WorldWideScience

Sample records for ldrd final annual

  1. 2007 LDRD ANNUAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  2. LDRD Annual Report FY2006

    International Nuclear Information System (INIS)

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  3. LDRD FY2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, K. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  4. SRNL LDRD ANNUAL REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    French, T

    2008-12-29

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level of participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.

  5. FY 2014 LDRD Annual Report Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Tomchak, Dena [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  6. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  7. FY2014 LBNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  8. LDRD 149045 final report distinguishing documents.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A.

    2010-09-01

    This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.

  9. Neurons to algorithms LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  10. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  11. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  12. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  13. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  14. 2014 SRNL LDRD Annual Report, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Mcwhorter, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element in maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.

  15. 2013 SRNL LDRD Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, S. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation in National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.

  16. Idaho National Laboratory LDRD Annual Report FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2013-03-01

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  17. Final report on LDRD project ''proliferation-resistant fuel cycles''

    International Nuclear Information System (INIS)

    Brown, N W; Hassberger, J A.

    1999-01-01

    This report provides a summary of LDRD work completed during 1997 and 1998 to develop the ideas and concepts that lead to the Secure, Transportable, Autonomous Reactor (STAR) program proposals to the DOE Nuclear Energy Research Initiative (NERI). The STAR program consists of a team of three national laboratories (LLNL, ANL, and LANL), three universities, (UC Berkeley, TAMU, and MIT) and the Westinghouse Research Center. Based on the LLNL work and their own efforts on related work this team prepared and integrated a package of twelve proposals that will carry the LDRD work outlined here into the next phase of development. We are proposing to develop a new nuclear system that meets stringent requirements for a high degree of safety and proliferation resistance, and also deals directly with the related nuclear waste and spent fuel management issues

  18. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walter, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-23

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treaty verification and nonproliferation.

  19. Terahertz spectral signatures :measurement and detection LDRD project 86361 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Brener, Igal; Lee, Mark

    2005-11-01

    LDRD Project 86361 provided support to upgrade the chemical and material spectral signature measurement and detection capabilities of Sandia National Laboratories using the terahertz (THz) portion of the electromagnetic spectrum, which includes frequencies between 0.1 to 10 THz. Under this project, a THz time-domain spectrometer was completed. This instrument measures sample absorption spectra coherently, obtaining both magnitude and phase of the absorption signal, and has shown an operating signal-to-noise ratio of 10{sub 4}. Additionally, various gas cells and a reflectometer were added to an existing high-resolution THz Fourier transform spectrometer, which greatly extend the functionality of this spectrometer. Finally, preliminary efforts to design an integrated THz transceiver based on a quantum cascade laser were begun.

  20. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  1. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian Lew

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience @ UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  2. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  3. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  4. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  5. Final Report for the Virtual Reliability Realization System LDRD

    Energy Technology Data Exchange (ETDEWEB)

    DELLIN, THEODORE A.; HENDERSON, CHRISTOPHER L.; O' TOOLE, EDWARD J.

    2000-12-01

    Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

  6. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  7. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  8. LDRD final report : robust analysis of large-scale combinatorial applications.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Robert D.; Morrison, Todd (University of Colorado, Denver, CO); Hart, William Eugene; Benavides, Nicolas L. (Santa Clara University, Santa Clara, CA); Greenberg, Harvey J. (University of Colorado, Denver, CO); Watson, Jean-Paul; Phillips, Cynthia Ann

    2007-09-01

    Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

  9. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  10. THz transceiver characterization : LDRD project 139363 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  11. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.

    2007-11-01

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  12. LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory; Hart, Brian E.; Hart, Derek H.; Little, Charles Quentin; Oppel, Fred John III; Linebarger, John Michael; Parker, Eric Paul

    2012-01-01

    This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimental study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.

  13. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  14. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  15. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  16. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  17. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  18. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  19. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  20. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  1. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  2. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.; Volk, David; Neerathilingam, Muniasamy; Luxon, Bruce A.; Ansari, G. A. Shakeel

    2009-01-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  3. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Alam, Mary Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetics Characterization Dept.; McIntyre, Sarah K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Electronic and Nanostructured Materials; Volk, David [Univ. of Texas, Galveston, TX (United States). Medical Branch; Neerathilingam, Muniasamy [Univ. of Texas, Galveston, TX (United States). Medical Branch; Luxon, Bruce A. [Univ. of Texas, Galveston, TX (United States). Medical Branch; Ansari, G. A. Shakeel [Univ. of Texas, Galveston, TX (United States). Medical Branch

    2009-10-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  4. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  5. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  6. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  7. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  8. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  10. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  11. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  12. Final report on LDRD project: Simulation/optimization tools for system variability analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Bierbaum; R. F. Billau; J. E. Campbell; K. D. Marx; R. J. Sikorski; B. M. Thompson; S. D. Wix

    1999-10-01

    >This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number 99-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research and Development (LDRD) program. Electrical simulation typically treats a single data point in the very large input space of component properties. For electrical simulation to reach its full potential as a design tool, it must be able to address the unavoidable variability and uncertainty in component properties. Component viability is strongly related to the design margin (and reliability) of the end product. During the course of this project, both tools and methodologies were developed to enable analysis of variability in the context of electrical simulation tools. Two avenues to link relevant tools were also developed, and the resultant toolset was applied to a major component.

  13. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000; FINAL

    International Nuclear Information System (INIS)

    Fisher, Darrell R; Hughes, Pamela J; Pearson, Erik W

    2001-01-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, (a) a director's statement, (b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, (c) a five-year project funding table, and (d) project summaries for each LDRD project

  14. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  16. Interface physics in microporous media : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Knutson, Chad E.; Noble, David R.; Aragon, Alicia R.; Chen, Ken Shuang; Giordano, Nicholas J. (Purdue University, West Lafayette, IN); Brooks, Carlton, F.; Pyrak-Nolte, Laura J. (Purdue University, West Lafayette, IN); Liu, Yihong (Purdue University, West Lafayette, IN)

    2008-09-01

    This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.

  17. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  18. Integrated computer control system CORBA-based simulator FY98 LDRD project final summary report

    International Nuclear Information System (INIS)

    Bryant, R M; Holloway, F W; Van Arsdall, P J.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control architecture. The simulator project used a three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. This summary report highlights the findings of the team and provides the architectural context of the study. For the last several years LLNL has been developing the Integrated Computer Control System (ICCS), which is an abstract object-oriented software framework for constructing distributed systems. The framework is capable of implementing large event-driven control systems for mission-critical facilities such as the National Ignition Facility (NIF). Tools developed in this project were applied to the NIF example architecture in order to gain experience with a complex system and derive immediate benefits from this LDRD. The ICCS integrates data acquisition and control hardware with a supervisory system, and reduces the amount of new coding and testing necessary by providing prebuilt components that can be reused and extended to accommodate specific additional requirements. The framework integrates control point hardware with a supervisory system by providing the services needed for distributed control such as database persistence, system start-up and configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. The design is interoperable among computers of different kinds and provides plug-in software connections by leveraging a common object request brokering architecture (CORBA) to transparently distribute software objects across the network of computers. Because object broker distribution applied to control systems is relatively new and its inherent performance is roughly threefold less than traditional point

  19. LDRD FY 2014 Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  20. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  3. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  4. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  5. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  6. LDRD final report: photonic analog-to-digital converter (ADC) technology; TOPICAL

    International Nuclear Information System (INIS)

    Bowers, M; Deri, B; Haigh, R; Lowry, M; Sargis, P; Stafford, R; Tong, T

    1999-01-01

    We report on an LDRD seed program of novel technology development (started by an FY98 Engineering Tech-base project) that will enable extremely high-fidelity analog-to-digital converters for a variety of national security missions. High speed (l0+ GS/s ), high precision (l0+ bits) ADC technology requires extremely short aperture times ((approx)1ps ) with very low jitter requirements (sub 10fs ). These fundamental requirements, along with other technological barriers, are difficult to realize with electronics: However, we outline here, a way to achieve these timing apertures using a novel multi-wavelength optoelectronic short-pulse optical source. Our approach uses an optoelectronic feedback scheme with high optical Q to produce an optical pulse train with ultra-low jitter ( sub 5fs) and high amplitude stability ( and lt;10(sup 10)). This approach requires low power and can be integrated into an optoelectronic integrated circuit to minimize the size. Under this seed program we have demonstrated that the optical feedback mechanism can be used to generate a high Q resonator. This has reduced the technical risk for further development, making it an attractive candidate for outside funding

  7. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  8. Noncontact surface thermometry for microsystems: LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  9. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, Eric C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); von Winckel, Gregory John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardiner, Thomas Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Sean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

  10. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Miner, Nadine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military & Energy Systems Analysis (6114, M/S 1188); Wilson, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects (6921, M/S 1138); Le, Hai D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Kao, Gio K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Networked System Survivability & Assurance (5629, M/S 0671); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Software Systems R& D (9525, M/S 1188); Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Jr., Robert C. [SAIC, Inc., Albuquerque, NM (United States)

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  11. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  12. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  13. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  14. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  15. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review

  16. Advances in radiation modeling in ALEGRA :a final report for LDRD-67120, efficient implicit mulitgroup radiation calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J. (University of Michigan, Ann Arbor, MI); McClarren, Ryan (University of Michigan, Ann Arbor, MI); Brunner, Thomas A.; Holloway, James Paul (University of Michigan, Ann Arbor, MI)

    2005-11-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.

  17. Advances in radiation modeling in ALEGRA: a final report for LDRD-67120, efficient implicit multigroup radiation calculations

    International Nuclear Information System (INIS)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J.; McClarren, Ryan; Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation

  18. Final Report for LDRD Project 02-FS-009 Gigapixel Surveillance Camera

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R E; Bennett, C L

    2010-04-20

    The threats of terrorism and proliferation of weapons of mass destruction add urgency to the development of new techniques for surveillance and intelligence collection. For example, the United States faces a serious and growing threat from adversaries who locate key facilities underground, hide them within other facilities, or otherwise conceal their location and function. Reconnaissance photographs are one of the most important tools for uncovering the capabilities of adversaries. However, current imaging technology provides only infrequent static images of a large area, or occasional video of a small area. We are attempting to add a new dimension to reconnaissance by introducing a capability for large area video surveillance. This capability would enable tracking of all vehicle movements within a very large area. The goal of our project is the development of a gigapixel video surveillance camera for high altitude aircraft or balloon platforms. From very high altitude platforms (20-40 km altitude) it would be possible to track every moving vehicle within an area of roughly 100 km x 100 km, about the size of the San Francisco Bay region, with a gigapixel camera. Reliable tracking of vehicles requires a ground sampling distance (GSD) of 0.5 to 1 m and a framing rate of approximately two frames per second (fps). For a 100 km x 100 km area the corresponding pixel count is 10 gigapixels for a 1-m GSD and 40 gigapixels for a 0.5-m GSD. This is an order of magnitude beyond the 1 gigapixel camera envisioned in our LDRD proposal. We have determined that an instrument of this capacity is feasible.

  19. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  20. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  1. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  2. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J. (Los Alamos National Laboratory); Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  3. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.; Gabert, Kasimir Georg; Edgett, Patrick Garrett; Thai, Tan Q.

    2010-09-01

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elastic Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.

  4. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  6. ParaText : scalable solutions for processing and searching very large document collections : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Crossno, Patricia Joyce; Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.

    2010-09-01

    This report is a summary of the accomplishments of the 'Scalable Solutions for Processing and Searching Very Large Document Collections' LDRD, which ran from FY08 through FY10. Our goal was to investigate scalable text analysis; specifically, methods for information retrieval and visualization that could scale to extremely large document collections. Towards that end, we designed, implemented, and demonstrated a scalable framework for text analysis - ParaText - as a major project deliverable. Further, we demonstrated the benefits of using visual analysis in text analysis algorithm development, improved performance of heterogeneous ensemble models in data classification problems, and the advantages of information theoretic methods in user analysis and interpretation in cross language information retrieval. The project involved 5 members of the technical staff and 3 summer interns (including one who worked two summers). It resulted in a total of 14 publications, 3 new software libraries (2 open source and 1 internal to Sandia), several new end-user software applications, and over 20 presentations. Several follow-on projects have already begun or will start in FY11, with additional projects currently in proposal.

  7. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  8. Improved Barriers to Turbine Engine Fragments: Final Annual Report

    National Research Council Canada - National Science Library

    Shockey, Donald

    2002-01-01

    This final annual technical report describes the progress rnade during year 4 of the SPI International Phase II effort to develop a computational capability for designing lightweight fragment barriers...

  9. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670

    International Nuclear Information System (INIS)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-01-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting)

  10. Final report for LDRD project 11-0783 : directed robots for increased military manpower effectiveness.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Wagner, John S.; Xavier, Patrick Gordon; Morrow, James Dan

    2011-09-01

    The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier from harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.

  11. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  12. LDRD final report :

    Energy Technology Data Exchange (ETDEWEB)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report a preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.

  13. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuelsthose chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  14. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  15. LDRD Final report

    International Nuclear Information System (INIS)

    Stewart, R.E.; Price, D.; Shepherd, R.; White, W.; Walling, R.; More, R.

    1995-01-01

    The goal of this project is to develop a 100-fs pulse length laser capable of heating solid density plasmas to near-kilovolt temperatures before hydrodynamic decompression of the target can take place, and to experimentally determine the properties of these plasmas with it. The authors have successfully developed the laser for this work and measured plasma production and laser absorption with it. This work has demonstrated the capacity to produce solid-density plasmas. Future experiments are described

  16. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  17. A Case Study in Competitive Technical and Market Intelligence Support and Lessons Learned for the uChemLab LDRD Grand Challenge Project; TOPICAL

    International Nuclear Information System (INIS)

    SOUTHWELL, EDWIN T.; GARCIA, MARIE L.; MEYERS, CHARLES E.

    2001-01-01

    The(mu)ChemLab(trademark) Laboratory Directed Research and Development (LDRD) Grand Challenge project began in October 1996 and ended in September 2000. The technical managers of the(mu)ChemLab(trademark) project and the LDRD office, with the support of a consultant, conducted a competitive technical and market demand intelligence analysis of the(mu)ChemLab(trademark). The managers used this knowledge to make project decisions and course adjustments. CTI/MDI positively impacted the project's technology development, uncovered potential technology partnerships, and supported eventual industry partner contacts. CTI/MDI analysis is now seen as due diligence and the(mu)ChemLab(trademark) project is now the model for other Sandia LDRD Grand Challenge undertakings. This document describes the CTI/MDI analysis and captures the more important ''lessons learned'' of this Grand Challenge project, as reported by the project's management team

  18. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  19. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  20. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  1. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  2. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  3. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    International Nuclear Information System (INIS)

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-01-01

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance

  4. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  5. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  6. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  7. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    Energy Technology Data Exchange (ETDEWEB)

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  8. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation hardened CMOS devices and circuits - LDRD Project (FY99)

    International Nuclear Information System (INIS)

    Myers, David R.; Jessing, Jeffrey R.; Spahn, Olga B.; Shaneyfelt, Marty R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds

  9. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  11. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  12. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  13. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  14. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  15. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  16. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  17. Main group adducts of carbon dioxide and related chemistry (LDRD 149938).

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Brian M. (University of New Mexico, Albuquerque, NM); Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2010-11-01

    This late-start LDRD was broadly focused on the synthetic attempts to prepare novel ligands as complexing agents for main group metals for the sequestration of CO{sub 2}. In prior work we have shown that certain main group (p block elements) metals such as tin and zinc, when ligated to phosphinoamido- ligands, can bind CO{sub 2} in a novel fashion. Rather than simple insertion into the metal-nitrogen bonds to form carbamates, we have seen the highly unusual complexation of CO{sub 2} in a mode that is more similar to a chemical 'adduct' rather than complexation schemes that have been observed previously. The overarching goal in this work is to prepare more of these complexes that can (a) sequester (or bind) CO{sub 2} easily in this adduct form, and (b) be stable to chemical or electrochemical reduction designed to convert the CO{sub 2} to useful fuels or fuel precursors. The currently used phosphinoamido- ligands appear at this point to be less-stable than desired under electrochemical reduction conditions. This instability is believed due to the more delicate, reactive nature of the ligand framework system. In order to successfully capture and convert CO{sub 2} to useful organics, this instability must be addressed and solved. Work described in the late-start LDRD was designed to screen a variety of ligand/metal complexes that a priori are believed to be more stable to polar solvents and possible mild hydrolytic conditions than are the phosphinoamido-ligands. Results from ligand syntheses and metal complexation studies are reported.

  18. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  19. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  20. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  1. Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wilton, Donald R. (University of Houston, Houston, TX); Basilio, Lorena I.; Peters, David William; Capolino, F. (University of Houston, Houston, TX)

    2006-10-01

    In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

  2. A Molecular Theory for Gatekeeper Proteins; FINAL

    International Nuclear Information System (INIS)

    FRINK, LAURA J. D.; SALINGER, ANDREW G.

    1999-01-01

    Predicting the behavior of ion channel proteins is important for understanding biological effects of drugs and toxins. These problems involve steady state transport of ions through very small (1-2 atoms wide) pores. FY99 LDRD funding was used to begin investigations of ion channel proteins using a molecular theory approach. Much of our efforts involved establishing the soundness of the approach by direct comparison with grand canonical molecular dynamics simulations of simple model systems. In addition, several dimensional ion channel models have been implemented to demonstrate the viability of the approach, The seed funding provided by this LDRD grant resulted in 50K of DOWOBER funds for FY99, an invitation to submit a full length 0(500K) proposal for consideration to DOWOBER, and start a larger LDRD effort in computational biophysics beginning in FY00

  3. 77 FR 39341 - Proposed Information Collection (Annual-Final Report and Account) Activity: Comment Request

    Science.gov (United States)

    2012-07-02

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0017] Proposed Information Collection (Annual-Final Report and Account) Activity: Comment Request AGENCY: Veterans Benefits Administration, Department... of certain information by the agency. Under the Paperwork Reduction Act (PRA) of 1995, Federal...

  4. Retrospective on the Seniors' Council Tier 1 LDRD portfolio.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker

    2012-04-01

    This report describes the Tier 1 LDRD portfolio, administered by the Seniors Council between 2003 and 2011. 73 projects were sponsored over the 9 years of the portfolio at a cost of $10.5 million which includes $1.9M of a special effort in directed innovation targeted at climate change and cyber security. Two of these Tier 1 efforts were the seeds for the Grand Challenge LDRDs in Quantum Computing and Next Generation Photovoltaic conversion. A few LDRDs were terminated early when it appeared clear that the research was not going to succeed. A great many more were successful and led to full Tier 2 LDRDs or direct customer sponsorship. Over a dozen patents are in various stages of prosecution from this work, and one project is being submitted for an R and D 100 award.

  5. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  6. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  7. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  8. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  9. 2008 annual meeting on nuclear technology: topical sessions. Pt. 2. Construction of the final repository KONRAD

    International Nuclear Information System (INIS)

    Broeskamp, H.

    2008-01-01

    Summary report by Dipl.-Ing. Holger Broeskamp on the Topical Session ''Constructing the Final Repository KONRAD'' of the Annual Conference on Nuclear Technology held in Hamburg, May 27-29, 2008. (orig.)

  10. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  11. 77 FR 56714 - Agency Information Collection (Annual-Final Report and Account) Activities Under OMB Review

    Science.gov (United States)

    2012-09-13

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0017] Agency Information Collection (Annual-Final Report and Account) Activities Under OMB Review AGENCY: Veterans Benefits Administration...), Department of Veterans Affairs, will submit the collection of information abstracted below to the Office of...

  12. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  13. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  14. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  15. LDRD final report on continuous wave intersubband terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Samora, Sally; Mangan, Michael A.; Foltynowicz, Robert J.; Young, Erik W.; Fuller, Charles T.; Stephenson, Larry L.; Reno, John Louis; Wanke, Michael Clement; Hudgens, James J.

    2005-02-01

    There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups

  16. LDRD Final Report: Advanced Hohlraum Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Ogden S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-08

    Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternate design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO2 or Ta2O5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to produce 550 mg/cc gold foam, and a sample of this material was successfully manufactured.

  17. LDRD Final Review: Radiation Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  19. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research

  20. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  1. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  2. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  3. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  4. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  5. Automated visual direction : LDRD 38623 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2005-01-01

    Mobile manipulator systems used by emergency response operators consist of an articulated robot arm, a remotely driven base, a collection of cameras, and a remote communications link. Typically the system is completely teleoperated, with the operator using live video feedback to monitor and assess the environment, plan task activities, and to conduct the operations via remote control input devices. The capabilities of these systems are limited, and operators rarely attempt sophisticated operations such as retrieving and utilizing tools, deploying sensors, or building up world models. This project has focused on methods to utilize this video information to enable monitored autonomous behaviors for the mobile manipulator system, with the goal of improving the overall effectiveness of the human/robot system. Work includes visual servoing, visual targeting, utilization of embedded video in 3-D models, and improved methods of camera utilization and calibration.

  6. Tools for characterizing biomembranes : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Stevens, Mark; Holland, Gregory P.; McIntyre, Sarah K.

    2007-10-01

    A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

  7. FY08 LDRD Final Report Regional Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  8. LDRD Final Report 15-ERD-037 Matthews

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-26

    The physics and materials science involved in laser materials processing of metals was studied experimentally using custom-built test beds and in situ diagnostics. Special attention was given to laser-based powder bed fusion additive manufacturing processes, a technology critically important to the stockpile stewardship program in NNSA. New light has been shed on several phenomena such as laser-driven spatter, material displacement and morphology changes. The results presented here and in publications generated by this work have proven impactful and useful to both internal and external communities. New directions in additive manufacturing research at LLNL have been enabled, along with new scientific capabilities that can serve future program needs.

  9. DYNAMICS OF POLYMERS AT INTERFACES; FINAL

    International Nuclear Information System (INIS)

    SMITH, G.S.; MAJEWSKI, J.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses fundamental questions concerning the behavior of polymers at interfaces: (1) What processes control the formation of an adsorbed layer on a clean surface? (2) What processes control the displacement of preadsorbed polymers? (3) Can one accurately predict the structure of polymer layers? To answer these questions, using neutron reflectivity, we have studied adsorbed layers of the polymer poly(methyl methacrylate) (PMMA) onto a quartz substrate. The polymer density profiles were derived from the neutron reflectivity data. We have shown that dry films exhibit behavior predicted by mean-field theory in that the equilibrated layer thickness scales with the molecular weight of the polymer. Also, we find that the profiles of the polymers in solution qualitatively agree with those predicted by reflected random walk (RRW) theories, yet the profiles are not in quantitative agreement

  10. Request for approval, vented container annual release fraction; FINAL

    International Nuclear Information System (INIS)

    HILL, J.S.

    1999-01-01

    In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative

  11. 77 FR 61238 - Annual Stress Test

    Science.gov (United States)

    2012-10-09

    ...-2011-0029] RIN 1557-AD58 Annual Stress Test AGENCY: Office of the Comptroller of the Currency (``OCC... conduct annual stress tests pursuant to regulations prescribed by their respective primary financial... annual stress test as prescribed by this rule. Under the final rule covered institutions are divided into...

  12. Petroleum supply annual 1998: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The ``Petroleum Supply Annual`` (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1998, and replaces data previously published in the PSA. The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 59 tabs.

  13. Petroleum supply annual, 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 48 tabs.

  14. Petroleum supply annual 1992: Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1992 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1992, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them

  15. Petroleum supply annual 1998: Volume 1

    International Nuclear Information System (INIS)

    1999-06-01

    The ''Petroleum Supply Annual'' (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1998, and replaces data previously published in the PSA. The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 59 tabs

  16. Petroleum supply annual, 1997. Volume 1

    International Nuclear Information System (INIS)

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. 16 figs., 48 tabs

  17. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    International Nuclear Information System (INIS)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-01-01

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy and Environment (E and E) and Chemistry and Material Sciences (C and MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E and E and C and MS Directorates co-sponsored this Laboratory Directed Research and Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US

  18. Global Annual Final AC Yield Comparison between HCPV and c-Si PV

    Directory of Open Access Journals (Sweden)

    Juan Pablo Ferrer-Rodríguez

    2015-01-01

    Full Text Available A worldwide comparison of the annual yield between conventional c-Si photovoltaic (PV technology and high concentrated photovoltaic (HCPV technology is presented. The idea of this paper is to find the most appropriate locations for HCPV systems in terms of the annual energy produced when comparing to fixed tilt PV systems and two-axis oriented PY systems. For estimating the annual energy generation, the method of the Performance Ratio is used. For some locations with high annual direct normal irradiation values, which are distributed around the world, HCPV systems are found to be more advantageous than fixed tilt PV systems. World maps showing this comparison are presented.

  19. Petroleum supply annual 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1992 through annual and monthly surveys. The PSA is divided into two volumes. The first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. This second volume contains final statistics for each month of 1992, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary

  20. LDRD final report on "Pumping up CO2 and conversion into useful molecules" (LDRD 105932).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2009-11-01

    Group 12 metal cyclam complexes and their derivatives as well as (octyl){sub 2}Sn(OMe){sub 2} were examined as potential catalysts for the production of dimethyl carbonate (DMC) using CO{sub 2} and methanol. The zinc cyclams will readily take up carbon dioxide and methanol at room temperature and atmospheric pressure to give the metal methyl carbonate. The tin exhibited an improvement in DMC yields. Studies involving the reaction of bis-phosphino- and (phosphino)(silyl)-amido group 2 and 12 complexes with CO{sub 2} and CS{sub 2} were performed. Notable results include formation of phosphino-substituted isocyanates, fixation of three moles of CO{sub 2} in an unprecedented [N(CO{sub 2}){sub 3}]{sup 3-} anion, and rapid splitting of CS{sub 2} by main group elements under extremely mild conditions. Similar investigations of divalent group 14 silyl amides led to room temperature splitting of CO{sub 2} into CO and metal oxide clusters, and the formation of isocyanates and carbodiimides.

  1. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  2. Remote experimental site concept development, LDRD final report

    International Nuclear Information System (INIS)

    Casper, T.A.; Meyer, W.; Butner, D.

    1995-01-01

    Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community

  3. Autonomous intelligent assembly systems LDRD 105746 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  4. Network-based collaborative research environment LDRD final report

    Energy Technology Data Exchange (ETDEWEB)

    Davies, B.R.; McDonald, M.J.

    1997-09-01

    The Virtual Collaborative Environment (VCE) and Distributed Collaborative Workbench (DCW) are new technologies that make it possible for diverse users to synthesize and share mechatronic, sensor, and information resources. Using these technologies, university researchers, manufacturers, design firms, and others can directly access and reconfigure systems located throughout the world. The architecture for implementing VCE and DCW has been developed based on the proposed National Information Infrastructure or Information Highway and a tool kit of Sandia-developed software. Further enhancements to the VCE and DCW technologies will facilitate access to other mechatronic resources. This report describes characteristics of VCE and DCW and also includes background information about the evolution of these technologies.

  5. Behavior-aware decision support systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.; Homer, Jack (Homer Consulting); Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  6. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  7. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  8. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  9. Petroleum supply annual 1994. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA

  10. Laboratory Directed Research and Development Annual Report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  11. Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    2009-01-01

    This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method

  12. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  13. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  14. Theory, Modeling and Simulation Annual Report 2000; FINAL

    International Nuclear Information System (INIS)

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-01-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems

  15. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  16. Petroleum supply annual 1994, Volume 2

    International Nuclear Information System (INIS)

    1995-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary

  17. FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Pierre [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused our efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.

  18. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  19. Final report for the mobile node authentication LDRD project.

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, John T.; Lanzone, Andrew J.

    2005-09-01

    In hostile ad hoc wireless communication environments, such as battlefield networks, end-node authentication is critical. In a wired infrastructure, this authentication service is typically facilitated by a centrally-located ''authentication certificate generator'' such as a Certificate Authority (CA) server. This centralized approach is ill-suited to meet the needs of mobile ad hoc networks, such as those required by military systems, because of the unpredictable connectivity and dynamic routing. There is a need for a secure and robust approach to mobile node authentication. Current mechanisms either assign a pre-shared key (shared by all participating parties) or require that each node retain a collection of individual keys that are used to communicate with other individual nodes. Both of these approaches have scalability issues and allow a single compromised node to jeopardize the entire mobile node community. In this report, we propose replacing the centralized CA with a distributed CA whose responsibilities are shared between a set of select network nodes. To that end, we develop a protocol that relies on threshold cryptography to perform the fundamental CA duties in a distributed fashion. The protocol is meticulously defined and is implemented it in a series of detailed models. Using these models, mobile wireless scenarios were created on a communication simulator to test the protocol in an operational environment and to gather statistics on its scalability and performance.

  20. Quantum computing accelerator I/O : LDRD 52750 final report

    International Nuclear Information System (INIS)

    Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.

    2003-01-01

    In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work

  1. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an effective means of achieving adequate resolution in the crossing region while avoiding the expense of using the same fine grid everywhere, including the region between the beams where no LPI occurs. We applied ALPS to a suite of problems modeling crossed beam experiments performed on the Omega laser at the University of Rochester. Our simulations contributed to the theoretical interpretation of these experiments, which was recently published in Physical Review Letters [4]. This project has advanced the Laboratory's computational capabilities in the area of AMR algorithms and their application to LPI problems. The knowledge gained and software developed will contribute to the computational tools available for use in the design and interpretation of experiments to be performed at the National Ignition Facility (NIF) in support of Laboratory missions in stockpile stewardship, energy research and high energy density science

  2. FY07 LDRD Final Report Heavy Quark Jet Tomography

    International Nuclear Information System (INIS)

    Soltz, R.; Newby, J.; Glenn, A.; Klay, J.

    2008-01-01

    We propose and develop a new signature, the measurement of hadron-electron correlations to measure energy loss of heavy quarks in the quark-gluon plasma. This measurements will be used in future analyses to quantify the energy densities created in collisions of heavy ions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and the Large Hadron Collider (LHC) at CERN. In addition we develop and implement a computing model that will leverage LLNL expertise in cost-effective high performance computing to perform data analyses and simulations for the ALICE experiment at CERN

  3. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  4. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Eric Todd; Eldred, Michael S; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  5. Quality prediction and mistake proofing: An LDRD final report

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.J.

    1998-03-01

    Sandia National Laboratories is responsible for assuring that the US nuclear deterrent remains credible and that the one in a billion disaster of unintended nuclear detonation never occurs. Letting mistake-generated defects into the stockpile would undermine its mission. The current era of shrinking stockpiles is shrinking Sandia`s opportunities to discover and correct mistakes and fine tune processes over long production runs. In response, Sandia has chosen to develop and use a science-based, life cycle systems engineering practices that, in part, require understanding the design to manufacturing issues in enough detail to tune processes and eliminate mistakes before ever making a part. Defect prevention is a key area of concern that currently lacks sufficient theoretical understanding. This report is the result of a scoping study in the application of best-practice quality techniques that could address Sandia`s stockpile mission. The study provides detail on sources and control of mistakes, poka-yoke or mistake-proofing techniques, the Toyota Production system, and design theory in relation to manufacturing quality prediction. Scoping experiments are described and areas for future research are identified.

  6. UOP FIN 571 Final Exam Guide New

    OpenAIRE

    ADMIN

    2018-01-01

    UOP FIN 571 Final Exam Guide New Check this A+ tutorial guideline at http://www.fin571assignment.com/fin-571-uop/fin-571-final-exam-guide -latest For more classes visit http://www.fin571assignment.com Question 1 The underlying assumption of the dividend growth model is that a stock is worth: A. An amount computed as the next annual dividend divided by the required rate of return. B. An amount computed as the next annual dividend divided by the ma...

  7. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  8. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  9. Accommodating complexity and human behaviors in decision analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Siirola, John Daniel; Schoenwald, David Alan; Strip, David R.; Hirsch, Gary B.; Bastian, Mark S.; Braithwaite, Karl R.; Homer, Jack [Homer Consulting

    2007-11-01

    This is the final report for a LDRD effort to address human behavior in decision support systems. One sister LDRD effort reports the extension of this work to include actual human choices and additional simulation analyses. Another provides the background for this effort and the programmatic directions for future work. This specific effort considered the feasibility of five aspects of model development required for analysis viability. To avoid the use of classified information, healthcare decisions and the system embedding them became the illustrative example for assessment.

  10. Annual Report 2000. Chemical Structure and Dynamics; FINAL

    International Nuclear Information System (INIS)

    Colson, Steve D; McDowell, Rod S

    2001-01-01

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems

  11. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  12. Annual report 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report 1991-92 contains an update on the NRPB's role in international and national standards, the technical services provided by the NRPB, their work on environmental, biomedical and physical sciences, the status of NRPB publications giving advice, the NRPB's finances, its senior directing staff and finally NRPB members. (UK)

  13. Cognitive Computing for Security.

    Energy Technology Data Exchange (ETDEWEB)

    Debenedictis, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rothganger, Fredrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aimone, James Bradley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marinella, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evans, Brian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warrender, Christina E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mickel, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Final report for Cognitive Computing for Security LDRD 165613. It reports on the development of hybrid of general purpose/ne uromorphic computer architecture, with an emphasis on potential implementation with memristors.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  16. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  17. NIKHEF Annual Report 1982

    International Nuclear Information System (INIS)

    1983-01-01

    In this annual report 1982, the NIKHEF research programs of high-energy physics, nuclear physics and radiochemistry is described in a wide context. Next, the reports of the individual projects of section-H and section-K are described in detail. Finally, the report gives some statistical information of publications, colloquia and co-workers. (Auth.)

  18. Petroleum supply annual 1998: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. This second volume contains final statistics for each month of 1998, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  19. Petroleum supply annual, 1997. Volume 2

    International Nuclear Information System (INIS)

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs

  20. Petroleum supply annual 1996: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The second volume contains final statistics for each month of 1996, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  1. Petroleum supply annual, 1997. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1997 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. The second volume contains final statistics for each month of 1997, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs.

  2. Petroleum supply annual 1996: Volume 2

    International Nuclear Information System (INIS)

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The second volume contains final statistics for each month of 1996, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs

  3. Petroleum supply annual 1995: Volume 2

    International Nuclear Information System (INIS)

    1996-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1995 through monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and selected Refinery Statistics each with final annual data. The second volume contains final statistics for each month of 1995, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary

  4. Petroleum supply annual 1998. Volume 2

    International Nuclear Information System (INIS)

    1999-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1998 through monthly surveys. The PSA is divided into two volumes. The first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Statistics; each with final annual data. This second volume contains final statistics for each month of 1998, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 35 tabs

  5. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham

    2012-01-01

    review of previous literature on Sn whisker crystallography. The overall texture of the Sn films was also analyzed by EBSD. Finally, a short Appendix is included at the end of this report, in which the X-Ray diffraction (XRD) results are discussed and compared to the EBSD analyses of the overall textures of the Sn films. Sections 2, 3, and 4 have been or will be submitted as stand-alone papers in peer-reviewed technical journals. A bibliography of recent Sandia Sn whisker publications and presentations is included at the end of the report.

  6. LDRD final report : energy conversion using chromophore-functionalized carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Zifer, Thomas; Zhou, Xinjian; Leonard, Francois Leonard; Wong, Bryan Matthew; Kane, Alexander; Katzenmeyer, Aaron Michael; Krafcik, Karen Lee

    2010-09-01

    With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.

  7. LDRD final report on adaptive-responsive nanostructures for sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; van Swol, Frank B.; Wang, Zhongchun; Medforth, Craig J.

    2005-11-01

    Functional organic nanostructures such as well-formed tubes or fibers that can easily be fabricated into electronic and photonic devices are needed in many applications. Especially desirable from a national security standpoint are nanostructures that have enhanced sensitivity for the detection of chemicals and biological (CB) agents and other environmental stimuli. We recently discovered the first class of highly responsive and adaptive porphyrin-based nanostructures that may satisfy these requirements. These novel porphyrin nanostructures, which are formed by ionic self-assembly of two oppositely charged porphyrins, may function as conductors, semiconductors, or photoconductors, and they have additional properties that make them suitable for device fabrication (e.g., as ultrasensitive colorimetric CB microsensors). Preliminary studies with porphyrin nanotubes have shown that these nanostructures have novel optical and electronic properties, including strong resonant light scattering, quenched fluorescence, and electrical conductivity. In addition, they are photochemically active and capable of light-harvesting and photosynthesis; they may also have nonlinear optical properties. Remarkably, the nanotubes and potentially other porphyrin nanostructure are mechanically responsive and adaptive (e.g., the rigidity of the micrometers-long nanotubes is altered by light, ultrasound, or chemicals) and they self-heal upon removal the environmental stimulus. Given the tremendous degree of structural variation possible in the porphyrin subunits, additional types of nanostructures and greater control over their morphology can be anticipated. Molecular modification also provides a means of controlling their electronic, photonic, and other functional properties. In this work, we have greatly broadened the range of ionic porphyrin nanostructures that can be made, and determined the optical and responsivity properties of the nanotubes and other porphyrin nanostructures. We have also explored means for controlling their morphology, size, and placement on surfaces. The research proposed will lay the groundwork for the use of these remarkable porphyrin nanostructures in micro- and nanoscale devices, by providing a more detailed understanding of their molecular structure and the factors that control their structural, photophysical, and chemical properties.

  8. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  9. Peer-to-peer architectures for exascale computing : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Vorobeychik, Yevgeniy; Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Donald W.

    2010-09-01

    The goal of this research was to investigate the potential for employing dynamic, decentralized software architectures to achieve reliability in future high-performance computing platforms. These architectures, inspired by peer-to-peer networks such as botnets that already scale to millions of unreliable nodes, hold promise for enabling scientific applications to run usefully on next-generation exascale platforms ({approx} 10{sup 18} operations per second). Traditional parallel programming techniques suffer rapid deterioration of performance scaling with growing platform size, as the work of coping with increasingly frequent failures dominates over useful computation. Our studies suggest that new architectures, in which failures are treated as ubiquitous and their effects are considered as simply another controllable source of error in a scientific computation, can remove such obstacles to exascale computing for certain applications. We have developed a simulation framework, as well as a preliminary implementation in a large-scale emulation environment, for exploration of these 'fault-oblivious computing' approaches. High-performance computing (HPC) faces a fundamental problem of increasing total component failure rates due to increasing system sizes, which threaten to degrade system reliability to an unusable level by the time the exascale range is reached ({approx} 10{sup 18} operations per second, requiring of order millions of processors). As computer scientists seek a way to scale system software for next-generation exascale machines, it is worth considering peer-to-peer (P2P) architectures that are already capable of supporting 10{sup 6}-10{sup 7} unreliable nodes. Exascale platforms will require a different way of looking at systems and software because the machine will likely not be available in its entirety for a meaningful execution time. Realistic estimates of failure rates range from a few times per day to more than once per hour for these platforms. P2P architectures give us a starting point for crafting applications and system software for exascale. In the context of the Internet, P2P applications (e.g., file sharing, botnets) have already solved this problem for 10{sup 6}-10{sup 7} nodes. Usually based on a fractal distributed hash table structure, these systems have proven robust in practice to constant and unpredictable outages, failures, and even subversion. For example, a recent estimate of botnet turnover (i.e., the number of machines leaving and joining) is about 11% per week. Nonetheless, P2P networks remain effective despite these failures: The Conficker botnet has grown to {approx} 5 x 10{sup 6} peers. Unlike today's system software and applications, those for next-generation exascale machines cannot assume a static structure and, to be scalable over millions of nodes, must be decentralized. P2P architectures achieve both, and provide a promising model for 'fault-oblivious computing'. This project aimed to study the dynamics of P2P networks in the context of a design for exascale systems and applications. Having no single point of failure, the most successful P2P architectures are adaptive and self-organizing. While there has been some previous work applying P2P to message passing, little attention has been previously paid to the tightly coupled exascale domain. Typically, the per-node footprint of P2P systems is small, making them ideal for HPC use. The implementation on each peer node cooperates en masse to 'heal' disruptions rather than relying on a controlling 'master' node. Understanding this cooperative behavior from a complex systems viewpoint is essential to predicting useful environments for the inextricably unreliable exascale platforms of the future. We sought to obtain theoretical insight into the stability and large-scale behavior of candidate architectures, and to work toward leveraging Sandia's Emulytics platform to test promising candidates in a realistic (ultimately {ge} 10{sup 7} nodes) setting. Our primary example applications are drawn from linear algebra: a Jacobi relaxation solver for the heat equation, and the closely related technique of value iteration in optimization. We aimed to apply P2P concepts in designing implementations capable of surviving an unreliable machine of 10{sup 6} nodes.

  10. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  11. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  12. Petroleum supply annual 1993. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This publication contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1993 through annual and monthly surveys. This second volume contains final statistics for each month of 1993.

  13. Annual report 1992-1993

    International Nuclear Information System (INIS)

    1993-01-01

    The 1992-93 Annual Report of the NRPB includes the Director's Review, the NRPB's involvement in developing radiation safety standards and providing various technical services. The NRPB's work in environmental sciences, biomedical sciences and physical sciences is also briefly reviewed. Details are also given of the various NRPB documents containing formal advice on standards and protection, and finally the NRPB's finances are outlined. (UK)

  14. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  15. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm

    International Nuclear Information System (INIS)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-01-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  16. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  17. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  18. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  19. LDRD final report : massive multithreading applied to national infrastructure and informatics.

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bruce A.; Murphy, Richard C.; Wheeler, Kyle; Mackey, Gregory; Berry, Jonathan W.; LaViolette, Randall A.; Mancke, Brad; Barrett, Brian W.; Phillips, Cynthia Ann; Pinar, Ali; Leung, Vitus Joseph

    2009-09-01

    Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun Niagara and Opteron multi-core chips.

  20. LDRD final report on nanocomposite materials based on hydrocarbon-bridged siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Bates, S.E.; Loy, D.A.; Jamison, G.M.; Emerson, J.A.; Curro, J.G.

    1997-05-01

    Silicones [polydimethylsiloxane (PDMS) polymers] are environmentally safe, nonflammable, weather resistant, thermally stable, low T{sub g} materials which are attractive for general elastomer applications because of their safety and their performance over a wide temperature range. However, PDMS is inherently weak due to its low glass transition temperature (T{sub g}) and lack of stress crystallization. The major goal of this project was to create a family of reinforced elastomers based on silsesquioxane/PDMS networks. Polydimethylsiloxane-based (PDMS) composite materials containing a variety of alkylene-arylene-bridged polysilsesquioxanes were synthesized in order to probe short chain and linkage effects in bimodal polymer networks. Monte Carlo simulations on the alkylene-bridged silsesquioxane/PDMS system predicted that the introduction of the silsesquioxane short chains into the long chain PDMS network would have a significant reinforcing effect on the elastomer. The silsesquioxane-PDMS networks were synthesized and evaluated. Analysis of the mechanical properties of the resulting materials indicated that use of the appropriate silisesquioxane generated materials with greatly enhanced properties. Arylene and activated alkylene systems resulted in materials that showed superior adhesive strength for metal-to-metal adhesion.

  1. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.

  2. KBS Annual Report 1982. Summaries of technical reports issued during 1982

    International Nuclear Information System (INIS)

    1983-07-01

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work perfomed by the division KBS within the Swedish Nuclear Fuel Supply Co. (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. In the Annual Report for 1982 the summaries of 27 technical reports and other publications issued during the year are listed. (K.A.E.)

  3. Electric power annual 1994. Volume 2, Operational and financial data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-28

    This year, the annual is published in two volumes. Volume I focused on US electric utilities and contained final 1994 data on net generation, fossil fuel consumption, stocks, receipts, and cost. This Volume II presents annual 1994 summary statistics for the electric power industry, including information on both electric utilities and nonutility power producers. Included are preliminary data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold (based on form EIA-861) and for electric utility financial statistics, environmental statistics, power transactions, and demand- side management. Final 1994 data for US nonutility power producers on installed capacity and gross generation, as well as supply and disposition information, are also provided in Volume II. Technical notes and a glossary are included.

  4. Annual report on occupational safety 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The 1983 Annual Report on occupational safety at BNFL is presented. Data for whole-body radiation doses and skin and extremity doses are given for BNFL employees together with 1982 data for comparison. Similarly, accidental deaths and major injuries are recorded. Finally information on the frequency of both nuclear and non-nuclear incidents reported to the Health and Safety Executive is given. (U.K.)

  5. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  6. Annual report references to dog longevity studies in which all dogs have died

    Energy Technology Data Exchange (ETDEWEB)

    Boecker, B B

    1988-12-01

    All of the dogs in several of the-lifespan studies with beta-emitting radionuclides are dead. Routine annual summaries of these studies have been discontinued. To aid the reader interested in obtaining further information, this report provides summaries of the final status of each study and lists all previous ITRI Annual Report references for each study. (author)

  7. Annual report references to dog longevity studies in which all dogs have died

    International Nuclear Information System (INIS)

    Boecker, B.B.

    1988-01-01

    All of the dogs in several of the-lifespan studies with beta-emitting radionuclides are dead. Routine annual summaries of these studies have been discontinued. To aid the reader interested in obtaining further information, this report provides summaries of the final status of each study and lists all previous ITRI Annual Report references for each study. (author)

  8. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  9. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  11. High prevalence of cestodes in Artemia spp. throughout the annual cycle: relationship with abundance of avian final hosts

    Science.gov (United States)

    Sánchez, Marta I.; Nikolov, Pavel N.; GEorgieva, Darina D.; Georgiev, Boyko B.; Vasileva, Gergana P.; Pankov, Plamen; Paracuellos, Mariano; Lafferty, Kevin D.; Green, Andy J.

    2013-01-01

    Brine shrimp, Artemia spp., act as intermediate hosts for a range of cestode species that use waterbirds as their final hosts. These parasites can have marked influences on shrimp behavior and fecundity, generating the potential for cascading effects in hypersaline food webs. We present the first comprehensive study of the temporal dynamics of cestode parasites in natural populations of brine shrimp throughout the annual cycle. Over a 12-month period, clonal Artemia parthenogenetica were sampled in the Odiel marshes in Huelva, and the sexual Artemia salina was sampled in the Salinas de Cerrillos in Almería. Throughout the year, 4–45 % of A. parthenogenetica were infected with cestodes (mean species richness = 0.26), compared to 27–72 % of A. salina (mean species richness = 0.64). Ten cestode species were recorded. Male and female A. salina showed similar levels of parasitism. The most prevalent and abundant cestodes were those infecting the most abundant final hosts, especially the Greater Flamingo Phoenicopterus ruber. In particular, the flamingo parasite Flamingolepis liguloides had a prevalence of up to 43 % in A. parthenogenetica and 63.5 % in A. salina in a given month. Although there was strong seasonal variation in prevalence, abundance, and intensity of cestode infections, seasonal changes in bird counts were weak predictors of the dynamics of cestode infections. However, infection levels of Confluaria podicipina in A. parthenogenetica were positively correlated with the number of their black-necked grebe Podiceps nigricollis hosts. Similarly, infection levels of Anomotaenia tringae and Anomotaenia microphallos in A. salina were correlated with the number of shorebird hosts present the month before. Correlated seasonal transmission structured the cestode community, leading to more multiple infections than expected by chance.

  12. IPP annual report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    In part A of this annual report the tokamak and stellarator projects at the IPP are reported: ASDEX, ASDEX upgrade, JET collaboration, NET collaboration, Wendelstein VII-7, Wendelstein VII-AS, Wendelstein VII-X and stellarator reactor system studies. In part B the departments and research groups give a brief, but detailed report of the results in the field of research and development. In part C a review is presented of the IPP organisation. Part D includes the papers and conference reports published in 1981. Finally a brief description of the IPP projects at German universities is presented. (GG) [de

  13. Petroleum supply annual 1996: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The summary statistics section show 16 years of data depicting the balance between supply, disposition and ending stocks for various commodities including crude oil, motor gasoline, distillate fuel oil, residual fuel oil, jet fuel propane/propylene, and liquefied petroleum gases. The detailed statistics section provide 1996 detailed statistics on supply and disposition, refinery operations, imports and exports, stocks, and transportation of crude oil and petroleum products. The refinery capacity contain listings of refineries and associated crude oil distillation and downstream capacities by State, as of January 1, 1997, as well as summaries of corporate refinery capacities and refinery storage capacities. In addition, refinery receipts of crude oil by method of transportation for 1996 are provided. Also included are fuels consumed at refineries, and lists of shutdowns, sales, reactivations, and mergers during 1995 and 1996. 16 figs., 59 tabs.

  14. Petroleum supply annual 1996: Volume 1

    International Nuclear Information System (INIS)

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The summary statistics section show 16 years of data depicting the balance between supply, disposition and ending stocks for various commodities including crude oil, motor gasoline, distillate fuel oil, residual fuel oil, jet fuel propane/propylene, and liquefied petroleum gases. The detailed statistics section provide 1996 detailed statistics on supply and disposition, refinery operations, imports and exports, stocks, and transportation of crude oil and petroleum products. The refinery capacity contain listings of refineries and associated crude oil distillation and downstream capacities by State, as of January 1, 1997, as well as summaries of corporate refinery capacities and refinery storage capacities. In addition, refinery receipts of crude oil by method of transportation for 1996 are provided. Also included are fuels consumed at refineries, and lists of shutdowns, sales, reactivations, and mergers during 1995 and 1996. 16 figs., 59 tabs

  15. Final report for LDRD Project 93633 : new hash function for data protection.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Dautenhahn, Nathan; Schroeppel, Richard Crabtree; Tolk, Keith Michael; Orman, Hilarie (PurpleStreak, Inc.); Walker, Andrea Mae; Malone, Sean; Lee, Eric; Neumann, William Douglas; Cordwell, William R.; Torgerson, Mark Dolan; Anderson, Eric; Lanzone, Andrew J.; Collins, Michael Joseph; McDonald, Timothy Scott; Caskey, Susan Adele

    2009-03-01

    The security of the widely-used cryptographic hash function SHA1 has been impugned. We have developed two replacement hash functions. The first, SHA1X, is a drop-in replacement for SHA1. The second, SANDstorm, has been submitted as a candidate to the NIST-sponsored SHA3 Hash Function competition.

  16. LDRD final report on microencapsulated immunoreagents for development of one-step ELISA

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C.C.; Singh, A.K.

    1997-08-01

    Microencapsulation of biological macromolecules was investigated as a method for incorporating the necessary immunoreagents into an improved enzyme-linked immunosorbant assay (ELISA) package that would self-develop. This self-contained ELISA package would eliminate the need for a trained technician to perform multiple additions of immunoreagent to the assay. Microencapsulation by insolution drying was selected from the many available microencapsulation methods, and two satisfactory procedures for microencapsulation of proteins were established. The stability and potential for rapid release of protein from these microencapsulates was then evaluated. The results suggest that the chosen method for protein entrapment produces microcapsules with a considerable amount of protein in the walls making these particular microcapsules unsuitable for their intended use.

  17. Two dimensional point of use fuel cell : a final LDRD project report.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  18. New Capabilities for Hostile Environments on Z Grand Challenge LDRD - Final Status

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Griffin, P. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balch, D. K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bell, K. S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bierner, J. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Coverdale, C. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Flanagan, T. M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hansen, S. B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Slaboszewicz, V. Harper- [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jones, B. M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lamppa, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Martin, W. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); McKenney, J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Moore, N. W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Parma, E. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Peebles, H. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rovang, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Savage, M. E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Tang, R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vesey, R. A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-10-01

    The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.

  19. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.

  20. Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kramer, Richard Michael Jack [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

  1. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Don W.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminary theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.

  2. Annual report 1999

    International Nuclear Information System (INIS)

    2002-01-01

    This 1999 annual report of the Authorities of Nuclear Safety presents the main technical topics of the year: time evolution of nuclear installations, crisis and particular plan of intervention, impacts of the nuclear activities on the human and the environment, the criticality risk, EdF, the EPR project, the ANDRA, transportation events and the nuclear safety at the East. It provides also information on nuclear safety, organization of nuclear safety supervision, BIN regulatory provisions, plant supervision, information of the public, international relations, emergency response, radiation protection, radioactive material transportation, radioactive waste, PWR reactors, research reactors and other installations, nuclear fuel cycle installations and final shutdown and dismantling of nuclear installations. (A.L.B.)

  3. Final Report: Sublinear Algorithms for In-situ and In-transit Data Analysis at Exascale.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pinar, Ali [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seshadhri, C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Thompson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Salloum, Maher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bhagatwala, Ankit [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.

  4. IPP annual report 1989/90

    International Nuclear Information System (INIS)

    1991-01-01

    The subject-related chapters of the annual report present an introduction to the fundamentals of thermonuclear power generation and the design of fusion devices. Experiments carried out with the Tokamak and Stellarator devices are reported in detail, particularly the ASDEX experiment and the WENDELSTEIN experiments. Other scientific activities reported include basic research work on fusion reactions and studies on the interactions between the plasma and the wall, as well as activities within the framework of international cooperation. The report finally presents the organisational structure of the institute and the activities of the administration. (DG) [de

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ANNUAL REPORT TO THE DEPARTMENT OF ENERGY FOR FISCAL YEAR 1999. THE DEPARTMENT OF ENERGY, DECEMBER 1999.

    Energy Technology Data Exchange (ETDEWEB)

    PAUL,P.; FOX,K.J.

    2000-07-01

    In FY 1999, the BNL LDRD Program funded 33 projects, 25 of which were new starts, at a total cost of $4,525,584. A table is presented which lists all of the FY 1999 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which are given. A total of 29 informal publications (abstracts, presentations, reports and workshop papers) were reported and an additional 23 formal (full length) papers were either published, are in press or being prepared for publication. The investigators on five projects have filed for patents. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. The complete summary of follow-on activities is as follows: Information Publications--29, Formal Papers--23, Grants/Proposals/Follow-on Funding--7. In conclusion, a significant measure of success is already attributable to the FY 1999 LDRD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.

  6. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  7. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  8. 75 FR 8245 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2010-02-24

    ...] Natural Gas Pipelines; Project Cost and Annual Limits February 18, 2010. AGENCY: Federal Energy Regulatory... for natural gas pipelines blanket construction certificates for each calendar year. DATES: This final..., Natural gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director, Office of Energy Projects...

  9. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  10. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  11. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  12. Final Report on Institutional Computing Project s15_hilaserion, “Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators as an Enabling Capability”

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    This proposal sought of order 1M core-hours of Institutional Computing time intended to enable computing by a new LANL Postdoc (David Stark) working under LDRD ER project 20160472ER (PI: Lin Yin) on laser-ion acceleration. The project was “off-cycle,” initiating in June of 2016 with a postdoc hire.

  13. Electric power annual 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  14. Travel funds for Stanford University to Host Mott MURI Annual Review and Oxide Workshop, August 6-8, 2013

    Science.gov (United States)

    2016-02-25

    Travel funds for Stanford University to host Mott MURI Annual Review and Oxide Workshop, August 6-8, 2013 In conjunction with a program review for...Number of Papers published in non peer-reviewed journals: Final Report: Travel funds for Stanford University to host Mott MURI Annual Review and Oxide

  15. IEA-Advanced Motor Fuels Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-02

    The annual report from the IEA implementing agreement on Advanced Motor Fuels (AMF) describes the agreement, activities, and projects for the year. A section on the global situation for Advanced Motor Fuels includes country reports from each participating AMF member. A status report on each active annex for the agreement is also included, as is a message from the AMF Chairman. Final sections include an Outlook for Advanced Motor Fuels, further information, and a glossary of terms.

  16. Leidos Reclaims Defelice Cup at Annual Golf Tournament | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Leidos Biomedical Research reclaimed the Defelice Cup trophy from NCI at the eighth annual Ronald H. Defelice golf tournament, held October 14. The final score was 15–7, with Leidos Biomed tying the series 4 to 4. Fourteen players on each team battled it out at Rattlewood golf course in Mount Airy, Md.

  17. IAEA research contracts. Ninth annual report

    International Nuclear Information System (INIS)

    1969-01-01

    This volume is the seventh annual publication of the summaries of final reports received during 1968 in connection with contracts and agreements awarded by the IAEA Research Contract Programme. Ninety nine such summaries are included, thus bringing to 323 the total number published so far. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation

  18. IAEA research contracts. Ninth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-06-01

    This volume is the seventh annual publication of the summaries of final reports received during 1968 in connection with contracts and agreements awarded by the IAEA Research Contract Programme. Ninety nine such summaries are included, thus bringing to 323 the total number published so far. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation.

  19. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    Science.gov (United States)

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  20. Neutron metrology for SBSS

    International Nuclear Information System (INIS)

    Morris, C.L.; Anaya, J.M.; Armijo, V.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this work is to develop new detector technologies for Science-Based Stockpile Stewardship (SBSS) at the Los Alamos Neutron Scattering Center (LANSCE) using existing expertise and infrastructure from the nuclear and particle physics programs at LANL

  1. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  2. Inconvenient messages. Annual report 2007

    International Nuclear Information System (INIS)

    2008-06-01

    In their annual report of 2007, the Dutch Energy Council (AER) advices the Dutch government to show more decisiveness in the implementation of energy policy. The analyses of the council resulted in a series of advices: enforce energy saving; be prepared for a new oil crisis; be more efficient with natural gas from the Groningen province; maintain a friendly relationship with gas nation Russia; Acknowledge the fact that coal and or /nuclear energy cannot be missed. Finally, the Energy Council appreciatively ascertained that most of the above points of advice have been incorporated in the Energy memorandum published by the Minister of Economic Affairs on June 18th. [mk] [nl

  3. 78 FR 33436 - 2013 Final Fee Rate and Fingerprint Fees

    Science.gov (United States)

    2013-06-04

    ... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 2013 Final Fee Rate and Fingerprint Fees AGENCY: National Indian Gaming Commission, Interior. ACTION: Notice. SUMMARY: Notice is hereby... annual fee rates of 0.00% for tier 1 and 0.072% (.00072) for tier 2. These rates shall apply to all...

  4. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  5. The theory of diversity and redundancy in information system security : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R. (Sandia National Laboratories, Livermore, CA); Torgerson, Mark Dolan; Walker, Andrea Mae; Armstrong, Robert C. (Sandia National Laboratories, Livermore, CA); Allan, Benjamin A. (Sandia National Laboratories, Livermore, CA); Pierson, Lyndon George

    2010-10-01

    The goal of this research was to explore first principles associated with mixing of diverse implementations in a redundant fashion to increase the security and/or reliability of information systems. Inspired by basic results in computer science on the undecidable behavior of programs and by previous work on fault tolerance in hardware and software, we have investigated the problem and solution space for addressing potentially unknown and unknowable vulnerabilities via ensembles of implementations. We have obtained theoretical results on the degree of security and reliability benefits from particular diverse system designs, and mapped promising approaches for generating and measuring diversity. We have also empirically studied some vulnerabilities in common implementations of the Linux operating system and demonstrated the potential for diversity to mitigate these vulnerabilities. Our results provide foundational insights for further research on diversity and redundancy approaches for information systems.

  6. Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

    2005-03-01

    The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

  7. IAEA research contracts. Seventh annual report

    International Nuclear Information System (INIS)

    1967-01-01

    This volume is the seventh annual report and presents full summaries of 52 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1966. Including these, a total of 188 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation

  8. IAEA research contracts. Sixth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-04-01

    This volume is the sixth annual report and presents full summaries of 37 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1965. Including these, a total of 136 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology.

  9. IAEA research contracts. Seventh annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-05-01

    This volume is the seventh annual report and presents full summaries of 52 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1966. Including these, a total of 188 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation.

  10. IAEA research contracts. Sixth annual report

    International Nuclear Information System (INIS)

    1966-01-01

    This volume is the sixth annual report and presents full summaries of 37 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1965. Including these, a total of 136 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology

  11. Annual genome conference. Final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1995-11-01

    Tremendous progress has been made in the construction of physical and genetic maps of the human chromosomes. The next step in the solving of disease related problems, and in understanding the human genome as a whole, is the systematic isolation of transcribed sequences. Many investigators have already embarked upon comprehensive gene searches, and many more are considering the best strategies for undertaking such searches. Because these are likely to be costly and time consuming endeavors, it is important to determine the most efficient approaches. As a result, it is critical that investigators involved in the construction of transcriptional maps have the opportunity to discuss their experiences and their successes with both old and new technologies. This document contains the proceedings of the Fourth Annual Workshop on the Identification of Transcribed Sequences, held in Montreal, Quebec, October 16-18, 1994. Included are the workshop notebook, containing the agenda, abstracts presented and list of attendees. Topics included: Progress in the application of the hybridization based approaches and exon trapping; Progress in transcriptional map construction of selected genomic regions; Computer assisted analysis of genomic and protein coding sequences and additional new approaches; and, Sequencing and mapping of random cDNAs.

  12. Nagra annual report 2007

    International Nuclear Information System (INIS)

    Ammann, M.

    2008-01-01

    This annual report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste reviews the co-operative's activities in the year 2007 and presents an overview of developments in energy policy, planning procedures and funding plans. The selection of sites for the disposal of radioactive wastes in Switzerland is discussed. Various technical questions are briefly addressed and work being carried out in the rock laboratories in the Swiss Alps and Jura mountains is discussed. International co-operation is reviewed and public relations issues are discussed. Finally, organisational structures are described and the financial details for the year 2007 are presented. The report is completed with an appendix containing the co-operative's organigram, waste inventories and listings of publications, addresses and a short glossary

  13. Space Program Annual Report, For Approval

    International Nuclear Information System (INIS)

    TM Schaefer

    2004-01-01

    Knolls Atomic Power Laboratory (KAPL) (lead) has been requested by the Reference to create an unclassified report on the Prometheus Program's Jupiter Icy Moons Orbiter (JIMO) mission. This report is expected to be issued annually and be similar in level of content and scope to the NR Program's annual report ''The United States Naval Nuclear Propulsion Program'' (referred to as the Grey Book). The attachment to this letter provides a draft of the Prometheus Program report for NR review and approval. As stated in the Reference, a March 2005 issuance is planned following a coordinated NR Headquarter's review. The information contained in the attached report was obtained from open literature sources, NASA documents and Naval Reactors Program literature. The photographs contained in the report are drafts and their quality will be improved in the final version of the report. This report has been reviewed by the KAPL and Bettis Space Power Plant Staff and has been concurred with by the Manager of Space Power Plant (MJ Wollman) and the Manager of Bettis Reactor Engineering (C Eshelman)

  14. 78 FR 8389 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2013-02-06

    ... Director of the Office of Energy Projects. The cost limits for calendar year 2013, as published in Table I.... ACTION: Final rule. SUMMARY: Pursuant to the authority delegated by 18 CFR 375.308(x)(1), the Director of the Office of Energy Projects (OEP) computes and publishes the project cost and annual limits for...

  15. Multi-annual forward estimate - gas 2017

    International Nuclear Information System (INIS)

    2017-01-01

    GRDF, GRTgaz, SPEGNN and TIGF gas transport and distribution operators have the responsibility to publish a reference document about the multi-annual forward estimate of gas consumption evolution and renewable gas production. This document is the second joint forecast report published by the 4 French gas operators. It presents, first, the situation, hypotheses, analysis and perspectives of the 4 main sectoral gas markets (residential, tertiary, industrial, mobility), then, the centralized power generation and cogeneration, next, the production of renewable gas (different sectors, hypotheses, analysis and perspectives), and finally, a multi-sectorial vision according to 3 different scenarios

  16. Multi-annual forward estimate - gas 2016

    International Nuclear Information System (INIS)

    2016-01-01

    GRDF, GRTgaz, SPEGNN and TIGF gas transport and distribution operators have the responsibility to publish a reference document about the multi-annual forward estimate of gas consumption evolution and renewable gas production. This document is the first joint forecast report published by the 4 French gas operators. It presents, first, the situation, hypotheses, analysis and perspectives of the 4 main sectoral gas markets (residential, tertiary, industrial, mobility), then, the centralized power generation and cogeneration, next, the production of renewable gas (different sectors, hypotheses, analysis and perspectives), and finally, a multi-sectorial vision according to 3 different scenarios

  17. A comparison of the value relevance of interim and annual financial statements

    Directory of Open Access Journals (Sweden)

    Mbalenhle Zulu

    2017-03-01

    Aim: It explores whether the value relevance of interim financial statements is higher than the value relevance of annual financial statements. Finally, it investigates whether accounting information published in interim and annual financial statements has incremental value relevance. Setting: Data for the period from 1999 to 2012 were collected from a sample of non-financial companies listed on the Johannesburg Stock Exchange. Method: The Ohlson model to investigate the value relevance of accounting information was used for the study. Results: The results show that interim book value of equity is value relevant while interim earnings are not. Interim financial statements appear to have higher value relevance than annual financial statements. The value relevance of interim and annual accounting information has remained fairly constant over the sample period. Incremental comparisons provide evidence that additional book value of equity and earnings that accrue to a company between interim and annual reporting dates are value relevant. Conclusion: The study was conducted over a long sample period (1999–2012, in an era when a technology-driven economy and more timely reporting media could have had an effect on the value relevance of published accounting information. To the best of our knowledge, this is the first study to evaluate and compare the value relevance of published interim and annual financial statements.

  18. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  19. Decomposing final energy use for heating in the residential sector in Austria

    International Nuclear Information System (INIS)

    Holzmann, Angela; Adensam, Heidelinde; Kratena, Kurt; Schmid, Erwin

    2013-01-01

    In Austria a considerable number of measures have been implemented to reduce final energy use for residential heating since the 1990s. The aim of this analysis is to investigate, why – despite these implemented measures – final energy use for heating has not decreased in the expected way. The impact of eight factors on final energy use for heating is quantified by applying the Logarithmic Mean Divisia Index (LMDI I) method. The dataset covers the sector of private households in Austria for the period from 1993 to 2009. The main findings of the analysis are: (1) while technical improvements reduce final energy use for heating significantly, rising comfort needs nearly outweigh these savings. (2) Consumer behaviour reduces calculated final energy use considerably. (3) The extent of this reduction is declining significantly in the period observed. (4) The growing share of single-family houses has increased energy demand for heating in the observed period, though a reversal of this trend is detected from 2007 onwards. (5) The impact of growing floor space per person is the major effect revealed by the analysis. (6) Weather conditions have a major impact on annual fluctuations of energy consumption. -- Highlights: •We did an Index decomposition analysis of the Austrian residential heating demand. •Eight impact factors on heating demand have been identified. •Rising comfort needs outweigh savings caused by technical improvements. •Consumer behaviour has a major impact on residential final energy use for heating. •Weather changes play a major role when analysing annual changes in energy use

  20. IAEA research contracts. Fifth annual report

    International Nuclear Information System (INIS)

    1965-01-01

    This volume is the fifth annual report and presents full summaries of 26 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1964. In addition to the summaries describing more general work in 'Health physics and radiation protection', seven reports are included which describe work done under the Agency's first highly-coordinated programme in which various applications of Ca-47 in the fields of medicine and health physics were explored. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine

  1. IAEA research contracts. Fifth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-04-01

    This volume is the fifth annual report and presents full summaries of 26 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1964. In addition to the summaries describing more general work in 'Health physics and radiation protection', seven reports are included which describe work done under the Agency's first highly-coordinated programme in which various applications of Ca-47 in the fields of medicine and health physics were explored. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine.

  2. Final report: ES11: The 23rd Annual Workshop on Electronic Structure Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew M. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Chemistry

    2011-08-31

    ES11: the 23rd Annual Workshop on Electronic Structure Methods was held from June 6-9, 2011 at the University of Pennsylvania. The local organizing committee (see Section II) led by PI Andrew M. Rappe supervised the organization of the conference, before, during, and after the meeting itself. The national organizing committee set the technical program of talks, and provided support and advice in various ways. The conference was well-attended (see Section III). An important feature of this conference was a series of panel discussions (see Section IV) to discuss the field of electronic structure and to set new directions. The technical program was of extraordinarily high quality (see Section V). The host institution, the University of Pennsylvania, provided a supportive environment for this meeting (see Section VI).

  3. Annual report 2009

    International Nuclear Information System (INIS)

    Ammann, M.

    2010-04-01

    This annual report issued by the Swiss National Co-operative for the Disposal of Radioactive Waste reviews the co-operative's activities in the year 2009 and presents an overview of developments in legislation, planning procedures and funding plans. The selection of sites for the disposal of radioactive wastes in Switzerland is discussed, as is regional participation in the site selection procedures. Various technical questions are briefly addressed and work being carried out in the rock laboratories in the Swiss Alps and Jura mountains is discussed. International co-operation is reviewed and public relations issues are discussed. International collaboration in the area of radioactive waste disposal is discussed. Finally, organisational structures are described and the financial details for the year 2009 are presented. The report is completed with an appendix containing waste inventories, predicted waste volumes and listings of publications, addresses and a short glossary

  4. Nagra annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M. (ed.)

    2008-07-01

    This annual report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste reviews the co-operative's activities in the year 2007 and presents an overview of developments in energy policy, planning procedures and funding plans. The selection of sites for the disposal of radioactive wastes in Switzerland is discussed. Various technical questions are briefly addressed and work being carried out in the rock laboratories in the Swiss Alps and Jura mountains is discussed. International co-operation is reviewed and public relations issues are discussed. Finally, organisational structures are described and the financial details for the year 2007 are presented. The report is completed with an appendix containing the co-operative's organigram, waste inventories and listings of publications, addresses and a short glossary.

  5. Nagra annual report 2008

    International Nuclear Information System (INIS)

    Ammann, M.

    2009-01-01

    This annual report issued by the Swiss National Co-operative for the Disposal of Radioactive Waste, Nagra, reviews the co-operative's activities in the year 2008 and presents an overview of developments in energy policy, planning procedures and funding plans. Energy policy and the selection of sites for the disposal of radioactive wastes in Switzerland are discussed. Various technical questions are briefly addressed and work being carried out in the rock laboratories in the Swiss Alps and Jura mountains is discussed. International co-operation is reviewed and public relations issues are discussed. Finally, organisational structures are described and Nagra's financial details for the year 2008 are presented and discussed. The report is completed with an appendix containing the co-operative's organigram, waste inventories and listings of publications, addresses and a short glossary

  6. Annual energy outlook 1993 with projections to 2010

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Information Administration's (EIA's) Annual Energy Outlook 1993 (AEO93) presents forecasts for energy prices, supply, demand, and imports over the period 1990 to 2010. These projections take into account existing legislation, including the Energy Policy Act of 1992. Even though the world oil market remains relatively tight, the long-term outlook for oil prices has been revised downward since the Annual Energy Outlook 1992 as expectations for both the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC production potential have been revised upward. Domestic natural gas prices are also expected to be lower than projected last year, in part because of a more optimistic outlook for drilling technology. Finally, lower growth in the demand for electricity is expected because of the Energy Policy Act of 1992, which mandates efficiency standards for new energy-using equipment. These are the most striking differences between last year's EIA evaluation of long-term energy market trends and this year's evaluation

  7. Nagra annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M. (ed.)

    2009-07-01

    This annual report issued by the Swiss National Co-operative for the Disposal of Radioactive Waste, Nagra, reviews the co-operative's activities in the year 2008 and presents an overview of developments in energy policy, planning procedures and funding plans. Energy policy and the selection of sites for the disposal of radioactive wastes in Switzerland are discussed. Various technical questions are briefly addressed and work being carried out in the rock laboratories in the Swiss Alps and Jura mountains is discussed. International co-operation is reviewed and public relations issues are discussed. Finally, organisational structures are described and Nagra's financial details for the year 2008 are presented and discussed. The report is completed with an appendix containing the co-operative's organigram, waste inventories and listings of publications, addresses and a short glossary.

  8. SKB annual report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    The annual report on the activities of the Swedish Nuclear Fuel and Waste Management contains in part I an overview of SKB activities in different fields. Part II gives a description of the research and development work on nuclear waste disposal performed during 1987. Lectures and publications during 1987 as well as reports issued in the SKB technical report series are listed in part III. Part IV contains the summaries of all technical reports issued during 1987. At Forsmark the first construction phase for the final repository for radioactive waste - SFR - is now completed. The repository is situated in crystalline rock under the Baltic Sea. The first construction phase includes rock caverns for 60 000 m 3 of waste. A second phase for additional 30 000 m 3 is planned to be built and commissioned around the year 2000. (orig./DG)

  9. KBS Annual Report 1983. Including summaries of technical reports issued during 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work performed by the division KBS within the Swedish Nuclear Fuel Supply Co (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. The Annual Report normally contains a presentation of the legal and organizational situation followed by an account of the progress within different areas of the R and D-work. This account also includes indications of the activities planned for the future. At the end of the report the summaries of 76 technical reports and other publications issued during the year are listed in special appendices. (K.A.E.)

  10. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  11. Final Technical Report on the Genome Sequence DataBase (GSDB): DE-FG03 95 ER 62062 September 1997-September 1999; FINAL

    International Nuclear Information System (INIS)

    Harger, Carol A.

    1999-01-01

    Since September 1997 NCGR has produced two web-based tools for researchers to use to access and analyze data in the Genome Sequence DataBase (GSDB). These tools are: Sequence Viewer, a nucleotide sequence and annotation visualization tool, and MAR-Finder, a tool that predicts, base upon statistical inferences, the location of matrix attachment regions (MARS) within a nucleotide sequence.[The annual report for June 1996 to August 1997 is included as an attachment to this final report.

  12. Continued development of modeling tools and theory for rf heating. Final report

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1998-01-01

    The work performed during the grant has been reported long before this date, specifically in: (1) the grant's annual performance report for 1991, MRC/WDC-R-277; (2) the published AIP Conference Proceedings number-sign 244, Radio Frequency Power in Plasmas, Charleston, SC 1991, ''Evaluation of Wave Dispersion, Mode-Conversion, and Damping for ECRH with Exact Relativistic Corrections,'' by D.N. Smithe and P.L. Colestock; and (3) an unpublished paper entitled ''Temperature Anisotropy and Rotation Upgrades to the ICRF Modules in SNAP and TRANSP'', presented at the 1992 ICRF Modeling and Theory Workshop, at the Princeton Plasma Physics Laboratory. This final report contains copies of number (1). The specifics of the grant's final months' activities, which to the authors recollection have never been reported to the DOE, are as follows. The original grant, which was to terminate August 15, 1991, was extended without additional funds to October 31, 1992. The primary reason for the extension was to permit attendance at the 1992 ICRF Modeling and Theory Workshop at the Princeton Plasma Physics Laboratory (PPPL), which was finally held August 17--18, 1992, after having been rescheduled several times during the summer of 1992. The body of this report contains copies of the 1991 annual report, which gives detailed discussion of the work accomplished

  13. Laboratory Directed Research and Development Annual Report for 2009

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2010-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  14. Laboratory Directed Research and Development Annual Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  15. [Utilizing the ultraintense JanUSP laser at LLNL]. 99-ERD-049 Final LDRD Report

    International Nuclear Information System (INIS)

    Patel, P K; Price, D F; Mackinnon, A J; Springer, P T

    2002-01-01

    Recent advances in laser and optical technologies have now enabled the current generation of high intensity, ultrashort-pulse lasers to achieve focal intensities of 10 20 -10 21 W/cm 2 in pulse durations of 100-500fs. These ultraintense laser pulses are capable of producing highly relativistic plasma states with densities, temperatures, and pressures rivaling those found in the interiors of stars and nuclear weapons. Utilizing the ultraintense 100TW JanUSP laser at LLNL we have explored the possibility of ion shock heating small micron-sized plasmas to extremely high energy densities approaching 1GJ/g on timescales of a few hundred femtoseconds. The JanUSP laser delivers 10 Joules of energy in a 100fs pulse in a near diffraction-limited beam, producing intensities on target of up to 10 21 W/cm 2 . The electric field of the laser at this intensity ionizes and accelerates electrons to relativistic MeV energies. The sudden ejection of electrons from the focal region produces tremendous electrostatic forces which in turn accelerate heavier ions to MeV energies. The predicted ion flux of 1 MJ/cm 2 is sufficient to achieve thermal equilibrium conditions at high temperature in solid density targets. Our initial experiments were carried out at the available laser contrast of 10 -7 (i.e. the contrast of the amplified spontaneous emission (ASE), and of the pre-pules produced in the regenerative amplifier). We used the nuclear photoactivation of Au-197 samples to measure the gamma production above 12MeV-corresponding to the threshold for the Au-197(y,n) reaction. Since the predominant mechanism for gamma production is through the bremsstrahlung emission of energetic electrons as they pass through the solid target we were able to infer a conversion yield of several percent of the incident laser energy into electrons with energies >12MeV. This result is consistent with the interaction of the main pulse with a large pre-formed plasma. The contrast of the laser was improved to the 10 -10 level by the insertion of two additional pockel cells to reduce the pre-pulse intensities, and by the implementation of a pulse clean up technique based on adding an additional pre-amplifier and saturable absorber which resulted in a reduction in the ASE level by a factor of approximately 1000. In FY00/01 we performed a series of experiments to investigate the mechanisms for ion generation and acceleration in thin foil targets irradiated at incident laser intensities above 10 20 W/cm 2 , and with the laser contrast at 10 -10 . Full details of this work can be found in the two accompanying papers: Energy spectrum and angular distribution of multi-MeV protons produced from ultraintense laser interactions, UCRL-JC-143112, P.K. Pate1 et al., and Enhancement of proton acceleration by hot electron re-circulation in thin foils irradiated by ultra-intense laser pulses, A.J. Mackinnon et al. UCRL-JC-145540. To obtain a more complete picture of the ion emission a range of detectors were developed and fielded including radiachromic films (measuring ion, electron, and x-ray dose), nuclear activation detectors (high energy protons), and single particle nuclear track detectors (protons and heavy ions). Significantly we found that a large fraction of the incident laser energy (greater than 1%) is coupled to highly energetic protons forming a well-collimated beam. The proton spectrum can be fit by an exponential distribution containing 10 11 particles with a mean energy of 3 MeV and a high energy cutoff of 25 MeV. However, these particles appear to originate not from the interaction region at the front of the target but rather from a thin adsorption layer on the rear surface

  16. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  17. A Novel Non-Destructive Silicon-on-Insulator Nonvolatile Memory - LDRD 99-0750 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DRAPER,BRUCE L.; FLEETWOOD,D. M.; MEISENHEIMER,TIMOTHY L.; MURRAY,JAMES R.; SCHWANK,JAMES R.; SHANEYFELT,MARTY R.; SMITH,PAUL M.; VANHEUSDEN,KAREL J.; WARREN,WILLIAM L.

    1999-11-01

    Defects in silicon-on-insulator (SOI) buried oxides are normally considered deleterious to device operation. Similarly, exposing devices to hydrogen at elevated temperatures often can lead to radiation-induced charge buildup. However, in this work, we take advantage of as-processed defects in SOI buried oxides and moderate temperature hydrogen anneals to generate mobile protons in the buried oxide to form the basis of a ''protonic'' nonvolatile memory. Capacitors and fully-processed transistors were fabricated. SOI buried oxides are exposed to hydrogen at moderate temperatures using a variety of anneal conditions to optimize the density of mobile protons. A fast ramp cool down anneal was found to yield the maximum number of mobile protons. Unfortunately, we were unable to obtain uniform mobile proton concentrations across a wafer. Capacitors were irradiated to investigate the potential use of protonic memories for space and weapon applications. Irradiating under a negative top-gate bias or with no applied bias was observed to cause little degradation in the number of mobile protons. However, irradiating to a total dose of 100 krad(SiO{sub 2}) under a positive top-gate bias caused approximately a 100% reduction in the number of mobile protons. Cycling capacitors up to 10{sup 4} cycles had little effect on the switching characteristics. No change in the retention characteristics were observed for times up to 3 x 10{sup 4} s for capacitors stored unbiased at 200 C. These results show the proof-of-concept for a protonic nonvolatile memory. Two memory architectures are proposed for a protonic non-destructive, nonvolatile memory.

  18. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  19. Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L. (University of Washington, Seattle, WA); Dohrmann, Clark R.

    2009-10-01

    Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

  20. Neutron structural biology

    International Nuclear Information System (INIS)

    Schoenborn, B.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories

  1. Exploring and testing the Standard Model and beyond

    International Nuclear Information System (INIS)

    West, G.; Cooper, F.; Ginsparg, P.; Habib, S.; Gupta, R.; Mottola, E.; Nieto, M.; Mattis, M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to extend and develop the predictions of the Standard Model of particle physics in several different directions. This includes various aspects of the strong nuclear interactions in quantum chromodynamics (QCD), electroweak interactions and the origin of baryon asymmetry in the universe, as well as gravitational physics

  2. CEA 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    After an indication of several key figures about the activity of the CEA (Centre d'Etudes Atomiques) and its relationship with the academic as well as the industrial field, in France and worldwide, this 2009 annual report presents its various research programs in the field of defence and of global security: basic research (nuclear weapons and propulsion, struggle against proliferation and terrorism) and applied research (nuclear deterrence, national and international security). Then, it presents the programs in the field of de-carbonated energy: basic research (in material science and in life sciences) and applied research (fission energy, fusion energy, new energy technologies). A last group of research programs deals with information and health technologies and concerns life and material sciences, micro- and nano-technologies, software technologies. Interaction with other research institutions and bodies is also evoked. A brief scientific assessment is proposed. Finally, the different structures building the CEA are presented

  3. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  4. Annual report 1973

    International Nuclear Information System (INIS)

    1973-01-01

    The GKSS scientific annual report summarizes the problems and results of the research and development projects of 1973. In contrast to earlier annual reports, a comprehensive description of the research facilities is not included. The annual report was extended by the paragraph 'Financial Report 1973' in the chapter 'Development of Geesthacht Research Centre'. The financial report gives a survey of the financial transactions and the major operations of the year under review. (orig./AK) [de

  5. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  6. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  7. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  8. Risø annual report 2001

    DEFF Research Database (Denmark)

    2002-01-01

    In this annual report, we present a small selection of Risø’s achievements in 2001. A more detailed review of Risø’s projects can be found in the Risø Annual Accounts for 2001 as well as in the annual progress reports prepared by the individual researchdepartments.......In this annual report, we present a small selection of Risø’s achievements in 2001. A more detailed review of Risø’s projects can be found in the Risø Annual Accounts for 2001 as well as in the annual progress reports prepared by the individual researchdepartments....

  9. Annual Report 2010-2011

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... 2013-2014 Annual Report 2013-2014 Rapport annuel 2013-2014 Annual Report 2014-2015 Annual Report 2014-2015 Rapport annuel 2014-2015 Investing in Solutions Strategic Plan 2015-2020 Investing in Solutions Strategic Plan 2015-2020 Investir dans des solutions Plan stratégique 2015-2020 Financial statements ...

  10. NUKEM annual report 1981

    International Nuclear Information System (INIS)

    The annual report of this important undertaking in the German nuclear industry informs about its structure, holdings and activities in 1981. The report of the management is followed by remarks on the annual statement of accounts (annual balance, profit-loss accounting) and the report of the Supervisory Board. In the annex the annual balance of NUKEM GmbH/HOBEG mbH as per December 31, 1981, and the profit-loss accounting of NUKEM GmbH/HOBEG mbH for the business year 1981 are presented. (UA) [de

  11. 75 FR 29884 - Implementation of Changes from the 2009 Annual Review of the Entity List

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security 15 CFR Part 744 [Docket No. 100311137-0138...: Bureau of Industry and Security, Commerce. ACTION: Final Rule. SUMMARY: This rule amends the Export..., Ireland or Taiwan were not included in the 2009 annual review because they were added to the Entity List...

  12. Annual, semi-annual and ter-annual variations of gravity wave momentum flux in 13 years of SABER data

    Science.gov (United States)

    Chen, Dan; Preusse, Peter; Ern, Manfred; Strube, Cornelia

    2017-04-01

    In this study, the variations at different time scales such as the annual cycle, the semiannual oscillation (SAO), the ter-annual cycle (about four monthly) and the quasi-biennial oscillation (QBO) in zonal mean GW amplitudes and GW momentum flux (GWMF) have been investigated using satellite observations from 2002-2014 and combining ECMWF high resolution data with the GORGRAT model. The global distribution (patterns) of spectral amplitudes of GW momentum flux in stratosphere and mesosphere (from 30 km to 90 km) show that the annual cycle is the most predominant variation, and then are SAO, ter-annual cycle and QBO. For annual components, two relatively isolated amplitude maxima appear in each hemisphere: a subtropical maximum is associated with convective sources in summer, a mid and high latitude maximum is associated with the polar vortex in winter. In the subtropics, GWs propagate upward obliquely to the higher latitudes. The winter maximum in the southern hemisphere has larger momentum flux than that one in the northern hemisphere. While on the SH the phase (i.e. time corresponding to the maximum GWMF) continuously descends with the maximum in July in the upper mesosphere and in September in the lower stratosphere, on the northern hemisphere, the phase has no visible altitude dependence with a maximum in December. For semiannual variations, in the MLT (70-80 km) region, there is an obvious enhancement of spectral amplitude at equatorial latitudes which relate to the dissipation of convectively forced GWs. The SAO in absolute momentum flux and the annual cycle in zonal momentum flux indicated that the variations at mid-latitudes (about from 30°-40°) are not a SAO signals but rather an annual cycle when the direction of GWMF is considered. The ter-annual cycle may be related to the duration of active convection in subtropical latitudes (from June to Sep. in north hemisphere) Indications for QBO are found latitude extension to mid-latitudes in stratosphere of

  13. KBS annual report 1981

    International Nuclear Information System (INIS)

    1982-05-01

    The nuclear power utilities have commissioned the jointly owned Swedish Nuclear Fuel Supply Company (SKBF) to assume responsibility for a safe handling of the waste and a safe final storage. KBS is the department within SKBF that is responsible for research and development within the area of radioactive waste management. The government agency of PRAV (the National Council for Radioactive Waste) was dissolved as of mid-year 1981 and its research activities were transferred to SKBF/KBS. Simultaneosly, the National Board for Spent Nuclear Fuel, NAK, was created and charged with the duties of overseeing the work being conducted by SKBF within the nuclear waste field and administering the funds that are to be set up for the financing of future waste management activities. The present annual report describes activities within KBS during 1981. The work conducted during the year has been concentrated on three areas: 1) A systematic review has begun of geologically interesting areas in Sweden that might be suitable as sites for a final repository for highlevel waste or spent fuel. 10-20 areas are scheduled for study during the 1980s. 2) The chemical research has been broadened in order to future understanding of the chemical interplay that exists in the repository between the canister material, the buffer, the waste matrix and the groundwater. The retardation effects associated with the transport of radioactive elements with the groundwater in the bedrock also constitute an important subject of these studies. 3) The preliminary planning and engineering of a final repository for low- and medium-level operating waste from the Swedish reactors is in progress. The aim is to submit an application during the spring of 1982 for permission to build the facility at the Forsmark Nuclear Power Station. (Author)

  14. NCI Takes Back the Defelice Cup at Ninth Annual Golf Tournament | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer After being down by a point in the morning, NCI reclaimed the Defelice Cup trophy from Leidos Biomedical Research, with a final score of 12 ½ to 11 ½, at the ninth annual Ronald H. Defelice Golf Tournament, held Oct. 13. “The tightest matches in the nine-year history of this cup competition resulted in a narrow victory for NCI and allowed NCI to

  15. A theoretical description of inhomogeneous turbulence

    International Nuclear Information System (INIS)

    Turner, L.

    2000-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In this LDRD, we have developed a highly compact and descriptive formalism that allows us to broach the theoretically formidable morass of inhomogeneous turbulence. Our formalism has two novel aspects: (a) an adaptation of helicity basis functions to represent an arbitrary incompressible channel flow and (b) the invocation of a hypothesis of random phase. A result of this compact formalism is that the mathematical description of inhomogeneous turbulence looks much like that of homogeneous turbulence--at the moment, the most rigorously explored terrain in turbulence research. As a result, we can explore the effect of boundaries on such important quantities as the gradients of mean flow, mean pressure, triple-velocity correlations and pressure velocity correlations, all of which vanish under the conventional, but artificial, assumption that the turbulence is statistically spatially uniform. Under suitable conditions, we have predicted that a mean flow gradient can develop even when none is initially present

  16. The SRTR/OPTN Annual Data Report

    Science.gov (United States)

    ... Annual Data Report The SRTR/OPTN Annual Data Report Statistics on donation and transplantation in the United ... US in 2015. The SRTR/OPTN Annual Data Report SRTR/OPTN Annual Data Report Learn more from ...

  17. Annual City Festivals as Tools for Sustainable Competitiveness: The World Port Days Rotterdam

    Directory of Open Access Journals (Sweden)

    Erwin van Tuijl

    2016-05-01

    Full Text Available Many cities organize annual local festivals for the positive effects on urban development, although success is far from straightforward. This article reviews a case study of the World Port Days in Rotterdam in order to demonstrate how annual city festivals can contribute to sustainable competitiveness, despite limitations as well. We show how this maritime event—that is jointly organized by the business community, the Port Authority and the City Government—offers benefits for citizens as well as for firms. Our empirical results unveil that the business value of the event includes generation of societal support, image improvement, labor market development and networking, while the value for society refers to education, leisure and to a certain degree to social inclusion. The direct value of the event for business in terms of sales and recruitment is limited, while the long-term effects of educational function deserve further attention. Finally, we provide policy lessons that, when properly contextualized, other cities may help to use annual local festivals as tools for sustainable competitiveness.

  18. Black sea annual and inter-annual water mass variations from space

    DEFF Research Database (Denmark)

    Yildiz, H.; Andersen, Ole Baltazar; Simav, M.

    2011-01-01

    influenced by the leakage of hydrological signals from the surrounding land. After applying the corresponding correction, we found a good agreement with water mass variations derived from steric-corrected satellite altimetry observations. Both GRACE and altimetry show significant annual water mass variations......This study evaluates the performance of two widely used GRACE solutions (CNES/GRGS RL02 and CSR RL04) in deriving annual and inter-annual water mass variations in the Black Sea for the period 2003–2007. It is demonstrated that the GRACE derived water mass variations in the Black Sea are heavily...

  19. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  20. Design optimization of radial flux permanent magnetwind generator for highest annual energy input and lower magnet volumes

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Rajabi-Sebdani, M.; Ebrahimi, B. M. (Univ. of Tehran, Tehran (Iran)); Khan, M. A. (Univ. of Cape Town, Cape Town (South Africa))

    2008-07-01

    This paper presents a multi-objective optimization method to maximize annual energy input (AEI) and minimize permanent magnet (PM) volume in use. For this purpose, the analytical model of the machine is utilized. Effects of generator specifications on the annual energy input and PM volume are then investigated. Permanent magnet synchronous generator (PMSG) parameters and dimensions are then optimized using genetic algorithm incorporated with an appropriate objective function. The results show an enhancement in PMSG performance. Finally 2D time stepping finite element method (2D TSFE) is used to verify the analytical results. Comparison of the results validates the optimization method

  1. 78 FR 64912 - Annual Retail Trade Survey

    Science.gov (United States)

    2013-10-30

    ... collect data covering annual sales, annual e-commerce sales, year-end inventories held inside and outside... provides, on a comparable classification basis, annual sales, annual e-commerce sales, year-end inventories... firms selected will provide, with measurable reliability, statistics on annual sales, annual e-commerce...

  2. 2011 annual meeting on nuclear technology. Pt. 4. Topical sessions

    International Nuclear Information System (INIS)

    Schoenfelder, Christian; Dams, Wolfgang

    2011-01-01

    Summary report on the Topical Session of the Annual Conference on Nuclear Technology held in Berlin, 17 to 19 May 2011: - Nuclear Competence in Germany and Europe. The Topical Session: - Sodium Cooled Fast Reactors -- will be covered in a report in a further issue of atw. The reports on the Topical Sessions: - CFD-Simulations for Safety Relevant Tasks; and - Final Disposal: From Scientific Basis to Application; - Characteristics of a High Reliability Organization (HRO) Considering Experience Gained from Events at Nuclear Power Stations -- have been covered in atw 7, 8/9, and 10 (2011). (orig.)

  3. LDRD HPC4Energy Wrapup Report - LDRD 12-ERD-074

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grosh, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-23

    High-performance computing and simulation has the potential to optimize production, distribution, and conversion of energy. Although a number of concepts have been discussed, a comprehensive research project to establish and quantify the effectiveness of computing and simulation at scale to core energy problems has not been conducted. We propose to perform the basic research to adapt existing high-performance computing tools and simulation approaches to two selected classes of problems common across the energy sector. The first, applying uncertainty quantification and contingency analysis techniques to energy optimization, allows us to assess the effectiveness of LLNL core competencies to problems such as grid optimization and building-system efficiency. The second, applying adaptive meshing and numerical analysis techniques to physical problems at fine scale, could allow immediate impacts in key areas such as efficient combustion and fracture and spallation. By creating an integrated project team with the necessary expertise, we can efficiently address these issues, delivering both near-term results as well as quantifying developments needed to address future energy challenges.

  4. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  5. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  6. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  7. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Science.gov (United States)

    2010-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND... § 305.5 Determinations of estimated annual energy consumption, estimated annual operating cost, and...

  8. Alberta electric industry annual statistics for 1998

    International Nuclear Information System (INIS)

    1999-06-01

    Tables containing data on electric energy generation and capacity for Alberta are provided for the following aspects: capacity and generation of power plants for 1998; capacity of power plants by type, unit, and energy resource for 1998; generating units approved for construction for 1998; generating units completed in 1998; transmission additions approved for construction and completed for 1998; net annual generating capacity and generation for 1988-1998; net monthly generation by plant for 1998; net annual generation by energy resource and type for 1988-1998; net monthly generation by energy resource and type for 1998; generation capacity reserve; relative capacity and generation by type of energy resource for 1998; capacity, generation and fuel consumption of isolated plants for 1998; other industrial on-site plant capacity and generation for 1998. Also listed are: energy resource consumption and energy conversion efficiency of thermal power plants for 1998; stack emissions from thermal generating plants for 1998; non-utility electric generators, wind and hydro for 1998; and hydroelectric energy utilization and conversion efficiency for 1998. Tables contain information on electric energy generation and capacity for hydroelectric energy stored in reservoirs in 1998; details of non-coincident net peak generation and load by utility operators for the Alberta electric system for 1998; and Alberta electric system generation and load at peak load hour for 1998. Further tables cover electric energy distribution for interchange and distribution for 1998 and 1981-1998; annual energy distribution to ultimate customers for 1988-1998 and to ultimate customers for 1998; and the number of electric utility customers in 1998. Final tables cover the transmission and distribution systems with data on: circuit km of such lines for 1988-1998; total circuit km of such lines by major electric utility for 1998 and number of rural electric utility customers for 1998

  9. Idaho National Laboratory PCB Annual Document Log and Annual Records Report for calendar year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Layton, Deborah L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The requirements for the reporting of polychlorinated biphenyl (PCB)-related activities are found in 40 Code of Federal Regulations (CFR) 761 Subpart J, "General Records and Reports." The PCB Annual Document Log is a detailed record of the PCB waste handling activities at the facility. The facility must prepare it each year by July 1 and maintain it at the facility for at least 3 years after the facility ceases using or storing PCBs and PCB items. While submittal of the PCB Annual Document Log to the U.S. Environmental Protection Agency (EPA) is not required by regulation, EPA has verbally requested in telephone conversations that this report be submitted to them on an annual basis. The Annual Records are not required to be submitted to EPA and are not considered to be part of the Annual Document Log, but are included to provide the complete disposition history or status of all PCB activities during the year. The Annual Document Log section of this report (Section 2.0) meets the requirements of 40 CFR 761.180(a)(2), as applicable, while the Annual Records section (Section 3.0) meets the requirement of 40 CFR 761.180(a)(1).

  10. SKB annual report 1992

    International Nuclear Information System (INIS)

    1993-05-01

    This is the annual report on the activities of the Swedish Nuclear Fuel and Waste Management Co, SKB. It contains in part 1 an overview of SKB activities in different fields. Part 2 gives a description of the research and development work on nuclear waste disposal performed during 1992. Lectures and publications during 1992 as well as reports issued in the SKB technical report series are listed in part 4. Part 5 contains the summaries of all technical reports issued during 1992. SKB is the owner of CLAB, the Central Facility for Interim Storage of Spent Nuclear Fuel, located at Oskarshamn. CLAB was taken into operation in July 1985 and to the end of 1992 in total 1684 tonnes of spent fuel (measured as uranium) has been received. Transportation from the nuclear site to CLAB is made by a special ship, M/S Sigyn. At Forsmark the final repository for Radioactive Waste -SFR- was taken in operation in April 1988. At the end of 1992 a total of 11000 m 3 of waste have been deposited in SFR. The total cost for R and D during 1992 was 192.3 MSEK of which 24.8 MSEK came from participants outside Sweden. Some of the main areas for SKB research are: groundwater movements, bedrock stability, groundwater chemistry and nuclide migration, method and instruments for in situ characterization of crystalline bedrock, characterization and leaching of spent nuclear fuel, properties of bentonite for buffer, backfilling and sealing, radionuclide transport in biosphere and dose evaluations, development of performance and safety assessment methodology and assessment models, construction of an underground research laboratory. Cost calculations for the total nuclear waste management system, including decommissioning of all reactors, are updated annually. The total cost is estimated to 55 billion SEK

  11. 78 FR 77359 - Eighth Coast Guard District Annual Safety Zones; New Year's Eve Celebration/City of Mobile...

    Science.gov (United States)

    2013-12-23

    ...-AA00 Eighth Coast Guard District Annual Safety Zones; New Year's Eve Celebration/City of Mobile; Mobile Channel; Mobile, AL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard will enforce the City of Mobile New Year's Eve Celebration safety zone in the Mobile Channel, Mobile, AL from...

  12. Laboratory Directed Research and Development Program Assessment for FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States); Barkigia, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giacalone, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    This report provides an overview of the BNL LDRD program and a summary of the management processes, project peer review, a financial overview, and the relation of the portfolio of LDRD projects to BNL's mission, initiatives, and strategic plan. Also included are a summary of success indicators and a self-assessment.

  13. 45 CFR 1176.5 - Annual plan.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Annual plan. 1176.5 Section 1176.5 Public Welfare... ENDOWMENT FOR THE HUMANITIES PART-TIME CAREER EMPLOYMENT § 1176.5 Annual plan. (a) An agencywide plan for promoting part-time employment opportunities will be developed annually. This plan will establish annual...

  14. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  15. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  16. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  17. The Medicare Annual Wellness Visit.

    Science.gov (United States)

    Colburn, Jessica L; Nothelle, Stephanie

    2018-02-01

    The Medicare Annual Wellness Visit is an annual preventive health benefit, which was created in 2011 as part of the Patient Protection and Affordable Care Act. The visit provides an opportunity for clinicians to review preventive health recommendations and screen for geriatric syndromes. In this article, the authors review the requirements of the Annual Wellness Visit, discuss ways to use the Annual Wellness Visit to improve the care of geriatric patients, and provide suggestions for how to incorporate this benefit into a busy clinic. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Annual report of national institute of radiological sciences

    International Nuclear Information System (INIS)

    1993-07-01

    This annual report is a compilation of the research activities and achievement in the National Institute of Radiological Sciences (NIRS) in Japan during the fiscal year 1992 (from April 1992 through March 1993). Construction of the Heavy Ion Medical Accelerator in Chiba (HIMAC) has reached semi-final stage. The research covers a wide range of radiological sciences from molecular biology to environmental studies and medicine including engineering for heavy ion therapy of cancer. Topics consists of physics, chemistry, biomedical science, clinical research, and environmental sciences, covering a total of 84 titles. A list of publications by staff members, activities of research divisions, and organization chart of the NIRS are given in Appendix. (J.P.N.) 78 refs

  19. Reading Ease of Bilingual Annual Reports.

    Science.gov (United States)

    Courtis, John K.; Hassan, Salleh

    2002-01-01

    Examines reading ease between the English and Chinese versions of 65 corporate annual reports in Hong Kong and the English and Malay versions of 53 annual reports in Malaysia. Notes that the English passages in Malaysian annual reports are easier to read than the English passages in Hong Kong annual reports. Suggests that different language…

  20. Algorithm for Wave-Particle Resonances in Fluid Codes - Final Report

    CERN Document Server

    Mattor, N

    2000-01-01

    We review the work performed under LDRD ER grant 98-ERD-099. The goal of this work is to write a subroutine for a fluid turbulence code that allows it to incorporate wave-particle resonances (WPR). WPR historically have required a kinetic code, with extra dimensions needed to evolve the phase space distribution function, f(x, v, t). The main results accomplished under this grant have been: (1) Derivation of a nonlinear closure term for 1D electrostatic collisionless fluid; (2) Writing of a 1D electrostatic fluid code, ''es1f,'' with a subroutine to calculate the aforementioned closure term; (3) derivation of several methods to calculate the closure term, including Eulerian, Euler-local, fully local, linearized, and linearized zero-phase-velocity, and implementation of these in es1f; (4) Successful modeling of the Landau damping of an arbitrary Langmuir wave; (5) Successful description of a kinetic two-stream instability up to the point of the first bounce; and (6) a spin-off project which uses a mathematical ...

  1. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N.; Mika, J.R.; Wieteska, K. [eds.

    1998-12-31

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  2. Annual Report 2001

    International Nuclear Information System (INIS)

    Swiboda, G.

    2002-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 2001. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  3. Annual Report 1997

    International Nuclear Information System (INIS)

    Golnik, N.; Mika, J.R.; Wieteska, K.

    1998-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  4. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N; Mika, J R; Wieteska, K [eds.

    1999-12-31

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  5. Supplements and other changes to an approved application. Final rule.

    Science.gov (United States)

    2004-04-08

    The Food and Drug Administration (FDA) is amending its regulations on supplements and other changes to an approved application to implement the manufacturing changes provision of the Food and Drug Administration Modernization Act of 1997 (the Modernization Act). The final rule requires manufacturers to assess the effects of manufacturing changes on the identity, strength, quality, purity, and potency of a drug or biological product as those factors relate to the safety or effectiveness of the product. The final rule sets forth requirements for changes requiring supplement submission and approval before the distribution of the product made using the change, changes requiring supplement submission at least 30 days prior to the distribution of the product, changes requiring supplement submission at the time of distribution, and changes to be described in an annual report.

  6. Annual report 1976

    International Nuclear Information System (INIS)

    1977-01-01

    This annual report is the fifth issued in English from the Tandem Accelerator Laboratory in Uppsala since research was started in November 1970. It covers work performed during the calendar year 1976 and updates information given in earlier annual reports with regard to laboratory facilities such as computer configuration and layout of the experimental area. The descriptions of the research projects are also in general more detailed than usual and may sometime contain results obtained before 1976 in order to avoid too many references to earlier annual reports. It has, for instance, been thought of interest to make the sections on the study of beam foil excitation of atoms and on the measurements of nuclear deformations by the REPREC method quite extensive. (Auth.)

  7. Stockholder Reactions to Corporate Annual Reports.

    Science.gov (United States)

    Means, Thomas Lee

    A study was conducted to assess the extent to which (1) stockholders consider corporate annual reports to be informative and useful, (2) they actually read annual reports, (3) they consider annual reports to be impressive, and (4) they are motivated by the annual report to invest further in corporations in which they already own stock. After the…

  8. CSIR Annual report 1992

    CSIR Research Space (South Africa)

    CSIR

    1992-01-01

    Full Text Available stream_source_info Annual Report_ 1992.pdf.txt stream_content_type text/plain stream_size 39 Content-Encoding ISO-8859-1 stream_name Annual Report_ 1992.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  9. CSIR Annual report 1976

    CSIR Research Space (South Africa)

    CSIR

    1976-01-01

    Full Text Available stream_source_info Annual Report_1976.pdf.txt stream_content_type text/plain stream_size 75 Content-Encoding ISO-8859-1 stream_name Annual Report_1976.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  10. CSIR Annual report 1978

    CSIR Research Space (South Africa)

    CSIR

    1978-01-01

    Full Text Available stream_source_info Annual Report_1978.pdf.txt stream_content_type text/plain stream_size 78 Content-Encoding ISO-8859-1 stream_name Annual Report_1978.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  11. CSIR Annual report 1965

    CSIR Research Space (South Africa)

    CSIR

    1965-01-01

    Full Text Available stream_source_info Annual Report_ 1965.pdf.txt stream_content_type text/plain stream_size 48 Content-Encoding ISO-8859-1 stream_name Annual Report_ 1965.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  12. CSIR Annual report 1991

    CSIR Research Space (South Africa)

    CSIR

    1991-01-01

    Full Text Available stream_source_info Annual Report_ 1991.pdf.txt stream_content_type text/plain stream_size 40 Content-Encoding ISO-8859-1 stream_name Annual Report_ 1991.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  13. L3 physics at the Z resonance and a search for the Higgs particle

    International Nuclear Information System (INIS)

    Coan, T.A.; Kinnison, W.W.; Kapustinsky, J.; Shukla, J.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Electroweak interactions were studied using the L3 Detector on the Large Electron-Positron Collider (LEP) at the European Center for Nuclear Study (CERN). The specific physics studied utilized the Silicon Microvertex Detector (SMD) of L3, which Los Alamos had previously played a major role in proposing, designing, constructing, and commissioning. This detector enabled L3 to investigate short-lived mesons containing b-quarks

  14. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  15. CSIR Annual report 1979

    CSIR Research Space (South Africa)

    CSIR

    1979-01-01

    Full Text Available stream_source_info CSIR Annual report_1979.pdf.txt stream_content_type text/plain stream_size 86 Content-Encoding ISO-8859-1 stream_name CSIR Annual report_1979.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  16. Annual report to Congress

    International Nuclear Information System (INIS)

    1987-01-01

    This is the ninth Annual Report to Congress of the United States Department of Energy. It covers the activities of all elements of the Department except the independent Federal Regulatory Commission, which issues its own annual report. 88 refs., 43 tabs

  17. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  18. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  19. Idaho National Laboratory PCB Annual Document Log and Annual Records Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    no name on report

    2014-06-01

    The requirements for the reporting of polychlorinated biphenyl (PCB)-related activities are found in 40 Code of Federal Regulations (CFR) 761 Subpart J, "General Records and Reports." The PCB Annual Document Log is a detailed record of the PCB waste handling activities at the facility. The facility must prepare it each year by July 1 and maintain it at the facility for at least 3 years after the facility ceases using or storing PCBs and PCB items. While submittal of the PCB Annual Document Log to the U.S. Environmental Protection Agency (EPA) is not required by regulation, EPA has verbally requested in telephone conversations that this report be submitted to them on an annual basis. The Annual Document Log section of this report meets the requirements of 40 CFR 761.180(a)(2), as applicable, while the Annual Records section meets the requirement of 40 CFR 761.180(a)(1).

  20. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  1. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes

    Directory of Open Access Journals (Sweden)

    M. Bahn

    2010-07-01

    Full Text Available Soil respiration (SR constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT, irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10. We further show that for seasonally dry sites where annual precipitation (P is lower than potential evapotranspiration (PET, annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.

  2. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [Deutsches Atomforum e.V. (DAtF), Berlin (Germany)

    2016-06-15

    The 47{sup th} Annual Meeting on Nuclear Technology (AMNT 2016) was an excellent opportunity for a comprehensive outlook on nuclear technology, fostering international exchange in industry, research, politics and administration. Ralf Gueldner, President of the German Atomic Forum (DAtF) talked about important decisions in nuclear energy in Germany in 2016. Finally, Gueldner noticed that even with a phase out, Germany needs nuclear expertise and competent people for the upcoming challenges and international cooperation. In this context, also publicly-financed education and research are indispensable.

  3. 77 FR 64463 - Annual Retail Trade Survey

    Science.gov (United States)

    2012-10-22

    ... covering annual sales, annual e- commerce sales, year-end inventories held inside and outside the United... industries, merchandise line sales, and percent of e-commerce sales to customers located outside the United... comparable classification basis, annual sales, annual e-commerce sales, purchases, total and detailed...

  4. Annual Partnership Report, 2016

    Science.gov (United States)

    Wyoming Community College Commission, 2016

    2016-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. This partnership report fulfills statutory reporting requirement W.S. 21-18-202(e)(iv) which mandates the development of annual reports to the legislature on the outcomes of partnerships between colleges…

  5. 76 FR 69239 - Annual Retail Trade Survey

    Science.gov (United States)

    2011-11-08

    ... collect data covering annual sales, annual e-commerce sales, year-end inventories held inside and outside... industries, merchandise line sales, and percent of e-commerce sales to customers located outside the United... (NAICS). ARTS provides, on a comparable classification basis, annual sales, annual e-commerce sales...

  6. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society.

  7. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    International Nuclear Information System (INIS)

    1989-01-01

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society

  8. Annual and inter-annual variations of 6.5-day-planetary-waves in MLT observed by TIMED/SABER

    Science.gov (United States)

    Huang, Yingying; Li, Huijun; Li, Chongyin; Zhang, Shaodong

    2017-04-01

    Annual and inter-annual variations of 6.5DWs in 20-110 km, 52°S-52°N, 2002-2016 are studied by using v2.0 TIMED/SABER kinetic temperature data. Firstly, global annual variations of 6.5DW's spectral power and amplitudes are obtained. Strong wave amplitudes emerge in 30°S/N-50°S/N, and peaks in altitude separate in stratosphere (40-50 km), mesosphere (80-90 km) and the lower thermosphere (100-110 km), respectively. Their annual variations are similar in both hemispheres, but different in altitude. In 40-50 km, the annual maximums emerge mostly in winters: Dec.-Jan. in the NH and Jul.-Aug. in the SH. In MLT, annual peaks arise twice in each half of year. In 80-90 km, they're mainly in equinoctial seasons and winters: May, Aug.-Sep. and Jan. in the NH and Feb., Nov. and May in the SH. In 100-110 km, they emerge mainly in equinoctial seasons: Apr.-May and Aug.-Sep. in the NH and Feb.-Mar. and Oct.-Nov. in the SH. Then, inter-annual variations of 6.5DW amplitudes during the 14-year period are studied. Frequency spectra of monthly-mean amplitudes show that, main dynamics in long-term variations of 6.5DWs are AO and SAO in both hemispheres. Besides, QBO are visible in both hemispheres and 4-month period signals are noticed in the NH in MLT. Amplitudes of SAO, AO and QBO are obtained by bandpass filter. Their amplitudes are comparable in stratosphere and mesosphere, and QBO signals are weaker than the others in the LT. Vertical variations both of SAO and AO amplitudes are very stable. AO structures have little inter-annual changes, while inter-annual variations of SAO are significant and are related with 6.5DW. It means that annual and inter-annual variations of 6.5DW are mainly controlled by AO and SAO, respectively. Although QBO signals are weaker and their variations are less regular than AO and SAO, their phases seems to relate with inter-annual variations of 6.5DW as well.

  9. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  10. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  11. 77 FR 16484 - Annual Stress Test

    Science.gov (United States)

    2012-03-21

    ...-2011-0029] RIN 1557-AD58 Annual Stress Test AGENCY: Office of the Comptroller of the Currency, Treasury... billion to conduct an annual stress test and comply with certain reporting and disclosure requirements. To... conduct annual stress tests pursuant to regulations prescribed by their respective Federal primary...

  12. 28 CFR 16.208 - Annual report.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Annual report. 16.208 Section 16.208 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE OF MATERIAL OR INFORMATION Public Observation of Parole Commission Meetings § 16.208 Annual report. The Commission shall report annually to...

  13. Development of a central final repository management for the coordination of the waste for Schacht Konrad from public authorities

    International Nuclear Information System (INIS)

    Graffunder, Iris; Dominke-Bendix, Carola; Waldek, Achim

    2012-01-01

    The central final repository management is supposed to fulfill the following tasks: active collaboration of Konrad contract draft, signing of internal contracts and agreements, cooperation contract with GNS, cooperation with coordination authorities, inventory taking of wastes (existing inventory and prognosis) and interim storage capacities of public authorities, development of planning and management software, optimization of the final repository documentation, container management, logistics concept, long-term disposal planning and prognosis, planning and coordination of the annual waste amount, management and documentation of disposed waste allocation, coordination of transport schedules, consulting service for waste obligations (final repository requirements, product control, documentation).

  14. Many body theory program

    International Nuclear Information System (INIS)

    Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.

    1998-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops

  15. Developing electron beam bunching technology for improving light sources

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source

  16. A multi-level code for metallurgical effects in metal-forming processes

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  17. 77 FR 3408 - Annual Stress Test

    Science.gov (United States)

    2012-01-24

    ...-2011-0029] RIN 1557-AD58 Annual Stress Test AGENCY: Office of the Comptroller of the Currency (``OCC... certain companies to conduct annual stress tests pursuant to regulations prescribed by their respective... stress test as prescribed by this proposed rule. In addition to the annual stress test requirement, such...

  18. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  19. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  20. Basic Program Elements for Federal employee Occupational Safety and Health Programs and related matters; Subpart I for Recordkeeping and Reporting Requirements. Final rule.

    Science.gov (United States)

    2013-08-05

    OSHA is issuing a final rule amending the Basic Program Elements to require Federal agencies to submit their occupational injury and illness recordkeeping information to the Bureau of Labor Statistics (BLS) and OSHA on an annual basis. The information, which is already required to be created and maintained by Federal agencies, will be used by BLS to aggregate injury and illness information throughout the Federal government. OSHA will use the information to identify Federal establishments with high incidence rates for targeted inspection, and assist in determining the most effective safety and health training for Federal employees. The final rule also interprets several existing basic program elements in our regulations to clarify requirements applicable to Federal agencies, amends the date when Federal agencies must submit to the Secretary of Labor their annual report on occupational safety and health programs, amends the date when the Secretary of Labor must submit to the President the annual report on Federal agency safety and health, and clarifies that Federal agencies must include uncompensated volunteers when reporting and recording occupational injuries and illnesses.

  1. Proof-of-Concept of the Phytoimmobilization Technology for TNX Outfall Delta: Final Report; FINAL

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    A series of proof-of-principle studies was initiated to evaluate the soil remediation technology, phytoimmobilization, for application at the TNX Outfall Delta (TNX OD) operable unit. Phytoimmobilization involves two steps. The first step is entitled phytoextraction, and it takes place mostly during the spring and summer. During this step the plants extract contaminants from the sediment into the roots and then translocate the contaminants to the aboveground plant parts. The second step is referred to as sequestration and it takes place largely during the autumn and winter when annual plants senesce or deciduous trees drop their leaves. This step involves the immobilization of the contaminant once it leaches form the fallen leaves into a ''geomat,'' a geotextile embedded with mineral sequestering agents. This final report describes the results to date, including those reported in the status report (Kaplan et al. 2000a), those completed since the report was issued, and the preliminary calculations of the phytoimmobilization effectiveness

  2. Annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Delivering products and services to nuclear power plants operators, AREVA operates in every sector of the civilian nuclear power and fuel cycle industry. This annual report 2003 provides, in seven chapters, information on persons responsible for the annual report and for auditing the financial statements, general information on the company and share capital (statute, capital, share trading, dividends), information on company operations, changes and future prospects, assets, financial position and financial performance, corporate governance, recent developments and future prospects. (A.L.B.)

  3. AISES 1995 annual conference ($10,000), AISES scholarship fund ($5,000). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-30

    The conference took place in Detroit, MI, November 9--12, 1995, at the COBO Convention Center. This educational event and career fair serve as part of the reward for students pursuing or about to complete their education. The community of peers, professionals, elders, family and mentors embrace the students` ambitions and celebrate the students` accomplishments. For students who might otherwise feel disconnected while in school, the annual gathering at the conference is a vital part of maintaining their motivation and inspiring perseverance. The 1995 Conference attendance was 1,900 students and professionals. Some 230 companies, government agencies, universities and organizations were represented at the Career Fair where students gathered information regarding employment and educational opportunities. In an effort to provide as many opportunities as possible for students and recruiters, a networking room was available throughout the conference for interviewing, networking and socializing. Student poster research presentations were displayed in this area as well. A Job Information Center was also open to provide announcements for specific job opening as well as cross-referenced lists of majors/disciplines and the organizations that recruit in those areas of interest. Total scholarship disbursements for 1995 exceeded $600,000. Scholarships were granted to some 375 students in awards of $1,000 to $4,000. AISES scholarships are awarded to American Indian/Alaska Native undergraduate and graduate students who are members of AISES majoring in the sciences, engineering, health-related fields, business, natural resources, math and science secondary education, and energy resource management. Scholarship are awarded in recognition of students` leadership and academic achievements.

  4. U.S. Annual Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of...

  5. International Atomic Energy Agency Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2013. The IAEA Annual Report 2013 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 15, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2013 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear- Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used in

  6. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  7. 1998 Annual Report - Environmental Restoration Division

    International Nuclear Information System (INIS)

    Davis, L.B.

    1998-01-01

    This is a 1998 annual report for Environmental Restoration. Environmental Restoration's accomplishments were significant in 1998. The division, including its support organizations, completed one year without a lost time accident. It also met 111 enforceable agreement milestones on time, with more than 80% ahead of schedule. Funds used to meet these milestones were effectively utilized and $9.63 million in regulatory scope was added. Twelve new, innovative technologies were deployed, enabling ER to achieve significant progress on major field remediation projects, including: Remediation of 25 acres of radioactive burial ground; Removal of 1,300 batteries for recycling; Removal and safe storage of a radioactive underground tank; Extraction of 115,000 pounds of solvent; and Installation of 9 new recirculation wells and a second GeoSiphon Cell for additional removal of solvent Final Records of Decision were made for 9 base unit sites. No Further Action decisions were made for 61 additional sites

  8. Final Test Analysis of Post Graduate Medical Residents

    Directory of Open Access Journals (Sweden)

    Maliheh Arab

    2009-04-01

    Full Text Available Background and purpose: Multiple choice questions are the most frequent test for medical students. It is important to analysis the overall response to individual  questions in the test.The aim of this study is to analyse questions of post graduate medical residency  tests.Methods: Final annual local (Ramadan medical school and national tests given to three Residency groups  including  17 Obstetrics  and gynecology testees,  7 pediatrics  and  12 internal  medicine  in 2004 were studied. In local tests residents answered to 148, 150 and 144 and in national  tests to ISO MCQS. Questions were  evaluated regarding cognitive domain level, Difficultly index and Discriminative index  and finally to evaluate  the optimal,  proper, acceptable and  ''must  omitted" questions.Results: Questions of local Obstetrics and gynecology, pediatrics and internal medicine tests evaluated the "recall" level in 72%, 72% and 51% and in national  tests 71%,  35% and 19%,  respectively. Questions  with  Discriminative indices  of 0.7 or more (proper  were 3 and  5% in  Obstetrics  and gynecology, 3.5% and 1% in pediatrics and 1% in local and national tests. Proper difficulty indices (30-70  were shown in 53% and 54% in Obstetrics  and gynecology, 34% and 43% in pediatrics and 40% and  42% in internal  medicine.  Generally  evaluating,  "must  omitted" questions in local and national tests were 76% in Obstetrics and gynecology, 81% and 79% in pediatrics and 91% and 85% in internal medicine. The most common causes making the questions to be considered  "must omitted" in studied tests were negative, zero or less than 0.2 Discriminative indices.Conclusion: Test analysis  of final  annual  local  (Ramadan medical  school  and national  tests  of Obstetrics  and gynecology, Pediatrics and internal medicine residency  programs  in 2004 revealed that most of the questions  are planned  in  "recall" level, harbor  improper

  9. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  10. Annual Percentage Rate and Annual Effective Rate: Resolving Confusion in Intermediate Accounting Textbooks

    Science.gov (United States)

    Vicknair, David; Wright, Jeffrey

    2015-01-01

    Evidence of confusion in intermediate accounting textbooks regarding the annual percentage rate (APR) and annual effective rate (AER) is presented. The APR and AER are briefly discussed in the context of a note payable and correct formulas for computing each is provided. Representative examples of the types of confusion that we found is presented…

  11. Chemistry and Materials Science Department annual report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  12. 29 CFR 1904.32 - Annual summary.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Annual summary. 1904.32 Section 1904.32 Labor Regulations... Requirements § 1904.32 Annual summary. (a) Basic requirement. At the end of each calendar year, you must: (1... deficiencies identified; (2) Create an annual summary of injuries and illnesses recorded on the OSHA 300 Log...

  13. Integrated NEMS and optoelectronics for sensor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  14. Algorithm for Wave-Particle Resonances in Fluid Codes - Final Report

    International Nuclear Information System (INIS)

    Mattor, N.

    2000-01-01

    We review the work performed under LDRD ER grant 98-ERD-099. The goal of this work is to write a subroutine for a fluid turbulence code that allows it to incorporate wave-particle resonances (WPR). WPR historically have required a kinetic code, with extra dimensions needed to evolve the phase space distribution function, f(x, v, t). The main results accomplished under this grant have been: (1) Derivation of a nonlinear closure term for 1D electrostatic collisionless fluid; (2) Writing of a 1D electrostatic fluid code, ''es1f,'' with a subroutine to calculate the aforementioned closure term; (3) derivation of several methods to calculate the closure term, including Eulerian, Euler-local, fully local, linearized, and linearized zero-phase-velocity, and implementation of these in es1f; (4) Successful modeling of the Landau damping of an arbitrary Langmuir wave; (5) Successful description of a kinetic two-stream instability up to the point of the first bounce; and (6) a spin-off project which uses a mathematical technique developed for the closure, known as the Phase Velocity Transform (PVT) to decompose turbulent fluctuations

  15. Annual Energy Review, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  16. 2017 Annual Disability Statistics Supplement

    Science.gov (United States)

    Lauer, E. A; Houtenville, A. J.

    2018-01-01

    The "Annual Disability Statistics Supplement" is a companion report to the "Annual Disability Statistics Compendium." The "Supplement" presents statistics on the same topics as the "Compendium," with additional categorizations by demographic characteristics including age, gender and race/ethnicity. In…

  17. National Nuclear Security Administration Nonproliferation Graduate Fellowship Program Annual Report in Brief: October 2007 - May 2008

    Energy Technology Data Exchange (ETDEWEB)

    Berkman, Clarissa O.; Fankhauser, Jana G.; Sandusky, Jessica A.

    2009-05-01

    This abbreviated Annual Report covers program activities of the National Nuclear Security Administration (NNSA) Nonproliferation Graduate Fellowship Program (NGFP) from October 2007 through May 2008--the timeframe between the last Annual Report (which covered activities through September 2007) and the next report (which will begin with June 2008 activities). In that timeframe, the NGFP continued building a solid foundation as the program began reaping the benefits of recently implemented changes. This report is organized by Fellowship class and the pertinent program activities for each, including: October 2007 Recruiting events and final applications (Class of 2008) Winter 2007 Selection and hiring (Class of 2008) Spring 2008 Career development roundtables (Class of 2007) Orientation planning (Class of 2008) Recruitment planning and university outreach (Class of 2009) May 2008 Closing ceremony (Class of 2007)

  18. CSIR Annual report 1948-49

    CSIR Research Space (South Africa)

    CSIR

    1949-01-01

    Full Text Available stream_source_info Annual Report_1948-1949.pdf.txt stream_content_type text/plain stream_size 92 Content-Encoding ISO-8859-1 stream_name Annual Report_1948-1949.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  19. CSIR Annual report 1954-55

    CSIR Research Space (South Africa)

    CSIR

    1955-01-01

    Full Text Available stream_source_info Annual Report_1954-55.pdf.txt stream_content_type text/plain stream_size 206 Content-Encoding ISO-8859-1 stream_name Annual Report_1954-55.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  20. The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records

    Science.gov (United States)

    Deng, Qimin; Nian, Da; Fu, Zuntao

    2018-02-01

    Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.

  1. Annual Growth Bands in Hymenaea courbaril

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, J A; Guilderson, T P; Colinvaux, P A

    2004-02-09

    One significant source of annual temperature and precipitation data arises from the regular annual secondary growth rings of trees. Several tropical tree species are observed to form regular growth bands that may or may not form annually. Such growth was observed in one stem disk of the tropical legume Hymenaea courbaril near the area of David, Panama. In comparison to annual reference {Delta}{sup 14}C values from wood and air, the {Delta}{sup 14}C values from the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. During this study, H. courbaril was also observed to translocate recently produced photosynthate into older growth rings as sapwood is converted to heartwood. This process alters the overall {Delta}{sup 14}C values of these transitional growth rings as cellulose with a higher {Delta}{sup 14}C content is translocated into growth rings with a relatively lower {Delta}{sup 14}C content. Once the annual nature of these growth rings is established, further stable isotope analyses on H. courbaril material in other studies may help to complete gaps in the understanding of short and of long term global climate patterns.

  2. 2017 Annual Disability Statistics Compendium

    Science.gov (United States)

    Lauer, E. A.; Houtenville, A. J.

    2018-01-01

    The "Annual Disability Statistics Compendium" and its compliment, the "Annual Disability Statistics Supplement," are publications of statistics about people with disabilities and about the government programs which serve them. The "Compendium" and "Supplement" are designed to serve as a summary of government…

  3. SKB Annual Report 1995. Including summaries of Technical Reports issued during 1995

    International Nuclear Information System (INIS)

    1996-05-01

    The annual report covers planning, construction and operation of facilities and systems as well as research, development, demonstration work and information activities. The aim of the program is to start the permanent disposal of spent nuclear fuel around year 2008. Work is undertaken for the development of encapsulation technology on an industrial scale and for design of an encapsulation plant. The siting process for the final repository for spent fuel has started with feasibility studies in a few Swedish municipalities in order to evaluate the potential technical conditions and requirements and the influence on the region. 36 refs, figs

  4. SKB Annual Report 1995. Including summaries of Technical Reports issued during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The annual report covers planning, construction and operation of facilities and systems as well as research, development, demonstration work and information activities. The aim of the program is to start the permanent disposal of spent nuclear fuel around year 2008. Work is undertaken for the development of encapsulation technology on an industrial scale and for design of an encapsulation plant. The siting process for the final repository for spent fuel has started with feasibility studies in a few Swedish municipalities in order to evaluate the potential technical conditions and requirements and the influence on the region. 36 refs, figs.

  5. NERSC 2001 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Hules, John

    2001-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005

  6. 76 FR 64894 - Annual Wholesale Trade Survey

    Science.gov (United States)

    2011-10-19

    ... covering annual sales, e-commerce sales, year-end inventories held inside and outside the United States and... on annual sales, e-commerce sales, purchases, total operating expenses, year-end inventories held... DEPARTMENT OF COMMERCE Bureau of the Census [Docket Number 111007614-1611-01] Annual Wholesale...

  7. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30°S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m-2 yr-1) from 40 to 50°S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m-2 yr-1 for all regions south of 40°S. Cumulative ANCP south of 50°S is 1.3 Pg C yr-1. This represents about 13% of global ANCP in about 14% of the global ocean area.Plain Language SummaryThis manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.

  8. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.

    Science.gov (United States)

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  9. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps

    Directory of Open Access Journals (Sweden)

    Giovanna eBattipaglia

    2016-05-01

    Full Text Available Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical and other properties of tree rings are a synthesis of several intrinsic, environmental factors, and interconnected processes acting during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1 the influence of climatic factors on the formation of IADFs; (2 the occurrence of IADFs in different species and environments; (3 the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  10. 47 CFR 73.3612 - Annual employment report.

    Science.gov (United States)

    2010-10-01

    ... gender, race and ethnicity of a broadcast station's workforce collected in the annual employment report... 47 Telecommunication 4 2010-10-01 2010-10-01 false Annual employment report. 73.3612 Section 73... BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.3612 Annual employment report. Each...

  11. 75 FR 63804 - Annual Retail Trade Survey

    Science.gov (United States)

    2010-10-18

    ... collect data covering annual sales, annual e-commerce sales, year-end inventories held inside and outside... industries, merchandise line sales, percent of sales by class of customer, and percent of e-commerce sales to..., annual e-commerce sales, purchases, total operating expenses, accounts receivables, and year-end...

  12. 50 CFR 300.62 - Annual management measures.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Annual management measures. 300.62 Section... REGULATIONS Pacific Halibut Fisheries § 300.62 Annual management measures. Annual management measures may be... of unloading and weighing, and sport fishing for halibut. The Assistant Administrator will publish...

  13. 47 CFR 76.1802 - Annual employment report.

    Science.gov (United States)

    2010-10-01

    ... gender, race and ethnicity of an employment unit's workforce collected in the annual employment report... 47 Telecommunication 4 2010-10-01 2010-10-01 false Annual employment report. 76.1802 Section 76... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Reports and Filings § 76.1802 Annual employment report. Each...

  14. 47 CFR 1.785 - Annual financial reports.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Annual financial reports. 1.785 Section 1.785..., and Reports Involving Common Carriers Financial and Accounting Reports and Requests § 1.785 Annual financial reports. (a) An annual financial report shall be filed by telephone carriers and affiliates as...

  15. 5 CFR 870.204 - Annual rates of pay.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Annual rates of pay. 870.204 Section 870... rates of pay. (a) (1) An insured employee's annual pay is his/her annual rate of basic pay as fixed by law or regulation. (2) Annual pay for this purpose includes the following: (i) Interim geographic...

  16. ATLAS participation to the 36th Annual CERN Relay Race

    CERN Multimedia

    Gagnon, P.

    On May 17, the Annual CERN relay race took place for the 36th time. This is a fun relay race where a team of six runners runs around the CERN site in Meyrin, up and down many hills, to cover the following distances: the first runner runs 1000 m, the second and third runners cover 800 m each, the fourth and fifth runners each have 500 m and finally, the sixth runner covers the last 300 m all the way to the finish line. Each year, serious and occasionnal runners who take this opportunity to make it their only running moment of the year, give it their best to run the 3.9 km loop in times ranging from a mere 10:39.9 for the best team this year to 18:14.3 for the last of the 65 teams that completed the race. Nobody was wasting time at the starting line of the CERN Annual Relay Race. ATLAS was better represented than ever with a record of eight ATLAS teams participating in this race organized by the CERN running club. The names of the ATLAS participants, as well as the team official times are given in the t...

  17. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Annual report June 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report reviews the activities of the National Accelerator Centre until June 1988. The 200 MeV cyclotron facility, the Pretoria cyclotron facility and the Van De Graaff facility are discussed in detail. Aspects of the 200 MeV cyclotron facility examined are, inter alia: the injector cyclotrons, the separated-sector cyclotron, the control system, the beam transport system and radioisotope production. Separate abstracts were prepared for the various subdivisions contained in this annual report

  20. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  1. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  2. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  3. 29 CFR 403.2 - Annual financial report.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Annual financial report. 403.2 Section 403.2 Labor... STANDARDS LABOR ORGANIZATION ANNUAL FINANCIAL REPORTS § 403.2 Annual financial report. (a) Every labor... Standards within 90 days after the end of each of its fiscal years, a financial report signed by its...

  4. 29 CFR 408.5 - Annual financial report.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Annual financial report. 408.5 Section 408.5 Labor... STANDARDS LABOR ORGANIZATION TRUSTEESHIP REPORTS § 408.5 Annual financial report. During the continuance of... organization the annual financial report and any Form T-1 reports required by part 403 of this chapter, signed...

  5. Generation 4 International Forum. 2014 Annual Report

    International Nuclear Information System (INIS)

    2015-01-01

    This eighth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2014, and in particular progress made in the collaborative RandD activities of the eleven existing project arrangements for the six GIF systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor and the very-high-temperature reactor. Progress made under the memoranda of understanding for the lead-cooled fast reactor and the molten salt reactor is also reported. In May 2014, China joined the supercritical-water-cooled reactor system arrangement; and in October 2014, the project arrangement on system integration and assessment for the sodium-cooled fast reactor became effective. GIF also continued to develop safety design criteria and guidelines for the sodium-cooled fast reactor, and to engage with regulators on safety approaches for generation IV systems. Finally, GIF initiated an internal discussion on sustainability approaches to complement ongoing work on economics, safety, proliferation resistance and physical protection

  6. Annual report of the Association EURATOM/Cea

    International Nuclear Information System (INIS)

    Magaud, Ph.; Le Vagueres, F.

    2002-01-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies

  7. Annual report of the Association EURATOM/Cea

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, Ph; Le Vagueres, F

    2002-07-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies.

  8. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  9. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  10. An ultra-cold neutron source at the MLNSC

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science

  11. Development of a gamma ray spectroscopy capability at LANSCE

    International Nuclear Information System (INIS)

    Nelson, R.O.; Strottman, D.D.; Sterbenz, S.M.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to explore an upgrade to the GEANIE high-resolution gamma-ray spectrometer at the Los Alamos Neutron Science Center (LANSCE) to help build additional experimental capabilities. The improvements identified have significantly added to the capabilities of GEANIE and made the facility more attractive for studies supporting the core national security mission as well as for use by outside collaborators. These benefits apply to both basic and applied studies

  12. Geometry in the large and hyperbolic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Hasslacher, B.; Mainieri, R.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.

  13. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  14. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  15. IAEA research contracts. First annual report

    International Nuclear Information System (INIS)

    1961-01-01

    The present volume is the first issue of what will become a regular annual publication by the Agency. It contains summaries of the final reports on all those contracts which have expired before 31 December 1960 with a few exceptions. In every case, the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been closely connected with that particular subject of research. Thus, the scientific data reported in the summary remain the responsibility of the contractor, the Agency being responsible for any additional observations. The reports of the following contracts are included: Research Contract No.2, The investigation of electrophysiological responses of biological systems, in particular of nerve cells, to irradiation with small doses of X-ray and other types of ionizing radiation, Research Contract No.3, Investigation on the mode of the protective action of certain sulfhydryl compounds against radiation effects on the synthesis of deoxyribonucleic acid, using tritium-labelled thymidine, Research Contract No.6, Investigation and development of a new method of monitoring and dosimetry for low fluxes of fast neutrons, involving the use of a bubble chamber, Research Contract No.13, Effects of incorporated radioisotopes upon the stability of genetic materials, Research Contract No.16, Interrelationship of root absorption and leaf absorption of radioisotopes in herbaceous plants, Research Contract No. 23, The uptake of radioactive wastes by lowland rice from contaminated soils due to irrigation water and its decontamination, Research Contract No.28, Comparison between mutation rates induced by acute and chronic gamma irradiation

  16. IAEA research contracts. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-01

    The present volume is the first issue of what will become a regular annual publication by the Agency. It contains summaries of the final reports on all those contracts which have expired before 31 December 1960 with a few exceptions. In every case, the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been closely connected with that particular subject of research. Thus, the scientific data reported in the summary remain the responsibility of the contractor, the Agency being responsible for any additional observations. The reports of the following contracts are included: Research Contract No.2, The investigation of electrophysiological responses of biological systems, in particular of nerve cells, to irradiation with small doses of X-ray and other types of ionizing radiation, Research Contract No.3, Investigation on the mode of the protective action of certain sulfhydryl compounds against radiation effects on the synthesis of deoxyribonucleic acid, using tritium-labelled thymidine, Research Contract No.6, Investigation and development of a new method of monitoring and dosimetry for low fluxes of fast neutrons, involving the use of a bubble chamber, Research Contract No.13, Effects of incorporated radioisotopes upon the stability of genetic materials, Research Contract No.16, Interrelationship of root absorption and leaf absorption of radioisotopes in herbaceous plants, Research Contract No. 23, The uptake of radioactive wastes by lowland rice from contaminated soils due to irrigation water and its decontamination, Research Contract No.28, Comparison between mutation rates induced by acute and chronic gamma irradiation.

  17. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  18. Annual report and accounts 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Annual Report of the Southern Electric Group presents the Chairman's statement, and a review by the Chief Executive which covers productivity and efficiency, VAT, subsidiaries, associated activity, energy efficiency, safety and caring for the environment. This is followed by a financial review, the director's report, and the annual accounts for the year ended 31 March 1994. (UK)

  19. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  20. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  1. Annual Report to Congress of the Atomic Energy Commission for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, James R.

    1971-01-31

    The document represents the 1971 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1971'' followed by 3 Parts, each with various chapters, plus a final index. Parts and Chapters are as follows. Part One, Regulatory Activities, has Chapters (1) Licensing and Regulation; (2) Reactor Licensing; and (3) Materials Control. Part Two, Environmental Safety, has Chapters (4) Environmental Considerations; (5) Radioactive Wastes; and (6), Operational Safety. Part Three, Operating and Developmental Functions, has Chapters (7) National Defense; (8) Reactor Technology; (9) Nuclear Materials; (10) Applications Research; (11) Basic Research; (12) International Affairs; and, (13) Educational and Administrative.

  2. Universitaet Mainz, Institut fuer Kernchemie. Annual report 2005

    International Nuclear Information System (INIS)

    Kratz, J.V.

    2006-11-01

    Compiled by the employees of the institute, the present 2005 annual report gives an overview of the scientific activities of the working groups of the Institute for Nuclear Chemistry. It is also intended as a account to all those who have promoted us financially and idealistically on the use of what has been not an insubstantial amount of public funds. The report again covers three main fields of research: nuclear chemistry in terms of fundamental problems; radiopharmaceutical chemistry and the use radiochemical methods for medical purposes; and highly sensitive and selective analyses for environmental, technical and biological problems. The report also describes the status of the institute's technical facilities and new technical developments. Finally it gives an account of the institute's output in terms of publications, conference contributions, dissertations, diploma theses, state examination theses and on the contributions of its teaching staff to study and advanced training programs

  3. Energy from biomass: Results of two-years trials on annual and perennial Herba ceous species

    International Nuclear Information System (INIS)

    Angelini, L.; Ceccarini, L.; Oggiano, N.; Bonari, E.

    1994-01-01

    In the framework of the PRisCa Project (Alternative Crops Research Project) a number of germ plasm collections were set up at the Department of Agronomy of the University of Pisa in order to identify annual and perennial herbaceous species utilizable for electric energy production. The first results deriving from trials carried out in 1992-93 are reported. The following species were used: 1) Annual: Sorghum bicolor, Hibiscus cannabinus, Pennisetum americanum, Kochia scoparia. 2) Perennial: Cynara cardunculus, Helianthus tuberosus, Miscantus sinensis, Arundo donax. Almost all species tested were represented by several genotypes. The total amount of species and genotype tested was 16. On all species, main phenological, biometric and productive determinations were performed. The hypothesized final use was intended to be electric power production by direct combustion and/or gasification. In addition, specific calorific value was also determined by adiabatic calorimeter as well as chemical composition of dry matter and ash composition. Species showing high yield potential, both from the quantitative and qualitative point of view, were Sorghum bicolor and Kochia scoparia (among annuals), as well as Miscanthus sinensis and Arundo donax (among perennials). Total dry matter yield ranged from about 23 tha -1 in the annual species to about 56 tha -1 in the perennials. The highest total calorific power obtainable from dry epigeic biomass was measured in Sorghum bicolor and Arundo donax - 4023 Kcal Kg -1 and 4166 Kcal Kg -1 respectively. The preliminary results suggest that vegetable biomass is environmentally-friendly and could contribute significantly to the world energy needs. (author)

  4. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  5. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  6. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  7. Sea level anomaly on the Patagonian continental shelf: Trends, annual patterns and geostrophic flows

    Science.gov (United States)

    Saraceno, M.; Piola, A. R.; Strub, P. T.

    2016-01-01

    Abstract We study the annual patterns and linear trend of satellite sea level anomaly (SLA) over the southwest South Atlantic continental shelf (SWACS) between 54ºS and 36ºS. Results show that south of 42°S the thermal steric effect explains nearly 100% of the annual amplitude of the SLA, while north of 42°S it explains less than 60%. This difference is due to the halosteric contribution. The annual wind variability plays a minor role over the whole continental shelf. The temporal linear trend in SLA ranges between 1 and 5 mm/yr (95% confidence level). The largest linear trends are found north of 39°S, at 42°S and at 50°S. We propose that in the northern region the large positive linear trends are associated with local changes in the density field caused by advective effects in response to a southward displacement of the South Atlantic High. The causes of the relative large SLA trends in two southern coastal regions are discussed as a function meridional wind stress and river discharge. Finally, we combined the annual cycle of SLA with the mean dynamic topography to estimate the absolute geostrophic velocities. This approach provides the first comprehensive description of the seasonal component of SWACS circulation based on satellite observations. The general circulation of the SWACS is northeastward with stronger/weaker geostrophic currents in austral summer/winter. At all latitudes, geostrophic velocities are larger (up to 20 cm/s) close to the shelf‐break and decrease toward the coast. This spatio‐temporal pattern is more intense north of 45°S. PMID:27840784

  8. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  9. EasyPipes - Final/annual report; EasyPipes - Rapport final/annuel

    Energy Technology Data Exchange (ETDEWEB)

    Gallinelli, P.; Thomann, P.; Weber, W. [University of Geneva, Geneva (Switzerland); Hollmuller, P. [University of Lisbon, Lisbon (Portugal)

    2009-06-15

    This report describes follow-up activities in the field of design of buried air-to-ground heat exchangers for ventilated low-energy buildings. Such heat exchangers preheat the inlet air in winter and cool it in summer, contributing to significantly reduce the energy consumption and improve indoor thermal comfort. They have been extensively studied at the University of Geneva, Switzerland by P. Hollmuller, B. Lachal et al. since 2001. The corresponding reports can be found in the ETDE data base. The present and latest report of the series deals with implemented improvements of the computer simulation program for the dimensioning of such heat exchangers. A previous, experimentally and analytically validated version, based on TRNSYS formalism, was not enough user-friendly for architects and engineers in the practice. A new interface called EasyPipes, based on the windows input and output formalism and including graphical features, has been developed. Details are reported on.

  10. Annual Report 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The annual report gives the specific scientific results in the fields of nuclear and radiation physics, radiation chemistry, radiochemistry and data processing with a list of publications. (orig.) [de

  11. Annual report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Sustainable Development Fund was created in October 1989 to provide financial assistance towards the development, implementation and promotion of innovative projects, activities, research and developments which support sustainable development. The Fund provides grants in support of innovative projects that further the sustainability of Manitoba's economy, environment, human health and social well-being, and encourages partnerships to make a contribution towards these same ends. Revenue for the Fund is derived from an environmental protection tax on glass liquor bottles and disposable diapers. During 1998/1999 the Fund provided financial assistance to 81 projects, expending a total of $2,520,743. Twenty-three projects were carried over from 1997/1998; funding for these projects totalled $ 263,401. The fund supported projects in eco-tourism (2 projects); education (15 projects); energy conservation (two projects); natural environment (13 projects); sustainable agriculture (five projects); sustainable development policy (two projects); urban/community environment (30 projects); waste management (five projects); water conservation (three projects); and Tax equivalency grants and broad allocations (4 projects). Fund-approved projects are submitted to Cabinet for review and final approval. Approved projects over $ 25,000 also require the approval of Treasury Board. The annual report provides a statistical summary of all projects by categories, and all associated expenditures.Text of Chapter 270 of the Sustainable Development Act under which this Fund was created, is appended.

  12. Moses Lake Fishery Restoration Project; Factors Affecting the Recreational Fishery in Moses Lake Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Dave

    2003-11-01

    This annual report is a precursor to the final technical report we will be writing the next contract period. Consequently, this report, covering the period between September 27, 2002, and September 26, 2003, represents a progress report towards the final technical report we anticipate completing by September 26, 2004. Sample analysis and field work have progressed well and we anticipate no further delays. There are 4 objectives: (1) To quantify secondary production Moses Lake; (2) To quantify the influence of predation on target fishes in Moses Lake; (3) To quantify mortality of selected fished in Moses Lake; and (4) To assess effects of habitat changes from shoreline development and carp on the fish community in Moses Lake.

  13. Annual Report 1974

    International Nuclear Information System (INIS)

    1975-01-01

    This annual report supersedes the work done in the nuclear physics institute at Lyon. The studied matters are the following: nuclear theory, nuclear reactions, nuclear spectroscopy and nuclear chemistry [fr

  14. Annual Adjustment Factors

    Data.gov (United States)

    Department of Housing and Urban Development — The Department of Housing and Urban Development establishes the rent adjustment factors - called Annual Adjustment Factors (AAFs) - on the basis of Consumer Price...

  15. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce G

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting

  16. Rebuilding the Chalberhoeni small hydro power station in Saanen, Switzerland; Chalberhoeni - Rapport Final

    Energy Technology Data Exchange (ETDEWEB)

    Cavin, G. [Stucky SA, Renens (Switzerland); Wagner, T. [Sigmaplan, Berne (Switzerland)

    2009-07-01

    These two final illustrated reports for the Swiss Federal Office of Energy (SFOE) deal with various aspects of the Chalberhoeni small hydro project in Saanen, Switzerland. The first report presents data on the catchment area involved, available head, residual water quantities, installed power and annual production figures. Investments and operating costs are looked at. The second report describes the project and discusses regional planning aspects, hydrological basics and environmental issues in connection with the renewal project, including details on invertebrates found in the stream and their relevance to fishing and nature protection issues.

  17. Efficiency potential in the district heating sector. Final report

    International Nuclear Information System (INIS)

    Agrell, P.; Bogetoft, P.; Fristrup, P.; Munksgaard, J.; Pade, L.L.

    2003-10-01

    This report is the final documentation for the research project 'District heating prices in a liberalised energy market - benchmarking the production of combined heat and power'. The project compares activities for almost 300 companies, members of the Danish District Heating Society. The main aim of the analyses has been to uncover the saving potential by comparing each individual company to the most efficient companies in the sector. The variable costs have been studied, amounting to almost 7 billion Danish kroner a year, and the analyses found saving potential ranging from 5% to 60% dependent on the expectations to flexibility assigned to the individual companies. The data used are not available for the public as they exceed the Danish District Heating Society's annual statistics. (BA)

  18. Transportation Energy Pathways LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Garrett. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reichmuth, David. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Westbrook, Jessica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoshimura, Ann S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Meghan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn Kataoka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guzman, Katherine Dunphy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Edwards, Donna M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hines, Valerie Ann-Peters [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especially when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressive GHG emission reduction targets, even as the current electricity source mix shifts away from coal and towards natural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towards meeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 Acknowledgment The authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. Christopher Yang for their suggestions over the course of this project. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories.

  19. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  20. Annual report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This annual report contains a description of the named institute, the research programm, reports from the scientific establishments, a description of different cooperations, and a list of scientific publications. (HSI) [de

  1. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  2. Saint-Laurent-des-Eaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Saint-Laurent-des-Eaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  3. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  5. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  6. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  11. Final Technical Report 09 LW 112

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R J

    2010-11-28

    Since the development of new antibiotics is out-paced by the emergence of bacterial resistance to existing antibiotics, it is crucial to understand the genetic mechanisms underlying resistance existing antibiotics. At the center of this mystery is a poorly understood phenomenon, heteroresistance: the coexistence of multiple subpopulations with varying degrees of antibiotic resistance. A better understanding of the fundamental basis of heteroresistance could result in sorely needed breakthroughs in treatment options. This project proposed to leverage a novel microfluidic (microchemostat) technology to probe the heteroresistance phenomenon in bacteria, with the aim of restoring the efficacy of existing {beta}-lactam antibiotics. The clinically important bacteria Methicillin Resistant S. aureus (MRSA) was used as the test case of bacteria that exhibits antibiotic heteroresistance. MRSA is difficult to treat because it is resistant to all {beta}-lactam antibiotics, as well as other classes of antimicrobials. Whereas {beta}-lactams such as methicillin and oxacillin are the preferred antibiotics to treat S. aureus infections due to their efficacy and low side effects, accurate determination and use of oxacillin/methicillin dosage is hampered by heteroresistance. In fact, invasive MRSA infections now account for about 95,000 deaths per year, a number that exceeds the deaths due to either influenza or HIV (12). In some MRSA strains, two subpopulations of cells may coexist: both populations carry the mecA gene that confers resistance, but mecA is differentially expressed so that only a small number of cells are observed during in vitro testing. Why this occurs is not understood. Prior experiments have sought to explain this phenomenon with conflicting results, with technology being the primary barrier to test the system sufficiently. This is the final report on work accomplished under the Lab-wide LDRD project 09-LW-112. This project was awarded to Frederick Balagadde who

  12. On the Development of a Java-Based Tool for Multifidelity Modeling of Coupled Systems LDRD Final Report

    CERN Document Server

    Gardner, D R; Gonzáles, M A; Hennigan, G L; Young, M

    2002-01-01

    This report describes research and development of methods to couple vastly different subsystems and physical models and to encapsulate these methods in a Java(trademark)-based framework. The work described here focused on developing a capability to enable design engineers and safety analysts to perform multifidelity, multiphysics analyses more simply. In particular this report describes a multifidelity algorithm for thermal radiative heat transfer and illustrates its performance. Additionally, it describes a module-based computer software architecture that facilitates multifidelity, multiphysics simulations. The architecture is currently being used to develop an environment for modeling the effects of radiation on electronic circuits in support of the FY 2003 Hostile Environments Milestone for the Accelerated Strategic Computing Initiative.

  13. FY05 LDRD Final Report A Computational Design Tool for Microdevices and Components in Pathogen Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-02-07

    We have developed new algorithms to model complex biological flows in integrated biodetection microdevice components. The proposed work is important because the design strategy for the next-generation Autonomous Pathogen Detection System at LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and Biological Countermeasures Program in the Homeland Security Organization. This miniaturization strategy introduces a new flow regime to systems where biological flow is already complex and not well understood. Also, design and fabrication of MEMS devices is time-consuming and costly due to the current trial-and-error approach. Furthermore, existing devices, in general, are not optimized. There are several MEMS CAD capabilities currently available, but their computational fluid dynamics modeling capabilities are rudimentary at best. Therefore, we proposed a collaboration to develop computational tools at LLNL which will (1) provide critical understanding of the fundamental flow physics involved in bioMEMS devices, (2) shorten the design and fabrication process, and thus reduce costs, (3) optimize current prototypes and (4) provide a prediction capability for the design of new, more advanced microfluidic systems. Computational expertise was provided by Comp-CASC and UC Davis-DAS. The simulation work was supported by key experiments for guidance and validation at UC Berkeley-BioE.

  14. Final report and documentation for the security enabled programmable switch for protection of distributed internetworked computers LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Van Randwyk, Jamie A.; Robertson, Perry J.; Durgin, Nancy Ann; Toole, Timothy J.; Kucera, Brent D.; Campbell, Philip LaRoche; Pierson, Lyndon George

    2010-02-01

    An increasing number of corporate security policies make it desirable to push security closer to the desktop. It is not practical or feasible to place security and monitoring software on all computing devices (e.g. printers, personal digital assistants, copy machines, legacy hardware). We have begun to prototype a hardware and software architecture that will enforce security policies by pushing security functions closer to the end user, whether in the office or home, without interfering with users' desktop environments. We are developing a specialized programmable Ethernet network switch to achieve this. Embodied in this device is the ability to detect and mitigate network attacks that would otherwise disable or compromise the end user's computing nodes. We call this device a 'Secure Programmable Switch' (SPS). The SPS is designed with the ability to be securely reprogrammed in real time to counter rapidly evolving threats such as fast moving worms, etc. This ability to remotely update the functionality of the SPS protection device is cryptographically protected from subversion. With this concept, the user cannot turn off or fail to update virus scanning and personal firewall filtering in the SPS device as he/she could if implemented on the end host. The SPS concept also provides protection to simple/dumb devices such as printers, scanners, legacy hardware, etc. This report also describes the development of a cryptographically protected processor and its internal architecture in which the SPS device is implemented. This processor executes code correctly even if an adversary holds the processor. The processor guarantees both the integrity and the confidentiality of the code: the adversary cannot determine the sequence of instructions, nor can the adversary change the instruction sequence in a goal-oriented way.

  15. A complexity science-based framework for global joint operations analysis to support force projection: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Sustainment & Readiness Technologies Dept.

    2015-01-01

    The military is undergoing a significant transformation as it modernizes for the information age and adapts to address an emerging asymmetric threat beyond traditional cold war era adversaries. Techniques such as traditional large-scale, joint services war gaming analysis are no longer adequate to support program evaluation activities and mission planning analysis at the enterprise level because the operating environment is evolving too quickly. New analytical capabilities are necessary to address modernization of the Department of Defense (DoD) enterprise. This presents significant opportunity to Sandia in supporting the nation at this transformational enterprise scale. Although Sandia has significant experience with engineering system of systems (SoS) and Complex Adaptive System of Systems (CASoS), significant fundamental research is required to develop modeling, simulation and analysis capabilities at the enterprise scale. This report documents an enterprise modeling framework which will enable senior level decision makers to better understand their enterprise and required future investments.

  16. 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-01

    This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.

  17. 77 FR 3166 - Annual Stress Test

    Science.gov (United States)

    2012-01-23

    ... FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Part 325, Subpart C RIN 3064-AD91 Annual Stress Test... Reform and Consumer Protection Act (the ``Dodd-Frank Act'') regarding stress tests (``proposed rule... to conduct annual stress tests in accordance with the proposed rule, report the results of such...

  18. Cost-efficient staffing under annualized hours

    NARCIS (Netherlands)

    van der Veen, Egbert; Hans, Elias W.; Veltman, Bart; Berrevoets, Leo M.; Berden, Hubert J.J.M.

    2012-01-01

    We study how flexibility in workforce capacity can be used to efficiently match capacity and demand. Flexibility in workforce capacity is introduced by the annualized hours regime. Annualized hours allow organizations to measure working time per year, instead of per month or per week. An additional

  19. Obtaining your annual internal taxation certificate

    CERN Document Server

    2006-01-01

    (cf. Article R IV 2.04 of the Staff Regulations) Your annual internal taxation certificate will state the taxable amount of your CERN remuneration, payments and other financial benefits and the amount of tax levied by the Organization during the previous financial year. In France, your tax return must be accompanied by this certificate. Current Members of the Personnel (including Members of the Personnel participating in a pre-retirement programme): - You will receive an e-mail containing a link to your printable annual certificate, which will be stored together with your pay and leave statements (e-Payslips). - You can also access your annual certificate via https://hrt.cern.ch (open 'My Payslips' at the bottom of the main menu.) - If you experience any technical difficulties in accessing your annual certificate (e.g. invalid AIS login or password), please contact CERN's AIS support team at ais.support@cern.ch. Former Members of the Personnel:- If you remember your AIS login and password, you can acc...

  20. TEWS'98. Final report [5th annual International Science Camp: The Earth We Share 1998, Golden, CO

    Energy Technology Data Exchange (ETDEWEB)

    Mae C. Jemison

    1999-04-06

    The fifth annual International Science Camp The Earth We Share 1998 (TEWS'98) was held at the Colorado School of Mines located in Goldez Colorado. TEWS98 was a four week residential program which focused on providing a meaningful science education experience while developing critical thinking skills. Thirty three students, three teachers, four college interns and the camp administrator lived and worked together while developing solutions to several worldwide problems. These problems are called the Discovery Topics and they are: (1) design the worlds perfect house; (2) how many people can the world hold; and (3) predict the hot stocks for the year 2030. The participants, both students and staff came from different countries all over the world The following countries were represented: The United Kingdom, Sierra Leone (West Africa), Ireland, USA Nigeria, West Indies and Barbados.

  1. 25 CFR 41.12 - Annual budget.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Annual budget. 41.12 Section 41.12 Indians BUREAU OF... NAVAJO COMMUNITY COLLEGE Tribally Controlled Community Colleges § 41.12 Annual budget. Appropriations... identified in the Bureau of Indian Affairs Budget Justification. Funds appropriated for grants under this...

  2. 30 CFR 281.27 - Annual rental.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Annual rental. 281.27 Section 281.27 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.27 Annual rental...

  3. Reporting Intellectual Capital in Annual Reports: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Parulian Sihotang

    2014-08-01

    Full Text Available This  exploratory  study  which  replicates  the  content  analysis  methodology  of  Guthrie et  all  (1999,  2004  towards  Intellectual  Capital  (IC  disclosures  in  the  annual  report  has set  several  objectives.  Primarily,  the  empirical  investigation  assesses  the  extent  to  which Indonesian  listed  companies  are  publicly  reporting  their  IC  both  the  amount  and  type  of information  being  reported.  Secondly,  the  investigation  also  examines  the  extent  to  which the various categories of IC are represented in the annual reports of the sample companies. Finally, the study explores the extent to which the level of IC disclosures could be related to companies' characteristics such as industry category, age, ownership structure and market capitalization.  The sample was Indonesia's 23 largest companies listed in the Jakarta Stock Exchange.    In  light  of  research  limitations,  the  preliminary  and  tentative  indings  of  this study  indicate  that  irst  of  all,  similar  to  indings  worldwide,  Indonesian  companies  have substantial intellectual capital and they do aware and disclose their intellectual capital in the annual reports. Secondly, IC that tends to be most often reported is relational capital, followed by human capital and organizational capital. Thirdly, even though the trend in IC disclosure as a whole is generally increasing, there is no conclusive and predictable pattern found.  Fourthly,  the  IC  identiied  and  reported  is  inconsistent  as  no  framework  available in  helping  the  companies  discloses  intellectual  capital.  Fifthly,  most  of  the  intellectual capital  components  identiied  are  in  qualitative  format.  Sixthly,  even  though  the  study  did not ind a conclusive evidence regarding the relationship between the level of  IC

  4. Annual report 1990

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Lorenzen, R.

    1991-04-01

    This annual report of the chemistry laboratory gives an overview of research performed during 1990 in the field of geochemistry, trace analysis, aerosol chemistry, heavy elements, cement chemistry and analytical chemistry. figs., tabs., refs

  5. 1986 Annual Report

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the reasearch activity carried out during 1986 by the Fusion Department of the Italian Commision for Nuclear and Alternative Energy Sources (ENEA). The report outlines the main results obtained by the three major projects of the Fusion Department (Fusion Physics, Frascati Tokamak Upgrade, and Fusion Reactor Engineering), plus the divisional project Inertial Confinement mentioned separately because of its particular scientific content. Most of the research work was performed by the Fusion Department at its location at the ENEA Frascati Energy Research Center, but some work was also done elsewhere, or with recourse to other ENEA departments. The research activity described in this annual report was carried out with the frame of the Association Euratom-ENEA on Fusion, with the exception of some minor activities

  6. 1999 Annual Cathodic Protection Survey Report for PFP

    International Nuclear Information System (INIS)

    BOWMAN, T.J.

    2000-01-01

    This cathodic protection (CP) report documents the results of the 1999 annual CP survey of the underground piping within PFP property. An annual survey of CP systems is required by Washington Administrative Code (WAC). A spreadsheet to document the 1999 annual survey polarization data is included in this report. Graphs are included to trend the cathodic voltages and the polarization voltages at each test station on PFP property. The trending spans from 1994 to 1999. Graphs are also included to trend voltage and amperage outputs of each rectifier during the annual surveys. During the annual survey, resistance testing between the underground piping was conducted at each test station. The testing showed that all piping (with test leads into the test stations) was continuous with every pipe represented in the test stations. The resistance data is not documented in this report but can be accessed in work package 22-99-01003. During the annual survey, the wiring configurations of anode junction boxes AJB(R45-1) and AJB(45-1) were documented. The sketches can be accessed from the JCS work record of work package 22-99-01003. Analysis, conclusions, and recommendations of the 1999 annual CP survey results are included in this report

  7. 28 CFR 43.4 - Annual reports.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Annual reports. 43.4 Section 43.4 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RECOVERY OF COST OF HOSPITAL AND MEDICAL CARE AND TREATMENT FURNISHED BY THE UNITED STATES § 43.4 Annual reports. The head of each Department or Agency...

  8. 42 CFR 419.50 - Annual review.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Annual review. 419.50 Section 419.50 Public Health... review. (a) General rule. Not less often than annually, CMS reviews and updates groups, relative payment... selection of representatives of providers to review (and advise CMS concerning) the clinical integrity of...

  9. 45 CFR 1620.5 - Annual review.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Annual review. 1620.5 Section 1620.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION PRIORITIES IN USE OF RESOURCES § 1620.5 Annual review. (a) Priorities shall be set periodically and shall be reviewed by the...

  10. CEA 2009 annual report; CEA rapport annuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    After an indication of several key figures about the activity of the CEA (Centre d'Etudes Atomiques) and its relationship with the academic as well as the industrial field, in France and worldwide, this 2009 annual report presents its various research programs in the field of defence and of global security: basic research (nuclear weapons and propulsion, struggle against proliferation and terrorism) and applied research (nuclear deterrence, national and international security). Then, it presents the programs in the field of de-carbonated energy: basic research (in material science and in life sciences) and applied research (fission energy, fusion energy, new energy technologies). A last group of research programs deals with information and health technologies and concerns life and material sciences, micro- and nano-technologies, software technologies. Interaction with other research institutions and bodies is also evoked. A brief scientific assessment is proposed. Finally, the different structures building the CEA are presented

  11. Dynamic stability analysis of caisson breakwater in lifetime considering the annual frequency of severe storm

    Science.gov (United States)

    Wang, Yu-chi; Wang, Yuan-zhan; Hong, Ning-ning

    2015-04-01

    In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.

  12. Annual cropped area expansion and agricultural production ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... considerable annual increase of varying extent over time and space for both annual output and area ... The study suggests improving productivity through sustainable agricultural ...

  13. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  14. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  15. Generation 4 International Forum. 2008 annual report

    International Nuclear Information System (INIS)

    2008-01-01

    This 2008 Annual Report is the second annual report issued by GIF (Generation IV International Forum). It provides an update on the GIF organization, membership, and participation in research and development (R-D) projects for each Generation IV system. It summarizes the milestones for development of each system and progress of the R-D toward their accomplishment. Finally, it includes a brief description of the cooperation between GIF and other international endeavors for the development of nuclear energy. Chapter 2 describes the membership and organization of the GIF, the structure of its cooperative research and development arrangements, and the status of Member participation in those arrangements. Chapter 3 provides a summary of the GIF R-D plans, and its activities and achievements during 2008. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals of GIF. Chapter 4 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Appendix 1 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF. The list of abbreviations and acronyms given at the end of the report defines terms used in the various chapters including various nuclear energy systems and international programs referred to in connection with GIF R-D activities. Some bibliographical references are given in order to facilitate access to public information about R-D progress and achievements on specific technical issues for GIF systems

  16. Annual report 2002

    International Nuclear Information System (INIS)

    Toncik, M.

    2003-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2002 is reported. Structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  17. IAEA research contracts. Fourth annual report

    International Nuclear Information System (INIS)

    1964-01-01

    This volume represents the fourth annual report on the results obtained under the Agency's research contract programme. During the short life of this programme, which is not quite six years old, a total investment of more than three million dollars has been made to support research in selected fields at institutes in 50 Member States. Extensive summaries are presented herein for all final reports relating to contracts which were completed during 1963. As it is the policy of the Agency to encourage publication in the open scientific literature of the results of work done under research contracts, a number of papers have also appeared in the appropriate journals - the Agency having been notified of 75 such publications in 1963. A complete list of references to these is given at the end of this report. The scientific data presented in the summaries of course remain the responsibility of the contractor. The Agency, however, is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine

  18. IAEA research contracts. Fourth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-04-01

    This volume represents the fourth annual report on the results obtained under the Agency's research contract programme. During the short life of this programme, which is not quite six years old, a total investment of more than three million dollars has been made to support research in selected fields at institutes in 50 Member States. Extensive summaries are presented herein for all final reports relating to contracts which were completed during 1963. As it is the policy of the Agency to encourage publication in the open scientific literature of the results of work done under research contracts, a number of papers have also appeared in the appropriate journals - the Agency having been notified of 75 such publications in 1963. A complete list of references to these is given at the end of this report. The scientific data presented in the summaries of course remain the responsibility of the contractor. The Agency, however, is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine.

  19. Nuclear facilities of EdF's operational hot base of Tricastin. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of the EdF operational hot base of Tricastin, then, the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities), and finally the procedures of management of radioactive wastes. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  20. Strategy disclosure in Dutch annual reports

    NARCIS (Netherlands)

    Santema, S.C.; Rijt, van de J.

    2001-01-01

    Much attention is being paid to the financial part of the annual reports of companies. Not much research has been done into the quality of the Report of the Executive Board in annual reports (the narrative part). During the past 2 years Dutch firms were reviewed on the way the Executive Board dealt