WorldWideScience

Sample records for layred micropattern electrodes

  1. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    Science.gov (United States)

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  2. Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition

    OpenAIRE

    Ebina, Wataru; Rowat, Amy C; Weitz, David A.

    2009-01-01

    Precise patterning of metals is required for diverse microfluidic and microelectromechanical system (MEMS) applications ranging from the separation of proteins to the manipulation of single cells and drops of water-in-oil emulsions. Here we present a very simple, inexpensive method for fabricating micropatterned electrodes. We deposit a thin metal layer of controlled thickness using wet chemistry, thus eliminating the need for expensive equipment typically required for metal deposition. We de...

  3. The development of a micropatterned electrode for studies of zinc electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutija, Dave P. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1986-12-01

    A micropatterned electrode was prepared for the study of electrocrystallization. Using microphotolithography, in conjunction with evaporation and pulse electrodeposition of thin films, a set of artificially roughened electrodes with hemispherical surface features five microns in diameter was developed. Voltammetric studies were conducted to determine the best electrode material. Gold, platinum, and various carbon surfaces were evaluated for zinc nucleation density and hydrogen overpotential. Surface homogeneity was examined by both light and scanning electron microscopy. Gold was determined to possess the best combination of material properties: chemical inertness, low melting point, and a high work function allowing underpotential deposition of zinc which reduces the rate of hydrogen evolution. Stripping coulometry was employed to determine zinc limiting currents, and evaluate effective diffusion coefficients in concentrated zinc chloride solutions. Although the method worked well for dilute zinc chloride and copper sulfate solutions, it failed at higher current densities; the emergence of surface roughness obscured actual limiting current plateaus.

  4. Comportamento fisiológico de goiabeira serrana quando multiplicada por mergulhia de cepa Physiological behavior of feijoa multiplied by stool layring

    Directory of Open Access Journals (Sweden)

    MS. Mielke

    1994-04-01

    Full Text Available Com o objetivo de estudar alguns fatores fisiológicos envolvidos na formação e desenvolvimento de raízes em mudas de goiabeira serrana (Feijoa sellowiana Berg, multiplicadas por mergulhia de cepa, foi realizado um experimento em Pelotas-RS, com mudas decepadas em julho de 91 e sobre as quais foi realizada amontoa em outubro de 91. A avaliação foi feita em agosto de 92, sendo observadas as variáveis: teor de clorofila total, área foliar, numero e diâmetro de brotações, número e percentagem de brotações enraizadas e peso da matéria seca das raízes. As variáveis teor de clorofila, área foliar e diâmetro médio das brotações não apresentaram influência sobre a matéria seca das raízes. O incremento no número de brotações causou um aumento no número de brotações enraizadas, entretanto, não apresentou influência na percentagem de brotações enraizadas. O aumento no número de brotações por cepa ocasionou um decréscimo em seu diâmetro médio. É demonstrado que é possível multiplicar plantas de goiabeira serrana através de mergulhia de cepa.The aim of this research was to study some physiological factors involved in root growth and development in sprouts of feijoa Feijoa settowiana Berg., multiplied by stool layring. The experiment was conducted in Pelotas,RS, Brazil, using sprouts cut in July 91, which were covered with soil in October 91. In August 92 the following variables were evaluated: total chlorophyll content, leaf area, stool number and diameter, number and percentage of rooted stools and root dry-matter weight. The variables chlorophyll content, leaf area and stool average diameter, did not show influence on root dry matter. The increase in number of stools caused an increase in the number but not in the percentage of rooted stools. The increase in stool number per plant caused a decrease in stool average diameter. It is demonstrated that it is possible to multiply feijoa plants through stool layring.

  5. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  6. Developing and evaluating new micropattern gas detectors

    CERN Document Server

    Villa, Marco; Ropelewski, Leszek; Wotschack, Joerg

    Micropattern gas detectors (MPGDs) were introduced in the late 1980s in order to overcome the limited rate capability of traditional proportional counters. Thanks to their microscopic electrode structures, MPGDs are faster and more precise than the previous gas detectors and soon gained popularity. Two of the most successful MPGDs are the gas electron multiplier (GEM) and the micro-mesh gaseous structure (Micromegas). In this thesis I present the features of GEMs and Micromegas, some of their current applications and the research and development that I have done on these technologies. My activity covered two main topics: the test and enhancement of single-mask GEMs for large-area applications and the study of spark-tolerant Micromegas for the upgrade of the ATLAS Small Wheels.

  7. Micro-pattern gaseous detectors

    CERN Document Server

    Shekhtman, L I

    2002-01-01

    Introduced at the end of 1980s micro-pattern gas detectors perform much better than classic wire chambers. They allow to achieve both excellent localization accuracy and high rate capability that make this technology attractive for charged particle tracking at high luminosity colliders. During its evolution micro-pattern gas technology gave raise to many different types of devices such as micro-strip gas chambers, MicroMEGAS, CAT and gas electron multipliers. Essential improvements in the performance of the detectors were achieved especially in what concerned long-term performance: aging and resistance to accidental discharges.

  8. Wetting on smooth micropatterned defects

    OpenAIRE

    Debuisson, Damien; Dufour, Renaud; Senez, Vincent; Arscott, Steve

    2011-01-01

    We develop a model which predicts the contact angle hysteresis introduced by smooth micropatterned defects. The defects are modeled by a smooth function and the contact angle hysteresis is explained using a tangent line solution. When the liquid micro-meniscus touches both sides of the defect simultaneously, depinning of the contact line occurs. The defects are fabricated using a photoresist and experimental results confirm the model. An important point is that the model is scale-independent,...

  9. Surface micropattern limits bacterial contamination

    OpenAIRE

    Mann, Ethan E.; Manna, Dipankar; Mettetal, Michael R; May, Rhea M.; Dannemiller, Elisa M; Chung, Kenneth K.; Brennan, Anthony B; Reddy, Shravanthi T

    2014-01-01

    Background Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additiv...

  10. A facile micropatterning method for a highly flexible PEDOT:PSS on SU-8

    KAUST Repository

    Cho, Nam Chul

    2016-04-17

    We report the micropatterning of conducting polymer on the epoxy-based photoresist to demonstrate fully organic, conducting and flexible electrodes. We show that polystyrene sulfonic acid can be covalently linked to the surface of the photoresist (SU-8) by forming sulfonyl ester at the interfaces. We also present an application of the patterned PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)/SU-8 to the electroplating of metal electrodes. © 2016 Elsevier B.V.

  11. Wetting on smooth micropatterned defects

    CERN Document Server

    Debuisson, Damien; Senez, Vincent; Arscott, Steve

    2011-01-01

    We develop a model which predicts the contact angle hysteresis introduced by smooth micropatterned defects. The defects are modeled by a smooth function and the contact angle hysteresis is explained using a tangent line solution. When the liquid micro-meniscus touches both sides of the defect simultaneously, depinning of the contact line occurs. The defects are fabricated using a photoresist and experimental results confirm the model. An important point is that the model is scale-independent, i.e. the contact angle hysteresis is dependent on the aspect ratio of the function, not on its absolute size; this could have implications for natural surface defects.

  12. Photoinduced micropattern in an azobenzene polymer film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The micropattern observed in the amorphous azobenzene polymer film by degenerated four-wave mixing has been reported. Patterns with well-defined structures are examined with the scanning electron microscopy and the polarizing optical microscopy. It is demonstrated that the control of photoinduced micropattern in the azobenzene polymer film is possible by using appropriate polarized writing beams with total incident power exceeding a certain threshold.

  13. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Maggi, Marcello

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive electrodes. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4 - 10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as applications outside particle physics.

  14. Tunable contact angle hysteresis on micropatterned surfaces

    CERN Document Server

    Debuisson, Damien; Arscott, Steve

    2011-01-01

    Micropatterned surfaces composed of concentric circular defects having a smooth trench-like profile are formed using a photoresist (SU-8). When an evaporating droplet encounters the micropatterned surface an evaporation phase is observed consisting of distinct discontinuities and steps in the droplet wetting contact angle and base radius respectively. The addition of gaps into the circular defects enables tuning of the contact angle hysteresis; the receding contact angle of fluorocarbon coated SU-8 can be tuned between 34.6{\\deg} and 89.1{\\deg} and that of SU-8 surfaces from 5.6{\\deg} to 43.3{\\deg} depending on the gap length. In addition, a model is developed which accurately predicts the observed behavior.

  15. Micropatterning on glass with deep UV

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune & Jenny Fink ### Abstract This protocol describes a method to print micropatterns on glass with extra-cellular matrix proteins to promote cell adhesion. The non-adhesive part is made with polylysine grafted polyethyleneglycol (PLL-g-PEG). This technique is reproducible, cheap, fast and can achieve high resolution (~1 µm). ### Introduction This protocol explains how to make high resolution adhesive micropattens of pro...

  16. Stretching micropatterned cells on a PDMS membrane.

    Science.gov (United States)

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  17. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  18. Cell Migration According to Shape of Graphene Oxide Micropatterns

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2016-10-01

    Full Text Available Photolithography is a unique process that can effectively manufacture micro/nano-sized patterns on various substrates. On the other hand, the meniscus-dragging deposition (MDD process can produce a uniform surface of the substrate. Graphene oxide (GO is the oxidized form of graphene that has high hydrophilicity and protein absorption. It is widely used in biomedical fields such as drug delivery, regenerative medicine, and tissue engineering. Herein, we fabricated uniform GO micropatterns via MDD and photolithography. The physicochemical properties of the GO micropatterns were characterized by atomic force microscopy (AFM, scanning electron microscopy (SEM, and Raman spectroscopy. Furthermore, cell migration on the GO micropatterns was investigated, and the difference in cell migration on triangle and square GO micropatterns was examined for their effects on cell migration. Our results demonstrated that the GO micropatterns with a desired shape can be finely fabricated via MDD and photolithography. Moreover, it was revealed that the shape of GO micropatterns plays a crucial role in cell migration distance, speed, and directionality. Therefore, our findings suggest that the GO micropatterns can serve as a promising biofunctional platform and cell-guiding substrate for applications to bioelectric devices, cell-on-a-chip, and tissue engineering scaffolds.

  19. R and D on a new type of micropattern gaseous detector the Fast Timing Micropattern detector.

    CERN Document Server

    Vai, Ilaria

    2016-01-01

    Micropattern gaseous detectors (MPGD) underwent significant upgrades in recent years, introducing resistive materials to build compact spark-protected devices. Exploiting this technology further, various features such as space and time resolution, rate capability, sensitive area, operational stability and radiation hardness can be improved. This contribution introduces a new type of MPGD, namely the Fast Timing Micropattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing properties due to competing ionization processes in the different drift regions. Two FTM prototypes have been developed so far. The first one is uWELL-like, where multiplication takes place in the holes of a kapton foil covered on both sides with resistive material. The second one has a resistive Micromegas-like structure, with multiplication developing in a region del...

  20. Interfacial microfluidic transport on micropatterned superhydrophobic textile.

    Science.gov (United States)

    Xing, Siyuan; Jiang, Jia; Pan, Tingrui

    2013-05-21

    Textile-enabled interfacial microfluidics, utilizing fibrous hydrophilic yarns (e.g., cotton) to guide biological reagent flows, has been extended to various biochemical analyses recently. The restricted capillary-driving mechanism, however, persists as a major challenge for continuous and facilitated biofluidic transport. In this paper, we have first introduced a novel interfacial microfluidic transport principle to drive three-dimensional liquid flows on a micropatterned superhydrophobic textile (MST) platform in a more autonomous and controllable manner. Specifically, the MST system utilizes the surface tension-induced Laplace pressure to facilitate the liquid motion along the hydrophilic yarn, in addition to the capillarity present in the fibrous structure. The fabrication of MST is simply accomplished by stitching hydrophilic cotton yarn into a superhydrophobic fabric substrate (contact angle 140 ± 3°), from which well-controlled wetting patterns are established for interfacial microfluidic operations. The geometric configurations of the stitched micropatterns, e.g., the lengths and diameters of the yarn and bundled arrangement, can all influence the transport process, which is investigated both experimentally and theoretically. Two operation modes, discrete and continuous transport, are also presented in detail. In addition, the gravitational effect as well as the droplet removal process have been also considered and quantitatively analysed during the transport process. As a demonstration, an MST design has been implemented on an artificial skin surface to collect and remove sweat in a highly efficient and facilitated means. The results have illustrated that the novel interfacial transport on the textile platform can be potentially extended to a variety of biofluidic collection and removal applications.

  1. Micropatterning with a liquid crystal display (LCD) projector.

    Science.gov (United States)

    Itoga, Kazuyoshi; Kobayashi, Jun; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Photolithography has been applied to biological applications such as cell and protein micropatterning and the fabrication of microfluidic channels. However, the preparation of photomasks for projecting micropattern lighting images is often time consuming and costly. Therefore, we have developed maskless photolithography devices by modifying the optics of commercially available liquid crystal display (LCD) projectors from extended to reduced projection. The developed second and third devices produce practically a centimeter-scale micropattern by dividing an original large mask pattern into several patterns, which are individually and synchronously exposed to substrates with a motorized XY-stage, applying them to cell micropatterning and polydimethylsiloxane (PDMS) microfluidic device production. The first part of this chapter describes the developments of the maskless photolithography devices. The second part describes the exposure control system with a motorized XY-stage. The third part describes the applications of devices to cell micropatterning. The last part describes the application of the devices to the fabrication of the PDMS microfluidic channel. Maskless photolithography with an LCD projector has a large advantage with no requirement for a photomask. In particular, the maskless photolithography devices show a greater power by optimizing the conditions of pattern size and shape.

  2. A versatile method to generate multiple types of micropatterns

    CERN Document Server

    Segerer, F J; Schuster, S; Alberola, A Piera; Zahler, S; Rädler, J O

    2015-01-01

    Micropatterning techniques have become an important tool for the study of cell behavior in controlled microenvironments. As a consequence, several approaches for the creation of micropatterns have been developed in recent years. However, the diversity of substrates, coatings and complex patterns used in cell science is so great that no single existing technique is capable of fabricating designs suitable for all experimental conditions. Hence, there is a need for patterning protocols that are flexible with regard to the materials used and compatible with different patterning strategies to create more elaborate setups. In this work, we present a novel and versatile approach to micropatterning. The protocol is based on plasma treatment, protein coating, and a PLL-PEG backfill step, and produces homogeneous patterns on a variety of substrates. Protein density within the patterns can be controlled, and gradients of surface-bound protein can be formed. Moreover, by combining the method with microcontact printing, i...

  3. Micropatterning of proteins and mammalian cells on indium tin oxide.

    Science.gov (United States)

    Shah, Sunny S; Howland, Michael C; Chen, Li-Jung; Silangcruz, Jaime; Verkhoturov, Stanislav V; Schweikert, Emile A; Parikh, Atul N; Revzin, Alexander

    2009-11-01

    This paper describes a novel surface engineering approach that combines oxygen plasma treatment and electrochemical activation to create micropatterned cocultures on indium tin oxide (ITO) substrates. In this approach, photoresist was patterned onto an ITO substrate modified with poly(ethylene) glycol (PEG) silane. The photoresist served as a stencil during exposure of the surface to oxygen plasma. Upon incubation with collagen (I) solution and removal of the photoresist, the ITO substrate contained collagen regions surrounded by nonfouling PEG silane. Chemical analysis carried out with time-of-flight secondary ion mass spectrometry (ToF-SIMS) at different stages in micropatterned construction verified removal of PEG-silane during oxygen plasma and presence of collagen and PEG molecules on the same surface. Imaging ellipsometry and atomic force microscopy (AFM) were employed to further investigate micropatterned ITO surfaces. Biological application of this micropatterning strategy was demonstrated through selective attachment of mammalian cells on the ITO substrate. Importantly, after seeding the first cell type, the ITO surfaces could be activated by applying negative voltage (-1.4 V vs Ag/AgCl). This resulted in removal of nonfouling PEG layer and allowed to attach another cell type onto the same surface and to create micropatterned cocultures. Micropatterned cocultures of primary hepatocytes and fibroblasts created by this strategy remained functional after 9 days as verified by analysis of hepatic albumin. The novel surface engineering strategy described here may be used to pattern multiple cell types on an optically transparent and conductive substrate and is envisioned to have applications in tissue engineering and biosensing.

  4. Micropatterning of porphyrin nanotubes thin film using focused laser writing.

    Science.gov (United States)

    Gupta, Jyotsana; Lim, Xiaodai; Sow, Chorng-Haur; Vijayan, C

    2011-05-01

    We report an effective process to create micropatterns on a thin film of porphyrin nanotubes PNTs on Si substrate using focused laser beam. The optical properties of the newly synthesized porphyrin nanotubes are investigated and micropatterning is demonstrated using laser fabrication, an increasingly important tool in various fields of research. We made use of this laser cutting method to create interesting and useful two-dimensional patterned structures. The shapes and sizes of the structures created can be controlled by varying the power of the laser, angle of incident of the focused laser beam, the relative speed with which the laser beam traverse through the film and the magnification of objective lens used.

  5. Adhesive Micropatterns for Cells: A Microcontact Printing Protocol

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Manuel Théry and Matthieu Piel Corresponding authors ([](); []()) ### INTRODUCTION This protocol describes a simple, fast, and efficient method for making adhesive micropatterns that can be used to control individual cell shape and adhesion patterns. It is based on the use of an elastomeric stamp containing microfeatures to print proteins on the substrate of choice. The process can be subdiv...

  6. Nanofabrication of Nonfouling Surfaces for Micropatterning of Cell and Microtissue

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2010-08-01

    Full Text Available Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.

  7. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  8. Eccentricity effect of micropatterned surface on contact angle.

    Science.gov (United States)

    Kashaninejad, Navid; Chan, Weng Kong; Nguyen, Nam-Trung

    2012-03-13

    This article experimentally shows that the wetting property of a micropatterned surface is a function of the center-to-center offset distance between successive pillars in a column, referred to here as eccentricity. Studies were conducted on square micropatterns which were fabricated on a silicon wafer with pillar eccentricity ranging from 0 to 6 μm for two different pillar diameters and spacing. Measurement results of the static as well as the dynamic contact angles on these surfaces revealed that the contact angle decreases with increasing eccentricity and increasing relative spacing between the pillars. Furthermore, quantification of the contact angle hysteresis (CAH) shows that, for the case of lower pillar spacing, CAH could increase up to 41%, whereas for the case of higher pillar spacing, this increment was up to 35%, both corresponding to the maximum eccentricity of 6 μm. In general, the maximum obtainable hydrophobicity corresponds to micropillars with zero eccentricity. As the pillar relative spacing decreases, the effect of eccentricity on hydrophobicity becomes more pronounced. The dependence of the wettability conditions of the micropatterned surface on the pillar eccentricity is attributed to the contact line deformation resulting from the changed orientation of the pillars. This finding provides additional insights in design and fabrication of efficient micropatterned surfaces with controlled wetting properties.

  9. Neurite outgrowth on fluorinated polyimide film micropatterned by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Y.; Sato, M.; Nagaoka, S.; Kawakami, H. E-mail: kawakami-hiroyoshi@c.metro-u.ac.jp; Suzuki, Y.; Iwaki, M

    2003-05-01

    In this study, we investigated neurite outgrowth on a fluorinated polyimide film micropatterned by ion irradiation. We used the fluorinated polyimide because of its excellent thermal and mechanical properties and biocompatibility. Rattus norvegicus chromaphin (PC12) cells were used for in vitro studies. The polyimide films were irradiated with He{sup +}, Ne{sup +} or Kr{sup +} at 1 x 10{sup 14} ions/cm{sup 2} using an ion-beam mask. The lines in the mask were 120 and 160 {mu}m wide and 120-160 {mu}m apart. PC12 cells were selectively adhered on the polyimide film micropatterned by Kr{sup +}-irradiation. However, the neurite length on the film irradiated by Kr{sup +} was shorter than that determined in the film irradiated by He{sup +}. On the other hand, neurite outgrowth on the polyimide film micropatterned by He{sup +}-irradiation was at least 100 {mu}m in length. This initial study indicated the enhanced outgrowth of PC12 cells on the fluorinated polyimide film micropatterned by ion irradiation.

  10. Carbon nanoparticle doped micro-patternable nano-composites for wearable sensing applications (Conference Presentation)

    Science.gov (United States)

    Khosla, Ajit

    2017-04-01

    scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. Proc. SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L (February 15, 2011); doi:10.1117/12.876738. 6. A. Khosla, and Bonnie L. Gray. "(Invited) Micropatternable Multifunctional Nanocomposite Polymers for Flexible Soft NEMS and MEMS Applications." ECS Transactions 45.3 (2012): 477-494. doi: 10.1149/1.3700913 7. Khosla, Ajit. "Nanoparticle-doped electrically-conducting polymers for flexible nano-micro Systems." Electrochemical Society Interface 21.3-4 (2012): 67-70. 8. Ajit Khosla; Smart garments in chronic disease management: progress and challenges. Proc. SPIE 8548, Nanosystems in Engineering and Medicine, 85482O (October 24, 2012); doi:10.1117/12.979667. 9. D. Chung ; A. Khosla ; B. L. Gray; Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 90600U (April 16, 2014); doi:10.1117/12.2046548. 10. Daehan Chung ; Sam Seyfollahi ; Ajit Khosla ; Bonnie Gray ; Ash Parameswaran ; Ramani Ramaseshan ; Kirpal Kohli; Initial experiments with flexible conductive electrodes for potential applications in cancer tissue screening. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290Z (February 14, 2011); doi:10.1117/12.875563. 11. A. Khosla ; B. L. Gray; New technologies for large-scale micropatterning of functional nanocomposite polymers. Proc. SPIE 8344, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2012, 83440W (April 26, 2012); doi:10.1117/12.915178. 12. A. Khosla, B.L. Gray, Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer, Materials Letters, Volume 63, Issues 13-14, 31 May 2009, Pages 1203-1206, ISSN 0167-577X, http://dx.doi.org/10.1016/j.matlet.2009.02.043. 13. Giassa

  11. Dielectric properties of micropatterns consisting of barium titanate single-crystalline nanocubes

    Science.gov (United States)

    Mimura, Ken-ichi; Kato, Kazumi

    2015-10-01

    Micropatterns of barium titanate nanocube (BT NC) assemblies were fabricated by dip-coating self-assembly using a micropatterned mold made of Si or polyimide (PI). The microstructure of the BT NC assembly in the micropatterned mold made of PI showed the closest packing structure. This result indicated that the polymer wall in the micropatterns is swollen by the organic solvent used in the dip-coating self-assembly process. As a result, this swelling might work effectively for the self-assembly of the NCs with high ordering assisted by capillary force. Moreover, it is clarified that the line-and-space-molds with a taper angle and a large width were more useful for the self-assembly of BT NCs in microtrenches selectively. The micropatterned mold made of PI could be removed by immersing in N-methyl-2-pyrrolidone at 65 °C. The ordered structure was not destroyed during the removal process. Micropatterned BT NC capacitor structures were obtained by this method after sintering at 850 °C. The interfaces of BT NCs were conjugated face-to-face, as shown by the obtained high-resolution transmission electron microscopy (HR-TEM) cross-sectional profiles. This process has a great potential for fabricating patterned assemblies directly on substrates. The dielectric properties of BT NC micropatterned assemblies in micropatterned molds made of Si were also characterized and compared with those of BT NC assemblies on Pt/Si substrates without micropatterning.

  12. Fabrication of micro-patterns via near-field electrospray

    Science.gov (United States)

    Li, Wenwang; Zheng, Gaofeng; Xu, Lei; Wang, Xiang

    2016-11-01

    A near-field electrospray process is developed to deposited micro-patterns. Compared with conventional electrospray, near field electrospray uses a steel probe instead of capillary nozzle, and its nozzle-to-substrate distance is shortened to several millimeters to realize micro-scale deposition area. The liquid is supplied by discretely dipping the probe into solution in advance so that electrospray process maintains until the consumption of liquid adhered at the probe tip. The influence of solution conductivity and applied voltage on deposition are investigated, as increasing solution conductivity and high applied voltage may promote the electrospray process and enlarge the line width. In addition, micro-patterns with various materials are directly electrosprayed.

  13. Micropatterning of Proteins and Mammalian Cells on Indium Tin Oxide

    OpenAIRE

    Shah, Sunny S.; Howland, Michael C.; Chen, Li-Jung; Silangcruz, Jaime; Verkhoturov, Stanislav V.; Schweikert, Emile A.; Parikh, Atul N.; Revzin, Alexander

    2009-01-01

    This paper describes a novel surface engineering approach that combines oxygen plasma treatment and electrochemical activation to create micropatterned cocultures on indium tin oxide (ITO) substrates. In this approach, photoresist was patterned onto an ITO substrate modified with poly(ethylene) glycol (PEG) silane. The photoresist served as a stencil during exposure of the surface to oxygen plasma. Upon incubation with collagen (I) solution and removal of the photoresist, the ITO substrate co...

  14. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.

    Science.gov (United States)

    Zhang, Ying; Wang, Lei; Wang, Xuejing; Qi, Guodong; Han, Xiaojun

    2013-07-01

    A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer-by-layer technique on a silicon oxide surface modified with a 3-aminopropyltriethoxysilane (APTES) monolayer. The surface pK(a) value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer-by-layer assembly. Micropatterned polyelectrolyte films were obtained by deep-UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm(2) s(-1) in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.

  15. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.

    Science.gov (United States)

    Ali, Saniya; Cuchiara, Maude L; West, Jennifer L

    2014-01-01

    This protocol describes the techniques to synthesize and fabricate micropatterned poly(ethylene glycol) diacrylate-based hydrogels that can be used as substrates in cellular studies and tissue engineering scaffolds. These materials provide an essentially bioinert background material due to the very low protein adsorption characteristics of poly(ethylene glycol), but the materials can be modified with covalently grafted peptides, proteins, or other biomolecules of interest to impart specific biofunctionality to the material. Further, it is possible to use micropatterning technologies to control the localization of such covalent grafting of biomolecules to the hydrogel materials, thus spatially controlling the cell-material interactions. This protocol presents a relatively simple approach for mask-based photolithographic patterning, generally best suited for patterning the surface of hydrogel materials for 2D cell studies. A more sophisticated technique, two-photon laser scanning lithography, is also presented. This technique allows free-form, 3D micropatterning in hydrogels. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cell orientation on a stripe-micropatterned surface

    Institute of Scientific and Technical Information of China (English)

    SUN JianGuo; TANG Jian; DING JianDong

    2009-01-01

    Stripe-micropatterned surfaces have recently been a unique tool to study cell orientation. In this paper,we prepared,by the photolithography transfer technique,stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) proparties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns.With the increase of inter-stripe distance,the orientational order parameter,the ratio of long and short axes of a cell,and the occupation fraction of cells on stripes increased gradually,whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.

  17. R and D on a New Technology of Micro-pattern Gaseous Detectors Fast Timing Micro-pattern Detector

    CERN Document Server

    Salva Diblen, Sinem

    2016-01-01

    After the upgrades of the Large Hadron Collider (LHC) planned for the second and the third Long Shutdown (LS), the LHC luminosity will approach very high values. Such conditions will affect the performance of the CMS muon system, especially in the very forward region, due to the harsh expected background environment and high pile-up conditions. The CMS collaboration considers upgrading the muon forward region to take advantage of the pixel tracking coverage extension a new detector, ME0 station, possibly behind the new forward calorimeter. New resistive micro-pattern gaseous detectors that are able to handle the very demanding spatial, time resolution and rate capability, are being considered. In this contribution we introduce a new type of MPGD technology the Fast Timing Micro-pattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing p...

  18. Large-scale fabrication of free-standing, micropatterned silica nanotubes via a hybrid hydrogel-templated route.

    Science.gov (United States)

    Chen, Song; Shi, Xuetao; Chinnathambi, Shanmugavel; Hanagata, Nobutaka

    2013-08-01

    Free-standing, micropatterned silica nanotube membranes are in situ fabricated using a micropatterned silica-coated collagen hybrid hydrogel as template. They are substrate-free, and not only maintained their micropatterned microstructure well, but also exhibited strong cell contact guidance ability to direct cell alignment and differentiation, indicating their good potential for biomedical applications.

  19. Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution

    Science.gov (United States)

    Yamamoto, H.; Matsumura, R.; Takaoki, H.; Katsurabayashi, S.; Hirano-Iwata, A.; Niwano, M.

    2016-07-01

    The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level. We then examined how synapses develop on micropatterned hippocampal neurons. Three types of micropatterns with different numbers of short paths for dendrite growth were compared. A normal development in synapse density was observed when micropatterns with three or more short paths were used. Finally, we performed double patch clamp recordings on micropatterned neurons to confirm that these synapses are indeed functional, and that the neuronal signal is transmitted unidirectionally in the intended orientation. This work provides a practical guideline for patterning single neurons to design functional neuronal networks in vitro with the direction of signal propagation being controlled.

  20. Innovative applications and developments of micro-pattern gaseous detectors

    CERN Document Server

    Francke, Tom

    2014-01-01

    Study of nature and the world around us has been a primary motivation for scientists and researchers for centuries. Advanced methods in the study of elementary particles have led to even greater discoveries in recent years. "Innovative Applications and Developments of Micro-Pattern Gaseous Detectors" focuses on the analysis and use of various gas detection systems, providing a detailed description of some of the most commonly used gas detectors and the science behind them. From early detectors to modern tools and techniques, this book will be of particular use to practitioners and researchers in chemical engineering and materials science, in addition to students and academicians concentrating in the field.

  1. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  2. "Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.

    Science.gov (United States)

    Uppalapati, Maruti; Huang, Ying-Ming; Aravamuthan, Vidhya; Jackson, Thomas N; Hancock, William O

    2011-01-01

    The mitotic spindle is a dynamic assembly of microtubules and microtubule-associated proteins that controls the directed movement of chromosomes during cell division. Because proper segregation of the duplicated genome requires that each daughter cell receives precisely one copy of each chromosome, numerous overlapping mechanisms have evolved to ensure that every chromosome is transported to the cell equator during metaphase. However, due to the inherent redundancy in this system, cellular studies using gene knockdowns or small molecule inhibitors have an inherent limit in defining the sufficiency of precise molecular mechanisms as well as quantifying aspects of their mechanical performance. Thus, there exists a need for novel experimental approaches that reconstitute important aspects of the mitotic spindle in vitro. Here, we show that by microfabricating Cr electrodes on quartz substrates and micropatterning proteins on the electrode surfaces, AC electric fields can be used to assemble opposed bundles of aligned and uniformly oriented microtubules as found in the mitotic spindle. By immobilizing microtubule ends on each electrode, analogous to anchoring at centrosomes, solutions of motor or microtubule binding proteins can be introduced and their resulting dynamics analyzed. Using this "artificial mitotic spindle" we show that beads functionalized with plus-end kinesin motors move in an oscillatory manner analogous to the movements of chromosomes and severed chromosome arms during metaphase. Hence, features of directional instability, an established characteristic of metaphase chromosome dynamics, can be reconstituted in vitro using a pair of uniformly oriented microtubule bundles and a plus-end kinesin functionalized bead.

  3. Micropatterned coumarin polyester thin films direct neurite orientation.

    Science.gov (United States)

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (ppolyester thin films has proven beneficial as an axon guidance platform for future nervous system regenerative strategies.

  4. Femtosecond laser induced surface structuring on silicon by diffraction-assisted micropatterning

    Science.gov (United States)

    Wang, Shutong; Feng, Guoying

    2015-02-01

    Femtosecond laser micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by optical and scanning electron microscopy and reveal a good agreement with Fresnel diffraction theory. LIPSS have been generated in the micropatterning surface. We found Ripples spacing were found of 550-680 nm. Based on the Sipe and Drude model, the theoretical period of LIPSS is closer to experimental measurements. Due to the diffraction, the LIPPS having a different period appear in a diffraction micropatterning.

  5. Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi; Wang Zhi [Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Wainan Guoxue Street, Chengdu 610041, Sichuan (China); Qin Tingwu [Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Wainan Guoxue Street, Chengdu 610041, Sichuan (China)], E-mail: tingwuqin@hotmail.com; Liu Chengjun; Yang Zhiming [Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Wainan Guoxue Street, Chengdu 610041, Sichuan (China)

    2008-11-15

    The effects of micropatterned surfaces coated with type I collagen (CNI) on the proliferation and morphology of rat tail tenocytes were investigated in this study. The micropatterned polydimethylsiloxane substrates were prepared by using the technique of microcontact printing and then coated with different concentrations of CNI by the microfluidic channels technology. After being seeded on the CNI-coated micropatterned substrates, the tenocytes were tested by MTT colorimetric assay at 1-, 3-, 5-, and 7-day time intervals to evaluate the proliferation of tenocytes on the substrates. The alignment and morphology of tenocytes on the CNI-coated substrates after incubation for 1 or 24 h were observed with SEM. The results showed tenocytes proliferated well with increase of CNI concentrations and identically aligned along the grooves of the CNI-coated micropatterned substrates. This could have a potential advantage in construction of engineered tendons in vitro.

  6. Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes

    Science.gov (United States)

    Chen, Xi; Wang, Zhi; Qin, Ting-Wu; Liu, Cheng-Jun; Yang, Zhi-Ming

    2008-11-01

    The effects of micropatterned surfaces coated with type I collagen (CNI) on the proliferation and morphology of rat tail tenocytes were investigated in this study. The micropatterned polydimethylsiloxane substrates were prepared by using the technique of microcontact printing and then coated with different concentrations of CNI by the microfluidic channels technology. After being seeded on the CNI-coated micropatterned substrates, the tenocytes were tested by MTT colorimetric assay at 1-, 3-, 5-, and 7-day time intervals to evaluate the proliferation of tenocytes on the substrates. The alignment and morphology of tenocytes on the CNI-coated substrates after incubation for 1 or 24 h were observed with SEM. The results showed tenocytes proliferated well with increase of CNI concentrations and identically aligned along the grooves of the CNI-coated micropatterned substrates. This could have a potential advantage in construction of engineered tendons in vitro.

  7. Periodic migration in a physical model of cells on micropatterns

    Science.gov (United States)

    Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan

    2013-01-01

    We extend a model for the morphology and dynamics of a crawling eukaryotic cell to describe cells on micropatterned substrates. This model couples cell morphology, adhesion, and cytoskeletal flow in response to active stresses induced by actin and myosin. We propose that protrusive stresses are only generated where the cell adheres, leading to the cell's effective confinement to the pattern. Consistent with experimental results, simulated cells exhibit a broad range of behaviors, including steady motion, turning, bipedal motion, and periodic migration, in which the cell crawls persistently in one direction before reversing periodically. We show that periodic motion emerges naturally from the coupling of cell polarization to cell shape by reducing the model to a simplified one-dimensional form that can be understood analytically. PMID:24160631

  8. Continuous flow ink etching for direct micropattern of silicon dioxide

    Science.gov (United States)

    Xing, Jiyao; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-07-01

    A continuous flow ink etching (CFIE) method is presented to directly create micropatterns on a 60 nm thick silicon dioxide (SiO2) layer. This technique employs a micropipette filled with potassium bifluoride (KHF2) aqueous solution to localize SiO2 dissolution in the vicinity of the micropipette tip. Both dot and line features with well-defined edges were fabricated and used as hardmasks for silicon etching. The linear density of etchant ink deposited on the SiO2 can be used to regulate the depth, width and 2D morphology of the line pattern. The characterization of CFIE including the resolution (about 4 μm), reproducibility and capability to form complex structures are reported. This technique provides a simple and flexible alternative to generate the SiO2 hardmask for silicon microstructure fabrication.

  9. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Sharma, Archana

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive coating. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4-10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as far applications like medical imaging.

  10. Recyclable hydrophilic-hydrophobic micropatterns on glass for microarray applications.

    Science.gov (United States)

    Zhang, Hua; Lee, Yong Yeow; Leck, Kwong Joo; Kim, Namyong Y; Ying, Jackie Y

    2007-04-24

    A novel method for fabricating recyclable hydrophilic-hydrophobic micropatterns on glass chips is presented. TiOx patterns (100-2000 microm) were sputtered on glass chips via a through-hole mask. The patterned chips were then vapor-coated with fluoroalkylsilane, for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (FTES) to form a hydrophobic coating layer. The fluoroalkyl chain of FTES film on TiOx patterns was photocleaved under UV irradiation, exposing the fresh hydrophilic TiOx patterns. The resulting chip could be used multiple times by repeating the coating and photocleaving processes with negligible deterioration of the hydrophobic FTES film coated on glass. If desired, bare glass patterns could also be generated by removing the TiOx patterns with KOH. The patterned glass chips have been successfully used for microarray fabrication.

  11. Microplasma patterning of bonded microchannels using high-precision "injected" electrodes.

    Science.gov (United States)

    Priest, Craig; Gruner, Philipp J; Szili, Endre J; Al-Bataineh, Sameer A; Bradley, James W; Ralston, John; Steele, David A; Short, Robert D

    2011-02-07

    A rapid, high-precision method for localised plasma-treatment of bonded PDMS microchannels is demonstrated. Patterned electrodes were prepared by injection of molten gallium into preformed microchannel guides. The electrode guides were prepared without any additional fabrication steps compared to conventional microchannel fabrication. Alignment of the "injected" electrodes is precisely controlled by the photomask design, rather than positioning accuracy of alignment tools. Surface modification is detected using a fluorescent dye (Rhodamine B), revealing a well-defined micropattern with regions less than 100 µm along the length of the microchannel.

  12. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    Science.gov (United States)

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  13. High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics.

    Science.gov (United States)

    Wang, Jian-Chun; Liu, Wenming; Tu, Qin; Ma, Chao; Zhao, Lei; Wang, Yaolei; Ouyang, Jia; Pang, Long; Wang, Jinyi

    2015-02-07

    Micropatterning technologies are emerging as an enabling tool for various microfluidic-based applications in life sciences. However, the high throughput and multiplex localization of multiple bio-components in a microfluidic device has not yet been well established. In this paper, we describe a simple and in situ micropatterning method using an integrated microfluidic device with pneumatic microstructures (PμSs) for highly controllable immobilization of both proteins and cells in a high throughput, geometry-dynamic, and multi-patterning way. The precise Pluronic F127 passivation of a microchamber surface except the PμS-blocked regions was performed and characterized, and the spatial dynamics and consistency of both the PμSs and protein/cell micropatterning were optically evaluated and quantitatively demonstrated too. Furthermore, a systematic investigation of PμS-assisted micropatterning in microfluidics was carried out. The feature of high throughput and spatial control of micropatterning can be simply realized by using the well-designed PμS arrays. Meanwhile, the co-micropatterning of different proteins (bovine serum albumin and chicken egg albumin) and cells (human umbilical vein endothelial cells and human hepatocellular carcinoma cells) in a microfluidic device was successfully accomplished with the orderly serial manipulation of PμS groups. We demonstrate that PμS-assisted micropatterning can be applied as a convenient microfluidic component for large-scale and diversified protein/cell patterning and manipulation, which could be useful for cell-based tissue organization, high-throughput imaging, protein-related interactions and immunoassays.

  14. High-definition micropatterning method for hard, stiff and brittle polymers.

    Science.gov (United States)

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers.

  15. Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes

    Science.gov (United States)

    Rawson, F. J.; Cole, M. T.; Hicks, J. M.; Aylott, J. W.; Milne, W. I.; Collins, C. M.; Jackson, S. K.; Silman, N. J.; Mendes, P. M.

    2016-12-01

    With the rapidly increasing demands for ultrasensitive biodetection, the design and applications of new nano-scale materials for development of sensors based on optical and electrochemical transducers have attracted substantial interest. In particular, given the comparable sizes of nanomaterials and biomolecules, there exist plenty of opportunities to develop functional nanoprobes with biomolecules for highly sensitive and selective biosensing, shedding new light on cellular behaviour. Towards this aim, herein we interface cells with patterned nano-arrays of carbon nanofibers forming a nanosensor-cell construct. We show that such a construct is capable of electrochemically communicating with the intracellular environment.

  16. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    Directory of Open Access Journals (Sweden)

    Pornthida Poosala

    2016-01-01

    Full Text Available Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12 cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6 was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.

  17. Methods for analysis of apical lumen trafficking using micropatterned 3D systems.

    Science.gov (United States)

    Rodríguez-Fraticelli, Alejo E; Martín-Belmonte, Fernando

    2013-01-01

    Epithelial organs are made of interconnected branched networks of tubules, with a central lumen lined by a monolayer of epithelial cells. Certain epithelial cell lines can be converted into organotypic cultures by the addition of extracellular matrix components. When cultured in these conditions, epithelial cells reorient the axis of polarity, reorganize the membrane surfaces, and transport apical proteins to form the lumen in a process that recapitulates essential aspects of de novo apical membrane formation during epithelial organ morphogenesis. Micropatterns are a simple technique that allows cell culture in a controlled adhesive environment with extremely high precision, close to the nanometer scale. We have recently developed a method to culture MDCK cysts on micropatterns of different sizes and composition. Using this method we found that changes in micropattern shape and size can be used to modify cell contractility to understand its contribution to apical membrane formation. When imaging cysts on micropatterns the main advantage is that apical-directed vesicle trafficking is visualized in the x-y plane, which presents higher resolution on confocal microscopes. Thus, the use of micropatterns is an efficient setup to analyze polarized secretion with unprecedented higher resolution in both time and space. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Development of Hybrid and Monolithic Silicon Micropattern Detectors

    CERN Multimedia

    Beker, H; Snoeys, W; Campbell, M; Lemeilleur, F; Ropotar, I

    2002-01-01

    %RD-19 \\\\ \\\\ In a collaborative effort between particle physics institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while allowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experiments. Following a $^{\\prime}$stepping stone$^{\\prime}$ approach several telescopes of pixel planes, totalling now 600 cm$^{2}$ with \\(>\\)~1~M elements have been used in the WA97, NA50 and NA57 lead ion experiments. This new technology has facilitated the tracking considerably (see Fig.1). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout ...

  19. Micropatterned polysaccharide surfaces via laser ablation for cell guidance

    Energy Technology Data Exchange (ETDEWEB)

    Barbucci, Rolando; Lamponi, Stefania; Pasqui, Daniela; Rossi, Antonella; Weber, Elisabetta

    2003-03-03

    Micropatterned materials were obtained by a controlled laser ablation of a photoimmobilised homogeneous layer of hyaluronic acid (Hyal) and its sulphated derivative (HyalS). The photoimmobilisation was performed by coating the polysaccharide, adequately functionalised with a photoreactive group, on aminosilanised glass substrate and immobilising it on the surface under UV light. Hyal or HyalS photoimmobilised samples were then subjected to laser ablation with wavelengths in the UV regions in order to drill the pattern. Four different patterns with stripes of 100, 50, 25 and 10 {mu}m were generated. A chemical characterisation by attenuated total reflection/Fourier transform infrared (ATR/FT-IR) and time of flight-secondary ions mass spectrometry (TOF-SIMS) confirmed the success of the laser ablation procedure and the presence of alternating stripes of polysaccharide and native glass. The exact dimensions of the stripes were determined by atomic force microscopy. The analysis of cell behaviour in terms of adhesion, proliferation and movement using mouse fibroblasts (3T3 line) and bovine aortic endothelial cells (BAEC) was also performed.

  20. FGLD A novel and compact micro-pattern gas detector

    CERN Document Server

    Dick, Louis; Watts, David

    2004-01-01

    A new gas detector which combines in the same structure the gas amplification mechanism and the position sensitive readout, named the field gradient lattice detector (FGLD), is being developed at CERN. The detector, reminiscent in geometry of a multi-wire proportional chamber but with a different field configuration can be fabricated as two or more layers of micro-patterned parallel tracks on a variety of substrate materials. Two preliminary proof-of-concept designs without position sensitivity have been fabricated as copper tracks of 50 mum width and 150 mum pitch on polyimide in a 3D geometry and on epoxy in a 2D geometry. They have been shown to detect the 5.9 keV X-rays of an $^{55}Fe$ source with a stable gain ranging from 500 to 5000 in a 3 mm drift chamber containing an argon carbon-dioxide gas mixture. The elegance and compactness of the FGLD design make it a very attractive gas detector solution both economically and mechanically. Most interestingly, the 3D FGLD design on flexible polyimide should gr...

  1. Digital PCR using micropatterned superporous absorbent array chips.

    Science.gov (United States)

    Wang, Yazhen; Southard, Kristopher M; Zeng, Yong

    2016-06-21

    Digital PCR (dPCR) is an emerging technology for genetic analysis and clinical diagnostics. To facilitate the widespread application of dPCR, here we developed a new micropatterned superporous absorbent array chip (μSAAC) which consists of an array of microwells packed with highly porous agarose microbeads. The packed beads construct a hierarchically porous microgel which confers superior water adsorption capacity to enable spontaneous filling of PDMS microwells for fluid compartmentalization without the need of sophisticated microfluidic equipment and operation expertise. Using large λ-DNA as the model template, we validated the μSAAC for stochastic partitioning and quantitative digital detection of DNA molecules. Furthermore, as a proof-of-concept, we conducted dPCR detection and single-molecule sequencing of a mutation prevalent in blood cancer, the chromosomal translocation t(14;18), demonstrating the feasibility of the μSAAC for analysis of disease-associated mutations. These experiments were carried out using the standard molecular biology techniques and instruments. Because of its low cost, ease of fabrication, and equipment-free liquid partitioning, the μSAAC is readily adaptable to general lab settings, which could significantly facilitate the widespread application of dPCR technology in basic research and clinical practice.

  2. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    Science.gov (United States)

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe2O3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  3. Liquid Droplet Impact Dynamics on Micro-Patterned Superhydrophobic Surfaces

    CERN Document Server

    Clavijo, Cristian; Crockett, Julie

    2013-01-01

    The video exhibits experimental qualitative and quantitative results of water/glycerol (50%/50% by mass) droplet impact on two types of micro-patterned superhydrophobic surfaces. The two types of surfaces used were 80% cavity fraction ribs and posts with a periodic spacing of 40 {\\mu}m and 32 {\\mu}m, respectively. All surfaces were manufactured through photolithography. The impact Weber number is used as the dynamic parameter to compare splash and rebound behaviors between the two types of surfaces. While droplets exhibit similar dynamics at low Weber numbers, rebound jet speed (normalized by droplet impact speed) is notably higher on posts than ribs for all Weber numbers tested here (5 265. On posts, satellite droplets also follow a specific path but in a different orientation. Satellite droplets form in locations aligned with the post lattice structure. This behavior is observed for 600 < We < 750. Jet rebound exhibits an interesting phenomenon on ribs under certain conditions. Due to the uneven shear...

  4. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface.

    Science.gov (United States)

    Yu, Fayou; Li, Ping; Shen, Hao; Mathur, Sanjay; Lehr, Claus-Michael; Bakowsky, Udo; Mücklich, Frank

    2005-05-01

    Laser interference lithography (LIL) is a straightforward technique to prepare linear micropatterns for regulating cellular adhesion behaviors on polymer substratum. This process is based on selective laser ablation directly duplicating the interference patterns of two or more coherent laser beams onto the polymer surface. Micropatterns prepared by LIL on poly(ethylene terephthalate) and Thermanox were characterized using atomic force microscopy (AFM) and white light interferometer while the chemical surface modification induced by laser was analyzed by X-ray photoelectron spectroscopy (XPS). The AFM photographs show that the micropatterns are well-defined and of great consistency. Polymer properties and laser parameters related to LIL as well as laser ablation mechanisms are discussed in this technical note.

  5. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  6. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede;

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3......,4-ethylenedioxythiophene)) thin films. The method is based on contacting PEDOT-type thin films with a micropatterned agarose stamp containing an oxidant (aqueous hypochlorite) and applying a nonionic detergent. Where contacted, PEDOT not only loses its conductance but is entirely removed, thereby locally revealing...... the underlying substrate. Surface analysis showed that the substrate surface chemistry was fully exposed and not affected by the treatment. Click chemistry could thus be applied to selectively modify re-exposed alkyne and azide functional groups of functionalized polystyrene substrates. The versatility...

  7. Magnetohydrodynamic electrode

    Science.gov (United States)

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  8. A micropatterned cell array with an integrated oxygen-sensitive fluorescent membrane.

    Science.gov (United States)

    Montagne, Kevin; Komori, Kikuo; Yang, Fei; Tatsuma, Tetsu; Fujii, Teruo; Sakai, Yasuyuki

    2009-11-01

    We propose a simple method for producing micropatterned cell spots by photocatalytic lithography on a Pt porphyrin-based oxygen-sensitive polystyrene membrane that enables real-time imaging of oxygen consumption of patterned cell spots with sub-millimetre resolution.

  9. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  10. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces

    KAUST Repository

    Zhang, Lianbin

    2015-01-01

    The preparation of biomimetic superhydrophobic surfaces with hydrophilic micro-sized patterns is highly desirable, but a one-step, mask-free method to produce such surfaces has not previously been reported. We have developed a direct method to produce superhydrophilic micropatterns on superhydrophobic surfaces based on inkjet printing technology. This work was inspired by the efficient fog-harvesting behavior of Stenocara beetles in the Namib Desert. A mussel-inspired ink consisting of an optimized solution of dopamine was applied directly by inkjet printing to superhydrophobic surfaces. Stable Wenzel\\'s microdroplets of the dopamine solution with well-defined micropatterns were obtained on these surfaces. Superhydrophilic micropatterns with well-controlled dimensions were then readily achieved on the superhydrophobic surfaces by the formation of polydopamine via in situ polymerization. The micropatterned superhydrophobic surfaces prepared by this inkjet printing method showed enhanced water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability and is therefore a key step toward patterning superhydrophobic surfaces for practical applications. This journal is

  11. Micro-patterning of Copper Based on Photolithographed Self-assembly Monolayers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method has been developed for fabrication of copper micro-pattern by selective chemical copper deposition based on photolithographed (3-mercaptopropyl)-trimethoxysilane (MPTS) self-assembly monolayers (SAMs). As confirmed by scanning electron microscopy (SEM), Cu closely replicated the mask features. The present approach makes this technic to be cheap and may be applicable to assembly of microelectronic circuits.

  12. Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

    Science.gov (United States)

    Albert, Philipp J; Schwarz, Ulrich S

    2014-06-03

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    Science.gov (United States)

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; Fitzsimmons, Paul; Carlson, Lane; Farrell, Mike; Nikroo, Abbas; Watson, Brian J.

    2016-02-01

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, a method to imprint a periodic micropattern of oxygen on the surface of GDP was developed and used to fabricate a flat sample for empirical testing. Photo exposure using collimated blue light was used to generate micropatterns of surface oxygen on the GDP material. The periodic oxygen micropattern was confirmed by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy. A SIMS depth profile showed the atomic percent of oxygen ranged from 8 at. % near the surface to 1 at. % at a depth of 2 μm in a sample exposed for 4 min. The molecular interactions formed between the GDP and oxygen molecules were characterized using Fourier transform infrared resonance (FTIR), which showed the formation of hydroxyl (O-H) and carbonyl (C=O) bonds. The FTIR enabled the oxygen mass uptake as a function of photo exposure time to be quantified (resolved to typically 0.05 at. % oxygen). This experimental protocol was then applied to produce a GDP flat part with a periodic 75 μm wavelength micropattern of photo exposed (oxygen rich) and masked (oxygen deficient) regions. The micropatterned GDP ablators developed in this work are being used to assess the effect of surface oxygen on disruptive perturbations during the inertial confinement fusion implosion process.

  14. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    OpenAIRE

    2016-01-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for ...

  15. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    Science.gov (United States)

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  16. Fabrication of Nanopillar Micropatterns by Hybrid Mask Lithography for Surface-Directed Liquid Flow

    Directory of Open Access Journals (Sweden)

    Fumihito Arai

    2013-06-01

    Full Text Available This paper presents a novel method for fabricating nanopillar micropatterns for surface-directed liquid flows. It employs hybrid mask lithography, which uses a mask consisting of a combination of a photoresist and nanoparticles in the photolithography process. The nanopillar density is controlled by varying the weight ratio of nanoparticles in the composite mask. Hybrid mask lithography was used to fabricate a surface-directed liquid flow. The effect of the surface-directed liquid flow, which was formed by the air-liquid interface due to nanopillar micropatterns, was evaluated, and the results show that the oscillation of microparticles, when the micro-tool was actuated, was dramatically reduced by using a surface-directed liquid flow. Moreover, the target particle was manipulated individually without non-oscillating ambient particles.

  17. Perspectives of micro-pattern gaseous detector technologies for future physics projects

    CERN Document Server

    AUTHOR|(CDS)2072085

    2013-01-01

    A centenary after the invention of the basic principle of gas amplification, gaseous detectors are still the first choice whenever the large area coverage with low material budget is required. Advances in photolithography and microprocessing techniques in the chip industry during the past two decades triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the-art...

  18. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.; Hernández-Pozos, J. L. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 México D. F. (Mexico); Batina, N.; Morales-Reyes, I. [Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 México D. F. (Mexico); Bonse, J. [BAM Bundesanstalt für Materialforschung und-prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  19. Large-Area, Freestanding MOF Films of Planar, Curvilinear, or Micropatterned Topographies.

    Science.gov (United States)

    Yoon, Seok Min; Park, Jun Heuk; Grzybowski, Bartosz A

    2017-01-02

    Freestanding MOF films up to six-inches across and replicating various surface (micro)patterns are prepared via a templated growth method. When grown on copper supports, these films have preferred orientation of the constituent crystallites, translating into markedly different wetting properties of the film's two surfaces (water-pinning vs. water repellant). In addition, the films exhibit differential sorption of various organic solvents, can recover oil spills from seawater, and can also act as active layers of chemical sensors.

  20. X-ray Polarimetry with a Micro-Pattern Gas Detector

    Science.gov (United States)

    Hill, Joe

    2005-01-01

    Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.

  1. Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity.

    Science.gov (United States)

    Xu, Bingzhe; Zhu, Minshen; Zhang, Wencong; Zhen, Xu; Pei, Zengxia; Xue, Qi; Zhi, Chunyi; Shi, Peng

    2016-05-01

    A field-effect transistor (FET) based on ultrathin Ti3 C2 -MXene micropatterns is developed and utilized as a highly sensitive biosensor. The device is produced with the microcontact printing technique, making use of its unique advantages for easy fabrication. Using the MXene-FET device, label-free probing of small molecules in typical biological environments and fast detection of action potentials in primary neurons is demonstrated.

  2. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites.

    Science.gov (United States)

    Wang, Wendy WeiWei; Khetani, Salman R; Krzyzewski, Stacy; Duignan, David B; Obach, R Scott

    2010-10-01

    Metabolism is one of the important determinants of the overall disposition of drugs, and the profile of metabolites can have an impact on efficacy and safety. Predicting which drug metabolites will be quantitatively predominant in humans has become increasingly important in the research and development of new drugs. In this study, a novel micropatterned hepatocyte coculture system was evaluated for its ability to generate human in vivo metabolites. Twenty-seven compounds of diverse chemical structure and subject to a range of drug biotransformation reactions were assessed for metabolite profiles in the micropatterned coculture system using pooled cryopreserved human hepatocytes. The ability of this system to generate metabolites that are >10% of dose in excreta or >10% of total drug-related material in circulation was assessed and compared to previously reported data obtained in human hepatocyte suspensions, liver S-9 fraction, and liver microsomes. The micropatterned coculture system was incubated for up to 7 days without a change in medium, which offered an ability to generate metabolites for slowly metabolized compounds. The micropatterned coculture system generated 82% of the excretory metabolites that exceed 10% of dose and 75% of the circulating metabolites that exceed 10% of total circulating drug-related material, exceeds the performance of hepatocyte suspension incubations and other in vitro systems. Phase 1 and phase 2 metabolites were generated, as well as metabolites that arise via two or more sequential reactions. These results suggest that this in vitro system offers the highest performance among in vitro metabolism systems to predict major human in vivo metabolites.

  3. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Print-to-print: a facile multi-object micro-patterning technique.

    Science.gov (United States)

    Xing, Siyuan; Zhao, Siwei; Pan, Tingrui

    2013-04-01

    In recent years, micropatterning techniques have gained increasing popularity from a broad range of engineering and biology communities for the promise to establish highly quantitative investigations on miniature biological objects (e.g., cells and bacteria) with spatially defined microenvironments. However, majority of the existing techniques rely on cleanroom-based microfabrication and cannot be easily extended to a regular biological laboratory. In this paper, we present a simple versatile printing-based method, referred to as Print-to-Print (P2P), to form multi-object micropatterns for potential biological applications, along with our recent efforts to deliver out-of-cleanroom microfabrication solutions to the general public (Zhao et al. 2009), (Xing et al. 2011), (Wang et al. 2009), (Pan and Wang 2011), (Zhao et al. 2011). The P2P method employs only a commercially available solid-phase printer and custom-made superhydrophobic films. The entire patterning process does not involve any thermal or chemical treatment. Moreover, the non-contact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. Using the P2P process, a minimal feature resolution of 229 ± 17 μm has been successfully demonstrated. In addition, this approach has been applied to form biological micropatterning on various substrates as well as multi-object co-patterns on the commonly used surfaces. Finally, the reusability of superhydrophobic substrates has also been illustrated.

  5. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  6. Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics

    Directory of Open Access Journals (Sweden)

    Mansur Halai

    2014-09-01

    Full Text Available In biomaterial engineering, the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. On contact with an implant, bone marrow–derived mesenchymal stromal cells demonstrate differentiation towards bone forming osteoblasts, which can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics. The purpose of this study was to establish a co-culture of bone marrow–derived mesenchymal stromal cells with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina ceramics with 30 µm diameter pits. The aim was to establish whether the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis. We demonstrate specific bioactivity of micropatterns towards osteogenesis, with more nodule formation and less osteoclastogenesis compared to planar controls. In addition, we found that that macrophage and osteoclast-like cells did not interact with the pits and formed fewer full-size osteoclast-like cells on the pitted surfaces. This may have a role when designing ceramic orthopaedic implants.

  7. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.

    Science.gov (United States)

    Versaevel, Marie; Grevesse, Thomas; Riaz, Maryam; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation.

  8. Template-stripped, ultraflat gold surfaces with coplanar, embedded titanium micropatterns.

    Science.gov (United States)

    Venkataraman, Nagaiyanallur V; Pei, Jia; Cremmel, Clément V M; Rossi, Antonella; Spencer, Nicholas D

    2013-08-01

    Ultraflat gold surfaces with coplanar, embedded titanium micropatterns, exhibiting extremely low roughness over the entire surface, have been obtained by a modified template-stripping procedure. Titanium is deposited onto photolithographically predefined regions of a silicon template. Following photoresist lift-off, the entire surface is backfilled with gold, template stripping is conducted, and an ultraflat micropatterned surface is revealed. Atomic force microscopy confirms a roughness of surface-chemical maps of the patterned surfaces have been obtained by means of imaging X-ray photoelectron spectroscopy (i-XPS) as well as time-of-flight secondary-ion mass spectrometry (ToF-SIMS). They confirm the presence of well-separated Ti and Au regions, with a chemical contrast that is sharp (as determined by ToF-SIMS) and complete (as determined by i-XPS) across the Ti-Au interface. Thus, a surface has been fabricated that is physically homogeneous down to the nanoscale incorporating chemically distinct micropatterns consisting of two different metals, with totally contrasting surface chemistries.

  9. Improved-throughput traction microscopy based on fluorescence micropattern for manual microscopy.

    Directory of Open Access Journals (Sweden)

    Kai Liu

    Full Text Available Traction force microscopy (TFM is a quantitative technique for measuring cellular traction force, which is important in understanding cellular mechanotransduction processes. Traditional TFM has a significant limitation in that it has a low measurement throughput, commonly one per TFM dish, due to a lack of cell position information. To obtain enough cellular traction force data, an onerous workload is required including numerous TFM dish preparations and heavy cell-seeding activities, creating further difficulty in achieving identical experimental conditions among batches. In this paper, we present an improved-throughput TFM method using the well-developed microcontact printing technique and chemical modifications of linking microbeads to the gel surface to address these limitations. Chemically linking the microbeads to the gel surface has no significant influence on cell proliferation, morphology, cytoskeleton, and adhesion. Multiple pairs of force loaded and null force fluorescence images can be easily acquired by means of manual microscope with the aid of a fluorescence micropattern made by microcontact printing. Furthermore, keeping the micropattern separate from cells by using gels effectively eliminates the potential negative effect of the micropattern on the cells. This novel design greatly improves the analysis throughput of traditional TFM from one to at least twenty cells per petri dish without losing unique advantages, including a high spatial resolution of traction measurements. This newly developed method will boost the investigation of cell-matrix mechanical interactions.

  10. A fast and accessible methodology for micro-patterning cells on standard culture substrates using Parafilm™ inserts.

    Science.gov (United States)

    Javaherian, Sahar; O'Donnell, Kylie A; McGuigan, Alison P

    2011-01-01

    Micropatterning techniques provide direct control over the spatial organization of cells at the sub-mm scale. Regulation of these spatial parameters is important for controlling cell fate and cell function. While micropatterning has proved a powerful technique for understanding the impact of cell organization on cell behaviour, current methods for micropatterning cells require complex, specialized equipment that is not readily accessible in most biological and bioengineering laboratories. In addition, currently available methods require significant protocol optimization to ensure reliable and reproducible patterning. The inaccessibility of current methods has severely limited the widespread use of micropatterning as a tool in both biology and tissue engineering laboratories. Here we present a simple, cheap, and fast method to micropattern mammalian cells into stripes and circular patterns using Parafilm™, a common material found in most biology and bioengineering laboratories. Our method does not require any specialized equipment and does not require significant method optimization to ensure reproducible patterning. Although our method is limited to simple patterns, these geometries are sufficient for addressing a wide range of biological problems. Specifically, we demonstrate i) that using our Parafilm™ insert method we can pattern and co-pattern ARPE-19 and MDCK epithelial cells into circular and stripe micropatterns in tissue culture polystyrene (TCPS) wells and on glass slides, ii) that we can contain cells in the desired patterns for more than one month and iii) that upon removal of the Parafilm™ insert we can release the cells from the containment pattern and allow cell migration outward from the original pattern. We also demonstrate that we can exploit this confinement release feature to conduct an epithelial cell wound healing assay. This novel micropatterning method provides a reliable and accessible tool with the flexibility to address a wide range

  11. A fast and accessible methodology for micro-patterning cells on standard culture substrates using Parafilm™ inserts.

    Directory of Open Access Journals (Sweden)

    Sahar Javaherian

    Full Text Available Micropatterning techniques provide direct control over the spatial organization of cells at the sub-mm scale. Regulation of these spatial parameters is important for controlling cell fate and cell function. While micropatterning has proved a powerful technique for understanding the impact of cell organization on cell behaviour, current methods for micropatterning cells require complex, specialized equipment that is not readily accessible in most biological and bioengineering laboratories. In addition, currently available methods require significant protocol optimization to ensure reliable and reproducible patterning. The inaccessibility of current methods has severely limited the widespread use of micropatterning as a tool in both biology and tissue engineering laboratories. Here we present a simple, cheap, and fast method to micropattern mammalian cells into stripes and circular patterns using Parafilm™, a common material found in most biology and bioengineering laboratories. Our method does not require any specialized equipment and does not require significant method optimization to ensure reproducible patterning. Although our method is limited to simple patterns, these geometries are sufficient for addressing a wide range of biological problems. Specifically, we demonstrate i that using our Parafilm™ insert method we can pattern and co-pattern ARPE-19 and MDCK epithelial cells into circular and stripe micropatterns in tissue culture polystyrene (TCPS wells and on glass slides, ii that we can contain cells in the desired patterns for more than one month and iii that upon removal of the Parafilm™ insert we can release the cells from the containment pattern and allow cell migration outward from the original pattern. We also demonstrate that we can exploit this confinement release feature to conduct an epithelial cell wound healing assay. This novel micropatterning method provides a reliable and accessible tool with the flexibility to

  12. Investigation of micropatterning and micromechanical forces towards engineering neural networks with defined connectivity

    Science.gov (United States)

    de Silva, Mauris Nishanga

    2005-07-01

    Previously, microfabrication technology has been used to control the growth of dissociated neurons in culture by surface micropatterning. However, such systems did not provide control over synaptic connectivity between neurons. In addition, mechanical tension exerted by the growth cone plays an important role during neurite outgrowth, and mechanical force can be used as a stimulus for eliciting a neurite from a neuron. Therefore, one could, in principle, pattern neurons on adhesive islands with non-permissive intervening regions that prevent spontaneous outgrowth and formation of synaptic connections, and then form connections on demand with the desired directionality and specificity by eliciting neurites using mechanical force. In order to investigate the possibility of creating such a neural network, a novel microsystem was developed having an array of glass microposts that can be used to micromechanically stimulate multiple neurons simultaneously in vitro. Traditional approaches to micropatterning of cells require photolithography, which typically requires functionalizing of surfaces with one molecule type that promotes cell adhesion and another molecule type that inhibits cell adhesion, and which is a complex, multi-step process that is time consuming and difficult to reproduce consistently. To simplify the micropatterning process, we developed a novel method of microcontact printing on polydimethylsiloxane (PDMS) substrates, a direct PDMS-PDMS stamping method that eliminated the need for adhesion-inhibiting molecules to achieve cellular patterns. However, direct PDMS-PDMS stamping is difficult to implement due to the complexity of the photolithography involved in stamp fabrication, and due to the inability to change patterns rapidly. Therefore, a novel precision spraying (PS) method was developed to micropattern cells in two steps, that is low cost, enables the facile changing of patterns for rapid prototyping, and has the ability to achieve patterns on non

  13. MicroPattern: a web-based tool for microbe set enrichment analysis and disease similarity calculation based on a list of microbes

    Science.gov (United States)

    Ma, Wei; Huang, Chuanbo; Zhou, Yuan; Li, Jianwei; Cui, Qinghua

    2017-01-01

    The microbiota colonized on human body is renowned as “a forgotten organ” due to its big impacts on human health and disease. Recently, microbiome studies have identified a large number of microbes differentially regulated in a variety of conditions, such as disease and diet. However, methods for discovering biological patterns in the differentially regulated microbes are still limited. For this purpose, here, we developed a web-based tool named MicroPattern to discover biological patterns for a list of microbes. In addition, MicroPattern implemented and integrated an algorithm we previously presented for the calculation of disease similarity based on disease-microbe association data. MicroPattern first grouped microbes into different sets based on the associated diseases and the colonized positions. Then, for a given list of microbes, MicroPattern performed enrichment analysis of the given microbes on all of the microbe sets. Moreover, using MicroPattern, we can also calculate disease similarity based on the shared microbe associations. Finally, we confirmed the accuracy and usefulness of MicroPattern by applying it to the changed microbes under the animal-based diet condition. MicroPattern is freely available at http://www.cuilab.cn/micropattern. PMID:28071710

  14. Patterning cells on optically transparent indium tin oxide electrodes.

    Science.gov (United States)

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them protein and cell resistive. Presence of insulating PEG molecules on the electrode surface was verified by cyclic voltammetry employing potassium ferricyanide as a redox reporter molecule. Importantly, the application of reductive potential caused desorption of the PEG layer, resulting in regeneration of the conductive electrode surface and appearance of typical ferricyanide redox peaks. Application of reductive potential also corresponded to switching of ITO electrode properties from cell non-adhesive to cell-adhesive. Electrochemical stripping of PEG-silane layer from ITO microelectrodes allowed for cell adhesion to take place in a spatially defined fashion, with cellular patterns corresponding closely to electrode patterns. Micropatterning of several cell types was demonstrated on these substrates. In the future, the control of the biointerfacial properties afforded by this method will allow to engineer cellular microenvironments through the assembly of three or more cell types into a precise geometric configuration on an optically transparent substrate.

  15. Microvoltammetric Electrodes.

    Science.gov (United States)

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  16. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    Science.gov (United States)

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  17. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Adam, E-mail: asteele4@illinois.ed [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Bayer, Ilker; Moran, Stephen [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States); Cannon, Andrew; King, William P. [Mechanical Science and Engineering Department, niversity of Illinois at Urbana-Champaign, 4409 Mechanical Engineering Laboratory, 1206 West Green Street, MC-244 Urbana, IL 61801 (United States); Loth, Eric [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street Urbana, IL, 61801 (United States)

    2010-07-30

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  18. Designing micro-patterned Ti films that survive up to 10% applied tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Noble C.; Spolenak, Ralph [ETH Zuerich, Laboratory for Nanometallurgy, Department of Materials, Zuerich (Switzerland); Cherenack, Kunigunde; Troester, Gerhard [ETH Zuerich, Wearable Computing Lab, Institute for Electronics, Zuerich (Switzerland)

    2010-07-15

    Reducing the strain in brittle device layers is critical in the fabrication of robust flexible electronic devices. In this study, the cracking behavior of micro-patterned 500-nm-thick Ti films was investigated via uniaxial tensile testing by in situ SEM and 4-point probe measurements. Both visual observations by SEM and 4-pt resistance measurements showed that strategically patterned oval holes, off-set and rotated by 45 , had a significant effect on limiting the extent of cracking, specifically, in preventing cracks from converging. Failure with regard to electrical conduction was delayed from less than 2% to more than 10% strain. (orig.)

  19. Emergence and Persistence of Collective Cell Migration on Small Circular Micropatterns

    CERN Document Server

    Segerer, Felix J; Alberola, Alicia Piera; Frey, Erwin; Rädler, Joachim O

    2015-01-01

    The spontaneous formation of vortices is a hallmark of collective cellular activity. Here, we study the onset and persistence of coherent angular motion (CAMo) as a function of the number of cells $N$ confined in circular micropatterns. We find that the persistence of CAMo increases with $N$ but exhibits a pronounced discontinuity accompanied by a geometric rearrangement of cells to a configuration containing a central cell. Computer simulations based on a generalized Potts model reproduce the emergence of vortex states and show in agreement with experiment that their stability depends on the interplay of spatial arrangement and internal polarization of neighboring cells. Hence, the distinct migrational states in finite size

  20. A simplified micropatterning method for straight-line neurite extension of cultured hippocampal neurons.

    Science.gov (United States)

    Suzuki, Ikuro; Nakamura, Kosuke; Odawara, Aoi; Alhebshi, Amani; Gotoh, Masao

    2013-01-01

    We report a simplified micropatterning method for the straight-line extension of the neurites of cultured neurons. We prepared a poly-D-lysine (PDL)-patterned surface using a polydimethylsiloxane microfluidic stamp. Hippocampal neurons were cultured on the PDL-bound substrate with the stamp removed, allowing for conventional cell seeding and detailed optical observation without fluorescent label. Cultured neurons elongated neurites along straight lines at the single-cell level and displayed spontaneous firing as detected by time-lapse imaging and Ca(2+) imaging.

  1. Simultaneous alignment and micropatterning of carbon nanotubes using modulated magnetic field

    Directory of Open Access Journals (Sweden)

    Kaoru Tsuda and Yoshio Sakka

    2009-01-01

    Full Text Available We report simultaneous alignment and micropatterning of carbon nanotubes (CNTs using a high magnetic field. It is important to prepare well-dispersed CNTs for alignment and patterning because CNT aggregation obstructs alignment. In magnetic field, highly anisotropic CNTs rotate in the direction stabilized in energy. Owing to their diamagnetic nature, CNTs suspended in a liquid medium are trapped in a weak magnetic field generated by a field modulator; meanwhile, they align to the applied strong magnetic field. The alignment has been achieved not only in polymers but also in ceramic and silicone composites.

  2. New approach to 3D electrostatic calculations for micro-pattern detectors

    CERN Document Server

    Lazic, P; Formaggio, J A; Abraham, H; Stefancic, H

    2011-01-01

    We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily handle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers.

  3. New approach to 3D electrostatic calculations for micro-pattern detectors

    Science.gov (United States)

    Lazić, P.; Dujmić, D.; Formaggio, J. A.; Abraham, H.; Štefancić, H.

    2011-12-01

    We demonstrate nearly approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using a newly developed Boundary Element Method called Robin Hood Method, we can easily handle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We also demonstrate the inclusion of dielectric material by calculating the electric field around different types of dielectric spacers.

  4. Monte Carlo simulations of protein micropatterning in biomembranes: effects of immobile sticky obstacles

    Science.gov (United States)

    Arnold, Andreas M.; Sevcsik, Eva; Schütz, Gerhard J.

    2016-09-01

    Single molecule trajectories of lipids and proteins can yield valuable information about the nanoscopic organization of the plasma membrane itself. The interpretation of such trajectories, however, is complicated, as the mobility of molecules can be affected by the presence of immobile obstacles, and the transient binding of the tracers to these obstacles. We have previously developed a micropatterning approach that allows for immobilizing a plasma membrane protein and probing the diffusional behavior of a putative interaction partner in living cells. Here, we provide guidelines on how this micropatterning approach can be extended to quantify interaction parameters between plasma membrane constituents in their natural environment. We simulated a patterned membrane system and evaluated the effect of different surface densities of patterned immobile obstacles on the relative mobility as well as the surface density of diffusing tracers. In the case of inert obstacles, the size of the obstacle can be assessed from its surface density at the percolation threshold, which in turn can be extracted from the diffusion behavior of the tracer. For sticky obstacles, 2D dissociation constants can be determined from the tracer diffusion or surface density.

  5. Chondrocyte Behavior on Micropatterns Fabricated Using Layer-by-Layer Lift-Off: Morphological Analysis

    Directory of Open Access Journals (Sweden)

    Jameel Shaik

    2013-01-01

    Full Text Available Cell patterning has emerged as an elegant tool in developing cellular arrays, bioreactors, biosensors, and lab-on-chip devices and for use in engineering neotissue for repair or regeneration. In this study, micropatterned surfaces were created using the layer-by-layer lift-off (LbL-LO method for analyzing canine chondrocytes response to patterned substrates. Five materials were chosen based on our previous studies. These included: poly(dimethyldiallylammonium chloride (PDDA, poly(ethyleneimine (PEI, poly(styrene sulfonate (PSS, collagen, and chondroitin sulfate (CS. The substrates were patterned with these five different materials, in five and ten bilayers, resulting in the following multilayer nanofilm architectures: (PSS/PDDA5, (PSS/PDDA10; (CS/PEI4/CS, (CS/PEI9/CS; (PSS/PEI5, (PSS/PEI10; (PSS/Collagen5, (PSS/Collagen10; (PSS/PEI4/PSS, (PSS/PEI9/PSS. Cell characterization studies were used to assess the viability, longevity, and cellular response to the configured patterned multilayer architectures. The cumulative cell characterization data suggests that cell viability, longevity, and functionality were enhanced on micropatterned PEI, PSS, collagen, and CS multilayer nanofilms suggesting their possible use in biomedical applications.

  6. Adhesion and migration of CHO cells on micropatterned single layer graphene

    Science.gov (United States)

    Keshavan, S.; Oropesa-Nuñez, R.; Diaspro, A.; Canale, C.; Dante, S.

    2017-06-01

    Cell patterning technology on single layer graphene (SLG) is a fairly new field that can find applications in tissue engineering and biomaterial/biosensors development. Recently, we have developed a simple and effective approach for the fabrication of patterned SLG substrates by laser micromachining, and we have successfully applied it for the obtainment of geometrically ordered neural networks. Here, we exploit the same approach to investigate the generalization of the cell response to the surface cues of the fabricated substrates and, contextually, to quantify cell adhesion on the different areas of the patterns. To attain this goal, we tested Chinese hamster ovary (CHO) cells on PDL-coated micropatterned SLG substrates and quantified the adhesion by using single cell force spectroscopy (SCFS). Our results indicate higher cell adhesion on PDL-SLG, and, consequently, an initial CHO cell accumulation on the graphene areas, confirming the neuronal behaviour observed previously; interestingly, at later time point in culture, cell migration was observed towards the adjacent SLG ablated regions, which resulted more favourable for cell proliferation. Therefore, our findings indicate that the mechanism of interaction with the surface cues offered by the micropatterned substrates is strictly cell-type dependent.

  7. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatterns.

    Science.gov (United States)

    Jung, Jaeyeon; Na, Kyunga; Shin, Byungcheol; Kim, Okgene; Lee, Jonghwan; Yun, Kyusik; Hyun, Jinho

    2008-01-01

    This paper investigates the chemical modification of a cell-repellent poly(ethylene glycol) (PEG)-based polymer to enhance its hydrophilicity with sulfonate groups, and its application in the fabrication of a cell microarray. First, a polymer comprised of a methyl methacrylate (MMA) backbone with PEG side-chains (PMMA-b-PEG) was synthesized from three monomers by radical polymerization and purified. Despite the hydrophilic side-groups in the amphiphilic polymer, the backbone structure's hydrophobicity allows for local adsorption of biomolecules in incubation media with or without serum. To enhance the hydrophilicity of the polymer, we tethered sulfonate groups to the hydroxyl groups on the PEG side chains (PMMA-b-PEG-SO3). The sulfate groups' physical and mechanical movement competitively repels biomolecules approaching the PMMA-b-PEG surface. Polymers modified with sulfonate were characterized by contact angle measurement, FT-IR, NMR, AFM and GPC. PMMA-b-PEG and PMMA-b-PEG-SO3 were successfully micropatterned on polystyrene and glass surfaces, and cell attachment was performed in either serum-free or serum-containing media, resulting in highly resolved cell micropatterns.

  8. Stereomask lithography (SML): a universal multi-object micro-patterning technique for biological applications.

    Science.gov (United States)

    Zhao, Siwei; Chen, Arnold; Revzin, Alexander; Pan, Tingrui

    2011-01-21

    The advent of biological micro-patterning techniques has given new impetus to many areas of biological research, including quantitative biochemical analysis, tissue engineering, biosensing, and regenerative medicine. Derived from photolithography or soft lithography, current bio-patterning approaches have yet to completely address the needs of out-of-cleanroom, universal applicability, high feature resolution, as well as multi-object placement, though many have shown great promise to precisely pattern one specific biomaterial. In this paper, we present a novel versatile biological lithography technique to achieve integrated multi-object patterning with high feature resolution and high adaptability to various biomaterials, referred to as stereomask lithography (SML). Successive patterning of multiple objects is enabled by using unique three-dimensional masks (i.e., the stereomasks), which lay out current micropatterns while protecting pre-existing biological features on the substrate. Furthermore, high-precision reversible alignment among multiple bio-objects is achieved by adopting a peg-in-hole design between the substrate and stereomasks. We demonstrate that the SML technique is capable of constructing a complex biological microenvironment with various bio-functional components at the single-cell resolution, which to the best of our knowledge has not been realized before.

  9. Anisotropic wetting of copper alloys induced by one-step laser micro-patterning

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: michael.hans@mx.uni-saarland.de [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Mueller, F.; Grandthyll, S.; Huefner, S. [Experimental Physics, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Muecklich, F. [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer One-step, contactless micro-patterning of copper alloys has been achieved. Black-Right-Pointing-Pointer Anisotropic wetting properties are tailored by line-like structures. Black-Right-Pointing-Pointer Both topographical and chemical patterns contribute to the phenomenon. Black-Right-Pointing-Pointer The topographic shape and homogeneity are found to be governing factors. - Abstract: Copper alloys (CuSn8, CuZn23Al3Co) have been micro-patterned with line-like geometries by Laser Interference Surface Structuring (LISS). In the presented study two high power pulsed laser beams are recombined to create unique, line-like intensity distributions with a chosen, constant periodicity of 10 {mu}m at varying laser fluencies. Anisotropic wetting properties on these surfaces have been confirmed by drop shape analysis and static contact angle measurements, which were conducted parallel and perpendicular to the structures revealing up to 25% difference in contact angle. The topography and chemistry of the tailored line structures have been characterized and analyzed by white light interferometry, spatial frequency distribution, AFM and X-ray photoelectron spectroscopy. The topographic shape and homogeneity are considered as key parameters for anisotropic wetting design, although it is concluded that both, the geometry as well as the locally varying chemical composition of the surface structures contribute to the phenomenon. Parallel capillarity effects and perpendicular contact line pinning are found to be the governing mechanisms.

  10. Spontaneous decoration of Au nanoparticles on micro-patterned reduced graphene oxide shaped by focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y. C.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Teoh, H. F. [Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore); Sow, C. H. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore)

    2015-02-07

    We report a facile, two-step method for the micro-landscaping of Au nanoparticles(NPs) on reduced graphene oxide (rGO) film en route to micro-patterned Au(NPs)-rGO hybrid functional materials. This method employs a focused laser beam to first locally convert GO to rGO before immersing the micro-patterned GO-rGO film into HAuCl{sub 4} solution. The rGO micro-pattern, shaped by the focused laser beam, serves as nucleation sites for the reduction of Au ions. The reduction mechanism that governs the decoration of Au NPs on rGO films is akin to electroless deposition process. In this instance, surface charges that are formed during laser reduction of GO to rGO provide active nucleation sites for Au{sup 3+} ions to form Au NPs when HAuCl{sub 4} solution is introduced. The number density, the size, and size distribution of the Au NPs can thus be directly tuned and preferentially anchored onto the rGO micro-pattern by varying the incident laser power, the scanning speed of the laser, or the concentration of HAuCl{sub 4}. The resulting hybrid materials can be used as a substrate for Surface Enhanced Raman Spectroscopy (SERS). Using Rhodamine 6G as the test subject, we found an improvement of SERS enhancement over bare rGO of up to four times, depending on the size of the Au NPs.

  11. Scanning electrochemical microscopy studies of micropatterned copper sulfide (CuxS) thin films fabricated by a wet chemistry method

    Science.gov (United States)

    Chen, Miao; Zhao, Jing; Zhao, Xiaocui

    2011-01-01

    Patterned copper sulfide (CuxS) microstructures on Si (1 1 1) wafers were successfully fabricated by a relatively simple solution growth method using copper sulfate, ethylenediaminetetraacetate and sodium thiosulfate aqueous solutions as precursors. The CuxS particles were selectively deposited on a patterned self-assembled monolayer of 3-aminopropyltriethoxysilane regions created by photolithography. To obtain high quality CuxS films, preparative conditions such as concentration, proportion, pH and temperature of the precursor solutions were optimized. Various techniques such as optical microscopy, atomic force microscopy (AFM), X-ray diffraction, optical absorption and scanning electrochemical microscopy (SECM) were employed to examine the topography and properties of the micro-patterned CuxS films. Optical microscopy and AFM results indicated that the CuxS micro-pattern possessed high selectivity and clear edge resolution. From combined X-ray diffraction analysis and optical band gap calculations we conclude that Cu9S5 (digenite) was the main phase within the resultant CuxS film. Both SECM image and cyclic voltammograms confirmed that the CuxS film had good electrical conductivity. Moreover, from SECM approach curve analysis, the apparent electron-transfer rate constant (k) in the micro-pattern of CuxS dominated surface was estimated as 0.04 cm/s. The SECM current map showed high edge acuity of the micro-patterned CuxS. PMID:21785491

  12. Scanning electrochemical microscopy studies of micropatterned copper sulfide (Cu(x)S) thin films fabricated by a wet chemistry method.

    Science.gov (United States)

    Chen, Miao; Zhao, Jing; Zhao, Xiaocui

    2011-05-30

    Patterned copper sulfide (Cu(x)S) microstructures on Si (1 1 1) wafers were successfully fabricated by a relatively simple solution growth method using copper sulfate, ethylenediaminetetraacetate and sodium thiosulfate aqueous solutions as precursors. The Cu(x)S particles were selectively deposited on a patterned self-assembled monolayer of 3-aminopropyltriethoxysilane regions created by photolithography. To obtain high quality Cu(x)S films, preparative conditions such as concentration, proportion, pH and temperature of the precursor solutions were optimized. Various techniques such as optical microscopy, atomic force microscopy (AFM), X-ray diffraction, optical absorption and scanning electrochemical microscopy (SECM) were employed to examine the topography and properties of the micro-patterned Cu(x)S films. Optical microscopy and AFM results indicated that the Cu(x)S micro-pattern possessed high selectivity and clear edge resolution. From combined X-ray diffraction analysis and optical band gap calculations we conclude that Cu(9)S(5) (digenite) was the main phase within the resultant Cu(x)S film. Both SECM image and cyclic voltammograms confirmed that the Cu(x)S film had good electrical conductivity. Moreover, from SECM approach curve analysis, the apparent electron-transfer rate constant (k) in the micro-pattern of Cu(x)S dominated surface was estimated as 0.04 cm/s. The SECM current map showed high edge acuity of the micro-patterned Cu(x)S.

  13. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface

    Science.gov (United States)

    Li, Jingan; Li, Guicai; Zhang, Kun; Liao, Yuzhen; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2013-05-01

    Micro-patterning as an effective bio-modification technique is increasingly used in the development of biomaterials with superior mechanical and biological properties. However, as of now, little is known about the simultaneous regulation of endothelial cells (EC) and smooth muscle cells (SMC) by cardiovascular implants. In this study, a co-culture system of EC and SMC was built on titanium surface by the high molecular weight hyaluronic acid (HMW-HA) micro-pattern. Firstly, the micro-pattern sample with a geometry of 25 μm wide HMW-HA ridges, and 25 μm alkali-activated Ti grooves was prepared by microtransfer molding (μTM) for regulating SMC morphology. Secondly, hyaluronidase was used to decompose high molecular weight hyaluronic acid into low molecular weight hyaluronic acid which could promote EC adhesion. Finally, the morphology of the adherent EC was elongated by the SMC micro-pattern. The surface morphology of the patterned Ti was imaged by SEM. The existence of high molecular weight hyaluronic acid on the modified Ti surface was demonstrated by FTIR. The SMC micro-pattern and EC/SMC co-culture system were characterized by immunofluorescence microscopy. The nitric oxide release test and cell retention calculation were used to evaluate EC function on inhibiting hyperplasia and cell shedding, respectively. The results indicate that EC in EC/SMC co-culture system displayed a higher NO release and cell retention compared with EC cultured alone. It can be suggested that the EC/SMC co-culture system possessed superiority to EC cultured alone in inhibiting hyperplasia and cell shedding at least in a short time of 24 h.

  14. Delivering high-resolution landmarks using inkjet micropatterning for spatial monitoring of leaf expansion

    Directory of Open Access Journals (Sweden)

    Cronk Quentin CB

    2011-01-01

    Full Text Available Abstract Background Inkjet micropatterning is a versatile deposition technique with broad applications in numerous fields. However, its application in plant science is largely unexplored. Leaf expansion is one of the most important parameters in the field of plant science and many methods have been developed to examine differential expansion rates of different parts of the leaf lamina. Among them, methods based on the tracking of natural landmarks through digital imaging require a complicated setup in which the leaf must remain fixed and under tension. Furthermore, the resolution is limited to that of the natural landmarks, which are often difficult to find, particularly in young leaves. To study the fine scale expansion dynamics of the leaf lamina using artificial landmarks it is necessary to place small, noninvasive marks on a leaf surface and then recover the location of those marks after a period of time. Results To monitor leaf expansion in two dimensions, at very fine scales, we used a custom designed inkjet micropatterning system to print a grid composed of c. 0.19 mm2 cells on small developing leaves of ivy (Hedera helix using 40 μm dots at a spacing of c. 91 μm. The leaves in different growing stages were imaged under magnification to extract the coordinates of the marks which were then used in subsequent computer-assisted leaf expansion analyses. As an example we obtained quantified global and local expansion information and created expansion maps over the entire leaf surface. The results reveal a striking pattern of fine-scale expansion differences over short periods of time. In these experiments, the base of the leaf is a "cold spot" for expansion, while the leaf sinuses are "hot spots" for expansion. We have also measured a strong shading effect on leaf expansion. We discuss the features required to build an inkjet printing apparatus optimized for use in plant science, which will further maximize the range of tissues that can be

  15. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film

    Energy Technology Data Exchange (ETDEWEB)

    Aminuzzaman, Mohammod; Watanabe, Akira, E-mail: watanabe@tagen.tohoku.ac.jp; Miyashita, Tokuji [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (IMRAM) (Japan)

    2010-03-15

    This article describes fabrication of Ag micropatterns on a flexible polyimide (PI) film by laser direct writing using an Ag nanoparticle-dispersed film as a precursor. Ag micropatterns are characterized by optical microscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), surface profilometry, and resistivity measurements. The line width of Ag micropatterns can be effectively controlled by altering the experimental parameters of laser direct writing especially laser intensity, objective lens, and laser beam scanning speed etc. Using an objective lens of 100x and laser intensity of 170.50 kW/cm{sup 2}, Ag micropatterns with a line width of about 6 {mu}m have been achieved. The Ag micropatterns show strong adhesion to polyimide surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns is determined to be 4.1 x 10{sup -6} {Omega} cm using two-point probe method. This value is comparable with the resistivity of bulk Ag (1.6 x 10{sup -6} {Omega} cm).

  16. Preparation of micro-patterned surfaces of Si-N-O films and their influence on adhesion behavior of endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Microgrooves were prepared on Si(100) surface by photolithography and wet etching.Subsequently,Si-N-O films were deposited on the microgrooves by unbalanced magnetron sputtering(UBMS) and micro-patterned surfaces of Si-N-O films were obtained.The size of the micropatterns was measured by surface profilometer.The chemical composition of Si-N-O films were characterized by X-ray photoelectron spectrometry(XPS) and the wettability of the micropatterned surfaces was evaluated by contact angle measurement.The behavior of endothelial cells adhered on the micro-patterned surfaces,including cells adhesion,proliferation and orientation,was evaluated by cell culture test and Alamar blue assay.The results showed that the amount and activity of endothelial cells on micro-patterned samples were higher than those on flat samples.After one day’s incubation,the cells were well guided along the microgrooves.Three days later,most of the cells grew across the grooves and contacted each other.Their activity was also much higher than that on flat samples.It was suggested that the adhesion and proliferation of endothelial cells could be effectively enhanced by micropattern method.

  17. Numerical Studies on Time Resolution of Micro-Pattern Gaseous Detectors

    CERN Document Server

    Bhattacharya, Purba; Mukhopadhyay, Supratik; Bhattacharya, Sudeb

    2016-01-01

    The Micro-Pattern Gaseous Detectors offer excellent spatial and temporal resolution in harsh radiation environments of high-luminosity colliders. In this work, an attempt has been made to establish an algorithm for estimating the time resolution of different MPGDs. It has been estimated numerically on the basis of two aspects, statistics and distribution of primary electrons and their diffusion in gas medium, while ignoring their multiplication. The effect of detector design parameters, field configuration and the composition of gas mixture on the resolution have also been investigated. Finally, a modification in the numerical approach considering the threshold limit of detecting the signal has been done and tested for the RPC detector for its future implementation in case of MPGDs.

  18. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  19. Versatile Micropatterning of Plasmonic Nanostructures by Visible Light Induced Electroless Silver Plating on Gold Nanoseeds.

    Science.gov (United States)

    Yoshikawa, Hiroyuki; Hironou, Asami; Shen, ZhengJun; Tamiya, Eiichi

    2016-09-14

    A versatile fabrication technique for plasmonic silver (Ag) nanostructures that uses visible light exposure for micropatterning and plasmon resonance tuning is presented. The surface of a glass substrate modified with gold (Au) nanoseeds by a thermal dewetting process was used as a Ag plating platform. When a solution containing silver nitrate and sodium citrate was dropped on the Au nanoseeds under visible light exposure, the plasmon-mediated reduction of Ag ions was induced on the Au nanoseeds to form Ag nanostructures. The plasmon resonance spectra of Ag nanostructures were examined by an absorption spectral measurement and a finite-difference time-domain (FDTD) simulation. Some examples of Ag nanostructure patterning were demonstrated by means of light exposure through a photomask, direct writing with a focused laser beam, and the interference between two laser beams. Surface enhanced Raman spectroscopy (SERS) of 4-aminothiophenol (4-ATP) was conducted with fabricated Ag nanostructures.

  20. Controlled skeletal progenitor cell migration on nanostructured porous silicon/silicon micropatterns

    Science.gov (United States)

    Torres-Costa, V.; Sánchez-Vaquero, V.; Muñoz-Noval, Á.; González-Méndez, L.; Punzón-Quijorna, E.; Gallach-Pérez, D.; Manso-Silván, M.; Martínez-Muñoz, G.; Climent-Font, A.; García-Ruiz, J. P.; Martín-Palma, R. J.

    2011-10-01

    In this work nanostructured porous silicon (nanoPS) was used for the fabrication of surface micropatterns aiming at controlling cell adhesion and migration. In particular, surface patterns of nanoPS and Si were engineered by high-energy ion-beam irradiation and subsequent anodization. It was found that human skeletal progenitor cells are sensitive to oneand two-dimensional patterns and that focal adhesion is inhibited on nanoPS areas. In spite of this anti-fouling characteristics, studies on patterns with reduced Si areas show that cells conform to nanoPS pathways favoring migration through cell protrusion, body translocation and tail retraction from two parallel Si traction rails. Moreover, migration can be blocked and cells tend to arrange when grid patterns with the appropriate dimensions are fabricated. The experimental results confirm that progenitor cells are able to exploit nanoPS anti-fouling designs by adapting to it for migration purposes.

  1. 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, Christian, E-mail: christian.elsner@iom-leipzig.d [Leibniz-Institut fuer Oberflaechenmodifizierung e. V. (IOM), Permoser Strasse 15, D-04318 Leipzig (Germany); Naumov, Sergej; Zajadacz, Joachim [Leibniz-Institut fuer Oberflaechenmodifizierung e. V. (IOM), Permoser Strasse 15, D-04318 Leipzig (Germany); Buchmeiser, Michael R., E-mail: michael.buchmeiser@iom-leipzig.d [Leibniz-Institut fuer Oberflaechenmodifizierung e. V. (IOM), Permoser Strasse 15, D-04318 Leipzig (Germany); Institut fuer Technische Chemie, Universitaet Leipzig, Linnestr. 3, D-04318 Leipzig (Germany)

    2009-10-30

    Emission from Xe{sub 2}* excimers exhibiting photon energies between 7 and 10 eV can be used to induce strong surface modification effects on polymeric materials in the top 100 nm layer. In order to identify suitable monomers for this VUV-based process, the photodegradation mechanism of different organosilanes of the general structure R-CH{sub 2}-Si(OCH{sub 3}){sub 3} was elucidated by quantum chemical calculations. Herein, the photodegradation of 3-aminopropyltrimethoxysilane films by the use of a 172 nm excimer lamp under different irradiation conditions is described and completed by micropatterning experiments. The presence of 1000-5000 ppm oxygen was found to promote the transformation process to an inorganic-like surface. The films obtained were analyzed by X-ray photoelectron spectroscopy, contact angle measurements and fluorescence microscopy after covalent attachment of a fluorescent dye to the remaining amino groups. Complementary, silver staining was used to visualize photopatterning.

  2. Mussel- and Diatom-Inspired Micropattern Generation of Silica on a Solid Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungkyu K. [Kyungpook National Univ., Daegu (Korea, Republic of); Kang, Sung Min [Pukyong National Univ., Busan (Korea, Republic of)

    2013-02-15

    Biosilicification in diatoms and sponges potentially promises physiological, mild reaction conditions for controlling silica structures at the nanometer scale. Since Sumper et al. had isolated catalytic peptides (i. e., silaffins) from diatoms, a number of polymers bearing tertiary amine or ammonium groups have been used as a counterpart of silaffins to biomimetically synthesize silica structures. We demonstrated a micropattern generation of silica on the solid substrate by a mussel- and diatom-inspired approach combined with a soft lithography. This method shows several advantages to apply for a wide range of materials without harsh reaction conditions. Moreover, it could allow us to give proper functionalities on silica layers via well-defined organosilane chemistry.

  3. Organization of mesenchymal stem cells is controlled by micropatterned silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zahor, D. [Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Radko, A. [Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Vago, R. [Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Gheber, L.A. [Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: glevi@bgu.ac.il

    2007-01-15

    Mesenchymal stem cells (MSCs) can differentiate into various cellular lineages, including osteoblasts (that deposit hydroxyapatite, the main mineral constituent of bone), and also exhibit a high morphological plasticity. Here we grew for the first time MSCs on micropatterned silicon chips, in order to induce topography-guided alignment. Light microscopy, scanning electron microscopy and atomic force microscopy were used to characterize the cell response on various length scales. A notable alignment and movement of MSCs along the microgrooves on the chips was revealed. The cells were shown to inhabit the grooves rather than ridges and exhibited an elongated shape, with unusually long processes. On these cells, we revealed rhizome structures arranged along the extensions, which may serve as adhesion centers and participate in elongation and locomotion.

  4. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, Maxence

    2012-07-02

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  5. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  6. On-chip metal/polypyrrole quasi-reference electrodes for robust ISFET operation.

    Science.gov (United States)

    Duarte-Guevara, Carlos; Swaminathan, Vikhram V; Burgess, Mark; Reddy, Bobby; Salm, Eric; Liu, Yi-Shao; Rodriguez-Lopez, Joaquin; Bashir, Rashid

    2015-05-21

    To operate an ion-sensitive field-effect transistor (ISFETs) it is necessary to set the electrolyte potential using a reference electrode. Conventional reference electrodes are bulky, fragile, and too big for applications where the electrolyte volume is small. Several researchers have proposed tackling this issue using a solid-state planar micro-reference electrode or a reference field-effect transistor. However, these approaches are limited by poor robustness, high cost, or complex integration with other microfabrication processes. Here we report a simple method to create robust on-chip quasi-reference electrodes by electrodepositing polypyrrole on micro-patterned metal leads. The electrodes were fabricated through the polymerization of pyrrole on patterned metals with a cyclic voltammetry process. Open circuit potential measurements were performed to characterize the polypyrrole electrode performance, demonstrating good stability (±1 mV), low drift (∼1 mV h(-1)), and reduced pH response (5 mV per pH). In addition, the polypyrrole deposition was repeated in microelectrodes made of different metals to test compatibility with standard complementary metal-oxide-semiconductor (CMOS) processes. Our results suggest that nickel, a metal commonly used in semiconductor foundries for silicide formation, is a good candidate to form the polypyrrole quasi-reference electrodes. Finally, the polypyrrole microelectrodes were used to operate foundry fabricated ISFETs. These experiments demonstrated that transistors biased with polypyrrole electrodes have pH sensitivity and resolution comparable to ones that are biased with standard reference electrodes. Therefore, the simple fabrication, high compatibility, and robust electrical performance make polypyrrole an ideal choice for the fabrication of outstanding microreference electrodes that enable robust and sensitive operation of multiple ISFET sensors on a chip.

  7. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing

    Science.gov (United States)

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-01

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04802h

  8. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  9. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro. PMID:28134270

  10. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    Science.gov (United States)

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine.

  11. Positive and negative TiO2 micropatterns on organic polymer substrates.

    Science.gov (United States)

    Yang, Peng; Yang, Min; Zou, Shengli; Xie, Jingyi; Yang, Wantai

    2007-02-14

    Ordered titanium dioxide (TiO2) films have received increasing attention because of their great potential in photocatalysis, energy conversion, and electrooptical techniques. Such films are often fabricated as coatings on various substrates such as silicon or a variety of polymers. Liquid-phase deposition (LPD) of TiO2 films is especially promising for organic substrates due to its very mild reaction conditions. In the present paper, LPD is conducted on a wettability-patterned polypropylene surface to fabricate positive and negative TiO2 micropatterns. A thin layer of ammonium persulfate in an aqueous solution was sandwiched between two biaxially oriented polypropylene (BOPP) films, and a photomask was employed to control the irradiation region. Within a short time interval, a high hydrophilicity could be obtained on the irradiation region, and an effective wettability contrast between the irradiated and unirradiated regions could be created to further induce the formation of two types of TiO2 micropatterns. Up until now, most approaches for micropatterning have been based on self-assembled monolayers on surfaces of gold (or other noble metals), silicon, and various polyesters. With the present method, however, there is no longer any limitation in the type of substrate used. Our work demonstrates that an anatase TiO2 film could be selectively deposited on a hydrophilic region, giving rise to a positive pattern with significant bonding strength and good line edge acuity, providing an effective solution toward the microfabrication on various inert polymer substrates. More surprisingly, we find, for the first time, that TiO2 could also be selectively retained on a hydrophobic region to form a negative pattern by simply adjusting the reaction conditions. Further analysis of the mechanism shows that, independent of the deposition conditions, the TiO2 deposition pattern changes gradually, from being initially negative to becoming positive as the deposition time increases

  12. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    Science.gov (United States)

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  13. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels.

    Science.gov (United States)

    Kim, Miju; Song, Kwang Hoon; Doh, Junsang

    2013-12-01

    Protein micropatterned surfaces integrated with microfluidics are useful in numerous bioanalytical and biological applications. In this study, we demonstrated the fabrication of complex protein micropatterned surfaces within poly(dimethylsiloxane) (PDMS) microfluidic channels by attaching the PDMS channels to bio-friendly photoresist films and subsequently performing microscope projection photolithography (MPP). A muscle-inspired poly(dopamine) (PDA) coating was employed to mediate the bonding between the PDMS and the bio-friendly photoresist poly(2,2-dimethoxy nitrobenzyl methacrylate-r-methyl methacrylate-r-poly(ethylene glycol) methacrylate) (PDMP). By adjusting the dip-coating time for the PDA coating, we could successfully introduce sufficient amounts of functional groups on the PDMP surfaces to mediate strong bonding between the PDMS channels and the PDA-coated PDMP thin films with minimal alteration of the surface properties of the PDMP thin films that are critical for protein micropatterning. Using this novel bonding strategy, we successfully fabricated multiple protein micropatterns and gradient micropatterns of proteins within microfluidic channels. The technique developed in this study will be useful for the fabrication of complex biochips for multiplex bioassays and fundamental cell biological studies.

  14. Fabrication of multifaceted, micropatterned surfaces and image-guided patterning using laser scanning lithography.

    Science.gov (United States)

    Slater, John H; West, Jennifer L

    2014-01-01

    This protocol describes the implementation of laser scanning lithography (LSL) for the fabrication of multifaceted, patterned surfaces and for image-guided patterning. This photothermal-based patterning technique allows for selective removal of desired regions of an alkanethiol self-assembled monolayer on a metal film through raster scanning a focused 532 nm laser using a commercially available laser scanning confocal microscope. Unlike traditional photolithography methods, this technique does not require the use of a physical master and instead utilizes digital "virtual masks" that can be modified "on the fly" allowing for quick pattern modifications. The process to create multifaceted, micropatterned surfaces, surfaces that display pattern arrays of multiple biomolecules with each molecule confined to its own array, is described in detail. The generation of pattern configurations from user-chosen images, image-guided LSL is also described. This protocol outlines LSL in four basic sections. The first section details substrate preparation and includes cleaning of glass coverslips, metal deposition, and alkanethiol functionalization. The second section describes two ways to define pattern configurations, the first through manual input of pattern coordinates and dimensions using Zeiss AIM software and the second via image-guided pattern generation using a custom-written MATLAB script. The third section describes the details of the patterning procedure and postpatterning functionalization with an alkanethiol, protein, and both, and the fourth section covers cell seeding and culture. We end with a general discussion concerning the pitfalls of LSL and present potential improvements that can be made to the technique.

  15. Micropattern gas detectors The CMS MSGC project and gaseous pixel detector applications

    CERN Document Server

    Bellazzini, R; Gariano, G; Latronico, L; Lumb, N; Moggi, A; Reale, S; Spandre, G; Massai, M M; Spezziga, M A; Toropin, A N; Costa, E; Soffitta, P; Pacella, D

    2001-01-01

    We report recent results from the development and testing of two types of micropattern gas detectors-micro-strip gas chambers and GEM- based devices with two types of pixel read-out. Thirty-two micro- strip gas chambers were tested in a high intensity hadron beam as a milestone for CERN's Compact Muon Solenoid (CMS) experiment. The detectors were operated with voltage settings corresponding to 98% hit detection efficiency at CMS for a total high intensity exposure period of 493 h. All of the requirements expected by the milestone- gain stability, number of lost strips, spark rate, etc.-were met, with wide margins. In a separate investigation, we have coupled PCB pixel read-out planes to GEM foils. In one case, 2 mm*2 mm pixels were fanned out to individual discriminators and scalers to provide very fast (2 MHz/pixel) read-out; this system has been used as an imaging device to provide diagnostic information in fusion experiments. The second type of device used smaller pixels (200 mu m squares) and a Flash-ADC ...

  16. From Nanowires to Nanopores: A Versatile Method for Electroless Deposition of Nanostructures on Micropatterned Organic Substrates.

    Science.gov (United States)

    Ellsworth, Ashley A; Walker, Amy V

    2016-03-22

    We demonstrate a fast, flexible, parallel, and highly controllable method by which to synthesize a variety of nanoscale and mesoscale structures. This method addresses one of the most significant challenges in nanoscience: the in situ parallel placement and synthesis of nano-objects over the mesoscale. The method is based on electroless nanowire deposition on micropatterned substrates (ENDOM). In ENDOM nanostructures are produced at the boundary between two unlike materials if two conditions are met: (a) deposition is kinetically preferred on one of the materials while (b) transport of reactants is favored on the other. In this study, copper structures were deposited on patterned -OH/-CH3-terminated alkanethiolate self-assembled monolayers (SAMs) by exploiting the different reaction rates of electroless deposition on these using the reducing agent dimethylamine borane (DMAB). We demonstrate production of nanowires (width < 100 nm), mesowires (100 nm < width < ∼3000 nm), nanorings, nanopores, and nanochannels. We show that a variety of experimental conditions can be employed, making this method compatible with many substrates. We have also studied the nucleation and growth kinetics of the ENDOM process. The width of the deposit grows exponentially with deposition time and can be modeled using classical nucleation theory. Although the deposit width increases, the height and grain size of the copper deposit is constant (to within experimental uncertainty) with deposition time. These observations indicate that the minimum deposit width is controlled by the nanoparticle dimensions and so can be controlled using the reaction conditions.

  17. Micropatterning proteins and synthetic peptides on solid supports: a novel application for microelectronics fabrication technology.

    Science.gov (United States)

    Britland, S; Perez-Arnaud, E; Clark, P; McGinn, B; Connolly, P; Moores, G

    1992-01-01

    In this paper, we describe a method for immobilizing proteins and synthesizing peptides in micrometer-dimension patterns on solid supports. Microelectronics fabrication technology was adapted and used to lithographically direct the location of immobilization of proteins on appropriately derivatized surfaces. As examples, we micropatterned the protein bovine serum albumin (BSA) and the enzyme horseradish peroxidase (HRP). The catalytic activity of HRP was shown to be retained after being cross-linked to the support. When coupled with solid-phase peptide synthesis, the technique allowed synthetic peptides to be constructed in patterns again having micrometer dimensions. Synthetic polypeptides, polylysine, were constructed in patterns with dimensions that approached the practical limit of resolution for optical lithography at 1-2 microns. The patterns of immobilized molecules and synthetic peptides were visualized using histochemical methods together with light and fluorescence microscopy. The protein and peptide patterning technique described here is an advance in the field of bioelectronics. In particular, it should now be possible to devise novel methods for interfacing with biological systems and constructing new devices for incorporation into miniaturized biosensors.

  18. A Prototype Scalable Readout System for Micro-pattern Gas Detectors

    CERN Document Server

    Zheng, Qi-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-01-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors. The system mainly consists of three kinds of modules: the ASIC card, the Adapter card and the Front-End Card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The Adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the Adapter, has a FPGA-based reconfigurable logic and I/O interfaces, allowing users to choose various ASIC cards and Adapters for different types of detectors. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in field-programmable gate arrays (FPGA). The readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chips, VA140 and AGET, are applied to verify the concept of this SRS architecture. Based on this VA140 or AGET SR...

  19. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection

    Directory of Open Access Journals (Sweden)

    Mahdis Shayan

    2016-12-01

    Full Text Available Stenting is an alternative to endarterectomy for the treatment of carotid artery stenosis. However, stenting is associated with a higher risk of procedural stroke secondary to distal thromboembolism. Hybrid stents with a micromesh layer have been proposed to address this complication. We developed a micropatterned thin film nitinol (M-TFN covered stent designed to prevent thromboembolism during carotid intervention. This innovation may obviate the need or work synergistically with embolic protection devices. The proposed double layered stent is low-profile, thromboresistant, and covered with a M-TFN that can be fabricated with fenestrations of varying geometries and sizes. The M-TFN was created in multiple geometries, dimensions, and porosities by sputter deposition. The efficiency of various M-TFN to capture embolic particles was evaluated in different atherosclerotic carotid stenotic conditions through in vitro tests. The covered stent prevented emboli dislodgement in the range of 70%–96% during 30 min duration tests. In vitro vascular cell growth study results showed that endothelial cell elongation, alignment and growth behaviour silhouettes significantly enhance, specifically on the diamond-shape M-TFN, with the dimensions of 145 µm × 20 µm and a porosity of 32%. Future studies will require in vivo testing. Our results demonstrate that M-TFN has a promising potential for carotid artery stenting.

  20. Enhancement of silicon using micro-patterned surfaces of thin films

    Directory of Open Access Journals (Sweden)

    E Kaivosoja

    2010-04-01

    Full Text Available Micro-textured biomaterials might enhance cytocompatibility of silicon-based micro-electro-mechanical system (bio-MEMS dummies. Photolithography-physical vapour deposition was used to produce diamond-like carbon (DLC or Ti squares and circles on silicon, and also their inverse replicas; then DLC and Ti were compared for their guiding potential, using a SaOS-2 cell model. Scanning electron microscopy at 48 hours indicated cells were well-spread on large-sized patterns (several cells on one pattern and assumed the geometrical architecture of underlying features. Medium-sized patterns (slightly smaller than solitary indicator cells were inhabited by singular cells, which stretched from one island to another, assuming longitudinal or branching morphologies. On small-sized patterns (much smaller than individual cells cells covered large micro-textured areas, but cellular filopodia bypassed the bare silicon. Immunofluorescence and confocal laser scanning microscopy indicated that the actin cytoskeleton and vinculin-containing adhesion junctions were present on the patterned areas, but not on the bare silicon. Cell density/coverage disclosed a 3.4-3.7-fold preference for the biomaterial patterns over silicon substrate (p < 0.001. Differences in the cellular response between materials were lost at 120 hours when cells were confluent. The working hypothesis was proven; enhancement by micro-patterning depends on the pattern size, shape and material and can be used to improve biocompatibility during the initial integration phase of the device.

  1. Micro-patterning of self-assembled organic monolayers by using tunable ultrafast laser pulses

    Science.gov (United States)

    Maragkaki, Stella; Aumann, Andreas; Schulz, Florian; Schröter, Anja; Schöps, Benjamin; Franzka, Steffen; Hartmann, Nils; Ostendorf, Andreas

    2014-03-01

    We study the application of tunable ultrafast laser pulses in micropatterning self- assembled organic monolayer (SAMs) employing non collinear optical parametric amplification (NOPA). SAMs are ultrathin organic monolayers, which can be used in a variety of ways to assemble functionalized surface structures. In our study, we investigate the characteristics of SAMs as monomolecular resists during etching of gold. NOPA is a versatile method which provides the generation of ultrafast laser pulses, with a tunable wavelength in the visible and near infrared range. Due to the noncollinear geometry, a broadened spectral range can be amplified. The NOPA delivers wavelengths in the range of 480 nm to 950 nm at laser pulse lengths in the sub- 30 femtosecond range using a prism compressor after the nonlinear conversion. The ultrashort laser technology together with the advantages of the NOPA system guarantee high precision and allows us to determine the optimum conditions of sub-wavelength patterning by studying the effects of the fluence and the wavelength. At the same time, single-pulse processing allows us to selectively remove the ultrathin organic coating, while it ensures short processing time. In our study we used thiol-based SAMs as ultrathin layers on gold-coated glass substrates with a film thickness of 1-2 nm and 40 nm respectively.

  2. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  3. Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Durniak, Mark T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Materials Science and Engineering; Chaudhuri, Anabil [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Smith, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Allerman, Andrew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Lee, S. C. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Brueck, S. R. J. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy and Dept. of Materials Science and Engineering

    2016-03-01

    GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\\bar1$> bandgap energy. We prepared 6 and 9 nm Ga x In 1-x N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.

  4. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning.

    Science.gov (United States)

    Ding, Yuzhe; Huang, Eric; Lam, Kit S; Pan, Tingrui

    2013-05-21

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets challenges on biocompatibility, thermal and chemical sensitivity, as well as limited availability of reagents. In this paper, we aim at combining the desired features from non-contact inkjet printing and dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, sub-microliter ink loading with a minimal dead volume, high-throughput printing, biocompatible non-contact processing, sequential patterning with self-alignment, wide adaptability for complex media (e.g., cell suspension or colloidal solutions), interchangeable/disposable cartridge design, and simple assembly and configuration, all highly desirable towards laboratory-based research and development. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analysed. Optimal printing resolution of 80 μm has been repeatedly obtained. Furthermore, two useful functions of the MI-printer, multiplexed printing and combinatorial printing, have been experimentally demonstrated with less than 10 μm misalignment. Moreover, molecular and biological patterning, utilizing the multiplexed and combinatorial printing, has been implemented to illustrate the utility of this versatile printing technique for emerging biomedical applications.

  5. Following or Against Topographic Wettability Gradient: Movements of Droplets on a Micropatterned Surface.

    Science.gov (United States)

    Zhao, Jiayi; Chen, Shuo

    2017-05-30

    Two kinds of possible movements of droplets (i.e., following or against the topographic wettability gradient) on a micropatterned surface are investigated by using a particle-based method: many-body dissipative particle dynamics (MDPD). The displacement along the wettability gradient and contact angles on both sides of the droplet are analyzed. The results show that the migration trajectory of the droplet is determined by the coexistence of Cassie and Wenzel states and the unbalanced Young's force, which are related to the impact velocity, pillar height, and surface tension. The droplet remains in the Cassie state and advances spontaneously following the wettability gradient under a small impact velocity, high pillar height, and large surface tension. On the contrary, when the coexistence of Cassie and Wenzel states appears, the contact line on the side of the Cassie state retracts and that on the side of the Wenzel state pins, inducing droplet movement against the wettability gradient. Additionally, the critical impinging velocity, which determines the migration direction of the droplet, also depends on the pillar height and surface tension. The outcomes are helpful in designing surfaces with topographical wettability gradients for droplet transportation.

  6. Bioactivation and toxicity of acetaminophen in a rat hepatocyte micropatterned coculture system.

    Science.gov (United States)

    Ukairo, Okechukwu; McVay, Michael; Krzyzewski, Stacy; Aoyama, Simon; Rose, Kelly; Andersen, Melvin E; Khetani, Salman R; Lecluyse, Edward L

    2013-10-01

    We have recently shown that primary rat hepatocytes organized in micropatterned cocultures with murine embryonic fibroblasts (HepatoPac™) maintain high levels of liver functions for at least 4 weeks. In this study, rat HepatoPac was assessed for its utility to study chemical bioactivation and associated hepatocellular toxicity. Treatment of HepatoPac cultures with acetaminophen (APAP) over a range of concentrations (0-15 mM) was initiated at 1, 2, 3, or 4 weeks followed by the assessment of morphological and functional endpoints. Consistent and reproducible concentration-dependent effects on hepatocyte structure, viability, and basic functions were observed over the 4-week period, and were exacerbated by depleting glutathione using buthionine sulfoximine or inducing CYP3A using dexamethasone, presumably due to increased reactive metabolite-induced stress and adduct formation. In conclusion, the results from this study demonstrate that rat HepatoPac represents a structurally and functionally stable hepatic model system to assess the long-term effects of bioactivated compounds.

  7. Spectrophotometric bench dedicated to the characterization of micro-patterned optical coatings

    Science.gov (United States)

    Sorce, Stéphane; Abel-Tiberini, Laetitia; Lequime, Michel

    2011-10-01

    Characterization of the spectral transmission of micro-patterned optical coatings requires accurate and highly localized measurement means. However, the capabilities of commercial equipments are generally limited, and either they do not provide sufficient spatial and spectral resolution, or they modify the spectral transmittance properties of the sample by using a large half angle illuminating light cone. In this work, we propose a new approach based on the recording, using a high performance photodiode array camera, of monochromatic magnified images of the sample illuminated by a filtered and fiber-coupled super-continuum laser source. In such case, the spatial resolution is directly given by the size of the individual CCD pixels and by the magnification of the imaging objective, while the spectral resolution is defined by the slit width of the filtering monochromator. This paper will give a detailed description of the main features of this spectrophotometric bench, and will demonstrate its ability to record the spectral transmittance of patterned samples with micrometer spatial resolution and sub-nanometer spectral resolution in the visible and near infrared ranges.

  8. A novel method to study contact inhibition of locomotion using micropatterned substrates

    Science.gov (United States)

    Scarpa, Elena; Roycroft, Alice; Theveneau, Eric; Terriac, Emmanuel; Piel, Matthieu; Mayor, Roberto

    2013-01-01

    Summary The concept of contact inhibition of locomotion (CIL) describes the ability of a cell to change the direction of its movement after contact with another cell. It has been shown to be responsible for physiological and developmental processes such as wound healing, macrophage dispersion and neural crest cell migration; whereas its loss facilitates cancer cell invasion and metastatic dissemination. Different assays have been developed to analyze CIL in tissue culture models. However, these methods have several caveats. Collisions happen at low frequency between freely migrating cells and the orientation of the cells at the time of contact is not predictable. Moreover, the computational analysis required by these assays is often complicated and it retains a certain degree of discretion. Here, we show that confinement of neural crest cell migration on a single dimension by using a micropatterned substrate allows standardized and predictable cell–cell collision. CIL can thus easily be quantified by direct measurement of simple cellular parameters such as the distance between nuclei after collision. We tested some of the signaling pathways previously identified as involved in CIL, such as small GTPases and non-canonical Wnt signaling, using this new method for CIL analysis. The restricted directionality of migration of cells in lines is a powerful strategy to obtain higher predictability and higher efficiency of the CIL response upon cell–cell collisions. PMID:24143276

  9. Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.

    Science.gov (United States)

    Niegelhell, Katrin; Süßenbacher, Michael; Jammernegg, Katrin; Ganner, Thomas; Schwendenwein, Daniel; Schwab, Helmut; Stelzer, Franz; Plank, Harald; Spirk, Stefan

    2016-11-14

    The creation of nano- and micropatterned polymer films is a crucial step for innumerous applications in science and technology. However, there are several problems associated with environmental aspects concerning the polymer synthesis itself, cross-linkers to induce the patterns as well as toxic solvents used for the preparation and even more important development of the films (e.g., chlorobenzene). In this paper, we present a facile method to produce micro- and nanopatterned biopolymer thin films using enzymes as so-called biodevelopers. Instead of synthetic polymers, naturally derived ones are employed, namely, poly-3-hydroxybutyrate and a cellulose derivative, which are dissolved in a common solvent in different ratios and subjected to spin coating. Consequently, the two biopolymers undergo microphase separation and different domain sizes are formed depending on the ratio of the biopolymers. The development step proceeds via addition of the appropriate enzyme (either PHB-depolymerase or cellulase), whereas one of the two biopolymers is selectively degraded, while the other one remains on the surface. In order to highlight the enzymatic development of the films, video AFM studies have been performed in real time to image the development process in situ as well as surface plasmon resonance spectroscopy to determine the kinetics. These studies may pave the way for the use of enzymes in patterning processes, particularly for materials intended to be used in a physiological environment.

  10. A prototype scalable readout system for micro-pattern gas detectors

    Science.gov (United States)

    Zheng, Qi-Bin; Liu, Shu-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-08-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors in various applications. The system mainly consists of three kinds of modules: the ASIC card, the adapter card and the front-end card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the adapter, has field-programmable gate array (FPGA)-based reconfigurable logic and I/O interfaces, allowing users to choose different ASIC cards and adapters for different experiments, which expands the system to various applications. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in FPGA. By assembling a flexible number of FECs in parallel through Gigabit Ethernet, the readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chip, VA140 and AGET, are applied to verify the scalability of this SRS architecture. Based on this VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector channels, or 4 ASIC (AGET) cards handling 256 detector channels, respectively. More FECs can be assembled in crates to handle thousands of detector channels. Supported by National Natural Science Foundation of China (11222552)

  11. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection

    Science.gov (United States)

    Shayan, Mahdis; Jankowitz, Brian T.; Shridhar, Puneeth; Chun, Youngjae

    2016-01-01

    Stenting is an alternative to endarterectomy for the treatment of carotid artery stenosis. However, stenting is associated with a higher risk of procedural stroke secondary to distal thromboembolism. Hybrid stents with a micromesh layer have been proposed to address this complication. We developed a micropatterned thin film nitinol (M-TFN) covered stent designed to prevent thromboembolism during carotid intervention. This innovation may obviate the need or work synergistically with embolic protection devices. The proposed double layered stent is low-profile, thromboresistant, and covered with a M-TFN that can be fabricated with fenestrations of varying geometries and sizes. The M-TFN was created in multiple geometries, dimensions, and porosities by sputter deposition. The efficiency of various M-TFN to capture embolic particles was evaluated in different atherosclerotic carotid stenotic conditions through in vitro tests. The covered stent prevented emboli dislodgement in the range of 70%–96% during 30 min duration tests. In vitro vascular cell growth study results showed that endothelial cell elongation, alignment and growth behaviour silhouettes significantly enhance, specifically on the diamond-shape M-TFN, with the dimensions of 145 µm × 20 µm and a porosity of 32%. Future studies will require in vivo testing. Our results demonstrate that M-TFN has a promising potential for carotid artery stenting. PMID:27983574

  12. A micro-pattern gaseous detector for beam monitoring in ion-therapy

    Energy Technology Data Exchange (ETDEWEB)

    Terakawa, A.; Ishii, K.; Matsuyama, S.; Kikuchi, Y.; Togashi, T.; Arikawa, J.; Yamashita, W.; Takahashi, Y.; Fujishiro, F. [Department of Quantum Science and Energy Engineering, Tohoku University (Japan); Yamazaki, H.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University (Japan)

    2015-12-15

    A micro-pattern gaseous detector based on gas electron multiplier technology (GEM detector) was developed as a new transmission beam monitor for charged-particle therapy to obtain real-time information about the parameters of a therapeutic beam. Feasibility tests for the GEM detector were performed using an 80-MeV proton beam to evaluate the lateral intensity distributions of a pencil beam and the dose delivered to a target. The beam intensity distributions measured with the GEM detector were in good agreement with those measured with an imaging plate while the charge output from the GEM detector was in proportion to that of a reference dose monitor of an ionization chamber design. These experimental results showed that the GEM detector can be used not only as a beam monitor for the position and two-dimensional intensity distribution but also as a dose monitor. Thus, it is possible to simultaneously measure these beam parameters for beam control in charged-particle therapy using a single GEM-based transmission monitor.

  13. Oleophobicity of Biomimetic Micropatterned Surface and Its Effect on the Adhesion of Frozen Oil.

    Science.gov (United States)

    Pan, Zihe; Zhang, Wei; Kowalski, Andrew; Zhao, Boxin

    2015-09-15

    The relationship between the oleophobicity of micropatterned surfaces and the reduction of oil adhesion at low temperatures was explored by using siloxane elastomer surfaces as a model system. Polydimethylsiloxane (PDMS) surfaces were fabricated with varying oleophobicity from oleophilic to superoleophobic by combing the blending of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS) into PDMS with the construction of bioinspired micropillars. The oil contact angles of micropillars were >130°, with the largest contact angle measured to be 146°. The micropillared surface showed remarkable self-cleaning properties; the contact angle hysteresis was oleophobicity were frozen into a white-colored solid at -25 °C with the aid of a cooling system. Adhesion forces of the frozen oil droplets were obtained from the knock-off tests, showing that the adhesion forces dropped with the increased oleophobicity. The largest adhesion force was observed on the oleophilic flat surface, while the lowest adhesion force was on the highest oleophobic micropillared surface. The relative effectiveness of chemical and physical modifications on adhesion strength reduction was studied in terms of FDTS and micropillars, respectively. The results showed that a reduction of adhesion strength by 4% was reached by blending FDTS into flat PDMS, while a much more pronounced reduction of frozen oil adhesion strength by 60% was achieved by blending FDTS into PDMS micropillars; these results suggested a possible synergic effect of the FDTS chemistry and micropillar on the reduction of adhesion strength of frozen oil droplets.

  14. A novel method to study contact inhibition of locomotion using micropatterned substrates

    Directory of Open Access Journals (Sweden)

    Elena Scarpa

    2013-07-01

    The concept of contact inhibition of locomotion (CIL describes the ability of a cell to change the direction of its movement after contact with another cell. It has been shown to be responsible for physiological and developmental processes such as wound healing, macrophage dispersion and neural crest cell migration; whereas its loss facilitates cancer cell invasion and metastatic dissemination. Different assays have been developed to analyze CIL in tissue culture models. However, these methods have several caveats. Collisions happen at low frequency between freely migrating cells and the orientation of the cells at the time of contact is not predictable. Moreover, the computational analysis required by these assays is often complicated and it retains a certain degree of discretion. Here, we show that confinement of neural crest cell migration on a single dimension by using a micropatterned substrate allows standardized and predictable cell–cell collision. CIL can thus easily be quantified by direct measurement of simple cellular parameters such as the distance between nuclei after collision. We tested some of the signaling pathways previously identified as involved in CIL, such as small GTPases and non-canonical Wnt signaling, using this new method for CIL analysis. The restricted directionality of migration of cells in lines is a powerful strategy to obtain higher predictability and higher efficiency of the CIL response upon cell–cell collisions.

  15. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  16. Microresonator electrode design

    Science.gov (United States)

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  17. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  18. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  19. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  20. Insulated ECG electrodes

    Science.gov (United States)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  1. Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces.

    Science.gov (United States)

    Huang, Qiaoling; Lin, Longxiang; Yang, Yun; Hu, Ren; Vogler, Erwin A; Lin, Changjian

    2012-11-01

    Air trapped within the interstices of TiO(2) nanotube surfaces bearing superhydrophobic/superhydrophilic microtemplated domains controls formation of protein micropatterns but not cell micropatterns. Protein binding from either bovine-serum albumin (BSA) or fetal-bovine serum (FBS) solutions to superhydrophobic domains is blocked in the presence of trapped air, leading to clear protein binding contrast between superhydrophilic and superhydrophobic domains. Protein binds to superhydrophobic domains when air is displaced by sonication, leading to more protein binding to superhydrophobic domains than to superhydrophilic, with concomitantly blurred protein binding contrast. The overall contrast obtained in formation of cell (hFOB1.19, MG63, and HeLa) micropatterns depends on the cell type and protein composition of the fluid phase. All cell types preferentially attach to superhydrophilic domains from each fluid phase tested (FBS, BSA, and basal media containing no protein). All cell types do not attach to superhydrophobic domains from FBS solutions, with-or-without trapped air, creating a visually-obvious cell attachment pattern. However, cells attached to superhydrophobic domains from basal media suspensions, with-or-without trapped air, creating a blurred cell attachment pattern. Cell attachment from BSA-containing solutions gave mixed results depending on cell type. Thus, trapped air does not necessarily block cell attachment as has been suggested in the literature. Rather, cell attachment is controlled by interfacial tensions between cells, surfaces, and fluid phases in a manner that can be understood in terms of the Dupré work-of-adhesion formulation. Cell attachment patterns developed within the initial attachment phase persist for up to two days of continuous culture but overgrow thereafter, with-or-without trapped air, showing that trapped air does not block cell overgrowth over time of continuous culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Self-amplified piezoelectric nanogenerator with enhanced output performance: The synergistic effect of micropatterned polymer film and interweaved silver nanowires

    Science.gov (United States)

    Liu, Chang; Hua, Bo; You, Sujian; Bu, Chenghao; Yu, Xiaolei; Yu, Zhenhua; Cheng, Nian; Cai, Bo; Liu, Huiqin; Li, Shasha; Zhang, Lingling; Wang, Shengxiang; Liu, Kan; Zhang, Nangang; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2015-04-01

    A piezoelectric nanogenerator with self-amplified output is prepared with a polydimethylsiloxane (PDMS)/silver nanowire (Ag NW)/poly(vinylidene fluoride-trifluoroethylene) sandwich structure. The Ag NWs facilitate the collection of induced charge generated by the piezoelectric film, and the micro-patterned PDMS films multiply the devices sensitivity under external compression. The nanogenerator exhibits good performance, with a peak open circuit voltage of 1.2 V, and a peak short circuit current of 82 nA. These findings highlight the potential of the nanogenerator in self-powered devices and wearable energy harvesters.

  3. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.

    Science.gov (United States)

    Zheng, Yajian; Liu, Hui; Wang, Yi; Zhu, Cong; Wang, Shuming; Cao, Jingxiao; Zhu, Shining

    2011-11-21

    Through the enhanced photothermal effect, which was achieved using a silver film, a low power weakly focused continuous-wave laser (532 nm) was applied to create a vapor bubble. A convective flow was formed around the bubble. Microparticles dispersed in water were carried by the convective flow to the vapor bubble and accumulated on the silver film. By moving the laser spot, we easily manipulated the location of the bubble, allowing us to direct-write micropatterns on the silver film with accumulated particles. The reported simple controllable accumulation method can be applied to bimolecular detection, medical diagnosis, and other related biochip techniques.

  4. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.

    Science.gov (United States)

    Polsen, Erik S; Stevens, Adam G; Hart, A John

    2013-05-01

    Commercialization of materials utilizing patterned carbon nanotube (CNT) forests, such as hierarchical composite structures, dry adhesives, and contact probe arrays, will require catalyst patterning techniques that do not rely on cleanroom photolithography. We demonstrate the large scale patterning of CNT growth catalyst via adaptation of a laser-based electrostatic printing process that uses magnetic ink character recognition (MICR) toner. The MICR toner contains iron oxide nanoparticles that serve as the catalyst for CNT growth, which are printed onto a flexible polymer (polyimide) and then transferred to a rigid substrate (silicon or alumina) under heat and mechanical pressure. Then, the substrate is processed for CNT growth under an atmospheric pressure chemical vapor deposition (CVD) recipe. This process enables digital control of patterned CNT growth via the laser intensity, which controls the CNT density; and via the grayscale level, which controls the pixelation of the image into arrays of micropillars. Moreover, virtually any pattern can be designed using standard software (e.g., MS Word, AutoCAD, etc.) and printed on demand. Using a standard office printer, we realize isolated CNT microstructures as small as 140 μm and isolated catalyst ″pixels″ as small as 70 μm (one grayscale dot) and determine that individual toner microparticles result in features of approximately 5-10 μm . We demonstrate that grayscale CNT patterns can function as dry adhesives and that large-area catalyst patterns can be printed directly onto metal foils or transferred to ceramic plates. Laser printing therefore shows promise to enable high-speed micropatterning of nanoparticle-containing thin films under ambient conditions, possibly for a wide variety of nanostructures by engineering of toners containing nanoparticles of desired composition, size, and shape.

  5. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage.

    Science.gov (United States)

    Tay, Chor Yong; Yu, Haiyang; Pal, Mintu; Leong, Wen Shing; Tan, Nguan Soon; Ng, Kee Woei; Leong, David Tai; Tan, Lay Poh

    2010-04-15

    Stem cell response can be influenced by a multitude of chemical, topological and mechanical physiochemical cues. While extensive studies have been focused on the use of soluble factors to direct stem cell differentiation, there are growing evidences illustrating the potential to modulate stem cell differentiation via precise engineering of cell shape. Fibronectin were printed on poly(lactic-co-glycolic acid) (PLGA) thin film forming spatially defined geometries as a means to control the morphology of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs that were cultured on unpatterned substrata adhered and flattened extensively (approximately 10,000 microm(2)) while cells grown on 20 microm micropatterend wide adhesive strips were highly elongated with much smaller area coverage of approximately 2000 microm(2). Gene expression analysis revealed up-regulation of several hallmark markers associated to neurogenesis and myogenesis for cells that were highly elongated while osteogenic markers were specifically down-regulated or remained at its nominal level. Even though there is clearly upregulated levels of both neuronal and myogenic lineages but at the functionally relevant level of protein expression, the myogenic lineage is dominant within the time scale studied as determined by the exclusive expression of cardiac myosin heavy chain for the micropatterned cells. Enforced cell shape distortion resulting in large scale rearrangement of cytoskeletal network and altered nucleus shape has been proposed as a physical impetus by which mechanical deformation is translated into biochemical response. These results demonstrated for the first time that cellular shape modulation in the absence of any induction factors may be a viable strategy to coax lineage-specific differentiation of stem cells.

  6. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages.

    Directory of Open Access Journals (Sweden)

    Arnaud M. Labrousse

    2011-10-01

    Full Text Available Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move towards phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs as 4 µm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in 2 dimensions. Fc receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 minutes after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin and gelsolin. The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp-1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsinD-mCherry to visualize their movements towards frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured.¬¬¬¬¬¬¬¬ Using PP2 we showed that instant velocity, pauses and frequency of lysosome/phagosome contacts were at least in part dependent on Src tyrosine kinases. This experimental set-up is the first step towards deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (directionality, docking and fusion using RNA interference, pharmacological inhibition or mutant expression.

  7. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters.

    Science.gov (United States)

    Soscia, David A; Sequeira, Sharon J; Schramm, Robert A; Jayarathanam, Kavitha; Cantara, Shraddha I; Larsen, Melinda; Castracane, James

    2013-09-01

    There is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells. These micropatterned scaffolds provide a method for engineering increased surface area and were additionally investigated for their ability to promote cell polarization. Two immortalized salivary gland cell lines (SIMS, ductal and Par-C10, acinar) were cultured on fibrous crater arrays of various radii and compared with those grown on flat PLGA nanofiber substrates, and in 3-D Matrigel. It was found that by increasing crater curvature, the average height of the cell monolayer of SIMS cells and to a lesser extent, Par-C10 cells, increased to a maximum similar to that seen in cells grown in 3-D Matrigel. Increasing curvature resulted in higher expression levels of tight junction protein occludin in both cell lines, but did not induce a change in expression of adherens junction protein E-cadherin. Additionally, increasing curvature promoted polarity of both cell lines, as a greater apical localization of occludin was seen in cells on substrates of higher curvature. Lastly, substrate curvature increased expression of the water channel protein aquaporin-5 (Aqp-5) in Par-C10 cells, suggesting that curved nanofiber substrates

  8. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering

    Science.gov (United States)

    Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan; Vartiainen, Ismo; Burkhardt, Anja; Warmer, Martin; David, Christian; Wagner, Armin; Meents, Alke

    2016-01-01

    Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D 1/2 = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures. PMID:27275143

  9. Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates.

    Science.gov (United States)

    Sharma, Anup D; Zbarska, Svitlana; Petersen, Emma M; Marti, Mustafa E; Mallapragada, Surya K; Sakaguchi, Donald S

    2016-03-01

    While Schwann cells (SCs) have a significant role in peripheral nerve regeneration, their use in treatments has been limited because of lack of a readily available source. To address this issue, this study focused on the effect of guidance cues by employing micropatterned polymeric films to influence the alignment, morphology and transdifferentiation of bone marrow-derived rat mesenchymal stem cells (MSCs) towards a Schwann cell-like fate. Two different types of polymers, biocompatible polystyrene (PS) and biodegradable poly(lactic acid) (PLA) were used to fabricate patterned films. Percentages of transdifferentiated MSCs (tMSCs) immunolabeled with SC markers (α-S100β and α-p75(NTR)) were found to be similar on patterned versus smooth PS and PLA substrates. However, patterning had a significant effect on the alignment and elongation of the tMSCs. More than 80% of the tMSCs were oriented in the direction of microgrooves (0°-20°), while cells on the smooth substrates were randomly oriented. The aspect ratio [AR, ratio of length (in direction of microgrooves) and breadth (in direction perpendicular to microgrooves)] of the tMSCs on patterned substrates had a value of approximately five, as compared to cells on smooth substrates where the AR was one. Understanding responses to these cues in vitro helps us in understanding the behavior and interaction of the cells with the 3D environment of the scaffolds, facilitating the application of these concepts to designing effective nerve guidance conduits for peripheral nerve regeneration.

  10. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    Science.gov (United States)

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.

  11. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    Science.gov (United States)

    Xuan, Xing; Hossain, Md. Faruk; Park, Jae Yeong

    2016-09-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L-1 to 120.0 μg L-1 for both of the metal ions, and detection limits of 0.4 μg L-1 and 1.0 μg L-1 were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions.

  12. Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult.

    Science.gov (United States)

    Vaysse, L; Beduer, A; Sol, J C; Vieu, C; Loubinoux, I

    2015-07-01

    With the ever increasing incidence of brain injury, developing new tissue engineering strategies to promote neural tissue regeneration is an enormous challenge. The goal of this study was to design and evaluate an implantable scaffold capable of directing neurite and axonal growth for neuronal brain tissue regeneration. We have previously shown in cell culture conditions that engineered micropatterned PDMS surface with straight microchannels allow directed neurite growth without perturbing cell differentiation and neurite outgrowth. In this study, the micropatterned PDMS device pre-seeded with hNT2 neuronal cells were implanted in rat model of primary motor cortex lesion which induced a strong motor deficit. Functional recovery was assessed by the forelimb grip strength test during 3 months post implantation. Results show a more rapid and efficient motor recovery with the hNT2 neuroimplants associated with an increase of neuronal tissue reconstruction and cell survival. This improvement is also hastened when compared to a direct cell graft of ten times more cells. Histological analyses showed that the implant remained structurally intact and we did not see any evidence of inflammatory reaction. In conclusion, PDMS bioimplants with guided neuronal cells seem to be a promising approach for supporting neural tissue reconstruction after central brain injury.

  13. Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration.

    Directory of Open Access Journals (Sweden)

    Philipp J Albert

    2016-04-01

    Full Text Available The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before.

  14. Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes.

    Science.gov (United States)

    Leem, Jung Woo; Lee, Soo Hyun; Guan, Xiang-Yu; Yu, Jae Su

    2015-04-20

    We report the improved light output power in gallium nitride-based green flip-chip light-emitting diodes (FCLEDs) employed with inverted tetrahedron-pyramidal micropatterned polydimethylsiloxane (ITPM PDMS) films as an encapsulation and protection layer. The micropatterns are transferred into the surface of PDMS films from the sapphire substrate master molds with two-dimensional periodic hexagonal TPM arrays by a soft imprint lithography method. The ITPM PDMS film laminated on the sapphire dramatically enhances the diffuse transmittance (T(D)) in a wavelength (λ) range of 400-650 nm, exhibiting the larger T(D) value of ~53% at λ = 525 nm, (cf., T(D) ~1% for planar sapphire). By introducing the ITPM PDMS film on the outer surface of sapphire in FCLEDs, the light output power is enhanced, indicating the increment percentage of ~11.1% at 500 mA of injection current compared to the reference FCLED without the ITPM PDMS film, together with better electroluminescence intensity and far-field radiation pattern.

  15. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks.

    Science.gov (United States)

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders.

  16. Micropatterned Ferrocenyl Monolayers Covalently Bound to Hydrogen-Terminated Silicon Surfaces: Effects of Pattern Size on the Cyclic Voltammetry and Capacitance Characteristics

    NARCIS (Netherlands)

    Fabre, B.; Pujari, S.P.; Scheres, L.M.W.; Zuilhof, H.

    2014-01-01

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated al

  17. Micropatterned Ferrocenyl Monolayers Covalently Bound to Hydrogen-Terminated Silicon Surfaces: Effects of Pattern Size on the Cyclic Voltammetry and Capacitance Characteristics

    NARCIS (Netherlands)

    Fabre, B.; Pujari, S.P.; Scheres, L.M.W.; Zuilhof, H.

    2014-01-01

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated

  18. Pocket ECG electrode

    Science.gov (United States)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  19. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  20. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  1. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q [Nano Craft Technologies Co., Ltd., Tsukuba (Japan); Zhang, Y [Nationals Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Miyazawa, K; Kato, R; Hotta, K; Wakahara, T [National Institute for Materials Science, Tsukuba (Japan)], E-mail: yi.zhang@aist.go.jp, E-mail: q.wang@aist.go.jp

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 {mu}m-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 {sup 0}C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm{sup 2}. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  2. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  3. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  4. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  5. A semiconductor based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Khamatani, A.; Kobayasi, K.

    1983-03-30

    The semiconductor electrode is submerged into an electrolyte which is held in the illuminated chamber. The other electrode is placed in a dark chamber connected with the channel to be illuminated, which has a partition in the form of a membrane. An electric current flows in the external circuit of the element with illumination of the first electrode. The illuminated electrode is covered with a thin film of a substance which is stable with the action of the electrolyte. The film is made of Si02, A1203, GaN or A1N. The protective coating makes it possible to use materials less stable than Ti02 in a rutile modification, but which have higher characteristics than the GaP, GaAs, CdS and InP, for making the electrode.

  6. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells

    Science.gov (United States)

    Khoshfetrat Pakazad, S.; Savov, A.; van de Stolpe, A.; Dekker, R.

    2014-03-01

    Stretchable micro-electrode arrays (SMEAs) are useful tools to study the electrophysiology of living cells seeded on the devices under mechanical stimulation. For such applications, the SMEAs are used as cell culture substrates; therefore, the surface topography and mechanical properties of the devices should be minimally affected by the embedded stretchable electrical interconnects. In this paper, a novel design and micro-fabrication technology for a pneumatically actuated SMEA are presented to achieve stretchability with minimal surface area dedicated to the electrical interconnects and a well-defined surface strain distribution combined with integrated diverse micro-patterns to enable alignment and directional stretching of cells. The special mechanical design also enables the SMEA to have a prolonged electro-mechanical fatigue life time required for long-term cyclic stretching of the cell cultures (stable resistance of electrical interconnects for more than 160 thousand cycles of 20% stretching and relaxing). The proposed fabrication method is based on the state of the art micro-fabrication techniques and materials and circumvents the processing problems associated with using unconventional methods and materials to fabricate stretchable electrode arrays. The electrochemical impedance spectroscopy characterization of the SMEA shows 4.5 MΩ impedance magnitude at 1 kHz for a TiN electrode 12 um in diameter. Cell culture experiments demonstrate the robustness of the SMEAs for long-term culturing experiments and compatibility with inverted fluorescent microscopy.

  7. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove.

    Science.gov (United States)

    Sakamoto, Akihiko; Terui, Yusuke; Horie, Chihiro; Fukui, Takashi; Masuzawa, Toshiyuki; Sugawara, Shintaro; Shigeta, Kaku; Shigeta, Tatsuo; Igarashi, Kazuei; Kashiwagi, Keiko

    2014-12-01

    Antibacterial effects in terms of biofilm formation and swarming motility were studied using polyacrylate plates having protruding or recessed shark skin micropatterned surfaces with a shallow groove (2 μm pattern width and spacing, 0.4 μm pattern height). It was found that biofilm formation and swarming motility of Pseudomonas aeruginosa were strongly inhibited by the shark skin pattern plates with a shallow (0.4 μm) pattern height. Biofilm formation of Staphylococcus aureus was also strongly inhibited. Live bacteria were located on the pattern rather than in the spacing. When the shape of pattern was a linear ridge instead of shark skin, the antibacterial effects were weaker than seen with the shark skin pattern. The results indicate that the pattern of shark skin is important for decreasing bacterial infection even with a shallow feature height.

  8. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    Science.gov (United States)

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  9. Porous Electrode Studies.

    Science.gov (United States)

    1980-07-01

    representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National

  10. Techniques of Electrode Fabrication

    Science.gov (United States)

    Guo, Liang; Li, Xinyong; Chen, Guohua

    Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.

  11. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  12. One-step generation of engineered drug-laden poly(lactic-co-glycolic acid) micropatterned with Teflon chips for potential application in tendon restoration.

    Science.gov (United States)

    Shi, Xuetao; Zhao, Yihua; Zhou, Jianhua; Chen, Song; Wu, Hongkai

    2013-11-13

    Regulating cellular behaviors such as cellular spatial arrangement and cellular phenotype is critical for managing tissue microstructure and biological function for engineered tissue regeneration. We herein pattern drug-laden poly(lactic-co-glycolic acid) (PLGA) into grooves using novel Teflon stamps (that possess excellent properties of resistance to harsh organic solvents and molecular adsorption) for engineered tendon-repair therapeutics. The drug release and biological properties of melatonin-laden PLGA grooved micropatterns are investigated. The results reveal that fibroblasts cultured on the melatonin-laden PLGA groove micropatterns not only display significant cell alignment that mimics the cell behavior in native tendon, but also promote the secretion of a major extracellular matrix in tendon, type I collagen, indicating great potential for the engineering of functional tendon regeneration.

  13. Field-Effect Transistors: Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity (Adv. Mater. 17/2016).

    Science.gov (United States)

    Xu, Bingzhe; Zhu, Minshen; Zhang, Wencong; Zhen, Xu; Pei, Zengxia; Xue, Qi; Zhi, Chunyi; Shi, Peng

    2016-05-01

    A field-effect transistor (FET) based on ultrathin Ti3 C2 -MXene micropatterns is developed by C. Zhi, P. Shi, and co-workers, as described on page 3333. The FET can be utilized for label-free probing of small molecules in typical biological environments, e.g., for fast detection of action potentials in primary neurons. This device is produced with a microcontact printing technique, harnessing the unique advantages for easy fabrication.

  14. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. PMID:27877662

  15. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Directory of Open Access Journals (Sweden)

    Marta S Laranjeira

    2014-03-01

    Full Text Available Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs and human dermal microvascular endothelial cells (HDMECs on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves. Our results showed that cells had a higher metabolic activity (HGF, HDMEC and increased gene expression levels of fibroblast-specific protein-1 (FSP-1 and collagen type I (COL I on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  16. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  17. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    Science.gov (United States)

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  18. Ordered nanostructure of PS-b-PEO copolymer by solvent annealing with mixture of benzene/water vapor and its micropattern fabrication.

    Science.gov (United States)

    Kim, Tae Hee; Hwang, Jiyoung; Acharya, Himadri; Park, Cheolmin

    2010-10-01

    We investigate the effect of water/benzene co-solvent vapor on the ordering of poly(styrene-b-ethylene oxide) (PS-b-PEO) copolymer thin film on silicon substrate upon solvent annealing. In-plane cylindrical PEO microdomains were observed after exposure of benzene vapor. The addition of water vapor dominantly produced the cylindrical PEO domains aligned perpendicular to the substrate. The best ordering of the cylinders was obtained at the water fraction of approximately 0.05. The degree of ordering decreases while the periodicity of haxagonally packed PEO cylinders increases with the amount of water in the vapor mixture. The average center-to-center distance of hexagonally packed cylindrical PEO microdomains increases with the water fraction from approximately 25 nm to 40 nm. As one way of utilizing the dewetting of thin films inevitable during solvent annealing, PS-b-PEO micropatterns prepared by microcontact printing were treated with co-solvent vapor, which allows us to fabricate the controlled dewet structures guided by the micropatterns. Cylinder-to-sphere phase transition of PEO microdomains also occurred upon solvent annealing in the micropatterned PS-b-PEO films.

  19. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  20. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  1. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  2. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed......The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  3. Reference Electrodes in Metal Corrosion

    Directory of Open Access Journals (Sweden)

    S. Szabó

    2010-01-01

    Full Text Available With especial regard to hydrogen electrode, the theoretical fundamentals of electrode potential, the most important reference electrodes and the electrode potential measurement have been discussed. In the case of the hydrogen electrode, it have been emphasised that there is no equilibrium between the hydrogen molecule (H2 and the hydrogen (H+, hydronium (H3O+ ion in the absence of a suitable catalyst. Taking into account the practical aspects as well, the theorectical basis of working of hydrogen, copper-copper sulphate, mercury-mercurous halide, silver-silver halide, metal-metal oxide, metal-metal sulphate and “Thalamid” electrodes, has been discussed.

  4. 微图形化技术及其在生物医学研究中的应用%Micropatterning and Its Applications in Biomedical Research

    Institute of Scientific and Technical Information of China (English)

    任大海; 崔明洋; 夏亦秋; 尤政

    2012-01-01

    结合生物物理学与生物化学的微细加工技术已可以获得与生物大分子相近的特征尺寸,推动了微图形化技术在药物筛选与新药开发、组织工程、疾病诊断等领域的应用.综述了微图形化技术在生物医学领域的发展,讨论了光刻、软光刻、模板辅助构图、扫描探针加工、喷墨构图、激光诱导图形化等方法,分析了各种方法的优势、局限性与适用范围,指出分辨力与精度、图形化规模、实验加工条件等是选择不同图形化方法的主要依据.而基于生物物理学和生物化学等对纳米尺度的处理过程进行定量分析、进一步提高其生物兼容性及材料适应性、发展适合图形化芯片的体内微环境模拟技术等是微图形化技术进一步发展的方向.%Based on the micro-fabrication techniques combining with biochemistry and biophysics, we can get function structures with feature sizes close to the biomacromolecule scale, which promotes the applications of micropatterning in many research fields such as drug screening and discovery, tissue engineering and disease diagnosis. This review summarizes the development of micropatterning techniques in biomedical field and analyzes the advantages, limitations and application scopes of each micropatterning approach including photolithography, soft lithography, stencil-assisted patterning, scanning-probe lithography, jet patterning and laser guided patterning. Photolithography usually includes several steps such as exposure, development, lift-off and so on. Although it has the advantages of high accuracy, high efficiency and accurate alignment system, it depends on super-clean labs and lift-off processes, which means high cost and unsatisfied bio-compatibility. Soft lithography and stencil-assisted patterning methods avoid exposure and lift-off steps by using elastomeric stamps, which can enhance the bio-compatibility and reduce the cost. However, these two methods have

  5. Virtual electrodes for high-density electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cela, Carlos Jose; Lazzi, Gianluca

    2017-05-23

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  6. Submicron electrode gaps fabricated by gold electrodeposition at interdigitated electrodes

    NARCIS (Netherlands)

    Megen, M.J.J; Olthuis, W.; Berg, van den A.

    2014-01-01

    Electrodes with submicron gaps are desired for achieving high amplification redox cycling sensors. In this contribution we report the use of electrodeposition of gold in order to decrease the inter-electrode spacing at interdigitated electrodes. Using this method submicron spacings can be obtained w

  7. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    for the oxygen electrode reaction is estimatedfrom thermodynamic data and reasonable agreement with the experimentalresults is found. It is concluded that the main contribution to the Peltierentropy arises from the transition from gaseous to liquid state, whereas thetransfer entropies of the ionic species...

  8. Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    M. A. Lopez-Gordo

    2014-07-01

    Full Text Available Electroencephalography (EEG emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.

  9. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  10. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  11. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  12. Anti-fouling surfaces by combined molecular self-assembly and surface-initiated ATRP for micropatterning active proteins.

    Science.gov (United States)

    Xiu, K M; Cai, Q; Li, J S; Yang, X P; Yang, W T; Xu, F J

    2012-02-01

    A simple method by combined molecular self assembly and surface-initiated atom transfer radical polymerization (SI-ATRP) was proposed to prepare a biologically inert surface for micropatterning active proteins. The MPEG microdomains having a short terminal poly(ethylene glycol) (PEG) unit were prepared by self assembly of 2-(methyoxy(polyethylenoxy) propyl)trimethoxy silane (MPEG-silane). The remaining local regions or poly(poly(ethylene glycol)methyl ether methacrylate-co-glycidyl methacrylate) (P(PEGMEMA-co-GMA)) microdomains were produced via SI-ATRP of PEGMEMA and GMA comonomers. The epoxy groups of the P(PEGMEMA-co-GMA) microdomains were used directly for covalent coupling of an active protein (human immunoglobulin or IgG) via the ring-opening reaction to produce the IgG-coupled microdomains. The IgG-coupled microdomains interact only and specifically with target anti-IgG, while the other antifouling microregions from self-assembled monolayers with short terminal PEG units effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  13. Electroformed Electrodes for Electrical-Discharge Machining

    Science.gov (United States)

    Werner, A.; Cassidenti, M.

    1984-01-01

    Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.

  14. Electrode models in electrical impedance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG M.

    2005-01-01

    This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration .in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.

  15. High throughput soft embossing process for micro-patterning of PEDOT thin films

    DEFF Research Database (Denmark)

    Fanzio, Paola; Cagliani, Alberto; Peterffy, Kristof G.

    2017-01-01

    The patterning of conductive polymers is a major challenge in the implementation of these materials in several research and industrial applications, spanning from photovoltaics to biosensors. Within this context, we have developed a reliable technique to pattern a thin layer of the conductive pol...... technology offers a facile solution for the patterning of organic conductors with resolution in the micro scale, and can be the basis for the realization and development of polymeric microdevices with electrical and electrochemical functionalities.......The patterning of conductive polymers is a major challenge in the implementation of these materials in several research and industrial applications, spanning from photovoltaics to biosensors. Within this context, we have developed a reliable technique to pattern a thin layer of the conductive...... polymer poly(3,4-ethylenedioxythiophene) (PEDOT) by means of a low cost and high throughput soft embossing process. We were able to reproduce a functional conductive pattern with a minimum dimension of 1 μm and to fabricate electrically decoupled electrodes. Moreover, the conductivity of the PEDOT films...

  16. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  17. Magnetohydrodynamic generator electrode

    Science.gov (United States)

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  18. Electrocatalysts for oxygen electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, E.B. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  19. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  20. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    Science.gov (United States)

    Subramani, K.; Birch, M. A.

    2006-09-01

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 µm were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 µm and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  1. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    Energy Technology Data Exchange (ETDEWEB)

    Subramani, K [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom); Birch, M A [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom)

    2006-09-15

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 {mu}m were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 {mu}m and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  2. 3D Woven-Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithium-Ion Batteries.

    Science.gov (United States)

    Kang, Da-Young; Kim, Cheolho; Gueon, Donghee; Park, Gyulim; Kim, Jung Sub; Lee, Joong Kee; Moon, Jun Hyuk

    2015-10-26

    Carbon/silicon composite materials are a promising anode substrate for use in lithium-ion batteries. In this study, we suggest a new architecture for a composite electrode made of a woven-like carbon material decorated with silicon nanoparticles. The 3D woven-like carbon (WLC) structure was fabricated using direct carbonization of multi-beam interference lithography polymer patterns. Subsequent solution coating was applied to decorate the WLC with silicon nanoparticles (SiNPs). The SiNP/WLC electrode exhibited a specific capacity of 930 mAh g(-1) , which is three times higher than the specific capacity of the bare electrode. Specifically, the SiNP/WLC electrode exhibited an outstanding retention capacity of 81 % after 50 cycles and a Coulombic efficiency of more than 98 %. This rate capability performance was attributed to the WLC structure and the uniform decoration of the SiNPs.

  3. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    Energy Technology Data Exchange (ETDEWEB)

    Hanu, A.R., E-mail: hanua@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada)

    2015-04-21

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×10{sup 6} Hz without any loses and will report a maximum event rate of 6.11×10{sup 5} Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  4. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...... electrolyte, at least two sensing electrodes (SEs) in solid contact with the electrolyte, and at least two internal reference electrodes (IREs) in solid contact with the electrolyte, wherein each IRE comprises a composite material, comprising a binary mixture of a metal and a metal oxide dispersed to form...

  5. Gold electrodes from recordable CDs

    Science.gov (United States)

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  6. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  7. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  8. Jointed Holder For Welding Electrodes

    Science.gov (United States)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  9. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  10. Electrodes for Semiconductor Gas Sensors.

    Science.gov (United States)

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  11. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces.

    Science.gov (United States)

    Xu, F J; Li, H Z; Li, J; Teo, Y H Eric; Zhu, C X; Kang, E T; Neoh, K G

    2008-12-01

    We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  12. Laser processing of SnO2 electrode materials for manufacturing of 3D micro-batteries

    Science.gov (United States)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Pfleging, W.

    2011-03-01

    The material development for advanced lithium-ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. A major problem concerning thin film electrodes is, that increasing film thickness leads to an increase in lithium diffusion path lengths and thereby a decrease in power density. To overcome this problem, the investigation of a 3D-battery system with an increased surface area is necessary. UV-laser micromachining was applied to create defined line or grating structures via mask imaging. SnO2 is a highly investigated anode material for lithium-ion batteries. Yet, the enormous volume changes occurring during electrochemical cycling lead to immense loss of capacity. The formation of micropatterns via laser ablation to create structures which enable the compensation of the volume expansion was investigated in detail. Thin films of SnO2 were deposited in Ar:O2 atmosphere via r.f. magnetron sputtering on silicon and stainless steel substrates. The thin films were studied with X-ray diffraction to determine their crystallinity. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  13. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    \\parbox[t]{7.3cm}{Strong anodic activation due to computer communication error.} It is seen that as long as the electrode is kept at the equilibrium potential, the capacity pr.\\,unit area is constant, indicating a stable reaction zone. Polarising the electrode a decrease in this ratio is observed. Although......In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length...... of the active reaction zone, the triple phase boundary. One way of solving this is by the application of point electrodes where the electrode-electrolyte contact is assumed to be circular with a radius calculated from the high frequency impedance. The perimeter is the taken as the length of the reaction zone...

  14. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  15. Restructuring of porous nickel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, S.J.; Macdonald, D.D.; Pound, B.G.

    1984-08-01

    A transmission line model for the electrochemical impedance of porous electrodes was used to study the degradation of nickel battery plates throughout their cycle life. The model was shown to successfully account for changes in the observed electrode properties in terms of simultaneous restructuring of the active mass and rupture of particleparticle ohmic contacts.

  16. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  17. ELECTROCHEMISTRY OF FUEL CELL ELECTRODES.

    Science.gov (United States)

    optimization of fuel cell electrodes. Hydrogen oxidation and reduction, the reduction of oxygen, and the oxidation of formic acid, a soluble organic...substance, were selected for these studiees because of their relevance to fuel cell systems and because of their relative simplicity. The electrodes

  18. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  19. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  20. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  1. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  2. Advantage of four-electrode over two-electrode defibrillators

    Science.gov (United States)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  3. Preset Electrodes for Electrical-Discharge Machining

    Science.gov (United States)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  4. Capacitance enhancement via electrode patterning

    Science.gov (United States)

    Ho, Tuan A.; Striolo, Alberto

    2013-11-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  5. Capacitance enhancement via electrode patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tuan A.; Striolo, Alberto, E-mail: a.striolo@ucl.ac.uk [School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  6. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length...... of the active reaction zone, the triple phase boundary. One way of solving this is by the application of point electrodes where the electrode-electrolyte contact is assumed to be circular with a radius calculated from the high frequency impedance. The perimeter is the taken as the length of the reaction zone......$mm diameter) platinum electrodes mounted in a thin alumina tube resting on a polished 8 mol\\% yttria stabilized zirconia electrolyte at $1000^\\circ$C in air. The results where analysed in terms of the equivalent circuit $R_{YSZ}(R_r Q)$ in the frequency range 0.5MHz--1kHz. Fig.\\,1 shows...

  7. Recent advances with a hybrid micro-pattern gas detector operated in low pressure H2 and He, for AT-TPC applications

    CERN Document Server

    Cortesi, Marco; Bazin, Daniel; Beceiro-Novo, Saul; Yurkon, John; Tanani, Rim Soussi; Wolff, Michael; Stolz, Andreas

    2015-01-01

    In view of a possible application as a charge-particle track readout for an Active-Target Time Projection Chamber (AT-TPC), the operational properties and performances of a hybrid Micro-Pattern Gaseous Detector (MPGD) were investigated in pure low-pressure Hydrogen (H2) and Helium (He). The detector consists of a MICROMesh GAseous Structure (MICROMEGAS) coupled to a single- or multi-cascade THick Gaseous Electron Multiplier (THGEM) as a pre-amplification stage. This study reports of the effective gain dependence of the hybrid-MPGD at relevant pressure (in the range of 200-760 torr) for different detector arrangements. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particularly for applications of MPGD end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics.

  8. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  9. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  10. Electrochemistry at Very Small Electrodes.

    Science.gov (United States)

    1985-09-01

    Contract N00014-79-C-0862. This contract has a peculiar history. It originated in 1979. under the title "Studies in Cathodic Stripping Voltammetry and...The second category involved studies of cathodic stripping voltammetry of various materials, primarily at silver electrodes. Work carried out... Cathodic Stripping Voltammetry at a Rotating Disc Electrode", K. Shimizu and R.A. Osteryoung, February, 1981. * 4. "Electrochemical Behavior of Sulfide

  11. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  12. Implanted electrodes for multi-month EEG.

    Science.gov (United States)

    Jochum, Thomas; Engdahl, Susannah; Kolls, Brad J; Wolf, Patrick

    2014-01-01

    An implanted electroencephalogram (EEG) recorder would help diagnose infrequent seizure-like events. A proof-of-concept study quantified the electrical characteristics of the electrodes planned for the proposed recorder. The electrodes were implanted in an ovine model for eight weeks. Electrode impedance was less than 800 Ohms throughout the study. A frequency-domain determination of sedation performed similarly for surface versus implanted electrodes throughout the study. The time-domain correlation between an implanted electrode and a surface electrode was almost as high as between two surface electrodes (0.86 versus 0.92). EEG-certified clinicians judged that the implanted electrode quality was adequate to excellent and that the implanted electrodes provided the same clinical information as surface electrodes except for a noticeable amplitude difference. No significant issues were found that would stop development of the EEG recorder.

  13. Micropatterning neuronal networks.

    Science.gov (United States)

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-01

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

  14. Extraction electrode geometry for a calutron

    Science.gov (United States)

    Veach, A.M.; Bell, W.A. Jr.

    1975-09-23

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)

  15. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  16. Nonequilibrium Thermodynamics of Porous Electrodes

    CERN Document Server

    Ferguson, Todd R

    2012-01-01

    We review classical porous electrode theory and extend it to non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model...

  17. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  18. Multiplexed DNA-modified electrodes.

    Science.gov (United States)

    Slinker, Jason D; Muren, Natalie B; Gorodetsky, Alon A; Barton, Jacqueline K

    2010-03-03

    We report the use of silicon chips with 16 DNA-modified electrodes (DME chips) utilizing DNA-mediated charge transport for multiplexed detection of DNA and DNA-binding protein targets. Four DNA sequences were simultaneously distinguished on a single DME chip with 4-fold redundancy, including one incorporating a single base mismatch. These chips also enabled investigation of the sequence-specific activity of the restriction enzyme Alu1. DME chips supported dense DNA monolayer formation with high reproducibility, as confirmed by statistical comparison to commercially available rod electrodes. The working electrode areas on the chips were reduced to 10 microm in diameter, revealing microelectrode behavior that is beneficial for high sensitivity and rapid kinetic analysis. These results illustrate how DME chips facilitate sensitive and selective detection of DNA and DNA-binding protein targets in a robust and internally standardized multiplexed format.

  19. Neural stimulation and recording electrodes.

    Science.gov (United States)

    Cogan, Stuart F

    2008-01-01

    Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

  20. Protected electrode structures and methods

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy V.; Laramie, Michael G.; Kopera, John Joseph Christopher

    2017-08-08

    An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer. The first release layer may have a low mean peak to valley surface roughness, which may enable the formation of a thin protective layer with a low mean peak to valley surface roughness.

  1. Nanoengineered membrane electrode assembly interface

    Science.gov (United States)

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  2. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode ......-based electrodes and one porous electrode based on the perovskite-structured strontium and vanadiumdoped lanthanum chromium oxide (LSCV) were investigated. The porous electrodes were applied on yttrium-stabilised zirconium oxide (YSZ) substrates in a collaboration with the company PBI...

  3. Analysis of SOFCs Using Reference Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  4. Performance Measurement of AMTEC Electrode

    Institute of Scientific and Technical Information of China (English)

    MA; Jun-ping; HE; Hu; LI; Si-jie; TANG; Xian; LUO; Zhi-fu

    2015-01-01

    Alkali metal thermal to electric converter(AMTEC)is a direct energy conversion device capable of near-Carnot efficiencies,and has demonstrated the performance of high power density,high current low voltage.Electrode is a key component of achieving high efficiency in an AMTEC device.A RhW alloy target was used for deposition

  5. 21 CFR 870.2360 - Electrocardiograph electrode.

    Science.gov (United States)

    2010-04-01

    ... electrode. (a) Identification. An electrocardiograph electrode is the electrical conductor which is applied to the surface of the body to transmit the electrical signal at the body surface to a processor...

  6. A method for making a hydrogen electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ikeyama, M.; Ivaki, T.; Yanagikhara, N.

    1983-09-08

    A metallic grid is pressed to the surface of a foam metallic plate which contains powders of a compound which adsorb H2. The electrode is processed at the powder caking temperature. The electrode has a long service life.

  7. A method for the manufacture of electrodes

    OpenAIRE

    Kervenic, Y.V.; van der Zant, S.J.; Morpurgo, A.; Gurevich, L.; Kouwenhoven, L. P.

    2003-01-01

    A method of reducing the distance between electrodes, comprising the growth of electrodes by means of electrodeposition in a solution, wherein during the process of growth the conductance over the electrodes is measured and the method is terminated when the conductance has reached a predetermined value. The method according to the invention is characterised in that measuring arrangement for measuring the conductance is suitable for measuring an electric current between the electrodes when the...

  8. A method for the manufacture of electrodes

    NARCIS (Netherlands)

    Kervenic, Y.V.; Van der Zant, S.J.; Morpurgo , A.; Gurevich , L.; Kouwenhoven, L.P.

    2003-01-01

    A method of reducing the distance between electrodes, comprising the growth of electrodes by means of electrodeposition in a solution, wherein during the process of growth the conductance over the electrodes is measured and the method is terminated when the conductance has reached a predetermined

  9. Membrane electrode assembly for a fuel cell

    Science.gov (United States)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  10. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  11. Voltammetry at porous electrodes: A theoretical study

    CERN Document Server

    Barnes, Edward O; Li, Peilin; Compton, Richard G

    2014-01-01

    Theory is presented to simulate both chronoamperometry and cyclic voltammetry at porous electrodes fabricated by means of electro-deposition around spherical templates. A theoretical method to extract heterogeneous rate constants for quasireversible and irreversible systems is proposed by the approximation of decoupling of the diffusion within the porous electrode and of bulk diffusion to the electrode surface.

  12. 21 CFR 890.1175 - Electrode cable.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode cable. 890.1175 Section 890.1175 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable. (a) Identification. An electrode cable is a device composed of strands of insulated electrical conductors...

  13. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    Science.gov (United States)

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  14. Reducing Insertion Sites of Penetrating Multipolar Shaft Electrodes by Double Side Electrode Arrangement

    Science.gov (United States)

    2007-11-02

    Abstract-Micromachined devices with substrate-integrated elec- trodes are the key component in implantable microdevices for recording neuronal ...INSERTION SITES OF PENETRATING MULTIPOLAR SHAFT ELECTRODES BY DOUBLE SIDE ELECTRODE ARRANGEMENT T.Stieglitz1, P. Heiduschka2, M. Schuettler1, M. Gross1...and Subtitle Reducing Insertion Sites of Penetrating Multipolar Shaft Electrodes by Double Side Electrode Arrangement Contract Number Grant Number

  15. ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system.

    Science.gov (United States)

    Ruffini, Giulio; Dunne, Stephen; Farres, Esteve; Cester, Ivan; Watts, Paul C P; Silva, S P; Grau, Carles; Fuentemilla, Lluis; Marco-Pallares, Josep; Vandecasteele, Bjorn

    2007-01-01

    This paper presents the results of the first human trials with the ENOBIO electrophysiology electrode prototype plus the initial results of a new wireless prototype with flexible electrodes based on the same platform. The results indicate that a dry active electrode that employs a CNT array as the electrode interface can perform on a par with traditional "wet" electrodes for the recording of EEG, ECG, EOG and EMG. We also demonstrate a new platform combining wireless technology plus flexible electrodes for improved comfort for applications that take advantage of the dry electrode concept.

  16. Powder processing of hybrid titanium neural electrodes

    Science.gov (United States)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  17. Gossipo-3 A prototype of a Front-End Pixel Chip for Read-Out of Micro-Pattern Gas Detectors

    CERN Document Server

    Brezina, Christpoh; van der Graaf, Haryy; Gromov, Vladimir; Kluit, Ruud; Kruth, Andre; Zappon, Francesco

    2009-01-01

    In a joint effort of Nikhef (Amsterdam) and the University of Bonn, the Gossipo-3 integrated circuit (IC) has been developed. This circuit is a prototype of a chip dedicated for read-out of various types of position sensitive Micro-Pattern Gas detectors (MPGD). The Gossipo-3 is defined as a set of building blocks to be used in a future highly granulated (60 μm) chip. The pixel circuit can operate in two modes. In Time mode every readout pixel measures the hit arrival time and the charge deposit. For this purpose it has been equipped with a high resolution TDC (1.7 ns) covering dynamic range up to 102 μs. Charge collected by the pixel will be measured using Time-over- Threshold method in the range from 400 e- to 28000 e- with accuracy of 200 e- (standard deviation). In Counting mode every pixel operates as a 24-bit counter, counting the number of incoming hits. The circuit is also optimized to operate at low power consumption (100 mW/cm2) that is required to avoid the need for massive power transport and coo...

  18. Applying Stable Isotope Labeled Amino Acids in Micropatterned Hepatocyte Co-Culture to Directly Determine the Degradation Rate Constant for CYP3A4.

    Science.gov (United States)

    Takahashi, Ryan H; Shahidi-Latham, Sheerin; Wong, Susan; Chang, Jae H

    2017-03-13

    The rate of enzyme degradation (kdeg) is an important input parameter for the prediction of clinical drug-drug-interactions (DDI) that result from mechanism-based inactivation or induction of cytochrome P450s. Currently, a large range of reported estimates for CYP3A4 enzyme degradation exists, and consequently, large uncertainty exists in steady-state predictions for DDI. In the current investigations, stable isotope labeled amino acids in culture (SILAC) was applied to a long-lived primary human hepatocyte culture, HepatoPac, to directly monitor the degradation of CYP3A4. This approach allowed selective isotope labeling of a population of de novo synthesized CYP3A4, and specific quantification of proteins with mass spectrometry to determine the CYP3A4 degradation within the hepatocytes. The kdeg estimate was 0.026 ± 0.005 h- 1. This value was reproduced by cultures derived across four individual donors. For these cultures, data indicated that CYP3A4 mRNA and total protein expression (i.e. labeled and not labeled P450s), and activity were stable over the period where degradation had been determined. This kdeg value for CYP3A4 was in good agreement with recently reported values that used alternate analytical approaches, but also employed micropatterned primary human hepatocytes as the in vitro model.

  19. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil; Liu, Jun; Vissers, Donald R.; Lu, Wenquan

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  20. Method for manufacturing magnetohydrodynamic electrodes

    Science.gov (United States)

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  1. Surface modification of recording electrodes

    OpenAIRE

    Iaci Miranda Pereira; Sandhra Maria de Carvalho; Rodrigo Lambert Oréfice; Marcelo Bariatto Andrade Fontes; Lilian Anee Muniz Arantes; Núbia Figueiró; Maria de Fátima Leite; Hercules Pereira Neves

    2013-01-01

    Waterborne Polyurethanes (PUs) are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1) the impact on electrical performance of electrode materials (platinum and silicon) modified chemically by a layer of waterborne PU, and (2) the behavior of rat cardi...

  2. Multiplexed DNA-Modified Electrodes

    OpenAIRE

    Slinker, Jason D.; Muren, Natalie B.; Gorodetsky, Alon A.; Barton, Jacqueline K.

    2010-01-01

    We report the use of silicon chips with 16 DNA-modified electrodes (DME chips) utilizing DNA-mediated charge transport for multiplexed detection of DNA and DNA-binding protein targets. Four DNA sequences were simultaneously distinguished on a single DME chip with fourfold redundancy, including one incorporating a single base mismatch. These chips also enabled investigation of the sequence-specific activity of the restriction enzyme Alu1. DME chips supported dense DNA monolayer formation with ...

  3. A dry electrode for EEG recording.

    Science.gov (United States)

    Taheri, B A; Knight, R T; Smith, R L

    1994-05-01

    This paper describes the design, fabrication and testing of a prototype dry surface electrode for EEG signal recording. The new dry electrode has the advantages of no need for skin preparation or conductive paste, potential for reduced sensitivity to motion artifacts and an enhanced signal-to-noise ratio. The electrode's sensing element is a 3 mm stainless steel disk which has a 2000 A (200 nm) thick nitride coating deposited onto one side. The back side of the disk is attached to an impedance converting amplifier. The prototype electrode was mounted on a copper plate attached to the scalp by a Velcro strap. The performance of this prototype dry electrode was compared to commercially available wet electrodes in 3 areas of electroencephalogram (EEG) recording: (1) spontaneous EEG, (2) sensory evoked potentials, and (3) cognitive evoked potentials. In addition to the raw EEG, the power spectra of the signals from both types of electrodes were also recorded. The results suggest that the dry electrode performs comparably to conventional electrodes for all types of EEG signal analysis. This new electrode may be useful for the production of high resolution surface maps of brain activity where a large number of electrodes or prolonged recording times are required.

  4. Stretchable Micro-Electrode Array

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T; Krulevitch, P

    2002-03-08

    This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.

  5. Redox electrode materials for supercapatteries

    Science.gov (United States)

    Yu, Linpo; Chen, George Z.

    2016-09-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power output, but have relatively low energy capacity. Combining the merits of supercapacitor and battery into a hybrid, the supercapattery can possess energy as much as the battery and output a power almost as high as the supercapacitor. Redox electrode materials are essential in the supercapattery design. However, it is hard to utilise these materials easily because of their intrinsic characteristics, such as the low conductivity of metal oxides and the poor mechanical strength of conducting polymers. This article offers a brief introduction of redox electrode materials, the basics of supercapattery and its relationship with pseudocapacitors, and reviews selectively some recent progresses in the relevant research and development.

  6. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0electrode material can be synthesized using an ion-exchange reaction with a lithium salt in an organic-based solvent to partially replace sodium ions of a precursor material with lithium ions.

  7. Peltier effects in electrode carbon

    Science.gov (United States)

    Hansen, Ellen Marie; Egner, Espen; Kjelstrup, Signe

    1998-02-01

    The thermoelectric power of a cell with platinum electrodes and a carbon conductor was determined. The electromotive force (emf) was measured as a function of the temperature difference between the electrodes at temperatures varying from 310 °C to 970 °C. From these measurements, the transported entropy of electric charge in carbon was found to vary from -1.7 to -1.9 J/(K mole) at temperatures around 300 °C, from -2.0 to -2.3 J/(K mole) at temperatures around 550 °C, and from -3.4 to -3.7 J/(K mole) at temperatures around 950 °C. This transported entropy had not before been determined for temperatures above 550 °C. Also, it is shown how the previously neglected surface properties can be taken into account to interpret the measurements. In the Hall-Héroult cell, the anode is made of a similar kind of carbon. Hence, the transported entropy found above can be used to describe the often neglected coupling between transport of heat and electric charge in this electrode. It is shown that the calculated electric potential profile through a coal sample will change significantly if the coupling is neglected, but the calculated temperature profile is independent of whether the coupling is neglected. New equations are also developed that can be used to evaluate the importance of the coupling in other systems.

  8. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  9. Performance of the DTL electrode compared to the jet contact lens electrode in clinical testing.

    Science.gov (United States)

    Yin, Hang; Pardue, Machelle T

    2004-01-01

    To compare the recording characteristics of the DTL fiber and Jet contact lens electrodes, ERG responses were recorded from 20 normal subjects using the ISCEV standard clinical protocol. In each subject, the DTL electrode was placed in the right eye and the Jet contact lens in the left eye after 30 min of dark-adaptation. After presenting standard dark- and light-adapted stimuli, each response was analyzed for a- and b-wave amplitude and implicit time. Each subject was then asked to rate the comfort of each electrode. Responses recorded with the DTL are larger and faster for the dark-adapted dim white and red flashes. In contrast, the Jet electrode records larger responses for the dark-adapted standard flash and light-adapted flashes. Of these differences, only the standard flash is statistically significant. However, overall the DTL electrode has greater variability than the Jet electrode across all recordings. The DTL and Jet electrodes cannot be used interchangeably as demonstrated by a Bland and Altman analysis of agreement. Thus, separate normative values need to be collected for each type of electrode to accurately assess retinal function. Based on the comfort assessment of the two electrodes, the subjects preferred the DTL electrode over the Jet electrode. Due to the superior comfort level of the DTL and its similarities to the Jet contact lens electrode in ERG recordings, the DTL electrode appears to be a good alternative to the Jet electrode in routine clinical testing when used with the appropriate normative values.

  10. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  11. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  12. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  13. Progress in understanding SOFC electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Jørgensen, M.J.;

    2002-01-01

    The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each...... and synthesis procedures. The paper deals with the available evidence and gives some possible explanations of observed phenomena, e.g. of the various reported effects of water and of the temperature dependence of H/D isotope effect on the SOFC anode. (C) 2002 Elsevier Science B.V. All rights reserved....

  14. Nickel electrode for alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Charkey, A.; Januszkiewicz, S.

    1985-10-08

    A nickel electrode including a conductive support and a layer on the support including a mixture of a nickel active material and a graphite diluent containing a spinel type oxide, the spinel type oxide having the formula M/sub 2/Co/sub 2/O/sub 4/, where M/sub 2/ is Co, Ni, Mn, Fe, Cu, Zn or Cd, or combinations thereof, and having a weight which is in the range of 1-30 percent of the weight of the diluent.

  15. iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization

    Science.gov (United States)

    Blenkmann, Alejandro O.; Phillips, Holly N.; Princich, Juan P.; Rowe, James B.; Bekinschtein, Tristan A.; Muravchik, Carlos H.; Kochen, Silvia

    2017-01-01

    The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions. PMID:28303098

  16. Secondary Ionization Coefficient of Dielectric Electrode

    Science.gov (United States)

    Kashiwagi, Yasuhide; Suzuki, Susumu; Itoh, Haruo

    Experiments for observations and stabilization of discharge paths in several electrode systems are carried out aiming at precise measurement of the secondary ionization coefficient γ of MgO film electrode. The discharge chamber is filled with Ar gas. The waveforms of the applied voltage between the electrodes and the discharge current are measured with visual observation of the discharge light. Two MgO coated electrodes are placed so that they are facing each other. For these MgO electrodes, the discharge paths take a detour, not the shortest distance. Smaller prebreakdown current pulses are observed before the breakdown. After breakdown, discontinuous discharge current is observed. Therefore, it is prepared a glass tube surrounding the discharge area. As the result, the discharge paths take a straight perpendicular for the electrode surface, and the discharge is stabilized.

  17. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  18. Stabilization of insertion electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M. M.

    1998-09-03

    This paper discusses the techniques that are being employed to stabilize LiMn{sub 2}O{sub 4} spinel and composite Li{sub x}MnO{sub 2} positive electrodes. The critical role that spinel domains play in stabilizing these electrodes for operation at both 4 V and 3 V is highlighted. The concept of using an intermetallic electrode MM{prime} where M is an active alloying element and M{prime} is an inactive element (or elements) is proposed as an alternative negative electrode (to carbon) for lithium-ion cells. An analogy to metal oxide insertion electrodes, such as MnO{sub 2}, in which Mn is the electrochemically active ion and O is the inactive ion, is made. Performance data are given for the copper-tin electrode system, which includes the intermetallic phases eta-Cu{sub 6}Sn{sub 5} and Li{sub 2}CuSn.

  19. A method to locate electrode placement.

    Science.gov (United States)

    Brodnick, D

    2000-01-01

    A new method uses redundancy in the 12-lead electrocardiogram (ECG) to determine the angles to all of the electrodes used to record the ECG. No other transducers or signals are needed. The method, a matrix manipulation of the standard 12-lead, would be applicable to all existing ECGs already stored on hospital systems. The invention of this method was originally motivated by the slight differences seen between ECGs acquired by the standard resting electrode placement versus those acquired in a monitoring or exercise placement. An ECG signal is acquired in multiple channels. A covariance matrix is formed. From the eigenvector solution of the matrix, the angles between the eigenvectors and the original signal vectors are determined. The angles calculated for any ECG test are compared to reference angles to determine whether the electrodes are placed in the standard ECG electrode placement, an alternative electrode placement, or an incorrect electrode placement.

  20. Response of Surface Soil Hydrology to the Micro-Pattern of Bio-Crust in a Dry-Land Loess Environment, China.

    Science.gov (United States)

    Wei, Wei; Yu, Yun; Chen, Liding

    2015-01-01

    The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.

  1. Semiconductor devices having a recessed electrode structure

    Science.gov (United States)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  2. Semiconductor electrode with improved photostability characteristics

    Science.gov (United States)

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  3. Plasma spark discharge reactor and durable electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  4. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  5. Encyclopedia of electrochemistry. Vol. 10. Modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bard, A.J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry; Stratmann, M. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Rubinstein, I. [Weizmann Institute of Science, Rehovot (Israel). Dept. of Materials and Interfaces; Fujihira, Masamichi [Tokyo Institute of Technology, Yokohama (Japan). Dept. of Biomolecular Engineering; Rusling, J.F. (eds.) [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry, U-60]|[Connecticut Univ., Storrs, CT (United States). Dept. of Pharmacology

    2007-07-01

    This volume contains the following topics: 1. Preparation of monolayer modified electrodes; 2. Layer-by-layer assemblies of thin films on electrodes; 3. Epitaxial electrochemical growth; 5. Other films; 6. Ex-situ methods; 7. In-situ methods; 8. Electron transfer; 9. Charge transport in polymer-modified electrodes; 10. Electrochemical reactions on modified electrodes; 11. Redox-active dendrimers in solution and as films on surfaces; 12. Electrochemical formation of organic thin films; 13. Electron transfer and transport in ordered enzyme layers.

  6. Charged Water Droplets can Melt Metallic Electrodes

    Science.gov (United States)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William

    2016-11-01

    A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.

  7. FUEL CELL ELECTRODES FOR ACID MEDIA

    Science.gov (United States)

    fuel cell electrodes for acid media. Activated carbon electrodes were prepared, wetproofed with paraffin or Teflon, and catalyzed with platinum. The wetproofing agent was applied by immersion or electrodeposition and the catalyst applied by chemical decomposition of H2P+Cl6 solutions. Half cell studies with hydrogen anodes and oxygen (air) cathodes showed that electrochemical performance is essentially the same for paraffin and Teflontreated electrodes; however, the life of the Teflon-treated electrodes under equal conditions of load is greater than that for

  8. Electrode structure and methods of making same

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael

    2010-04-06

    A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.

  9. Metal nanowire-graphene composite transparent electrodes

    Science.gov (United States)

    Mankowski, Trent; Zhu, Zhaozhao; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine; Mansuripur, Masud; Falco, Charlies M.

    2014-10-01

    Silver nanowires with 40 nm diameter and copper nanowires with 150 nm diameter were synthesized using low-temperature routes, and deposited in combination with ultrathin graphene sheets for use as transparent conductors. A systematic and detailed analysis involving nature of capping agent for the metal nanowires, annealing of deposited films, and pre-treatment of substrates revealed critical conditions necessary for preparing high performance transparent conducting electrodes. The best electrodes show ~90% optical transmissivity and sheet resistance of ~10 Ω/□, already comparable to the best available transparent electrodes. The metal nanowire-graphene composite electrodes are therefore well suited for fabrication of opto-electronic and electronic devices.

  10. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  11. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  12. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  13. Desalination with carbon aerogel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  14. Fabrication of Protein Micropatterns on Titanium Surface and Its Effects on Human Osteoblast Cell Adhesion%钛表面蛋白质微图形的构建及其对人体成骨细胞粘附行为的影响

    Institute of Scientific and Technical Information of China (English)

    季士委; 潘长江; 聂煜东

    2011-01-01

    利用微接触印刷术在表面改性的钛薄膜表面构建了纤连蛋白细胞外基质微图形,激光共聚焦扫描显微镜及原子力显微镜的结果表明微图形形态规整,蛋白质层厚度约为5nm.人体成骨细胞的粘附实验表明,蛋白质微图形的尺度对细胞的粘附行为具有明显影响,通过控制微图形的尺度可以有效调控细胞的粘附与铺展行为,从而影响细胞的功能.%The fibronectin(a kind of extracellular matrix protein) micropatterns were fabricated on surfacemodified titanium surface by microcontact printing(μCP). The results of confocal laser scanning microscopy(CLSM)and atomic force microscopy(AFM) indicate that the protein micropatterns are homogeneous and regular and the thickness of the protein layer is about 5nm The human osteoblast human adhesion experiment suggests that the dimensions of micropatterns have an obvious effect on cell adhesion. The cell adhesion and spread can be modulated by controlled micropattern dimensions, which further affect cell function.

  15. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2017-01-01

    electrochemical measurements, and this will be the focus of this chapter. First, the important issue of understanding potential differences and measurements of potentials, which is linked to the choice of proper electrode geometries and test set up configurations for electrode and cell testing, is presented...

  16. New electrosurgical ball electrode with nonstick properties

    Science.gov (United States)

    Rondinone, Joseph; Brassell, James; Miller, Scott A., III; Thorne, Jonathan O.; Rondinone, David M.; Safabash, Jason; Vega, Felix

    1998-04-01

    A new electrosurgical ball electrode (SilverBulletTM) has been developed for applying radiofrequency (RF) energy to fuse biological and other materials to tissue surfaces. Specifically, the electrode was developed for use in conjunction with the Fusion Medical Technologies, Inc. gelatin patch (RapiSealTM) for use in pulmonary surgery to seal air leaks, and in solid abdominal organ surgeries to provide hemostatic tamponade. The new electrode allows for the application of RF energy in contact mode without the problems of the electrode sticking to the gelatin patch or the underlying tissue. Designed for use with commercially available electrosurgical handpieces, the electrode consists of a stainless steel connector that fits into the hand- piece, and an electrode assembly made from silver that includes a shank region, and a tip extension extending distally from the shank region. The distal tip of the tip extension is rounded and has a length of about 10 mm. The uniqueness of this electrode is the shank region which has a cross sectional area that is larger than the tip extension. The shank region acts as a heat sink to draw away heat from the tip extension while the tip extension itself remains sufficiently small to access desired target sites and display the desired energy transfer properties. In addition to the physical design, the use of silver as the core element provides a material with high electrical and thermal conductivities. The bulk of the electrode is appropriately insulated.

  17. Electrode kinetics and double layer structure

    NARCIS (Netherlands)

    Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.

    1969-01-01

    Several electrochemical methods have been developed in recent years for the study of the kinetic parameters of electrode reactions. These methods have been used for obtaining an abundance of experimental data for the standard heterogeneous rate constant, ksh, of electrode reactions, mostly limited t

  18. Dry Electrodes Facilitate Remote Health Monitoring

    Science.gov (United States)

    2013-01-01

    Johnson Space Center collaborated with Blacksburg, Virginia-based NanoSonic Inc. through the SBIR program to devise a sensor to replace the traditional electrodes used for an electrocardiogram in space. In 2011, NanoSonic started marketing the dry electrodes as well as an EKGear Sensor Shirt, which is being considered for use in hospital garments, athletic apparel, and dive suits.

  19. Electrochemistry at Nanometer-Scaled Electrodes

    Science.gov (United States)

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  20. Confinement of reaction components at electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Oana R.; Weitekamp, Raymond; Grubbs, Robert H.; Atwater, Harry A.; Mitrovic, Slobodan

    2017-03-14

    A CO.sub.2 reduction electrode includes an active layer on an electrode base. The active layer includes a polymer that includes one or more reaction components selected from a group consisting of a CO.sub.2 reduction catalyst and an activator that bonds CO.sub.2 so as to form a CO.sub.2 reduction intermediate.

  1. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.xbatteries containing the electrodes.

  2. Gas tungsten arc welder with electrode grinder

    Science.gov (United States)

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. 3-Dimensional Calculations on Smelting Electrodes

    Directory of Open Access Journals (Sweden)

    Reidar Innvær

    1987-04-01

    Full Text Available Søderberg selfbaking electrodes are used to conduct electric current into the electric reduction furnace. Two-dimensional computer models for the computation of temperatures, electric currents and thermal stresses have been used for a long time in the R&D effort to improve the construction and operation of the electrode.

  4. electrode of an arbitrary shape

    Directory of Open Access Journals (Sweden)

    P. A. Krutitskii

    1999-01-01

    Full Text Available A problem on electric current in a semiconductor film from an electrode of an arbitrary shape is studied in the presence of a magnetic field. This situation describes the Hall effect, which indicates the deflection of electric, current from electric field in a semiconductor. From mathematical standpoint we consider the skew derivative problem for harmonic functions in the exterior of an open arc in a plane. By means of potential theory the problem is reduced to the Cauchy singular integral equation and next to the Fredholm equation of the 2nd kind which is uniquely solvable. The solution of the integral equation can be computed by standard codes by discretization and inversion of the matrix. The uniqueness and existence theorems are formulated.

  5. Surface characterization of platinum electrodes.

    Science.gov (United States)

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

  6. Improved electrode material for deep brain stimulation.

    Science.gov (United States)

    Petrossians, A; Whalen, J J; Weiland, J D

    2016-08-01

    Deep brain stimulation (DBS) devices have been implanted for treatment of basic tremor, Parkinson's disease and dystonia. These devices use electrodes in contact with tissue to deliver electrical pulses to targeted cells, to elicit specific therapeutic responses. In general, the neuromodulation industry has been evolving towards smaller, less invasive electrodes. However, current electrode materials do not support small sizes without severely restricting the stimulus output. Hence, an improved electrode material will benefit present and future DBS systems. In this study, five DBS leads were modified using a cost-effective and materials-efficient process for applying an ultra-low impedance platinum-iridium alloy coating. One DBS lead was used for insertion test and four DBS leads were chronically pulsed for 12 weeks. The platinum-iridium alloy significantly improved the electrical properties of the DBS electrodes and was robust to insertion into brain and to 12 weeks of chronic pulsing.

  7. Improved technology for manufacture of carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Platon, A.; Dumbrava, A.; Petrescu, N.I.; Simionescu, L.

    2000-07-01

    The paper presents investigations to improve some physico-chemical characteristics of carbon electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.) obtained in different manufacture steps by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  8. Microphonics in biopotential measurements with capacitive electrodes.

    Science.gov (United States)

    Luna-Lozano, Pablo S; Pallas-Areny, Ramon

    2010-01-01

    Biopotential measurements with capacitive electrodes do not need any direct contact between electrode and skin, which saves the time devoted to expose and prepare the contact area when measuring with conductive electrodes. However, mechanical vibrations resulting from physiological functions such as respiration and cardiac contraction can change the capacitance of the electrode and affect the recordings. This transformation of mechanical vibrations into undesired electric signals is termed microphonics. We have evaluated microphonics in capacitive ECG recordings obtained from a dressed subject seated on a common chair with electrodes placed on the front side of the backrest of the chair. Depending on the softness of the backrest, the recordings may be clearly affected by the displacement of the thorax back wall due to the respiration and to the heart's mechanical activity.

  9. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...... - dimensional TPB throughout the electrode volume. Variables that are used for controlling the properties of Ni-cermet electrodes are: (1) Ni/YSZ volume ratio, and (2) porosity and particle size distribution, which mainly affected by raw materials morphology, application methods and production parameters...

  10. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    Science.gov (United States)

    Macías, R.; Fernández, M.; Bragós, R.

    2013-04-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  11. Optimization of return electrodes in neurostimulating arrays

    Science.gov (United States)

    Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel

    2016-06-01

    Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

  12. Cyclic Voltammetric Responses of Nitrate Reductase on Chemical Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    YaRuSONG; HuiBoSHAO; 等

    2002-01-01

    Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.

  13. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  14. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  15. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  16. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  17. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Science.gov (United States)

    Printz, Adam D; Chan, Esther; Liong, Celine; Martinez, René S; Lipomi, Darren J

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.

  18. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    Directory of Open Access Journals (Sweden)

    Adam D Printz

    Full Text Available This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I, a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II, the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary. The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS. Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO in thin-film electronics over large areas (i.e., solar cells or as a method of rapid prototyping for laboratory-scale devices.

  19. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    A Platon; A Dumbrava; N Iutes-Petrescu; Luzia Simionescu

    2000-02-01

    Current industrial carbon electrodes are typically manufactured by blending petroleum coke particles (the filler) with molten coal tar pitch (the binder) and extruding the resultant mix to form the `green electrode’. This is then baked under controlled conditions. In case of usage as anodes in steel electric furnaces (or as other carbon and graphite products), the electrodes could undergo further processing like pitch impregnation or graphitization. During heat treatment, some of the organics are destructively distilled, vaporized or decomposed, resulting in carbon deposition in the electrode. As the vaporized materials exit the body of the electrode they cause porosity in the walls, which results in reduction in density, current carrying capacity and flexural strength. The paper presents investigations to improve some physico-chemical characteristics of these electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.), obtained in different manufacture steps, by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  20. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  1. Effect of electrode fabrication methods on the electrode performance for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan-Hang; Li, Hui-Cheng; Yang, Hou-Hua; Zhang, Xin-Sheng; Zhou, Xing-Gui; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Niu, Li [State Key Laboratory of Electroanalytical Chemistry, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-01-01

    Two palladium/carbon nanofibers modified glassy carbon electrodes, Pd/CNFs/GC-C and Pd/CNFs/GC-E, are fabricated by the conventional powder type method and by the electrophoretic deposition in conjunction with pulse electrodeposition method, respectively. Field emission scanning electron microscopy and high resolution transmission electron microscopy reveal that Pd particles are uniformly dispersed on the two electrodes and X-ray diffraction shows the average Pd particle size of the Pd/CNFs/GC-E electrode is slightly larger than that of the Pd/CNFs/GC-C electrode. Cyclic voltammetric analysis shows that the electrocatalytic activity of Pd/CNFs/GC-E electrode is better than that of Pd/CNFs/GC-C electrode for ethanol oxidation in alkaline media, although the latter has higher Pd loading than the former. This is believed to be due to the higher utilization of Pd catalyst on Pd/CNFs/GC-E electrode than on Pd/CNFs/GC-C electrode, which is confirmed by the electrochemically active surface area measurements. In addition, chronopotentiometric analysis shows the long-term operation stability of Pd/CNFs/GC-E electrode is better than that of Pd/CNFs/GC-C electrode. (author)

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  3. Dynamic behavior of ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E.; Linder, E.; Toth, K.

    1988-01-01

    This book provides a survey of the different techniques employed to study time-dependent processes of ion-selective electrodes. The fundamentals, the impedance field, the polarization field, and the activity step methods are treated in depth with emphasis on the information content of the results provided by the different techniques relevant to the dynamic characteristics of ion-selective electrodes. Within the activity step methods the different theoretical models derived to describe the potential-time function of ion-selective electrodes are critically discussed.

  4. Electrode structures and surfaces for Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, Michael M.; Kang, Sun-Ho; Balasubramanian, Mahalingam; Croy, Jason

    2017-03-14

    This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.

  5. Fluctuations at Electrode-YSZ Interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    of the damping by the large interface. Fig.\\,1 shows a slow potential sweep on a Pt point electrode on a YSZ surface. For the part of the anodic and the cathodic branches where the electrode approaches equilibrium, quadratic expressions are used as smooth approximations for the current -- overvoltage relation...... in D/A converters, duty cycles of thermo regulators, etc. But even so, the dramatic spikes seen at the Ni anode emphasizes the care that must be taken in order to obtain reproducible results from point electrode studies. However, it is noted that Pt cathodes and Ni anodes show reverse patterns...... property of the interface. \

  6. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  7. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  8. A method for making a nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, I.; Ikeyama, M.; Isikava, T.; Ivaki, T.; Yanashkhara, N.

    1983-07-14

    A powder of an active mass is applied to a foam metal plate and it is pressed into the pores of the base. The excess mass is removed from the surface, after which a grid structure is formed on this surface with heating of a powder of a thermally seating resin of the polyethylene type. Then, submerging the electrode plate into the resin suspension, the entire surface of the electrode is covered with a thin layer of powder of a fluorine bearing resin. The electrode has a long service life.

  9. "Bottom-up" transparent electrodes.

    Science.gov (United States)

    Morag, Ahiud; Jelinek, Raz

    2016-11-15

    Transparent electrodes (TEs) have attracted significant scientific, technological, and commercial interest in recent years due to the broad and growing use of such devices in electro-optics, consumer products (touch-screens for example), solar cells, and others. Currently, almost all commercial TEs are fabricated through "top-down" approaches (primarily lithography-based techniques), with indium tin oxide (ITO) as the most common material employed. Several problems are encountered, however, in this field, including the cost and complexity of TE production using top-down technologies, the limited structural flexibility, high-cost of indium, and brittle nature and low transparency in the far-IR spectral region of ITO. Alternative routes based upon bottom-up processes, have recently emerged as viable alternatives for production of TEs. Bottom up technologies are based upon self-assembly of building blocks - atoms, molecules, or nanoparticles - generating thin patterned films that exhibit both electrical conductivity and optical transparency. In this Feature Article we discuss the recent progress in this active and exciting field, including bottom-up TE systems produced from carbon materials (carbon nanotubes, graphene, graphene-oxide), silver, gold, and other metals. The current hurdles encountered for broader use of bottom-up strategies along with their significant potential are analyzed.

  10. Electrodes for solid state devices

    Science.gov (United States)

    Bickler, D. B. (Inventor)

    1983-01-01

    The invention relates to coated metal powders and to dispersions of such powders in liquid vehicles forming screenable, sinterable pastes for use in forming electrodes on photovoltaic devices. The primary nickel or copper metal particles are provided with a carrier of lower melting sintering metals such as 1-20% by weight, of a non-oxidizing metal such as lead or tin. The powdered metal systems operate on the basis of fusing together by way of eutectic alloying. As the paste is heated during firing the organic binder is first vaporized. An eutectic of the base metal (copper) and coating (tin) forms at the intersections of the base metal grains. This eutectic dissolves the grains and as the temperature is raised above the eutectic temperature, more of the base metal is dissolved. While the temperature is held at the higher value, the much smaller amount of sintering metal disappears as the eutectic dissolves and diffuses into the base metal until the composition of the eutectic is so enriched with base metal that it no longer has the eutectic properties and it solidifies. In this high temperature solidification, the base metal grains became thoroughly alloyed together and will not separate at the eutectic temperature (a lower temperature than their solidification by diffusion).

  11. Rank Based Selection of Electrode Positions for a Multi-Lead ECG Electrode Array.

    Science.gov (United States)

    Hintermuller, Christoph; Fischer, Gerald; Seger, Michael; Pfeifer, Bernhard; Modre, Robert; Tilg, Bernhard

    2005-01-01

    Methods for noninvasive imaging of electrical function of the heart seem to become a clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as easy and fast application. In this study we propose a new electrode array meeting clinical requirements such as easy to apply and compatibility with routine leads. Within body surface regions of high sensitivity, identified in a prior, information content based study, the number of required electrodes was optimized using effort-gain plots. These plots were generated by applying a so called type one detector criterion. The optimal array was selected from a set of 12 electrode arrays. Each of them consists of two L-shaped regular spaced parts. The optimal array was found by comparing several layouts and electrode densities to the electrode array we use for clinical studies. It consists of 125 electrodes with a regular spacing between 2cm and 3cm.

  12. Solid Reference Electrode of Metallurgical Oxygen Sensor

    Institute of Scientific and Technical Information of China (English)

    LOU Tian-jun; KONG Xiang-hua; HUANG Ke-qin; LIU Qing-guo

    2006-01-01

    The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference electrode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2%-5% to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.

  13. Electrochemical properties of porous bismuth electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Romann, T., E-mail: tavo.romann@ut.e [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Lust, E. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-08-01

    The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO{sub 4} solution. Firstly, treatment at potential E < -2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi{sup 3+} ions at cathodic potentials E = -2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.

  14. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  15. Surface protected lithium-metal-oxide electrodes

    Science.gov (United States)

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  16. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  17. Fabricating solid carbon porous electrodes from powders

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  18. Fabricating solid carbon porous electrodes from powders

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  19. Field Emission Measurements from Niobium Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  20. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  1. Electrode geometry for electrostatic generators and motors

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  2. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  3. Electrodes for Microfluidic Integrated Optoelectronic Tweezers

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Huang

    2011-01-01

    Full Text Available We report on two types of electrodes that enable the integration of optoelectronic tweezers (OETs with multilayer poly(dimethylsilane- (PDMS- based microfluidic devices. Both types of electrodes, Au-mesh and single-walled carbon nanotube- (SWNT- embedded PDMS thin film, are optically transparent, electrically conductive, and can be mechanically deformed and provide interfaces to form strong covalent bonding between an OET device and PDMS through standard oxygen plasma treatment. Au-mesh electrodes provide high electrical conductivity and high transparency but are lack of flexibility and allow only small deformation. On the other hand, SWNT-embedded PDMS thin film electrodes provide not only electrical conductivity but also optical transparency and can undergo large mechanical deformation repeatedly without failure. This enables, for the first time, microfluidic integrated OET with on-chip valve and pump functions, which is a critical step for OET-based platforms to conduct more complex and multistep biological and biochemical analyses.

  4. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  5. An electrode for a chemical power source

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, I.; Ivaki, T.; Yanashkara, N.

    1983-07-29

    A metal which has a spongy structure is used as the electrode base for the chemical current source (KhIT). The majority of pores has a spindle shaped form and is identically oriented along the direction of the long axis. The size of the pores along the short diameter is 5 to 30 percent of the pore size along the long diameter. The length of a pore along the long axis is 100 to 500 micrometers. In making the electrode the pores are filled with an active mass. The electrode is manufactured in the form of a strip which is turned in a direction perpendicular to the long axis of the pores. The electrodes have excellent characteristics.

  6. Electrode Response in Seismo-Electric Measurements

    Science.gov (United States)

    Dietrich, M.; Devi, M. S.; Cougoulat, G.; Garambois, S.

    2014-12-01

    Seismo-electric measurements consist in recording the transient electric fields generated by seismic waves propagating in fluid-filled porous or fractured media. These electric fields are usually measured by voltage differences between two electrodes. Unfortunately, the electrode spacing and their locations on the ground surface have a direct influence on the signal-to-noise ratio of the measurements, on the recorded waveforms and on their arrival times. Using a filter theory approach and full waveform numerical simulations of the coupled seismic and electromagnetic (EM) wave propagation in porous media, we show that the co-seismic electric arrivals and the small-amplitude EM interface response can be severely distorted and/or attenuated by conventional surface electrode layouts. To this end, we have computed synthetic electrograms providing the electric potential, to allow us to determine voltage differences between two arbitrary locations of electrodes. Unlike the low-pass filter obtained by connecting two geophones in series, the filter associated with a voltage difference is shown to be a band-pass filter. As a result, not only horizontally and obliquely propagating waves but also vertically propagating waves undergo selective frequency attenuation in the 0-150 Hz frequency band used in field measurements. It also turns out that electrode spacing cannot be optimized to enhance the electric signature of typical seismic reflections and EM interface response, neither with horizontal dipoles nor with reasonably sized vertical dipoles. To circumvent this problem, we consider arrangements of 3 and 5 electrodes analogous to multilayer capacitors in electronics. We show that such arrangements are ideally described by low-pass filters preserving the quasi-plane waves corresponding to the EM interface response. However, in reality, these benefits are challenged by the imperfect coupling between the electrodes and the ground, represented by an electrode contact resistance

  7. Finite element model of needle electrode sensitivity

    Science.gov (United States)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  8. Lightweight Electrode For Nickel/Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1994-01-01

    Improved substrate for nickel electrode increases specific energy of nickel/hydrogen cell. Consists of 50 percent by weight nickel fiber, 35 percent nickel powder, and 15 percent cobalt powder. Porosity and thickness of nickel electrodes affect specific energy, initial performance, and cycle life of cell. Substrate easily manufactured with much larger porosities than those of heavy-sintered state-of-art nickel substrate.

  9. Charge Transfer in Nanocrystalline Semiconductor Electrodes

    Directory of Open Access Journals (Sweden)

    M. Bouroushian

    2013-01-01

    Full Text Available Nanocrystalline electrodes in liquid junction devices possess a number of unique properties arising from their convoluted structure and the dimensions of their building units. The light-induced charge separation and transport in photoelectrochemical systems using nanocrystalline/nanoporous semiconductor electrodes is discussed here in connection with the basic principles of the (Schottky barrier theory. Recent models for charge transfer kinetics in normal and unipolar (dye-sensitized cells are reviewed, and novel concepts and materials are considered.

  10. Cosmic-Ray Detectors With Interdigitated Electrodes

    Science.gov (United States)

    Cunningham, Thomas J.; Mazed, Mohammed; Holtzman, Melinda J.; Fossum, Eric R.

    1995-01-01

    Detectors measure both positions of incidence and energies of incident charged particles. Stack of detector wafers intercept cosmic ray. Measure positions of incidence to determine cosmic-ray trajectory and charge generated within them (proportional to cosmic-ray energy dissipated within them). Interdigital electrode pattern repeated over many rows and columns on tops of detector wafers in stack. Electrode pattern defines pixels within which points of incidence of incident cosmic rays located.

  11. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  12. Complete electrode model in EEG: relationship and differences to the point electrode model

    Science.gov (United States)

    Pursiainen, S.; Lucka, F.; Wolters, C. H.

    2012-02-01

    In electroencephalography (EEG) source analysis, a primary current density generated by the neural activity of the brain is reconstructed from external electrode voltage measurements. This paper focuses on accurate and effective simulations of EEG through the complete electrode model (CEM). The CEM allows for the incorporation of the electrode size, shape and effective contact impedance into the forward simulation. Both neural currents in the brain and shunting currents between the electrodes and the skin can affect the measured voltages in the CEM. The goal of this study was to investigate the CEM by comparing it with the point electrode model (PEM), which is the current standard electrode model for EEG. We used a three-dimensional, realistic and high-resolution finite element head model as the reference computational domain in the comparison. The PEM could be formulated as a limit of the CEM, in which the effective impedance of each electrode goes to infinity and the size tends to zero. Numerical results concerning the forward and inverse errors and electrode voltage strengths with different impedances and electrode sizes are presented. Based on the results obtained, limits for extremely high and low impedance values of the shunting currents are suggested.

  13. Surface EMG of jaw elevator muscles: effect of electrode location and inter-electrode distance.

    Science.gov (United States)

    Castroflorio, T; Farina, D; Bottin, A; Piancino, M G; Bracco, P; Merletti, R

    2005-06-01

    This study addresses methodological issues on surface electromyographic (EMG) signal recording from jaw elevator muscles. The aims were (i) to investigate the sensitivity to electrode displacements of amplitude and spectral surface EMG variables, (ii) to analyse if this sensitivity is affected by the inter-electrode distance of the bipolar recording, and (iii) to investigate the effect of inter-electrode distance on the estimated amplitude and spectral EMG variables. The superficial masseter and anterior temporalis muscles of 13 subjects were investigated by means of a linear electrode array. The percentage difference in EMG variable estimates from signals detected at different locations over the muscle was larger than 100% of the estimated value. Increasing the inter-electrode distance resulted in a significant reduction of the estimation variability because of electrode displacement. A criterion for electrode placement selection is suggested, with which the sensitivity of EMG variables to small electrode displacements was of the order of 2% for spectral and 6% for amplitude variables. Finally, spectral and, in particular, amplitude EMG variables were very sensitive to inter-electrode distance, which thus should be fixed when subjects or muscles are compared in the same or different experimental conditions.

  14. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  15. Electrode Configurations in Atmospheric Pressure Plasma Jets

    Science.gov (United States)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  16. A multi-electrode biomimetic electrolocation sensor

    Science.gov (United States)

    Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.

    2012-04-01

    We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.

  17. Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking.

    Science.gov (United States)

    Zhao, Qiang; Wang, Wenjun; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao; Liu, Lu; Mei, Xuesong; Ding, Yucheng; Lu, Bingheng

    2016-08-01

    Nanogap electrodes are realized using pre-patterned electrodes and a swelling controlled cracking method. Parallel fabrication of nanogap electrodes on flexible substrates can be achieved using this method. This swelling-controlled cracking method is promising for fabricating high-performance flexible electronics. UV photodetectors with ZnO nanoparticle-bridged nanogap electrodes exhibit high responsivity and external quantum efficiency.

  18. Ion Recognition and Analytical Application of a Fibroin Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiong CHENG; Tu Zhi PENG; Xiao Bo HU; Catherine F.YANG

    2004-01-01

    A novel fibroin modified electrode with ion recognition was reported. The membrane with isoelectric point of pH 4.5, was modified on graphite and carbon fiber electrodes. The pH-responsive ion recognition of the modified electrode was investigated by use of some neurocompounds. The fibroin carbon fiber electrode has been used for in-vivo determination.

  19. Electroreduction of cefetamet on mercury platinum and gold electrodes

    Directory of Open Access Journals (Sweden)

    P. ZUMAN

    2000-01-01

    Full Text Available The electroreduction of cefetamet (CEF using gold and platinum electrodes has been investigated in slightly alkaline medium (pH 8.40 where adsorption, previously observed at mercury electrode, was pronounced. This investigation was performed in order to determine whether the adsorption interfers with the reduction process even at solid electrodes and to compare with a mercury electrode.

  20. Anodes - Materials for negative electrodes in electrochemical energy technology

    Science.gov (United States)

    Holze, Rudolf

    2014-06-01

    The basic concepts of electrodes and electrochemical cells (including both galvanic and electrolytic ones) are introduced and illustrated with practical examples. Particular attention is paid to negative electrodes in primary and secondary cells, fuel cell electrodes and electrodes in redox flow batteries. General features and arguments pertaining to selection, optimization and further development are highlighted.

  1. [Effects of different electrodes on bioelectrical impedance values].

    Science.gov (United States)

    Nakadomo, F; Tanaka, K; Yokoyama, T; Maeda, K

    1990-01-01

    Effects of different electrodes on bioelectrical impedance values measured by the Selco bioelectrical impedance plethysmograph (SIF-881, Japan) were investigated using 8 adult females (age: 35.3 +/- 7.6 yr, Ht: 156.9 +/- 3.8 cm, Wt: 57.1 +/- 9.9 kg, and hydrodensitometrically determined body fat: 29.4 +/- 6.0%). The Lectec MP3000 electrode (Liberty Carton, USA) and the Bipolar electrode (Sanwa, Japan) produced significantly higher impedance values when compared to the Disposable electrode (Adovance, Japan) and the ECG electrode (Nihon Kohden, Japan). The coefficient of variation was significantly lower for the Disposable electrode (0.8%) and the ECG electrode (0.2%) than that for the Lectec MP3000 electrode (2.3%) and the Bipolar electrode (4.9%). In conclusion, the ECG electrode provides higher bioelectrical impedance values with the highest reproducibility in the assessment of human body composition by the bioelectrical impedance plethysmography.

  2. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    . The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes......, and the instrument input impedance. Using analytical formulations for the potentials around prolate and oblate spheroidal electrode models (as approximations for rod and plate electrodes), we have investigated the performance and accuracy of the focus-one protocol in estimating single-electrode grounding resistances...

  3. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    Science.gov (United States)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  4. 二维平面细胞微图案化技术及其生物学应用%Methods for Cell Micropatterning on Two-Dimensional Surfaces and Their Applications in Biology

    Institute of Scientific and Technical Information of China (English)

    刘文文; 陈振玲; 蒋兴宇

    2009-01-01

    The technologies that we call cell micropatterning allow the control of the shape and size of cell adhesion. Combination of micro/nano technology, surface chemistry, electrochemistry and photochemistry enables us to control the adhesion, migration, differentiation of cells and the interactions between different types of cells. These methodologies bring about a new platform for the studies of cell biology. A number of techniques for cell patterning and compares their advantages and disadvantages were reviewed in this article. The applications of cell micropatterning, including those for fundamental studies in cell biology, tissue engineering and cell-based biosensors were also discussed.%可以控制细胞粘附形状、大小的方法统称为细胞图案化技术.这些方法结合微纳米制备、表面化学、电化学和光化学等手段可以动态控制细胞的粘附、迁移、分化及其相互作用,为细胞生物学研究提供了一个新平台.本文介绍了二维平面细胞图案化的各种方法,并对其优缺点进行了总结,评述了细胞图案化技术在细胞生物学基础研究、组织工程以及基于细胞的生物传感器领域的应用.

  5. Encapsulated electrodes for microchip devices: microarrays and platinized electrodes for signal enhancement.

    Science.gov (United States)

    Selimovic, Asmira; Martin, R Scott

    2013-07-01

    In this paper, we present two new methodologies of improving the performance of microchip-based electrochemical detection in microfluidic devices. The first part describes the fabrication and characterization of epoxy-embedded gold microelectrode arrays that are evenly spaced and easily modified. Electrodepositions using a gold plating solution can be performed on the electrodes to result in a 3D pillar array that, when used with microchip-based flow injection analysis, leads to an eightfold increase in signal (when compared to a single electrode), with the LOD for catechol being 4 nM. For detecting analytically challenging molecules such as nitric oxide (NO), platinization of electrodes is commonly used to increase the sensitivity. It is shown here that microchip devices containing either the pillar arrays or more traditional glassy carbon electrodes can be modified with platinum black (Pt-black) for NO detection. In the case of using glassy carbon electrodes for NO detection, integration of the resulting platinized electrode with microchip-based flow analysis resulted in a ten times signal increase relative to use of a bare glassy carbon electrode. In addition, it is demonstrated that these electrodes can be coated with Nafion to impart selectivity toward NO over interfering species such as nitrite. The LOD for NO when using the Pt-black /Nafion-coated glassy carbon electrode was 9 nM. These electrodes can also be embedded in a polystyrene substrate, with the applicability of these sensitive and selective electrodes being demonstrated by monitoring the adenosine triphosphate-mediated release of NO from endothelial cells immobilized in a microfluidic network without any adhesion factor.

  6. Organometallic electrodes: modification of electrode surfaces through cathodic reduction of cyclopentadienyldiazonium complexes of cobalt and manganese.

    Science.gov (United States)

    Laws, Derek R; Sheats, John; Rheingold, Arnold L; Geiger, William E

    2010-09-21

    Two organometallic complexes having cyclopentadienyldiazonium ligands have been isolated and characterized by spectroscopy, X-ray crystallography, and electrochemistry. Both CoCp(η(5)-C(5)H(4)N(2))(2+) (2(2+)) and Mn(CO)(3)(η(5)-C(5)H(4)N(2))(+) (3(+)) undergo facile cyclopentadienyldiazonium ligand-based one-electron reductions which liberate dinitrogen and result in strong binding of the cyclopentadienyl ligand to a glassy carbon surface, similar to the processes well established for organic aryldiazonium salts. The organometallic-modified electrodes are robust and have a thickness of approximately one monolayer (Γ = (2-4) × 10(-10) mol cm(-2)). Their voltammetric responses are as expected for a cobaltocenium-modified electrode, [CoCp(η(5)-C(5)H(4)-E)](+), where Cp = cyclopentadienyl and E = electrode, and a "cymantrene"-modified electrode Mn(CO)(3)(η(5)-C(5)H(4)-E). The cobaltocenium electrode has two cathodic surface waves. The first (E(1/2) = -1.34 V vs ferrocene) is highly reversible, whereas the second (E(pc) = -2.4 V) is not, consistent with the known behavior of cobaltocenium. The cymantrene-substituted electrode has a partially chemically reversible anodic wave at E(1/2) = 0.96 V, also consistent with the behavior of its Mn(CO)(3)Cp parent. Many of the properties of aryl-modified electrodes, such as "blockage" of the voltammetric responses of test analytes, are also seen for the organometallic-modified electrodes. Surface-based substitution of a carbonyl group by a phosphite ligand, P(OR)(3), R = Ph or Me, was observed when the cymantrene-modified electrode was anodically oxidized in the presence of a phosphite ligand. The successful grafting of organometallic moieties by direct bonding of a cyclopentadienyl ligand to electrode surfaces expands the chemical and electrochemical dimensions of diazonium-based modified electrodes.

  7. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R.; Fletcher, P.; Vercaemer, C.

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  8. Built-in test of electrode degradation of multi-electrode array biosensors

    NARCIS (Netherlands)

    Liu, H.Y.; Dumas, N.; Richardson, A.; Heal, R.; Kerkhoff, Hans G.

    2006-01-01

    Micro-electrode array (MEA) is a widely used platform in biosensor systems, which provide a technology in communicating with micro chemical and biological world. This paper addresses hte topic of testing micro electrode degradation for MEAs, which is a common encountered damage during its applicatio

  9. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.

    Science.gov (United States)

    Gaikwad, Abhinav M; Arias, Ana Claudia

    2017-02-22

    Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm(2)) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.

  10. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  11. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode.

    Science.gov (United States)

    Goehring, Jenny L; Neff, Donna L; Baudhuin, Jacquelyn L; Hughes, Michelle L

    2014-08-01

    This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d' scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs.

  12. Copper(I) electrode function of two types of copper(II) ion-selective electrodes.

    Science.gov (United States)

    Neshkova, M; Sheytanov, H

    1985-08-01

    The response of two types of solid-state copper ion-selective electrodes with homogeneous membranes of CuAgSe and Cu(2-x)Se has been investigated in copper(I) solutions, prepared electrochemically by insitu generation from a copper anode in chloride medium. The selectivity coefficient K(pot)(Cu+, Cu(2+)) both types of electrodes has been determined. It is 10(-5.7) for the copper selenide sensor, and 10(-6.2) for the copper silver selenide one. These values are very close to that calculated for an exchange reaction proceeding on the electrode surface. The similarity in K(pot)(Cu+ ,Cu(2+)) values for different chalcogenidebased sensors suggests a common potential-generating mechanism. High chloride concentration does not interfere with the electrode response towards Cu(I), but distorts the electrode response to Cu(II).

  13. Regular arrays of microdisc electrodes: simulation quantifies the fraction of 'dead' electrodes.

    Science.gov (United States)

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; Del Campo, Javier; Mas, Roser; Muñoz, Francesc Xavier; Compton, Richard G

    2006-03-01

    Arrays of microdisc electrodes have found widespread use in electroanalysis. These are commonly produced lithographically and practical arrays may contain up to hundreds of individual disc electrodes (e.g. of gold, platinum, indium,...) to maximise sensitivity and minimise limits of detection. Typically, however, the lithographic fabrication process is imperfect resulting in a significant fraction (often tens of percent) of electrochemically inactive electrodes. We demonstrate that a 2-dimensional simulation based on the diffusion domain approximation in conjugation with simple experiments on the ferrocyanide redox couple in aqueous solutions can be used to rigorously 'count' the number of active electrodes in a non-destructive fashion. The agreement with an independent count in which active electrodes are identified via electro-plating with copper followed by ex situ microscopic examination is quantitatively excellent.

  14. FINAL REPORT: Transformational electrode drying process

    Energy Technology Data Exchange (ETDEWEB)

    Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  15. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  16. Microfabricated Reference Electrodes and their Biosensing Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2010-03-01

    Full Text Available Over the past two decades, there has been an increasing trend towards miniaturization of both biological and chemical sensors and their integration with miniaturized sample pre-processing and analysis systems. These miniaturized lab-on-chip devices have several functional advantages including low cost, their ability to analyze smaller samples, faster analysis time, suitability for automation, and increased reliability and repeatability. Electrical based sensing methods that transduce biological or chemical signals into the electrical domain are a dominant part of the lab-on-chip devices. A vital part of any electrochemical sensing system is the reference electrode, which is a probe that is capable of measuring the potential on the solution side of an electrochemical interface. Research on miniaturization of this crucial component and analysis of the parameters that affect its performance, stability and lifetime, is sparse. In this paper, we present the basic electrochemistry and thermodynamics of these reference electrodes and illustrate the uses of reference electrodes in electrochemical and biological measurements. Different electrochemical systems that are used as reference electrodes will be presented, and an overview of some contemporary advances in electrode miniaturization and their performance will be provided.

  17. Bioinspired fractal electrodes for solar energy storages.

    Science.gov (United States)

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10(-3) Whcm(-3). In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10(-1) Whcm(-3)- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  18. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  19. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-01-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924

  20. Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance

    Science.gov (United States)

    Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander

    2016-11-01

    Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.

  1. A novel three-electrode solid electrolyte hydrogen gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Min; Yang, Chunling; Zhang, Yan [Harbin Insitute of Technology, Harbin (China). School of Computer Science and Technology; Jia, Zheng [Harbin Insitute of Technology, Harbin (China). School of Chemical Engineering and Technology

    2013-07-01

    A three-electrode solid electrolyte hydrogen gas sensor is explored in this paper. The sensor utilized phosphotungstic acid as the electrolyte material and adopted platinum, nickel and tungsten as the three-electrode materials respectively. In real applications, platinum was used as the measuring electrode, nickel was used as the adjusting electrode and tungsten was used as the reference electrode. In order to compare the performance of the new sensor with that of the traditional two-electrode sensor, the hydrogen concentrations were adjusted so as to detect the output of the two-electrode sensor and the three-electrode sensor. The dynamic range between the measuring electrode and the reference electrode is about 0.65V and the highest detectable limit is 12% for the three-electrode solid hydrogen gas sensor. While the dynamic range is about 0.25V and and the highest detectable limit is 1% for the two-electrode solid electrolyte gas sensor. The results demonstrate that the three-electrode solid hydrogen gas sensor has a higher resolution and detectable limit than the two-electrode sensor. abstract environment.

  2. FEM electrode refinement for electrical impedance tomography.

    Science.gov (United States)

    Grychtol, Bartlomiej; Adler, Andy

    2013-01-01

    Electrical Impedance Tomography (EIT) reconstructs images of electrical tissue properties within a body from electrical transfer impedance measurements at surface electrodes. Reconstruction of EIT images requires the solution of an inverse problem in soft field tomography, where a sensitivity matrix, J, of the relationship between internal changes and measurements is calculated, and then a pseudo-inverse of J is used to update the image estimate. It is therefore clear that a precise calculation of J is required for solution accuracy. Since it is generally not possible to use analytic solutions, the finite element method (FEM) is typically used. It has generally been recommended in the EIT literature that FEMs be refined near electrodes, since the electric field and sensitivity is largest there. In this paper we analyze the accuracy requirement for FEM refinement near electrodes in EIT and describe a technique to refine arbitrary FEMs.

  3. Electrode Kinetics in High Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Bay, Lasse

    1998-01-01

    The O_2 reduction on Pt electrode with an yttria stabilized zirconia (YSZ) electrolyte is examined with potential step, voltammetry and impedance measurements. Inductive hysteresis are observed in all cases, indicating an activation-deactivation process for the electrode reaction. The same is found...... when the electrolyte is Gd doped ceria. The activation is generated by current passage. The time constant for the hysteresis is large considering the high operating temperatures, 800- 1000^oC. For the activation process potential steps give two time constants 10^2s and 10^3s for an anodic current, 10...... treated by modelling. The phenomenological model proposed can explain the principal behaviour of the inductive hysteresis. The activation process has first order dependence of the current density and the deactivation first order with respect to the activation.AFM pictures of the electrode...

  4. Interdigitated ring electrodes: Theory and experiment

    CERN Document Server

    Barnes, Edward O; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario; Lewis, Grace E M; Dale, Sara E C; Marken, Frank; Compton, Richard G

    2013-01-01

    The oxidation of potassium ferrocyanide, K_4Fe(CN)_6, in aqueous solution under fully supported conditions is carried out at interdigitated band and ring electrode arrays, and compared to theoretical models developed to simulate the processes. Simulated data is found to fit well with experimental results using literature values of diffusion coefficients for Fe(CN)_6^(4-) and Fe(CN)_6^(3-). The theoretical models are used to compare responses from interdigitated band and ring arrays, and the size of ring array required to approximate the response to a linear band array is investigated. An equation is developed for the radius of ring required for a pair of electrodes in a ring array to give a result with 5% of a pair of electrodes in a band array. This equation is found to be independent of the scan rate used over six orders of magnitude.

  5. AC Dielectrophoresis Using Elliptic Electrode Geometry

    Directory of Open Access Journals (Sweden)

    S. M. Rezaul Hasan

    2011-01-01

    Full Text Available This paper presents negative AC dielectrophoretic investigations using elliptic electrode geometry. Simulations of the electric field gradient variation using various ratios of the semimajor and the semiminor axis were carried out to determine the optimum elliptic geometry for the dielectrophoretic electrokinetics of specimen in an assay with laminar (low Reynolds number fluid flow. Experimental setup of the elliptic electrode assembly using PCB fabrication and electrokinetic accumulation of specimen in a dielectrophoretic cage is also being reported. Using an actuating signal between 1 kHz and 1 MHz, successful trapping of 45 μm polystyrene beads suspended in distilled water was demonstrated due to negative dielectrophoresis near 100 kHz using the novel elliptic electrode.

  6. Potentiodynamic behaviour of mechanically polished titanium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Camara, O.R.; DePauli, C.P.; Giordano, M.C.

    1984-08-01

    The behaviour of titanium electrodes mechanically polished and/or anodically polarized at low positive potential in solutions at constant ionic strength between pH 0.3 and 11.0 is reported. The oxide electroformation potential on a mechanically polished electrode shows a complex dependence on the bulk solution pH. This dependence is similar to that obtained through acid-base titration with titanium as the indicating electrode. The formation of hydroxo-complexes on the spontaneously formed titanium oxide offers a possible explanation for the oxide electroformation potential dependence on pH. Anodic and cathodic wide current peaks are obtained between the potential of the hydrogen evolution and that of the massive oxide electroformation; the corresponding redox system becomes evident at pH 4.0 from the first potentiodynamic cycle. An interpretation of these processes involving the participation of non stoichiometric oxides and hydrogen ions is attempted.

  7. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  8. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  9. Electrochemical hydrogenation of thiophene on SPE electrodes

    Science.gov (United States)

    Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.

    2017-01-01

    Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.

  10. Advanced Materials for Neural Surface Electrodes.

    Science.gov (United States)

    Schendel, Amelia A; Eliceiri, Kevin W; Williams, Justin C

    2014-12-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

  11. Electrode reactions and electroanalysis of organomercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaz, Vladimir A [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Gul' tyai, Vadim P [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-06-09

    Characteristic features of mechanisms and kinetics of electrode reactions of organomercury compounds (symmetrical, non-symmetrical) and organomercury salts on a mercury electrode are analyzed. Attention is focused on the effect of coordination, adsorption and the nature and properties of intermediates on these processes as well as on the formation of organomercury derivatives in the adsorption of organic and hetero-organic compounds on a mercury electrode. The kinetics of heterogeneous chemical equilibrium {sup o}rganic calomel{sup -}symmetrical organomercury compound in the adsorption layer and the relative stability of intermediates in the one-electron reduction of organomercury salts are discussed as well as the electrolytic hydrogen evolution catalyzed by organomercury intermediates. The problems of combined and separate electrochemical quantitation of organic and inorganic mercury compounds in natural objects are considered.

  12. Manganese oxide composite electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  13. Cleaved-edge-overgrowth nanogap electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc, E-mail: m.tornow@tu-bs.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 M{Omega} range with k{Omega} lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  14. Regenerative Electrode Interfaces for Neural Prostheses.

    Science.gov (United States)

    Thompson, Cort H; Zoratti, Marissa J; Langhals, Nicholas B; Purcell, Erin K

    2016-04-01

    Neural prostheses are electrode arrays implanted in the nervous system that record or stimulate electrical activity in neurons. Rapid growth in the use of neural prostheses in research and clinical applications has occurred in recent years, but instability and poor patency in the tissue-electrode interface undermines the longevity and performance of these devices. The application of tissue engineering strategies to the device interface is a promising approach to improve connectivity and communication between implanted electrodes and local neurons, and several research groups have developed new and innovative modifications to neural prostheses with the goal of seamless device-tissue integration. These approaches can be broadly categorized based on the strategy used to maintain and regenerate neurons at the device interface: (1) redesign of the prosthesis architecture to include finer-scale geometries and/or provide topographical cues to guide regenerating neural outgrowth, (2) incorporation of material coatings and bioactive molecules on the prosthesis to improve neuronal growth, viability, and adhesion, and (3) inclusion of cellular grafts to replenish the local neuron population or provide a target site for reinnervation (biohybrid devices). In addition to stabilizing the contact between neurons and electrodes, the potential to selectively interface specific subpopulations of neurons with individual electrode sites is a key advantage of regenerative interfaces. In this study, we review the development of regenerative interfaces for applications in both the peripheral and central nervous system. Current and future development of regenerative interfaces has the potential to improve the stability and selectivity of neural prostheses, improving the patency and resolution of information transfer between neurons and implanted electrodes.

  15. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  16. System of fabricating a flexible electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA

    2012-01-28

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  17. System of fabricating a flexible electrode array

    Science.gov (United States)

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.

    2010-10-12

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  18. Hollow electrode loose plate SOFC design

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, B.C.; Dongen, B.A.M. van; Monaster, G.A. [Seed Capital Investments B.V., Utrecht (Netherlands); Roosmalen, J.A.M. van; Plaisier, K.H.; Schoonman, J. [Delft Univ. of Technology (Netherlands). Lab. for Applied Inorganic Chemistry

    1995-12-31

    A novel planar SOFC design is presented, based on the loose stacking of hollow electrode elements, conventional plate type electrolytes and interconnectors. This facilitates free thermal expansion during operation, and thermal cycling, thereby significantly improving prospects for reliable SOFC operation in power generation practice. Each individual element only consists of one material, eliminating the need for sealing and for matching thermal expansion coefficients of fuel cell components. Application of hollow electrodes results in an inherent manifolding of the gas streams eliminating the need for seals at the fuel cell stack itself. The design has been tested at laboratory scale and a small working prototype fuel cell has been successfully tested.

  19. Ion selective electrodes in environmental analysis

    Directory of Open Access Journals (Sweden)

    Radu Aleksandar

    2013-01-01

    Full Text Available An overview is given dealing with application of ion-selective electrodes (ISEs in environmental analysis. ISEs are placed into the context of the trend of development of sensors for extensive and frequent monitoring. Discussed are the issues such as sensing platforms and their mass-production, improvement of precision, diagnostic of sensor’s functionality, and development of reference electrodes and several examples of real-life application of ISEs in environmental analysis are given. The main emphasis of this article is directed towards summarizing recent of authors’ results during the past several years.

  20. System of fabricating a flexible electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, Peter (Pleasanton, CA); Polla, Dennis L. (Roseville, MN); Maghribi, Mariam N. (Davis, CA); Hamilton, Julie (Tracy, CA); Humayun, Mark S. (La Canada, CA); Weiland, James D. (Valencia, CA)

    2010-10-12

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  1. System of fabricating a flexible electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, Peter (Pleasanton, CA); Polla, Dennis L. (Roseville, MN); Maghribi, Mariam N. (Davis, CA); Hamilton, Julie (Tracy, CA); Humayun, Mark S. (La Canada, CA); Weiland, James D. (Valencia, CA)

    2012-01-28

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  2. Template-directed porous electrodes in electroanalysis.

    Science.gov (United States)

    Walcarius, Alain

    2010-01-01

    Nano- and/or macrostructuring of electrode surfaces has recently emerged as a powerful method of improving the performances of electrochemical devices by enhancing both molecular accessibility and rapid mass transport via diffusion, by increasing the electroactive surface area in comparison to the geometric one, and/or by providing confinement platforms for hosting suitable reagents. This brief overview highlights how template technology offers advantages in terms of designing new types of porous electrodes-mostly based on thin films, and functionalized or not-and discusses their use in analytical chemistry via some recent examples from the literature on electrochemical sensors and biosensors.

  3. A method for making Mn02 electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M.; Nisino, A.

    1983-03-30

    A layer of Mn02, produced during thermal breakdown of manganese salts, is applied to a metallic current outlead. Then a mixture of granulated Mn02 and an electricity conducting additive and a binder is applied to this layer. The electrode contains 1 to 5 percent by mass epoxide resin, 5 to 15 percent by mass carbon powder, 0.1 to 10 percent by mass beta-Mn02 and 70 to 90 percent by mass gamma-Mn02. The electrode has high mechanical strength and good discharge characteristics.

  4. Flexible electrode array for artifical vision

    Science.gov (United States)

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie

    2006-12-05

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  5. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    Science.gov (United States)

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes. PMID:28139765

  6. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  7. Paper‐Based Electrodes for Flexible Energy Storage Devices

    Science.gov (United States)

    Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu

    2017-01-01

    Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532

  8. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    Science.gov (United States)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  9. Textile electrode characterization: Dependencies in the skin-clothing-electrode interface

    OpenAIRE

    2013-01-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-...

  10. Long life lithium batteries with stabilized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Liu, Jun; Vissers, Donald R; Lu, Wenquan

    2015-04-21

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In certain electrolytes, the alkali metal salt is a bis(chelato)borate and the additives include substituted or unsubstituted linear, branched or cyclic hydrocarbons comprising at least one oxygen atom and at least one aryl, alkenyl or alkynyl group. In other electrolytes, the additives include a substituted aryl compound or a substituted or unsubstituted heteroaryl compound wherein the additive comprises at least one oxygen atom. There are also provided methods of making the electrolytes and batteries employing the electrolytes. The invention also provides for electrode materials. Cathodes of the present invention may be further stabilized by surface coating the particles of the spinel or olivine with a material that can neutralize acid or otherwise lessen or prevent leaching of the manganese or iron ions. In some embodiments the coating is polymeric and in other embodiments the coating is a metal oxide such as ZrO.sub.2, TiO.sub.2, ZnO, WO.sub.3, Al.sub.2O.sub.3, MgO, SiO.sub.2, SnO.sub.2 AlPO.sub.4, Al(OH).sub.3, a mixture of any two or more thereof.

  11. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  12. Contact dermatitis caused by ECG electrode paste.

    Science.gov (United States)

    Cochran, R J; Rosen, T

    1980-12-01

    A case of contact dermatitis caused by ECG electrode cream is presented and the pertinent literature is reviewed. Our patient was found to be allergic to propylene glycol. Patch-testing remains an invaluable tool in the evaluation of patients suspected of being allergic to ECG paste, creams, and gels.

  13. Electrochemistry of ABTS at Glassy Carbon Electrodes

    Institute of Scientific and Technical Information of China (English)

    Han Zeng; Zhi-qiang Tang; Ling-wen Liao; Jing Kang; Yan-xia Chen

    2011-01-01

    The electrochemical and the mass transport behavior of ABTS2-/ABTS- (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate)) redox couple at glassy carbon electrode (GCE) in phosphate buffer solution (PBS,pH=4.4) is studied in detail by cyclic voltammetry combined with rotating disk electrode system.From the i-E curves recorded at different electrode rotating rate,rate constant,and transfer coefficient for ABTS 2-(≒)ABTS-+e reaction at GCE electrode and the diffusion coefficient of ABTS2- in PBS are estimated to be 4.6× 10-3 cm/s,0.28,and 4.4× 10-6 cm2/s,respectively.The transfer coefficient with a value of ca.0.28 differs largely from the value of 0.5 that is always assumed in the literature.The origins for the difference of the rate constant determined and the challenges for estimating the standard rate constant are discussed.The performance for such ABTS2- mediated bio-cathode toward oxygen reduction reaction is discussed according to the over-potential drop as well as current output limit associated with the charge transfer kinetics of ABTS2- (≒)ABTS- +e redox reaction and/or the mass transport effect.

  14. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  15. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains...

  16. Scanning reference electrode techniques in localized corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions.

  17. A tubular electrode for radiofrequency ablation therapy

    KAUST Repository

    Antunes, Carlos Lemos Lemos Lemos

    2012-07-06

    Purpose – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded as well as potential electrode for performing RF ablation therapy on the tumor. The purpose of this work is to perform numerical and experimental analyses in order to characterize the lesion volume induced in biological tissue using this kind of tubular electrode. Design/methodology/approach – Data concerning electrical conductivity and dimension of the damaged tissue after RF ablation procedure were obtained from ex vivo samples. Next, numerical models using 3D finite element method were obtained reassembling the conditions considered at experimentation setup and results were compared. Findings – Numerical and experimental results show that a regular volume of damaged tissue can be obtained considering this type of electrode. Also, results obtained from numerical simulation are close to those obtained by experimentation. Originality/value – SEMSs, commonly used as devices to minimize obstruction problems due to the growth of tumors, may still be considered as an active electrode for RF ablation procedures. A method considering this observation is presented in this paper. Also, numerical simulation can be regarded in this case as a tool for determining the lesion volume.

  18. An installation for pressing pasted electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsudzava, S.; Sugimoto, K.

    1983-07-13

    The active mass is placed on the current outlet and the electrode is pressed and its thickness is regulated by passing it through rollers. The water and the adhering particles of the active mass are continuously sucked off during rotation of the rollers.

  19. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  20. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  1. AC impedance study of degradation of porous nickel battery electrodes

    Science.gov (United States)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  2. The feasibility of bench tests for disposable ECG electrode adhesiveness.

    Science.gov (United States)

    Baker, C D; Schoenberg, A A; Booth, H E

    1979-01-01

    The feasibility of recommending one standard bench test that adequately qualifies electrode adhesives for clinical use was examined by UBTL. Small strips, cut from whole, commercially available disposable ECG electrodes, were attached to three types of surfaces, and samples of each type of electrode were peel tested at 15 minutes, 8 hours, and 48 hours after attachment. A program was developed to average, display, and calculate peel strength parameters. Analysis of the data showed that (a) the peel strength of electrodes varied by more than a factor of 10 when measured on human skin, and by more than a factor of 3 when measured on bench test surfaces, and (b) the peel strength of the electrode adhesive strips did not correlate with intact electrode loss on ambulatory subjects. Therefore, UBTL could not recommend one bench test that would measure adhesion performance for all electrode types appropriate for inclusion in an AAMI ECG electrode standard.

  3. Structure and Modification of Electrode Materials for Protein Electrochemistry.

    Science.gov (United States)

    Jeuken, Lars J C

    The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

  4. Modified solid electrodes for stripping voltammetric determination of tin

    Energy Technology Data Exchange (ETDEWEB)

    Faller, C. [Kaiserslautern Univ. (Germany). Fachbereich Chemie]|[Univ. Trier (Germany). Abt. Anorganische und Analytische Chemie; Henze, G. [Kaiserslautern Univ. (Germany). Fachbereich Chemie]|[Univ. Trier (Germany). Abt. Anorganische und Analytische Chemie; Stojko, N. [Ural State Economic University, 8th of March Street 62, 620219 Ekaterinburg (Russian Federation); Saraeva, S. [Ural State Economic University, 8th of March Street 62, 620219 Ekaterinburg (Russian Federation); Brainina, K. [Ural State Economic University, 8th of March Street 62, 620219 Ekaterinburg (Russian Federation)

    1997-07-01

    The paper describes the determination of tin by ASV using modified thick film electrodes. Three different types of electrodes were developed: One modified with a mixture of Nafion and mercury(II)acetate, one modified with diethyldithiocarbamate (DDC) or pyrrolidinedithiocarbamate (PDC) and mercury(II)acetate, and one modified with calomel. The analyte was accumulated on the electrode surface after special electrochemical pretreatment of the modified electrode. After recording the voltammogram the electrodes were electrochemically regenerated. By virtue of their lifetime and their measurement reproducibility, we preferred the DDC and PDC modified electrodes. They can be used for months without changing their chemical characteristics. The linear range for tin determination with these electrodes is between 1 and 100 {mu}g/L; the detection limit was calculated as 0.9 {mu}g/L. The electrodes were applied to the direct determination of tin in different canned fruit juices without special sample pretreatment. (orig.). With 10 figs., 4 tabs.

  5. Reproducibility of ERG responses obtained with the DTL electrode.

    Science.gov (United States)

    Hébert, M; Vaegan; Lachapelle, P

    1999-03-01

    Previous investigators have suggested that the DTL fibre electrode might not be suitable for the recording of replicable electroretinograms. We present experimental evidence that when used adequately, this electrode does permit the recording of highly reproducible retinal potentials.

  6. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  7. 2-Scale topography dry electrode for biopotential measurements.

    Science.gov (United States)

    Vanlerberghe, F; De Volder, M; de Beeck, M Op; Penders, J; Reynaerts, D; Puers, R; Van Hoof, C

    2011-01-01

    The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.

  8. New cardiac retractor for epicardial electrode insertion via subxiphoid approach.

    Science.gov (United States)

    Sakamoto, T; Arai, H; Suzuki, A

    1993-04-01

    A new retractor for the insertion of epicardial screw-in electrodes is described. We have found that this instrument can be easily applied to the heart and gives excellent exposure for electrode insertion.

  9. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    effectively with titanium dioxide based electrode (a foreign electrode) with tensile strength of. 606.7N/mm . ... composition and mechanical properties as ... bead from oxidation during welding. ... Manganese (Mn), Slag, Silicon (Si) and Iron. 2. 3.

  10. Reduction of the Electrode Overpotential of the Oxygen Evolution Reaction by Electrode Surface Modification

    Directory of Open Access Journals (Sweden)

    Cian-Tong Lu

    2017-01-01

    Full Text Available Metal–air batteries exhibit high potential for grid-scale energy storage because of their high theoretical energy density, their abundance in the earth’s crust, and their low cost. In these batteries, the oxygen evolution reaction (OER occurs on the air electrode during charging. This study proposes a method for improving the OER electrode performance. The method involves sequentially depositing a Ni underlayer, Sn whiskers, and a Ni protection layer on the metal mesh. Small and uniform gas bubbles form on the Ni/Sn/Ni mesh, leading to low overpotential and a decrease in the overall resistance of the OER electrode. The results of a simulated life cycle test indicate that the Ni/Sn/Ni mesh has a life cycle longer than 1,300 cycles when it is used as the OER electrode in 6 M KOH.

  11. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.

    Science.gov (United States)

    Young, Aaron J; Hargrove, Levi J; Kuiken, Todd A

    2012-03-01

    Pattern recognition of myoelectric signals for prosthesis control has been extensively studied in research settings and is close to clinical implementation. These systems are capable of intuitively controlling the next generation of dexterous prosthetic hands. However, pattern recognition systems perform poorly in the presence of electrode shift, defined as movement of surface electrodes with respect to the underlying muscles. This paper focused on investigating the optimal interelectrode distance, channel configuration, and electromyography feature sets for myoelectric pattern recognition in the presence of electrode shift. Increasing interelectrode distance from 2 to 4 cm improved pattern recognition system performance in terms of classification error and controllability (p pattern recognition control. Finally, we investigated different feature sets for pattern recognition control using a linear discriminant analysis classifier and found that an autoregressive set significantly (p < 0.01) reduced sensitivity to electrode shift compared to a traditional time-domain feature set.

  12. Nanoscale Electrodes: Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking (Adv. Mater. 30/2016).

    Science.gov (United States)

    Zhao, Qiang; Wang, Wenjun; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao; Liu, Lu; Mei, Xuesong; Ding, Yucheng; Lu, Bingheng

    2016-08-01

    The fabrication of nanospaced electrodes on a flexible substrate is a great challenge. W. Wang, J. Shao, and co-workers propose a novel approach to fabricate nanogap electrodes for flexible electronics using a swelling-controlled cracking method, which is described on page 6337. This method has the advantages of high applicability, parallel manufacturing capacity, and compatibility with flexible substrates. It provides a new way to create high-performance flexible electronics in a cost-efficient fashion.

  13. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay.

    Science.gov (United States)

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui

    2016-03-28

    A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.

  14. Perovskite electrodes and method of making the same

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  15. Capillary flow of amorphous metal for high performance electrode

    OpenAIRE

    Se Yun Kim; Suk Jun Kim; Sang Soo Jee; Jin Man Park; Keum Hwan Park; Sung Chan Park; Eun Ae Cho; Jun Ho Lee; In Yong Song; Sang Mock Lee; In Taek Han; Ka Ram Lim; Won Tae Kim; Ju Cheol Park; Jürgen Eckert

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computation...

  16. Amorphous semiconductor solar cell having a grained transparent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y.; Iida, H.; Itou, A.; Karasawa, H.; Mishuku, T.; Shiba, N.; Yamanaka, M.

    1985-02-19

    An amorphous semiconductor solar cell is disclosed which comprises a glass substrate and a transparent electrode coated on the substrate. The device also comprises an amorphous semiconductor layer on the transparent electrode, and a rear electrode on the amorphous layer, wherein the average grain diameter of the surface of the transparent electrode ranges from 0.1 ..mu..m to 2.5 ..mu..m.

  17. Liquid and gel electrodes for transverse free flow electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byoungsok; Rose, Klint A; Shusteff, Maxim; Persat, Alexandre; Santiago, Juan

    2015-04-07

    The present invention provides a mechanism for separating or isolating charged particles under the influence of an electric field without metal electrodes being in direct contact with the sample solution. The metal electrodes normally in contact with the sample are replaced with high conductivity fluid electrodes situated parallel and adjacent to the sample. When the fluid electrodes transmit the electric field across the sample, particles within the sample migrate according to their electrophoretic mobility.

  18. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  19. Liquid and gel electrodes for transverse free flow electrophoresis

    Science.gov (United States)

    Jung, Byoungsok; Rose, Klint A; Shusteff, Maxim; Persat, Alexandre; Santiago, Juan

    2015-04-07

    The present invention provides a mechanism for separating or isolating charged particles under the influence of an electric field without metal electrodes being in direct contact with the sample solution. The metal electrodes normally in contact with the sample are replaced with high conductivity fluid electrodes situated parallel and adjacent to the sample. When the fluid electrodes transmit the electric field across the sample, particles within the sample migrate according to their electrophoretic mobility.

  20. Rotating electrode potentiometry: lowering the detection limits of nonequilibrium polyion-sensitive membrane electrodes.

    Science.gov (United States)

    Ye, Q; Meyerhoff, M E

    2001-01-15

    A rotating electrode configuration is evaluated as a means to lower the detection limits of newly devised polyion-sensitive membrane electrodes (PSEs). Planar potentiometric polycation and polyanion PSEs are prepared by incorporating tridodecylmethylammonium chloride and calcium dinonylnaphthalenesulfonate, respectively, into plasticized PVC or polyurethane membranes and mounting disks of such films on an electrode body housed in a conventional rotating disk electrode apparatus. Rotation of the PSEs at 5000 rpm results in an enhancement in the detection limits toward heparin (polyanion) and protamine (polycation) of at least 1 order of magnitude (to 0.01 unit/mL for heparin; 0.02 microg/mL for protamine) over that observed when the EMF responses of the same electrodes are assessed using a stir-bar to achieve convective mass transport. A linear relationship between omega(-1/2), where omega is the rotating angular frequency, and C1/2, the polyion concentration corresponding to half the total maximum deltaEMF response toward the polyion species, is observed. It is further shown that the rotating polycation sensor can be used as an end-point detector to greatly enhance (relative to nonrotated indicator electrode) the analytical resolution and precision for measurement of low concentrations of heparin when such samples are titrated with protamine. The theoretical basis for lowering the detection limits by rotating PSEs is discussed based on the unique nonequilibrium response mechanism of such sensors.

  1. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    Science.gov (United States)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Luo, Zhiyuan; Wang, You

    2017-02-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3α,12α-bis(4-trifluoroacetylbenzoyloxy)-5β-cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  -27.5 mV/decade with a detection limit of 3.6 * 10-5 mol l-1. Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance.

  2. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    Characterizing Microstructures at Ionic Liquid /Electrode Interfaces Report Title This report details the procurement and integration of a multichannel...Haverhals, “Microstructure at the Ionic Liquid /Electrode Interface ”, 226th ECS Meeting, 8 October, 2014, Cancun, Mexico. (c) Presentations Received Paper...Technology Transfer FINAL REPORT “Potentiostat for Characterizing Microstructures at Ionic Liquid /Electrode Interfaces ” Proposal #: 66259CHRI

  3. 21 CFR 876.1400 - Stomach pH electrode.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a) Identification. A stomach pH electrode is a device used to measure intragastric and intraesophageal pH...

  4. Improving Electrode Durability of PEF Chamber by selecting suitable material

    Science.gov (United States)

    Corrosion resistance of four materials - titanium, platinized titanium, stainless steel, and boron carbide - as electrodes in a Pulsed Electric Field (PEF) system was studied to reduce electrode material migration into the food by electrode corrosion. The PEF process conditions were 28 kV/cm field s...

  5. Materials analyses and electrochemical impedance of implantable metal electrodes.

    Science.gov (United States)

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  6. Plastic Membrane Sensor from a Disposed Combined Glass Electrode

    Science.gov (United States)

    Marafie, Hayat M.; Shoukry, Adel F.; Alshatti, Laila A.

    2007-01-01

    The construction of combined plastic membrane electrode for hydralazinium cation from a disposed glass electrode is described. A variety of electrodes could be prepared by students using other types of polymers, plasticizers, or exchangers which could also help to study effects of pH and temperature, or environmental investigations.

  7. Towards Quantification of Relations Between Electrode Polarisation and Microstructure

    DEFF Research Database (Denmark)

    Ramos, Tania; Hjelm, Johan; Mogensen, Mogens Bjerg

    2011-01-01

    , frequency regions, and thermal behaviour, was obtained from symmetric cell studies of individual electrodes. The frequency regions dominated by electrode specific processes in the full cells were assessed by systematic changes of temperature and/or partial pressure of reactant gases on both electrodes...

  8. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    Directory of Open Access Journals (Sweden)

    S. EL QOUATLI

    2012-06-01

    Full Text Available A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  9. Motion Control of Disc Electrode by Electrorheological Fluids

    Science.gov (United States)

    Tsuda, Kazutoshi; Hirose, Yuji; Ogura, Hironao; Otsubo, Yasufumi

    2008-07-01

    The electrorheological(ER) suspensions are sandwiched between two flat disc electrodes with the radial line patterns. The pattern electrodes are fixed on the parallel plate geometry on a stress-controlled rheometer which was modified for the ER experiments. The motion of disk electrodes analyzed as a function of electrification modes to obtain the basic data for ER actuators.

  10. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...

  11. Skin impedance comparisons of electrodes for electro-oculography.

    Science.gov (United States)

    Lee, J B; Reinecke, R D

    1991-01-01

    In an effort to define the most comfortable electrode needing the simplest skin preparation with low and stable skin impedance, we compared the impedance between skin electrodes and Stat-Trace II St-102 EKG electrodes (Niko Med USA, New Brunswick, NJ)--the latter being renamed "dry electrodes" because they are used without electrolyte paste--on 12 normal subjects with two different skin preparations, with and without alcohol. The dry electrodes were found to have lower impedance than the skin electrodes. With each skin preparation the alcohol scored better, 7.2 kOhm vs 16.5 kOhm, respectively, and "no preparation" worse, 13.8 kOhm vs 22.7 kOhm, respectively, (but still acceptable when the dry electrode was used). The dry electrode's impedance was quite stable from the moment of application while the skin electrode's impedance drifted dramatically for 30 minutes. If the dry electrode was halved in area of skin contact, as often is necessary with the nasal electrode in children, the impedance rose proportionally but remained acceptable. We conclude that the new dry electrodes give us improved electro-oculography records and suggest their use, particularly for infants and young children where ease of application and simple skin preparation are particularly important.

  12. A method for making electrodes for lead storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ivaki, T.; Kobayasi, K.

    1983-06-04

    Powder, acid resistant thermoplastic resin is applied to a greased electrode of a lead storage battery. The electrode is heated until the resin melts, cooled, producing a film of hardened resin with fine cracks in the absence of pores. The electrode has a long service life with cycling.

  13. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo

    DEFF Research Database (Denmark)

    Meijs, Suzan; Alcaide, Maria; Sørensen, Charlotte;

    2016-01-01

    OBJECTIVE: The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. APPROACH: Electrochemical impedance spectroscopy, cyclic voltammetry and ...... electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes....

  14. Graphene based nanocomposite hybrid electrodes for supercapacitors

    Science.gov (United States)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  15. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  16. Studies of electrochemical behavior of SWNT-film electrodes

    OpenAIRE

    Rahman, M. Muzibur; Jeon,I. Cheol

    2007-01-01

    The redox reactions of 4 mmol L-1 K4[Fe(CN)6] species have been studied with Single-Walled Carbon Nanotube (SWNT)-coated Glassy Carbon Electrode (GCE), SWNT-coated Gold Electrode (GE) and lab-made SWNT-film (SWNT-Thin-Paper-Like-Film) Electrodes individually. The SWNT-modified (physically) electrode has shown a well-defined redox peak compared with bare electrodes. CV is used in 50.0 mmol L-1 KCl containing K4[Fe(CN)6] to obtain information on both the capacitive background and electron trans...

  17. Tool electrode wear in electrical discharge of small diameter holes

    Directory of Open Access Journals (Sweden)

    Slătineanu Laurenţiu

    2017-01-01

    Full Text Available In the paper, the problem of obtaining small diameter holes in workpieces made of high speed steel by electrical discharge machining was formulated. A fulfil factorial experiment was designed and materialized, taking into consideration the tool electrode diameter, pulse on time and pulse off time as independent variables. The tool electrode wear was evaluated by means of the decrease of tool electrode mass and length. On the base of experimental results, power type empirical mathematical models were determined. One noticed the higher influence exerted by the too electrode diameter, whose increase determine the decrease of the tool electrode.

  18. Research on flaky and vertical gas diffusion electrode

    Institute of Scientific and Technical Information of China (English)

    朱梅; 徐献芝; 苏润; 杨基明

    2004-01-01

    Flaky and vertical gas diffusion electrode was propos, ed to improve the efficiency of fuel cells. The discharge experiments were done to compare the discharge capability of the electrode with different PTFE ingredient and different basal body uniformity. The results showed the electrode with 10% PTFE and high uniformity was favorable to discharge. This single electrode could discharge about 100 h at 150 mA(no noble metal catalyst). The electrode made of the punched screens was superior to that made of the foam Ni.

  19. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  20. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  1. Influence on discharge uniformity of electrodes configuration

    CERN Document Server

    Zheng Jian; Sui Zhan; Lu Jing Ping; Zheng Kui Xing; Zhang Xiong Jun; Dong Yun; Feng Bin

    2002-01-01

    Large area glow discharge plasma that is transparent and highly conductive can be used as electrodes in Pockels cell to extend the switch aperture. To investigate this technology, a glow discharging chamber with a clear aperture of 5 cm x 5 cm was constructed, and hollow cathode, button cathode, pin cathode, bar cathode and bar anode were designed and produced. Using CCD imaging system, the discharging uniformity of different cathodes was tested with bar anode and under the different pressure pre-ionization voltage and main discharging voltage. A uniform plasma can be obtained with a hollow cathode when the pre-ionization voltage is about 700 V, the pressure is about 30 Pa, and the main discharging voltage is about 4 kV, which can be used for the plasma electrode of Pockels cell

  2. SAW reflection and scattering by electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-biao; HAN Tao; ZHANG Xiao-dong; WU Hao-dong; SHUI Yong-an

    2005-01-01

    A rigorous analysis of surface acoustic wave (SAW) reflection and scattering by electrodes is of paramount importance in the design of SAW identification tags and sensors. In this paper, a new method based on Green's function concept is used to study reflection and scattering coefficients. By this method the reflection coefficient with its phase angle, transmission coefficient, and bulk wave scattering coefficient, can be obtained rapidly and accurately. To get precise result, the influence of static charge must be taken into account. In the work, we successfully cancelled out the effect of static charge and the validity of the results was checked. As an example, the reflection, transmission and scattering coefficients ora single grounded electrode on 128°YX LiNbO3 is shown.

  3. Phase Transformation Dynamics in Porous Battery Electrodes

    CERN Document Server

    Ferguson, Todd R

    2014-01-01

    Porous electrodes composed of multiphase active materials are widely used in Li-ion batteries, but their dynamics are poorly understood. Two-phase models are largely empirical, and no models exist for three or more phases. Using a modified porous electrode theory based on non-equilibrium thermodynamics, we show that experimental phase behavior can be accurately predicted from free energy models, without artificially placing phase boundaries or fitting the open circuit voltage. First, we simulate lithium intercalation in porous iron phosphate, a popular two-phase cathode, and show that the zero-current voltage gap, sloping voltage plateau and under-estimated exchange currents all result from size-dependent nucleation and mosaic instability. Next, we simulate porous graphite, the standard anode with three stable phases, and reproduce experimentally observed fronts of color-changing phase transformations. These results provide a framework for physics-based design and control for electrochemical systems with comp...

  4. Graphene nanocomposites for electrochemical cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  5. HVDC power transmission electrode siting and design

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J. [NDT Engineering, Inc., Shrewbury, MA (United States); Dabkowski, J. [Electro-Sciences, Inc., Crystal Lake, IL (United States); Hauth, R.L. [New England Power Service Co., Westborough, MA (United States)

    1997-04-01

    This research strives to shed light on the feasibility and practicality of using deep earth electrodes to permit their use for extended periods without adverse consequences. This report begins with a review of the fundamentals associated with current conduction in earth, including the various techniques available for measuring the earth`s electrical properties. The sources of existing data are discussed and some specific data for selected regions of the U.S. and Canada are reviewed as examples. Electrode technology and design issues are reviewed and recent experience gained by New England Power and Hydro-Quebec is discussed. The issues associated with direct current flowing in underground pipelines (and other facilities) are described and the present-day mitigation measures are evaluated. Suggestions are made for further R&D in the coordination of cathodic protection systems, an area that has evolved as an empirical, trial- and-error art more than a science.

  6. ac impedance of the carbon monofluoride electrode

    Science.gov (United States)

    Suchanski, M. R.

    1985-09-01

    The ac impedance of carbon monofluoride (CF) half-cells and Li/CF batteries that contain 1M LiBF4/4-butyrolactone electrolyte was measured as a function of state of charge. The nonfaradaic components of the CF half-cell impedance were resolved with the aid of a one-dimensional macroscopic treatment of a porous electrode. The values of the nonfaradaic components and their variation with charge withdrawn provide information concerning the nature of cathode discharge products, the degree of tortuosity in the cathode and separator matrices, and the cathode failure mechanism. The CF electrode capacitance, as measured by the low frequency quadrature impedance, can serve as a semiquantitative measure of battery state of charge under certain conditions.

  7. Reproducibility of electroretinograms recorded with DTL electrodes.

    Science.gov (United States)

    Hébert, M; Lachapelle, P; Dumont, M

    The purpose of this study was to examine whether the use of the DTL fiber electrode yields stable and reproducible electroretinographic recordings. To do so, luminance response function, derived from dark-adapted electroretinograms, was obtained from both eyes of 10 normal subjects at two recording sessions spaced by 7-14 days. The data thus generated was used to calculate Naka-Rushton Vmax and k parameters and values obtained at the two recording sessions were compared. Our results showed that there was no significant difference in the values of Vmax and k calculated from the data generated at the two recording sessions. The above clearly demonstrate that the use of the DTL fiber electrode does not jeopardize, in any way, the stability and reproducibility of ERG responses.

  8. Dry electrode bio-potential recordings.

    Science.gov (United States)

    Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André

    2010-01-01

    As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.

  9. A dry electrophysiology electrode using CNT arrays

    CERN Document Server

    Ruffini, G; Farres, E; Grau, C; Marco-Pallares, J; Mendoza, Eric; Ray, C; Silva, R; Dunne, Stephen; Farres, Esteve; Grau, Carles; Marco-Pallares, Josep; Mendoza, Ernest; Ray, Chris; Ruffini, Giulio; Silva, Ravi

    2006-01-01

    We describe the concept of a dry electrode sensor for biopotential measurement applications (ENOBIO) designed to eliminate the noise and inconvenience associated to the use of electrolytic gel. ENOBIO uses nanotechnology to remove gel-related noise, as well as maintaining a good contact impedance to minimise interference noise. The contact surface of the electrode will be covered with an array/forest of carbon nanotubes and will also be tested with an Ag/AgCl coating to provide ionic-electronic transduction. The nanotubes are to penetrate the outer layers of the skin, the Stratum Corneum, improving electrical contact. We discuss requirements, skin properties, nanotube penetration and transduction, noise sources, prototype design logic and biocompatibility. A future paper will report test results.

  10. Quantitative Microstructure Characterization of a NMC Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Usseglio Viretta, Francois L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Performance of lithium-ion batteries (LIBs) is strongly influenced by the porous microstructure of their electrodes. In this work, 3D microstructures of calendared and un-calendared positive electrode LiNi1/3Mn1/3Co1/3O2 (NMC) have been investigated in order to extract relevant properties useful for battery modeling. Transport (volume fraction, connectivity, particle size and tortuosity) and electrochemical (specific surface area) properties have been calculated for the pore and the active material. Special attention has been paid to determine the size of the so-called representative volume element (RVE) required to be statistically representative of the heterogeneous medium. Several parameters have been calculated using a panel of different numerical methods in order to compare their results. Besides, the image level of detail has been evaluated (using original criteria based upon edge detection) to assess the overall data quality available for the study.

  11. Very Large Arrays of Bipolar Electrodes

    Science.gov (United States)

    2013-01-01

    Determination of Percent Hemoglobin A1c Using a Potentiometric Method, Analytical Chemistry, (02 2013): 0. doi: 10.1021/ac3032228 05/30/2013 13.00 Francois...Chemiluminescence (ECL) Emission at Bipolar Electrodes, Analytical Chemistry, (08 2009): 6218. doi: 10.1021/ac900744p 07/13/2012 1.00 Robbyn K...Anand, Stephen E. Fosdick, Ioana Dumitrescu, Richard M. Crooks. Pressure-Driven Bipolar Electrochemistry , Journal of the American Chemical Society

  12. Graphene-Based Electrode for a Supercapacitor

    Science.gov (United States)

    Chen, Bin (Inventor); Meyyappan, Meyya (Inventor)

    2015-01-01

    A supercapacitor electrode mechanism comprising an electrically conductive, porous substrate, having one or more metallic oxides deposited on a first surface and a chemically reduced graphene oxide deposited on a second surface, to thereby provide an electrical double layer associated with the substrate. The substrate may be carbon paper or a similar substance. The layers of the supercapacitor are optionally rolled into an approximately cylindrical structure.

  13. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  14. Electrochemistry of Some New Alkaline Battery Electrodes

    Science.gov (United States)

    1976-02-01

    Charging Efficiencies for AFAPL and Aircraft Cells 20 4. Slow Scan Cyclic Voltametry of 30% KOH Solutions at the Nickel Hydroxide Electrode 21 5...in our laboratory has offered a partial explanation for this effect. Using cyclic voltametric studies it was revealed that presence of cobalt...observed between charge and discharge peak potentials. In the presence of Ca. 10% cobalt hydroxide, this difference is only 75 mV. The cyclic voltametric

  15. Air Brush Fabricated Carbon Nanotube Supercapacitor Electrodes

    Science.gov (United States)

    2010-09-01

    dispersant is not contributing to the capacitance. The electrochemical, cyclic voltametry , measurements were made using a Keithley 4200 Semiconductor...reference electrode. The cyclic voltamogram (CV) was performed in potential ranges of anywhere between –0.9–0.5 V at scan rates ranging from 1–100 mV...Symbols, Acronyms, and Abbreviations AL aluminum CNT carbon nanotube Cu copper CV cyclic voltamogram ESEM environmental scanning electron microscope

  16. Working electrode holder and electrochemical cell

    DEFF Research Database (Denmark)

    2016-01-01

    The present disclosure relates to a holder for a test object, more specifically to a holder for measuring electrochemical properties of the test object. One embodiment relates to a working electrode holder for measuring electrochemical properties of a front surface of a test object in a liquid...... in the bottom surface and configured for passage of said liquid, such that liquid is able to pass onto the electrically contacted front surface. The holder may be used in an electrochemical cell....

  17. Carbon paste electrodes in electroanalytical chemistry

    Directory of Open Access Journals (Sweden)

    KAREL VYTŘAS

    2009-09-01

    Full Text Available An overview is given dealing with the applications of carbon paste electrodes in equilibrium potentiometry as well as in electrochemical stripping analysis using both voltammetric and potentiometric modes. Various modifications of carbon pastes and carbon paste-based biosensors are also mentioned. The main emphasis in this article is directed at summarizing recent results of the authors’ research group during the past few years.

  18. Oxygen electrodes for rechargeable alkaline fuel cells

    Science.gov (United States)

    Swette, L.; Kackley, N.

    1989-12-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  19. Electrocatalysts for oxygen electrodes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, E.B. [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  20. Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kyou Sik Min

    2013-01-01

    Full Text Available In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA- embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications.