  4. Concepteur Web | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Gérer l'ensemble du cycle de conception, y compris l'architecture technique, le plan du site, l'interface de l'utilisateur, la conception de la base de données, toute la programmation et la documentation. Effectuer l'évaluation des besoins, la création de prototypes, la conception, le codage, les essais et le débogage. Définir et ...

  5. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    Science.gov (United States)

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  6. Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers.

  7. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  8. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  9. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  10. Preparation of Ceramic-Grade Thorium-Uranium Oxide; Preparation d'un melange d'oxydes de thorium et d'uranium propre a la fabrication de combustible ceramique; Izgotovlenie keramicheskogo torievo-uranovogo okisla; Preparacion de mezclas de oxidos de uranio y torio, de tipo ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Cogliati, G.; De Leone, R.; Ferrari, S.; Gabaglio, M.; Liscia, A. [Centro Studi Nucleari della Casaccia, Rome (Italy)

    1963-11-15

    que pour le recyclage de matieres de ce genre. Le procede consiste tout d'abord a reduire le nitrate d'uranyle en nitrate d'uranium (IV). On utilise comme agents reducteurs de l'hydrogene gazeux et de l'acide formique; on ajoute de l'uree pour prevenir la formation d'acide nitreux qui catalyse la reoxydation de l'uranium (IV). On peut employer comme catalyseurs le platine et le palladium. Les auteurs donnent des indications sur un processus continu au cours duquel on ajoute de l'acide formique et de l'uree a la solution qui est ensuite rechauffee avant d' etre passee dans une colonne remplie de.pastilles d'a lumine de 3,17 x 3,17 mm contenant 0,5% en poids de platine. Ils fournissent egalement des renseignements sur l'influence du debit, de la temperature et de la concentration de l'acide formique et de l'uree, ainsi que sur la duree de vie du catalyseur et l'empoisonnement. La precipitation d'un oxalate de thorium et d'uranium(IV) constitue la deuxieme phase. Les auteurs mentionnent l'influence de l'acide oxalique sur le rapport thorium/uranium, ainsi que ce l le de la temperature et du vieillissement surtles caracteristiques de la precipitation et du filtrage et sur les proprietes ceramiques des poudres obtenues. La mise a feu a ete faite dans une atmosphere reductrice et dans une atmosphere oxydante. Ces essais preliminaires ont abouti a la mise au point de deux methodes normalisees pour la fabrication d'elements ceramiques, a savoir la methode du pressage a froid puis frittage et la methode par extrusion et frittage. L'aptitude au frittage des differentes poudres a fait l'objet d'essais selon les deux methodes susmentionnees. Avec certaines des poudres, on a obtenu des densites depassant 95% de la valeur theorique; des essais de reproductibilite ont ete concluants. (author) [Spanish] Los autores han estudiado un metodo para preparar cuerpos sinterizados, compuestos por una mezcla de oxido de torio y uranio, a partir de una solucion de nitrato de torio y de nitrato

  11. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  12. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  13. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  14. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  15. An optical chemical sensor for thorium (IV) determination based on thorin

    International Nuclear Information System (INIS)

    Rastegarzadeh, S.; Pourreza, N.; Saeedi, I.

    2010-01-01

    A selective method for the determination of thorium (IV) using an optical sensor is described. The sensing membrane is prepared by immobilization of thorin-methyltrioctylammonium ion pair on triacetylcellulose polymer. The sensor produced a linear response for thorium (IV) concentration in the range of 6.46 x 10 -6 to 9.91 x 10 -5 mol L -1 with detection limit of 1.85 x 10 -6 mol L -1 . The regeneration of optode was accomplished completely at a short time (less than 20 s) with 0.1 mol L -1 of oxalate ion solution. The relative standard deviation for ten replicate measurements of 2.15 x 10 -5 and 8.62 x 10 -5 mol L -1 of thorium was 2.71 and 1.65%, respectively. The optode membrane exhibits good selectivity for thorium (IV) over several other ionic species and are comparable to those obtained in case of spectrophotometric determination of thorium using thorin in solution. A good agreement with the ICP-MS and spiked method was achieved when the proposed optode was applied to the determination of thorium (IV) in dust and water samples.

  16. An optical chemical sensor for thorium (IV) determination based on thorin.

    Science.gov (United States)

    Rastegarzadeh, S; Pourreza, N; Saeedi, I

    2010-01-15

    A selective method for the determination of thorium (IV) using an optical sensor is described. The sensing membrane is prepared by immobilization of thorin-methyltrioctylammonium ion pair on triacetylcellulose polymer. The sensor produced a linear response for thorium (IV) concentration in the range of 6.46 x 10(-6) to 9.91 x 10(-5)mol L(-1) with detection limit of 1.85 x 10(-6)mol L(-1). The regeneration of optode was accomplished completely at a short time (less than 20s) with 0.1 mol L(-1) of oxalate ion solution. The relative standard deviation for ten replicate measurements of 2.15 x 10(-5) and 8.62 x 10(-5)mol L(-1) of thorium was 2.71 and 1.65%, respectively. The optode membrane exhibits good selectivity for thorium (IV) over several other ionic species and are comparable to those obtained in case of spectrophotometric determination of thorium using thorin in solution. A good agreement with the ICP-MS and spiked method was achieved when the proposed optode was applied to the determination of thorium (IV) in dust and water samples.

  17. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  18. Effect of Thorium on Growth and Uptake of Some Elements by Maize Plant

    International Nuclear Information System (INIS)

    Al-Shobaki, M.E.E.

    2012-01-01

    A pot experiment (sand culture) was carried out to investigate the effect of thorium on maize dry matter yield, contents and uptake of N,P ,K, Na and Fe and thorium accumulation in maize plant.The pots were contaminated by thorium as Thorium Nitrate(Th (NO 3 ) 4 ,H 2 O)at concentrations 0,5,10,11,12,13,14,15 and 50 ppm. Pots irrigated by 1/10 Hogland solution for 15 days, increased tol/4 Hogland solution after that.The results show that the dry matter (shoot, root and whole plant)decreased with increasing thorium concentration in soil up to 12 ppm and slightly increased with increasing Th to 13 ppm . The Nitrogen content and its uptake decreased with increasing thorium concentration in media growth up to 11 ppm .They were slightly increased at Th concentration between 11-14 ppm in maize shoot and root. The shoots always contained N-content and uptake more than that found in roots . P- uptake decreased in both shoots and roots with increasing in thorium concentration in media growth.

  19. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Pengran; Jia Xiaoyu; Duan Taicheng; Xu Jingwei; Chen Hangting

    2010-01-01

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl 2 , NH 4 NO 3 , EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH 4 OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  20. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Guo Pengran [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Jia Xiaoyu; Duan Taicheng; Xu Jingwei [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); Chen Hangting, E-mail: guopengran@gmail.co [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2010-09-15

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl{sub 2}, NH{sub 4}NO{sub 3}, EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH{sub 4}OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  1. Determination of traces of thorium in ammonium/sodium diuranate by ICP-AES method

    International Nuclear Information System (INIS)

    Nair, V.R.; Kartha, K.N.M.

    1999-01-01

    Full text: Indian Rare Earths Ltd., Alwaye, produces ammonium diuranate from the thorium concentrate, obtained during monazite processing. This process involves a series of steps. The final uranium product obtained always contains microgram amounts of thorium as impurity. An analytical procedure has been standardised for the estimation of microgram amounts of thorium in ammonium/sodium diuranate. The method involves solvent extraction of uranium by using a tertiary amine followed by the determination of thorium by ICP-AES method in the raffinate. The recoveries of thorium were checked by standard addition to the uranium matrix. Limit of detection is adequate for the analysis of nuclear grade material

  2. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  3. Uranium and thorium recovery from a sub-product of monazite industrial processing

    International Nuclear Information System (INIS)

    Gomiero, L.A.; Ribeiro, J.S.; Scassiotti Filho, W.

    1994-01-01

    In the monazite alkaline leaching industrial process for the production of rare earth elements, a by-product is formed, which has a high concentration of thorium and a lower but significant one of uranium. A procedure for recovery of the thorium and uranium contents in this by-product is presented. The first step of this procedure is the leaching with sulfuric acid, followed by uranium extraction from the acid liquor with a tertiary amine, stripping with a Na Cl solutions and precipitation as ammonium diuranate with N H 4 O H. In order to obtain thorium concentrates with higher purity, it is performed by means of the extraction of thorium from the acid liquor, with a primary amine, stripping by a Na Cl solution and precipitation as thorium hydroxide or oxalate. (author)

  4. Component activities in the system thorium nitrate-nitric acid-water at 25oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Brown, C.P.

    1982-01-01

    The equilibrium composition of the vapor above thorium nitrate-nitric acid-water mixtures has been studied as a function of the concentrations of thorium nitrate and nitric acid using a transpiration technique. At 25 o C, the thorium nitrate concentrations m T ranged from 0.1 to 2.5 molal and the nitric acid concentrations m N from 0.3 to 25 molal. The vapor pressure of the nitric acid was found to increase with increasing thorium nitrate concentration for a constant molality of nitric acid in aqueous solution. At constant m T , the nitric acid vapor pressure was particularly enhanced at low nitric acid concentrations. The water vapor pressures decreased regularly with increasing concentrations of both nitric acid and thorium nitrate. The experimental data were fitted to Scatchard's ion-component model, and to empirical multiparameter functions. From the fitting parameters, and available literature data for the nitric acid-water and thorium nitrate-water systems at 25 o C, expressions were calculated for the variation of water and thorium nitrate activities, as functions of the nitric acid and thorium nitrate concentrations, using the Gibbs-Duhem equation. Calculated values for the thorium nitrate activities were strongly dependent on the form of the function originally used to fit the vapor pressure data. (author)

  5. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  6. Thorium: in search of a global solution

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Last week, an international conference held at CERN brought together the world’s main experts in the field of alternative nuclear technology for the first time to discuss the use of thorium for the production of energy and the destruction of nuclear waste. Among the different technologies presented and discussed at the conference was ADS (Accelerator-Driven Systems) which relies primarily on particle accelerators.   The conference Chair (far left), the organisers and some of the distinguished participants of the ThEC13 conference held at CERN from 27 to 31 October 2013. “CERN has always been interested in finding ways in which fundamental research can help to resolve the problems of society,” says Jean-Pierre Revol, a physicist at the ALICE experiment who recently retired from CERN and is President of iThEC, the international not-for-profit organisation which promotes research and development in the field of thorium and which organised the Thorium Energy 2013 (Th...

  7. Complexation of thorium with pyridine monocarboxylates: A thermodynamic study by experiment and theory

    International Nuclear Information System (INIS)

    Rama Mohana Rao, D.; Rawat, Neetika; Manna, D.; Sawant, R.M.; Ghanty, T.K.; Tomar, B.S.

    2013-01-01

    Highlights: ► The thermodynamic parameters have been determined for the first time. ► The Th-picolinate complexation was exothermic in nature. ► The complexation of Th(IV) with the other two isomers was endothermic process. ► Isonicotinate forms stronger complexes than nicotinate with Th(IV). ► The theoretically calculated values are in line with the experimental results. -- Abstract: Complexation of thorium with pyridine monocarboxylates namely picolinic acid (pyridine-2-carboxylic acid), nicotinic acid (pyridine-3-carboxylic acid) and isonicotinic acid (pyridine-4-carboxylic acid) has been studied by potentiometry and calorimetry to determine the thermodynamic parameters (log K, ΔG, ΔH and ΔS) of complexation. All the studies were carried out at 1.0 M ionic strength adjusted by NaClO 4 and at a temperature of 298 K. The detailed analysis of potentiometric data by Hyperquad confirmed the formation of four complexes, ML i (i = 1–4) in case of picolinate but only one complex (ML) in case of nicotinate and isonicotinate. The stepwise formation constant for ML complex (log K ML ) of thorium-picolinate is higher than those of thorium-nicotinate and thorium-isonicotinate complexes. Further the changes in enthalpy during formation of thorium-picolinate complexes are negative whereas the same for the complexes of thorium with the other two isomers was positive. This difference in the complexation process is attributed to chelate formation in case of thorium-picolinate complexes in which the thorium ion is bound to the picolinate through both the nitrogen in the pyridyl ring and one of the carboxylate oxygen atoms. The complexation process of thorium-nicotinate and thorium-isonicotinate are found to be endothermic in nature and are entropy driven confirming the similar binding nature as in simple carboxylate complexes of thorium. The complexation energies, bond lengths and charges on each atom in the complexes of various possible geometries were calculated

  8. Technology of thorium concentrates purification and their transformation in pure nuclear products

    International Nuclear Information System (INIS)

    Ikuta, A.

    1977-01-01

    An experimental study for the purification of thorium concentrates by solvent extraction is presented. The product of purification is appropriate for utilization in the fabrication of nuclear reactor fuel elements. The experiments are carried out in a laboratory scale and the following operations are studied: dissolution, extraction-scrubbing, stripping-scrubbing, thorium oxalate precipitation, and thorium nitrate coagulation [pt

  9. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  10. Study of treatment of a thorium and rare earths residue by extraction chromatography

    International Nuclear Information System (INIS)

    Zini, Josiane; Abrao, Alcidio; Carvalho, Fatima Maria Sequeira de; Freitas, Antonio Alves de; Scapin, Marcos Antonio

    2005-01-01

    In the 70's was established at IPEN the project of a thorium compounds purification pilot plant that had the goal of fulfilling the nuclear technology purity standards. The used method was the purification by extraction with solvents in pulsed columns. The thorium remaining in the organic phase was back extracted as thorium nitrate with a high degree of purity. Impurities, thorium non-extracted and practically all rare earths in aqueous phase of this chemical process were precipitated as hydroxide, generating a product containing thorium and rare earths, that was denominated RETOTER (residue of thorium and rare earths). This residue was accumulated and today there are 25 (twenty-five) metric tons of this by product stored in the safeguard storage shed at IPEN that must to be treated due to the radiation of the thorium and mainly his daughters. The average composition of this residue is, 68% in thorium oxide (ThO 2 ), 5% in rare earths oxides (R 2 O 3 ), 0,3% in uranium oxide (U 3 O 8 ) and common impurities such as phosphorus, iron, titanium, lead and sodium. In this work a new method is presented for separation and purification of thorium from this residue, obtaining a concentrate with high degree of purity for nuclear and non-nuclear use. This process will contribute to establish a decreasing of residue volumes, to have a mind to the minimization of environmental impacts, the reduction of worker's exposition and reduction of the storage costs. In this process the separation and purification of uranium and thorium is done by chromatography extraction, being used polymeric resins, that are previously functionalized with organic solvent (extractor agent). The effluent of this process is a concentrate of rare earths that can be reprocessed in a subsequent fractionating for to obtaining the individual fractions. (author)

  11. Partial thorium loading in the initial core of Kakrapar atomic power reactor

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1993-01-01

    The first unit of Kakrapar nuclear power station has gone critical with some thorium oxide fuel bundles loaded in its core. The thorium helps to flatten the power by reducing neutron flux in the centre of the reactor. However, the placing of the thorium had to be planned with care, because if the neutron flux at a point where a safety rod is located is depressed, the reactivity worth of the safety rod gets reduced. Using a dynamic programing approach, the Reactor Engineering Division of Bhabha Atomic Research Centre worked out a satisfactory configuration for loading the thorium bundles

  12. Thorium determination by X-ray Fluorescence Spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1989-01-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP-n-dodecane) solutions is described. The thin film-technique for sample preparation and a suitable internal standard have been used. Some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions were studied. Uranium, fission products, corrosion products and thorex reagent components were studied as interfering elements in the thorium analysis, as well as the matrix effect by using the thorex process simulated solutions the method to thorium determination in irradiated thorium solutions was applied. (M.J.C.) [pt

  13. INR Recent Contributions to Thorium-Based Fuel Using in CANDU Reactors

    International Nuclear Information System (INIS)

    Prodea, I.; Mărgeanu, C. A.; Rizoiu, A.; Olteanu, G.

    2014-01-01

    The paper summarizes INR Pitesti contributions and latest developments to the Thorium-based fuel (TF) using in present CANDU nuclear reactors. Earlier studies performed in INR Pitesti revealed the CANDU design potential to use Recovered Uranium (RU) and Slightly Enriched Uranium (SEU) as alternative fuels in PHWRs. In this paper, we performed both lattice and CANDU core calculations using TF, revealing the main neutron physics parameters of interest: k-infinity, coolant void reactivity (CVR), channel and bundle power distributions over a CANDU 6 reactor core similar to that of Cernavoda, Unit 1. We modelled the so called Once Through Thorium (OTT) fuel cycle, using the 3D finite-differences DIREN code, developed in INR. The INR flexible SEU-43 bundle design was the candidate for TF carrying. Preliminary analysis regarding TF burning in CANDU reactors has been performed using the finite differences 3D code DIREN. TFs showed safety features improvement regarding lower CVRs in the case of fresh fuel use. Improvements added to the INR ELESIMTORIU- 1 computer code give the possibility to fairly simulate irradiation experiments in INR TRIGA research reactor. Efforts are still needed in order to get better accuracy and agreement of simulations to the experimental results. (author)

  14. Preliminary Assessment of Heavy-Water Thorium Reactors in the Brazilian Nuclear Programme

    Energy Technology Data Exchange (ETDEWEB)

    Salvo Brito, S. de; Lepecki, W. P.S. [Instituto de Pesquisas Radioativas, Belo Horizonte (Brazil)

    1968-04-15

    Since December 1965, the Instituto de Pesquisas Radioativas has been studying for the Brazilian Nuclear Energy Commission the feasibility of a thorium reactor programme in Brazil; since June 1966, the programme has been developed in close co-operation with the French Atomic Energy Commission. A reference conceptual design of a heavy-water-cooled and -moderated thorium converter reactor has been developed. The main features of that concept are the use of a prestressed-concrete pressure vessel, integrated arrangement of the primary circuit and the possibility of on-load fuel management. Economic competitiveness could be the result of high compactness, low capital costs and low fuel consumption. The technology involved is not very sophisticated; intensive engineering development work must be done in areas like fuel charge machine, concrete vessel insulation, and proper design of heat exchangers, but it is the feeling of the Group that these problems could be solved without seriously compromising the economic feasibility of the concept. Preliminary studies were made on the alternative use of enriched uranium or plutonium as a feed for the programme; in the latter case, plutonium could be produced in natural uranium reactors of the same type. The general conditions favouring each of these approaches to the thorium cycle have been determined, in particular those related to the costs of the fissile materials in the world market and to the country's policy related to nuclear fuel imports. The results of the preliminary studies are very encouraging and could justify the beginning of a research and development programme leading to the construction of a prototype in the 1970's. (author)

  15. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  16. Effectiveness of intragastric administration of 8102 for removal of thorium-234 in rats

    International Nuclear Information System (INIS)

    Luo Meichu; Li Landi; Sun Meizhen; Ye Qian; Liu Yi

    1992-01-01

    8102, a 1,2-dihydroxy-3,6-bismethylamino diacetic derivative, is a new chelating agent for decorporation of radionuclides. The effectiveness of intragastric administration of this drug at different doses (50-1000 mg/kg of body) and at different times before or after giving thorium-234 in rats was reported. The results show that for rats given intragastricly 1000 mg/kg of 8102, the excretion of thorium-234 in urine for first two days is 4.5 times more than that for control rats and accumulations of thorium-234 in liver, skeleton and kidney for these rats were 30%, 62% and 68% as those for control rats, respectively. The effectiveness was reduced with decrease in dosage of 8102. Administration of 8102 at 1 or 2 h before injection of thorium-234 can improve the effectiveness for decorporation of thorium-234: accumulation of thorium-234 in liver was markedly less than that for rats given 8102 immediately after injection of thorium-234. Delayed administration of 9102 resulted in reduction of the effectiveness. The practicality of oral administration of 8102 in clinic for decorporation of radionuclides was discussed

  17. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  18. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  19. Design and evaluation of a thorium (IV) selective optode

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Sadeghi, Marzieh

    2006-01-01

    A novel optical sensor has been proposed for sensitive determination of thorium (IV) ion in aqueous solutions. The thorium sensing membrane was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to thorium ion by changing color reversibly from yellow to red-brown in glycine buffer solution at pH 3.5. The proposed sensor displays a linear range of 8.66 x 10 -6 -2.00 x 10 -4 M with a limit of detection of 6 x 10 -6 M. The response time of the optode was about 8.8-12.5 min, depending on the concentration of Th (IV) ions. The selectivity of optode to Th (IV) ions in glycine buffer is good. The sensor can readily be regenerated by exposure to a solution mixture of sodium fluoride and 5-sulfosalicylic acid (dihydrate) (0.01 M each). The optode is fully reversible. The proposed optode was applied to the determination of thorium (IV) in environmental water samples

  20. DH-1a: a certified uranium-thorium reference ore

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.; Zechanowitsch, G.

    1981-09-01

    A 122-kg sample of uranium-thorium ore, DH-1a, from Elliot Lake, Ontario, was prepared as a compositional reference material to replace the similar certified ore, DH-1. DH-1a was ground to minus 74μm, blended in one lot, and bottled in 200 g units. The homogeneity of DH-1a with respect to uranium was confirmed using the volumetric umpire method. The recommended value for uranium is based on the data from the confirmation of homogeneity. For thorium, twelve laboratories provided results in a free choice analytical program. A statistical analysis of the data gave a recommended value of 0.263 percent for uranium and 0.091 percent for thorium

  1. Global measure for energy + environmental problems by thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, K.; Lecocq, A.; Mitachi, K.; Kato, Y.

    1991-01-01

    The new global fission industry as a measure for energy and environmental problems of the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in the all issues of integral fuel-cycle system. In these sense, the rational characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely explained relating with a) resources and environmental problems, b) safety, c) nuclear-proliferation and -terrorism, d) breeding fuel-cycle, chemical processing and radio-wastes, and e) social acceptability and economy, including 'North-South' problems. The basic technology of Molten-Salt Reactor system has been established, and the practical and economical development program of THORIMS-NES is also proposed. (author) 3 figs., 1 tab., 16 refs

  2. Separation of thorium from cerium by the ion-exchange sorption method. Pt. 3

    International Nuclear Information System (INIS)

    Sozanski, A.

    1981-01-01

    The method is described of separation of trace-quantities of thorium from chloride and ceric sulfate solutions. Thorium is sorbed selectively on the ion exchanger chelating Vofatite MC-50. Thorium-free ceric solutions were achieved and after ionite eluation concentrates of oxides were considerably enriched. (author)

  3. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Science.gov (United States)

    2010-10-01

    ... outer surface of the uranium or thorium is enclosed in an inactive sheath made of metal or other durable... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in...

  4. Thorium Energy Resources and its Potential of Georgian Republic, The Caucasus

    Science.gov (United States)

    Gogoladze, Salome; Okrostsvaridze, Avtandil

    2017-04-01

    Energy resources, currently consumed by modern civilization, are represented by hydrocarbons - 78-80 %, however these reserves are exhausting. In light of these challenges, search of new energy resources is vital importance problem for the modern civilization. Based on the analysis of existing energy reserves and potential, as the main energy resources for the future of our civilization, the renewable and nuclear energy should be considered. However, thorium has a number of advantages compared to Uranium (Kazimi, 2003; et al.): It is concentrated in the earth crust 4-5 times more than uranium; extraction and enrichment of thorium is much cheaper than uranium's; It is less radioactive; complete destruction of its waste products is possible; thorium yields much more energy than uranium. Because of unique properties and currently existed difficult energetic situation thorium is considered as the main green energy resource in the 3rd millennium of the human civilization (Martin, 2009). Georgia republic, which is situated in the central part of Caucasus, poor of hydrocarbons, but has a thorium resource important potential. In general the Caucasus represents a collisional orogen, that formed along the Eurasian North continental margin and extends over 1200 km from Caspian to Black Sea. Three major units are distinguished in its construction: the Greater and Lesser Caucasian mobile belts and the Transcaucasus microplate. Currently it represents the Tethyan segment connecting the Mediterranean and Iran-Himalayan orogenic belts, between the Gondvana-derived Arabian plate and East European platform. Now in Georgian Republic are marked thorium four ore occurrences (Okrostsvaridze, 2014): 1- in the Sothern slope of the Greater Caucasus, in the quartz -plagioclases veins (Th concentrations vary between 51g/t - 3882 g/t); 2- in the Transcaucasus Dzirula massif hydrothermally altered rocks of the Precambrian quartz-diorite gneisses (Th concentrations vary between 117 g/t -266 g

  5. Certain distribution characteristics of uranium and thorium in apatite-carbonate ores

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, R Sh; Faizullin, R N; Kozlov, E N; Berman, I B

    1979-01-01

    A study of the total radioactivity, uranium content, thorium content, U/Th ratio, and the spatial distribution of uranium by the f-radiographic method has demonstrated that the apatite ores of the deposit contain elevated concentrations of radioactive elements that are essentially of thorium origin. The main concentration of uranium and thorium is in the cinnemon-brown apatite. Elevated uranium concentrations are also found in hematite and accessory minerals (monacite, zirconium, titanite). Dolomite, quartz, martite, and second generation apatite were found to be weakly radioactive. The uranium and thorium concentration is correlated to the concentration of phosphorus and other petrogenic elements. An analysis of uranium, thorium, and Th/U distribution indicates that the concentration of radioactive elements is not caused by their primary content in carbonate rock but by the outside introduction of these elements together with phosphorus. The cited analyses confirm the chemogenic-sedimentary origin of the dolomite substrate and the metamorphogenic hydrothermal genesis of apatite mineralization. The data on radioactivity may be used as a reliable exploratory criterion for apatite potential. 3 references, 3 figures.

  6. Determination of thorium 230Th in soils

    International Nuclear Information System (INIS)

    Alvarez, A.; Palomares, J.

    1988-01-01

    A method for the determination of 230 Th in environmental soils is described. Hydroxides formed, previous fusion with sodium peroxide are dissolved with HNO 3 8N. The thorium is coprecipitated with F 3 La and purified by anion exchange (AG 1x8 50-100 mesh). Thorium is electroplated onto a stainless steel disc, 230 Th is counted by alpha spectrometry and 234 Th used as a tracer by beta counting. The chemical yield for 1g of soil sample is 60-80%. Minimum detectable activities are about 2 mBq/g. (Author)

  7. Thorium deposits in the commonwealth of independent states and their prospective characteristics

    International Nuclear Information System (INIS)

    Kotova, V.M.; Skorovarov, J.I.

    1997-01-01

    Since 1956, the All-Russian Research Institute of Chemical Technology has been engaged in the research of assessing thorium deposits and ore occurrence, as well as developing its production technology from various ore types. From the known CIS thorium and thorium-bearing deposits and occurrences (2500) only 241 sites have their resources estimated. They include 132 monazite placers of the Quarternary age, 6 complex Quarternary deposits of placer type (4 polarite, 1 uranium-thorianite and 1 thorium-platinum placers), 66 endogenous deposits and occurrences and 38 complex ones (including zircon-ilmenite Tertiary and older buried placers). This paper gives a summary of the author's attempt to classify thorium deposits according to their genetic types. The proposed classification scheme is based on formational principles and integrates geological-tectonic, magmatic and other criterions. The deposits is based on formation principles and integrates geological-tectonic, magmatic and other criterions. The deposits which are located in igneous, metamorphic and sedimentary rocks are further observed according to their geological setting and types of mother rocks. Thorium deposits are known in the numerous metallogenetic provinces of the CIS. (author). 1 tab

  8. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  9. Uranium and thorium recovery in thorianite ore-preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotte, Joao V.M. [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil); Villegas, Raul A.S.; Fukuma, Henrique T., E-mail: rvillegas@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    This work presents the preliminary results of the studies aiming to develop a hydrometallurgical process to produce uranium and thorium concentrates from thorianite ore from Amapa State, Brazil. This process comprises two major parts: acid leaching and Th/U recovery using solvent extraction strategies. Thorianite ore has a typical composition of 60 - 70% of thorium, 8 - 10% lead and 7 - 10% uranium. Sulfuric acid leaching operational conditions were defined as follows: acid/ore ratio 7.5 t/t, ore size below 65 mesh (Tyler), 2 hours leaching time and temperature of 100 deg C. Leaching tests results showed that uranium and thorium recovery exceeded 95%, whereas 97% of lead ore content remained in the solid form. Uranium and thorium simultaneous solvent extraction is necessary due to high sulfate concentration in the liquor obtained from leaching, so the Primene JM-T primary anime was used for this extraction step. Aqueous raffinate from extraction containing sulfuric acid was recycled to the leaching step, reducing acid uptake around 60%, to achieve a net sulfuric acid consumption of 3 t/t of ore. Uranium and thorium simultaneous stripping was performed using sodium carbonate solution. In the aqueous stripped it was added sulfuric acid at pH 1.5, followed by a second solvent extraction step using the tertiary amine Alamine 336. The following stripping step was done with a solution of sodium chloride, resulting in a final solution of 23 g L-1 uranium. (author)

  10. Spectrophotometric Determination of Thorium in Low Grade Minerals and Ores

    Energy Technology Data Exchange (ETDEWEB)

    Arnfelt, A L; Edmundsson, I

    1960-08-15

    The following method is intended for the determination of microgram quantities of thorium in samples of minerals and ores. The mineral sample is decomposed by repeated sintering with sodium peroxide. After digestion with water thorium peroxide hydrate is recovered by centrifugation and dissolved in hydrochloric acid. Thorium is determined spectrophotometrically with naphtarson after its separation from metals forming chloro complexes which are adsorbed on a strongly basic anion exchange resin. Interferences from a few different ions have been studied. The time required for the analysis of one sample is about 4 hours, when analysing 12 samples simultaneously

  11. Spectrophotometric Determination of Thorium in Low Grade Minerals and Ores

    International Nuclear Information System (INIS)

    Arnfelt, A.L.; Edmundsson, I.

    1960-08-01

    The following method is intended for the determination of microgram quantities of thorium in samples of minerals and ores. The mineral sample is decomposed by repeated sintering with sodium peroxide. After digestion with water thorium peroxide hydrate is recovered by centrifugation and dissolved in hydrochloric acid. Thorium is determined spectrophotometrically with naphtarson after its separation from metals forming chloro complexes which are adsorbed on a strongly basic anion exchange resin. Interferences from a few different ions have been studied. The time required for the analysis of one sample is about 4 hours, when analysing 12 samples simultaneously

  12. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility; Recuperacao de torio e terras raras via peroxido do residuo originado na unidade de purificacao de torio

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio Alves de

    2008-07-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T{sub 1/2}=5.7y), known as meso thorium and Thorium-228(T{sub 1/2} 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  13. Review of problems associated with the utilization of available thorium resources

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Gray, R.A.

    1975-01-01

    Portions of the U. S. Thorium Stockpile are in danger of literally ''going to waste.'' These raw materials, with their high concentrations of thorium, are valuable resources which can be utilized to fuel thermal converter reactors. A portion of this stockpile was transferred to Mound Laboratory in the early 1950's. In 1972, the material was determined to be excess to all present and foreseeable future national requirements. Disposal by burial was recommended by the AEC. Following a detailed study of the potential usefulness of the material and the costs associated with land burial, the AEC agreed to offer the material on surplus sale. Risks and benefits associated with retention of the thorium stockpile are described. Nuclear Materials Managers are uniquely situated to exercise influence and direct the future course of remaining thorium reserves

  14. Thorium content of a mineral ore from Morro do Ferro by fission track technique

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de.

    1980-10-01

    The feasibility to determine thorium concentrations by fission track technique in samples of mineral ore has been demonstrated. The literature registers only the application of the fission track technique to mineral ore in the case where the fissionable element is uranium. The technique was applied to determine the thorium concentration of an ore sample from Morro do Ferro, taking advantage of the high thorium to uranium ratio in that mineral. The sample analysed presented a thorium concentration of 2467 +- 400 mg Th/Kg ore. The so called wet method was adopted by using the Bayer made Makrofol KG 10μm thick, as the detector foil, immersed in the thorium solution. The technique is also useful to determine thorium concentrations in environmental samples because of the following aspects: high sensitivity; fast chemical separation of interfering elements; low cost; and operational simplicity. (Author) [pt

  15. Promouvoir le développement durable dans le commerce mondial et les négociations multilatérales

    Directory of Open Access Journals (Sweden)

    Christophe Bellmann

    2011-05-01

    Full Text Available Les exportations et les importations mondiales reprennent rapidement du volume après le fort déclin accusé par le commerce de marchandises en 2008-2009, comme l’indiquent les performances du commerce mondial des premier et deuxième trimestres de 2010. En dépit de cette reprise impressionnante, les préoccupations des pays de l’OCDE relatives à l’emploi, à la compétitivité et à la politique chinoise des taux de change ont engendré un climat politique défavorable à la poursuite de la libéralisation dans le cadre du Cycle de Doha. Il est intéressant de noter que les pays en développement qui hésitaient à s’engager dans un nouveau cycle de négociations en 2001 se situent maintenant à l’avant-garde de ceux qui souhaitent parvenir rapidement à une conclusion des pourparlers, bien que le consensus sur l’ambitieux « paquet du développement » envisagé initialement à Doha reste hors d’atteinte. Par ailleurs, le commerce a fait l’objet d’une attention et d’un examen sans précédents dans le cadre des débats sur les changements climatiques. Dans le contexte créé par la crise de la coopération multilatérale, la communauté internationale a un urgent besoin de générer de nouveaux types d’arrangements et de trouver des réponses innovantes aux impératifs du développement et de la transition mondiale vers une économie à faible intensité de carbone.

  16. A study on the structure of thorium salt solutions

    International Nuclear Information System (INIS)

    Magini, M.; Cabrini, A.; Di Bartolomeo, A.

    1975-01-01

    The structure of highly hydrolyzed thorium salt solutions has been investigated by large and small angle X-ray scattering techniques. The diffraction data obtained with large angle measurements show the presence in solution of microcrystalline particles with the thorium oxide structure. Particles larger than those were discovered by small angle measurements. A possible shape of these colloidal particles has been discussed

  17. Thorium spectrophotometric analysis with high precision

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  18. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  19. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  20. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  1. Virginia ADS consortium - thorium utilization

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2015-01-01

    A Virginia ADS consortium, consisting of Virginia Universities (UVa, VCU, VT), Industry (Casting Analysis Corporation, GEM*STAR, MuPlus Inc.), Jefferson Lab and not-for-profit ISOHIM, has been organizing International Accelerator-Driven Sub-Critical Systems (ADS) and Thorium Utilization (ThU) workshops. The third workshop of this series was hosted by VCU in Richmond, Virginia, USA Oct 2014 with CBMM and IAEA sponsorship and was endorsed by International Thorium Energy Committee (IThEC), Geneva and Virginia Nuclear Energy Consortium Authority. In this presentation a brief summary of the successful 3 rd International ADS and ThU workshop proceedings and review the worldwide ADS plans and/or programs is given. Additionally, a report on new start-ups on Molten Salt Reactor (MSR) systems is presented. Further, a discussion on potential simplistic fertile 232 Th to fissile 233 U conversion is made

  2. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  3. Long term radiological impact of thorium extraction

    International Nuclear Information System (INIS)

    Menard, S.; Schapira, J.P.

    1995-01-01

    Thorium extraction produces a certain amount of radioactive wastes. Potential long term radiological impact of these residues has been calculated using the recent ICRP-68 ingestion dose factors in connection with the computing code DECAY, developed at Orsay and described in this work. This code solves the well known Bateman's equations which govern the time dependence of a set of coupled radioactive nuclei. Monazites will be very likely the minerals to be exploited first, in case of an extensive use of thorium as nuclear fuel. Because monazites contain uranium as well, mining residues will contain not only the descendants of 232 Th and a certain proportion of non-extracted thorium (taken here to be 5%), but also this uranium, if left in the wastes for economical reasons. If no uranium would be present at all in the mineral, the potential radiotoxicity would strongly decrease in approximately 60 years, at the pace of the 5.8 years period of 228 Ra, which becomes the longest-lived radionuclide of the 4n radioactive family in the residues. Moreover, there is no risk due to radon exhalation, because of the very short period of 220 Rn. These significant differences between uranium and thorium mining have to be considered in view of some estimated long term real radiological impacts due to uranium residues, which could reach a value of the order of 1 mSv/year, the dose limit recommended for the public by the recent ICRP-60. (authors). 15 refs., 4 figs., 3 tabs., 43 appendices

  4. Recovery of Ra-223 from natural thorium irradiated by protons

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, Aleksandr N.; Ostapenko, Valentina S. [Lomonosov Moscow State Univ. (Russian Federation); Russian Academy of Sciences, Moscow-Troitsk (Russian Federation). Inst. for Nuclear Research; Lapshina, Elena V.; Ermolaev, Stanislav V.; Zhuikov, Boris L. [Russian Academy of Sciences, Moscow-Troitsk (Russian Federation). Inst. for Nuclear Research; Danilov, Sergey S. [Lomonosov Moscow State Univ. (Russian Federation); Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation); National Research Center ' Kurchatov Institute' (NRC ' Kurchatov Institute' ), Moscow (Russian Federation)

    2016-11-01

    Irradiation of natural thorium with medium-energy protons is considered to be a prospective approach to large-scale production of {sup 225}Ac and {sup 223}Ra. In addition to the earlier-developed method of {sup 225}Ac isolation, the present work focuses on the simultaneous recovery of {sup 223}Ra from the same thorium target. Radiochemical procedure is based on liquid-liquid extraction, cation exchange and extraction chromatography. The procedure provides separation of radium from spallation and fission products generated in the thorium target. High chemical yield (85-90%) and radionuclide purity of {sup 223}Ra (> 99.8% except {sup 224}Ra and {sup 225}Ra isotopes) have been achieved.

  5. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  6. Short-term storage considerations for spent plutonium-thorium fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Blomeley, L.; Dugal, C.; Masala, E.; Tran, T., E-mail: laura.blomeley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    To support the development of advanced pressurized heavy water reactor (PHWR) fuel cycles, it is necessary to study short-term storage solutions for spent reactor fuel. In this paper, some representational criticality safety and shielding assessments are presented for a particular PHWR plutonium-thorium based fuel bundle concept in a hypothetical aboveground dry storage module. The criticality assessment found that the important parameters for the storage design are neutron absorber content and fuel composition, particularly in light of the high sensitivity of code results to plutonium. The shielding assessment showed that the shielding as presented in the paper would need to be redesigned to provide greater gamma attenuation. These findings can be used to aid in designing fuel storage facilities. (author)

  7. Preliminary safety examination on thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The new global fission industry for the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in all issues of integral fuel-cycle system. In this sense, the safety characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely examined relating with the several aspects of environmental (including resources, radio-waste, etc.) social (including anti-nuclear proliferation and terrorism, etc), basic technological, engineering, institutional, and economical aspects. From this examination it seems that this system is verified as one of the most promising measures of North-South problem, greenhouse effect, etc in the world. (author). 11 refs., 3 figs., 5 tabs

  8. Uranium- and thorium-bearing pegmatites of the United States

    International Nuclear Information System (INIS)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium

  9. Uranium- and thorium-bearing pegmatites of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  10. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  11. Simultaneous determination of uranium and thorium with Arsenazo III by second-derivative spectrophotometry

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Kurosaki, Mayumi; Hayashibe, Yutaka; Ishimaru, Satomi

    1990-01-01

    A derivative spectrophotometric method has been developed for the simultaneous determination of microgram quantities of uranium and thorium with Arsenazo III in hydrochloric acid medium. The second-derivative absorbances of the uranium and thorium Arsenazo III complexes at 679.5 and 684.4 nm are used for their quantification. Uranium and thorium, both in the range 0.1-0.7 μg/ml have been determined simultaneously with good precision. The procedure does not require separation of uranium and thorium, and allows the determination of both metals in the presence of alkaline-earth metals and zirconium, but lanthanides interfere. (author)

  12. Study of the thorium incorporation by inhalation in individuals occupationally exposed

    International Nuclear Information System (INIS)

    Holanda e Vasconcellos Carvalho, B. de.

    1983-01-01

    A mathematical model describing the metabolism of inhaled thorium in the human body was developed. Through this model theoretical limits of excretion were calculated for workers of a monazite plant (Usina Santo Amaro). This limits were based on International Commission on Radiological Protection publication 30, 1979. Excreta samples from twelve workers of Usina Santo Amaro were collected and analysed for thorium. All samples were bellow the theoretical limits of excretion indicating that Usina Santo Amaro workers are exposed to thorium levels bellow the Annual Limits of Intake recommended by ICRP, publication 30. (author)

  13. Global recovery process of thorium and rare earths in a nitrate medium

    International Nuclear Information System (INIS)

    Cailly, F.; Mottot, Y.

    1993-01-01

    The aqueous solution of thorium and rare earth nitrates, obtained by leaching the ore with nitric acid, is extracted by an organic phosphorous compound (phosphate, phosphonate, phosphinate or phosphine oxide) and a cationic extractant chosen among phosphoric acid di-esters. Extraction of thorium and rare earths is possible even in presence of phosphate ions in the aqueous solution. Thorium and rare earths are separated by liquid-liquid extraction of the organic phase

  14. Recovery of thorium along with uranium 233 from Thorex waste solution employing Chitosan

    International Nuclear Information System (INIS)

    Priya, S.; Reghuram, D.; Kumaraguru, K.; Vijayan, K.; Jambunathan, U.

    2003-01-01

    The low level waste solution, generated from Thorex process during the processing of U 233 , contains thorium along with traces of Th 228 and U 233 . Chitosan, a natural bio-polymer derived from Chitin, was earlier used to recover the uranium and americium. The studies were extended to find out its thorium sorption characteristics. Chitosan exhibited very good absorption of thorium (350 mg/g). Chitosan was equilibrated directly with the low level waste solution at different pH after adjusting its pH, for 60 minutes with a Chitosan to aqueous ratio of 1:100 and the raffinates were filtered and analysed. The results showed more than 99% of thorium and U 233 could be recovered by Chitosan between pH 4 and 5. Loaded thorium and uranium could be eluted from the Chitosan by 1M HNO 3 quantitatively. (author)

  15. Compilation of criticality data involving thorium or 233U and light water moderation

    Energy Technology Data Exchange (ETDEWEB)

    Gore, B.F.

    1978-07-01

    The literature has been searched for criticality data for light water moderated systems which contain thorium or /sup 233/U, and data found are compiled herein. They are from critical experiments, extrapolations, and exponential experiments performed with homogeneous solutions and metal spheres of /sup 233/U; with lattices of fuel rods containing highly enriched /sup 235/UO/sub 2/ - ThO/sub 2/ and /sup 233/UO/sub 2/ - ThO/sub 2/; and with arrays of cyclinders of /sup 233/U solutions. The extent of existing criticality data has been compared with that necessary to implement a thorium-based fuel cycle. No experiments have been performed with any solutions containing thorium. Neither do data exist for homogeneous /sup 233/U systems with H/U < 34, except for solid metal systems. Arrays of solution cylinders up to 3 x 3 x 3 have been studied. Data for solutions containing fixed or soluble poisons are very limited. All critical lattices using /sup 233/UO/sub 2/ - ThO/sub 2/ fuels (LWBR program) were zoned radially, and in most cases axially also. Only lattice experiments using /sup 235/UO/sub 2/ - ThO/sub 2/ fuels have been performed using a single fuel rod type. Critical lattices of /sup 235/UO/sub 2/ - ThO/sub 2/ rods poisoned with boron have been measured, but only exponential experiments have been performed using boron-poisoned lattices of /sup 233/UO/sub 2/ - ThO/sub 2/ rods. No criticality data exist for denatured fuels (containing significant amounts of /sup 238/U) in either solution or lattice configurations.

  16. Indirect complexometric determination of thorium(IV) using sodium fluoride as masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of thorium(IV) in presence of other metal ions based on the selective masking ability of sodium fluoride towards thorium is described. Thorium(IV) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against bismuth nitrate solution at pH 2-3 using xylenol orange as indicator. A known excess of sodium fluoride (5 %) is then added and the EDTA released from the Th-EDTA complex is titrated against standard bismuth nitrate solution. Reproducible and accurate results are obtained for 5 mg to 280 mg of thorium with relative errors ±0.65 % and standard deviations /leq 0.75 mg. The interference of various ions was studied. (author)

  17. TRISUL- a code for Thorium Reactor Investigations with Segregated Uranium Loading

    International Nuclear Information System (INIS)

    Jagannathan, V.

    2000-09-01

    A code called TRISUL has been developed for the fuel cycle studies involving a large-scale utilization of thorium. It has been specially developed for the design studies of a thorium breeder reactor (ATBR) core. In this core, a high rate of breeding of 233 U is achieved by placing the thoria rods in the ambience of high thermal neutron flux, generated by a combination of enriched uranium or an equivalent seed material and D 2 O moderator. The core consists of a number of such seed and blanket type fuel assemblies arranged in a regular hexagonal lattice array surrounded by D 2 O reflector on all sides. At least one batch size of pure thoria clusters without the seed fuel rods are considered to be loaded uniformly in the same core at twice the assembly lattice pitch. TRISUL solves the few group diffusion theory equations by the center- mesh finite difference method. Regular hexagonal or triangular right-prismatic meshes are considered. Since the ATBR core considers boiling light water as coolant, a thermal hydraulic model is incorporated in the TRISUL code to calculate the void or steam fraction as a function of core height in each fuel assembly. The homogenized two group lattice parameters have been generated by the PHANTOM code system for the two types of fuel clusters stated above

  18. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  19. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  20. Synergistic fuel cycles of the future

    International Nuclear Information System (INIS)

    Meneley, D.A.; Dastur, A.R.

    1997-01-01

    Good neutron economy is the basis of the fuel cycle flexibility in the CANDU reactor. This paper describes the fuel cycle options available to the CANDU owner with special emphasis on resource conservation and waste management. CANDU fuel cycles with low initial fissile content operate with relatively high conversion ratio. The natural uranium cycle provides over 55 % of energy from the plutonium that is created during fuel life. Resource utilization is over 7 MWd/kg NU. This can be improved by slight enrichment (between 0.9 and 1.2 wt % U235) of the fuel. Resource utilization increases to 11 MWd/kg NU with the Slightly Enriched Uranium cycle. Thorium based cycles in CANDU operate at near-breeder efficiency. Obey provide attractive options when used with natural uranium or separated (reactor grade and weapons grade) plutonium as driver fuels. In the latter case, the energy from the U233 plus the initial plutonium content amounts to 3.4 GW(th).d/kg Pu-fissile. The same utilization is expected from the use of FBR plutonium in a CANDU thorium cycle. Extension of natural resource is achieved by the use of spent fuels in CANDU. The LWR/CANDU Tandem cycle leads to an additional 77 % of energy through the use of reprocessed LWR fuel (which has a fissile content of 1.6 wt %) in CANDU. Dry reprocessing of LWR fuel with the OREOX process (a more safeguardable alternative to the PUREX process) provides an additional 50 % energy. Uranium recovered (RU) from separation of plutonium contained in spent LWR fuel provides an additional 15 MWd/kg RU. CANDU's low fissile requirement provides the possibility, through the use of non-fertile targets, of extracting energy from the minor actinides contained in spent fuel. In addition to the resource utilization advantage described above, there is a corresponding reduction in waste arisings with such cycles. This is especially significant when separated plutonium is available as a fissile resource. (author)

  1. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1977-02-01

    Results from a study of the resistivity recovery of neutron-irradiated and cold-worked thorium on isochronal annealing, activation energies, and isothermal annealing and kinetics are discussed. The nature and extent of radiation effects on the resistivity of thorium at 80 0 K, interpretation of stage II recovery above 80 0 K, and activation energy and interpretation of stage III recovery are also discussed. There are 79 references

  2. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  3. The evolutionary adoption of thorium beginning with its application in niche LWR fuels

    International Nuclear Information System (INIS)

    Drera, Saleem

    2015-01-01

    Since the inception of nuclear energy, the use of thorium as a nuclear fuel has been envisioned. Thorium boasts benefits, however, drawbacks which are both economic and technical including its the lack of a naturally occurring fissile isotope implies that its utility is inherently more difficult. The implementation of thorium as a nuclear fuel requires that it must provide sound technical advantages in combination with attractive economics as compared to standard uranium fuel. Revolutionary thorium concepts such as molten salt reactors and accelerator driven systems may provide theoretical merit, however, their exotic nature and associated technical challenges label them as long-term solutions at best. A near-to-medium term solution for thorium must be based on an evolutionary approach utilizing light/heavy water reactor platforms. While thorium does not provide a near-to-medium term complete replacement of uranium, it does provide substantial benefit within niche applications. To license and bring to market these niche fuels, Thor Energy and an international consortium of entities (including: Fortum, KAERI, Westinghouse, NNL, ITU, IFE, and a few other minor entities) have initiated a fuel development and irradiation test program to characterize the performance of these thoria-containing fuels. (author)

  4. Study of thorium uptake by inhabitants of a high background radiation area

    International Nuclear Information System (INIS)

    Melo, D.R.; Lipsztein, J.L.; Juliao, L.M.Q.C.; Lourenco, M.C.; Lauria, D.

    2002-01-01

    Buena, located in the North of Rio de Janeiro, is characterized by its high natural radiation background, due to large deposits of monazite sand. The foodstuffs consumed by the population are basically composed of local products, which contain significant amounts of thorium. The analysis of complete cooked meals have shown an average daily intake of 18 mBq.d -1 of 232 Th and 189 mBq.d -1 of 228 Th. The average urine to feces ratio of 232 Th from samples of volunteers was found equal to 7.5x10 -2 . The comparison of the experimental data with the predicted urine to feces ratios derived using the biokinetic model for thorium described by the ICRP publication 69 and simulating inhalation and ingestion separately, lead to the conclusion that the thorium intake is a combination of inhalation and ingestion. The clearance rate of thorium of monazite in lungs has apparently behaved as Type M compound. Inhalation is the biggest contributor for the committed effective dose due to thorium internal exposure. (author)

  5. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  6. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  7. The Growth of Monoraphidium sp. and Scenedesmus sp. Cells in the Presence of Thorium

    Directory of Open Access Journals (Sweden)

    Juliana Cristina de Queiroz

    2012-01-01

    Full Text Available Toxicity of thorium by Monoraphidium sp. and Scenedesmus sp. was studied. Microalgal cultures were inoculated in ASM-1 medium in presence and absence of thorium. Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with software. The toxicity of thorium over the species was observed for concentrations over 50.0 mg/L. After 30 days, Monoraphidium cells decreased their concentration from 4.23×106 to 4.27×105 and 8.57×105 cells/mL, in the presence of 50.0 and 100.0 mg/L of thorium, respectively. Scenedesmus sp. cells were more resistant to thorium: for an initial cell concentration of 7.65×104 cells/mL it was observed a change to 5.25×105 and 5.12×105 cells/mL, in the presence of thorium at 50.0 and 100.0 mg/L, respectively. This is an indication that low concentrations of the radionuclide favored the growth, and that Scenedesmus cells are more resistant to thorium than Monoraphidium cells. The software used for comparison with direct count method proved to be useful for the improvement of accuracy of the results obtained, a decrease in the uncertainty and allowed recording of the data. The presence of thorium suggests that low concentrations have a positive effect on the growth, due to the presence of the nitrate, indicating its potential for ecotoxicological studies.

  8. The Growth of Monoraphidium sp. and Scenedesmus sp. Cells in the Presence of Thorium

    Science.gov (United States)

    de Queiroz, Juliana Cristina; Ferreira, Ana Cristina de Melo; da Costa, Antonio Carlos Augusto

    2012-01-01

    Toxicity of thorium by Monoraphidium sp. and Scenedesmus sp. was studied. Microalgal cultures were inoculated in ASM-1 medium in presence and absence of thorium. Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with software. The toxicity of thorium over the species was observed for concentrations over 50.0 mg/L. After 30 days, Monoraphidium cells decreased their concentration from 4.23 × 106 to 4.27 × 105 and 8.57 × 105 cells/mL, in the presence of 50.0 and 100.0 mg/L of thorium, respectively. Scenedesmus sp. cells were more resistant to thorium: for an initial cell concentration of 7.65 × 104 cells/mL it was observed a change to 5.25 × 105 and 5.12 × 105 cells/mL, in the presence of thorium at 50.0 and 100.0 mg/L, respectively. This is an indication that low concentrations of the radionuclide favored the growth, and that Scenedesmus cells are more resistant to thorium than Monoraphidium cells. The software used for comparison with direct count method proved to be useful for the improvement of accuracy of the results obtained, a decrease in the uncertainty and allowed recording of the data. The presence of thorium suggests that low concentrations have a positive effect on the growth, due to the presence of the nitrate, indicating its potential for ecotoxicological studies. PMID:22649297

  9. Recovery of thorium from monazite

    International Nuclear Information System (INIS)

    Karve, V.M.; Mukherjee, T.K.

    1997-01-01

    The process practised in the monazite processing plant involves caustic soda digestion of finely ground monazite followed by aqueous processing to recover mixed rare earth chloride solution, thorium and uranium values in the form of hydroxide cake and tri sodium phosphate as a byproduct

  10. Uranium and thorium determination in water samples taken along River Kura

    International Nuclear Information System (INIS)

    Ahmadov, M.M.; Ibadov, N.A.; Safarova, K.S.; Humbatov, F.Y.; Suleymanov, B.A.

    2014-01-01

    Full text : In the present investigation, uranium and thorium concentration in rivers water of Azerbaijan has been measured using inductively coupled plasma mass spectrometry. The Agilent 7700x series ICP-MS applied for analysis of water samples. This method is based on direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma plasma mass spectrometer. Uranium and thorium was determined at the mass mass numbers of 238 and 232 respectively using Bi-209 as internal standard. The main purpose of the study is to measure the level of uranium and thorium in water samples taken along river Kura

  11. Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp. dwc-1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Congcong; Feng, Su [Sichuan Univ., Chengdu (China). Key Laboratory of Biological Resource and Ecological Environment; Li, Xiaolong [Sichuan Univ., Chengdu (China). Key Laboratory of Radiation Physics and Technology; and others

    2014-04-01

    In order to understand the impact of microorganisms on the fate of thorium in soils, we investigated the thorium biosorption behavior and the corresponding mechanisms by the cells of Geotrichum sp. dwc-1, one of the dominant species of fungal group isolated from 3.5 m depth soil layer in Southwest China. It was observed that fast thorium adsorption onto cells of G. sp. dwc-1 could take place, with a high distribution coefficient K{sub d} (0.93 mL/mg) obtained, when Geotrichum sp. dwc-1and thorium concentrations were 5 g/L and 10 mg/L, respectively. The thorium biosorption behavior was dependent on the pH value, and the lower pH could disrupt cell membrane of G. sp. dwc-1. At pH 1, thorium was accumulated in the cytoplasmic region of the cells. When pH was higher than 1, thorium was adsorbed on the cell surface of G. sp. dwc-1, like in periplasmic region or in the outer membrane. FTIR study combined with biosorption experiments further indicated that the thorium distribution and binding behavior on cell surface were associated with amino, hydroxyl groups and phosphate or sulphur functional groups, and might also be governed by electrostatic interaction. Moreover, PIXE and EPBS showed that ion-exchange mechanism contributed to the thorium biosorption process, in which the tetravalent thorium ions replaced smaller counter-ions (K{sup +}, Ca{sup 2+} and Fe{sup 3+}) occuring on the cell surface. (orig.)

  12. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  13. Le chrome en milieu marin

    OpenAIRE

    Chiffoleau, Jean-francois

    1994-01-01

    Le présent document constitue une synthèse des connaissances sur le cycle biogéochimique du chrome. Les sources naturelles et anthropiques sont étudiées, les échanges entre les différents compartiments géochimiques sont évalués, avec une attention particulière portée à la quantification des apports aussi bien des fleuves que de l'atmosphère au milieu marin. Les niveaux de concentration dans ces compartiments sont évalués, et montrent que l'on rencontre dans certaines régions des contamination...

  14. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  15. Use of nuclear recoil for separating 228Ra, 224Ra, and 233Pa from colloidal thorium

    International Nuclear Information System (INIS)

    Beydon, J.; Gratot, I.

    1968-01-01

    By using α-recoil it is possible to separate by dialysis the α disintegration products (224 Ra; 228 Ra) of thorium from colloidal thorium hydroxide.The use of n, γ recoil allows the separation of 233 Pa produced by the neutron irradiation of thorium, on condition that the colloidal thorium hydroxide is irradiated in the presence of a dispersing. (author) [fr

  16. Physicochemical studies as thorium soaps in solid state

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Gahlaut, A.S.; Sharma, M.

    1987-01-01

    The thermal decomposition of thorium soaps is kinetically of zero order and the energy of activation for the decomposition process lies in the range of 6-11 kcal mol -1 . Infrared spectral data indicate that the fatty acids exist with dimeric structure through hydrogen bonding between the carboxyl groups of acid molecules whereas the metal soaps have an ionic character. The X-ray diffraction studies of these soaps revealed that thorium soaps have double layer structure with molecular axes slightly inclined to the basal plane. (author). 10 refs., 5 figures

  17. Thorium Fuel Performance in a Tight-Pitch Light Water Reactor Lattice

    International Nuclear Information System (INIS)

    Kim, Taek Kyum; Downar, Thomas J.

    2002-01-01

    Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238 U fertile fuels. However, unlike 238 U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238 U with 232 Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor

  18. Development of an automated method for determination of thorium in soil samples and aerosols

    International Nuclear Information System (INIS)

    Stuart, J.E.; Robertson, R.

    1986-09-01

    Methodology for determining trace thorium levels in a variety of sample types was further developed. Thorium in filtered water samples is concentrated by ferric hydroxide precipitation followed by dissolution and co-precipitation with lanthanum fluoride. Aerosols on glass fibre, cellulose ester, or teflon filters and solid soil and sediment samples are acid digested. Subsequently thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement is then done on a Technicon AA11-C autoanalyzer, using solvent extraction into thenoyltrifuoroacetone in kerosene followed by back extraction into 2 N H NO 3 , and colourometric measurement of the thorium arsenazo III complex. Chemical yields are determined by the addition of thorium-234 tracer using gamma-ray spectrometry. The sensitivities of the methods for water, aerosol and solid samples are approximately 1.0 μg/L, 0.5 μg/g and 1.0 μg/g respectively. At thorium levels about ten times the detection limit, accuracy is estimated to be ± 10% for liquids and aerosols and ± 15% for solid samples, and precision ± 5% for all samples

  19. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  20. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    The Resource-renewable Boiling Water Reactors (RBWRs) are a set of light water reactors (LWRs) proposed by Hitachi which use a triangular lattice and high void fraction to incinerate fuel with an epithermal spectrum, which is highly atypical of LWRs. The RBWRs operate on a closed fuel cycle, which is impossible with a typical thermal spectrum reactor, in order to accomplish missions normally reserved for sodium fast reactors (SFRs)--either fuel self-sufficiency or waste incineration. The RBWRs also axially segregate the fuel into alternating fissile "seed" regions and fertile "blanket" regions in order to enhance breeding and leakage probability upon coolant voiding. This dissertation focuses on thorium design variants of the RBWR: the self-sufficient RBWR-SS and the RBWR-TR, which consumes reprocessed transuranic (TRU) waste from PWR used nuclear fuel. These designs were based off of the Hitachi-designed RBWR-AC and the RBWR-TB2, respectively, which use depleted uranium (DU) as the primary fertile fuel. The DU-fueled RBWRs use a pair of axially segregated seed sections in order to achieve a negative void coefficient; however, several concerns were raised with this multi-seed approach, including difficulty with controlling the reactor and unacceptably high axial power peaking. Since thorium-uranium fuel tends to have much more negative void feedback than uranium-plutonium fuels, the thorium RBWRs were designed to use a single elongated seed to avoid these issues. A series of parametric studies were performed in order to find the design space for the thorium RBWRs, and optimize the designs while meeting the required safety constraints. The RBWR-SS was optimized to maximize the discharge burnup, while the RBWR-TR was optimized to maximize the TRU transmutation rate. These parametric studies were performed on an assembly level model using the MocDown simulator, which calculates an equilibrium fuel composition with a specified reprocessing scheme. A full core model was