WorldWideScience

Sample records for layered synthetic microstructures

  1. Synthesis and properties of layered synthetic microstructure (LSM) dispersion elements for 62 eV (200A) to 1.24 keV (10A) radiation. Final report

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1981-08-01

    The opportunities offered by engineered synthetic multilayer dispersion elements for x-rays have been recognized since the earliest days of x-ray diffraction analysis. In this paper, application of sputter deposition technology to the synthesis of Layered Synthetic Microstructure (LSMs) of sufficient quality for use as x-ray dispersion elements is discussed. It will be shown that high efficiency, controllable bandwidth dispersion elements, with d spacings varying from 15 A to 180 A, may be synthesized onto both mechanically stiff and flexible substrates. Multilayer component materials include tungsten, niobium, molybdenum, titanium, vanadium, and silicon layers separated by carbon layers. Experimental observations of peak reflectivity in first order, integrated reflectivity in first order, and diffraction performance at selected photon energies in the range, 100 to 15,000 eV, are reported and compared to theory

  2. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with δE/E = 5.4%, 66% with δE/E = 1.4%, and 19% with δE/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, δE/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV

  3. S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers

    Science.gov (United States)

    2015-07-09

    AFRL-OSR-VA-TR-2015-0161 S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers Dietmar Pum ZENTRUM FUER NANOBIOTECHNOLOGIE Final Report 07/09...COVERED (From - To)      01-06-2012 to 31-05-2015 4.  TITLE AND SUBTITLE S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers 5a.  CONTRACT...technology for the fabrication of nano patterned thin film imprints by using functional S-layer protein arrays as templates. The unique feature of

  4. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  5. Numerical generation and study of synthetic bainitic microstructures

    International Nuclear Information System (INIS)

    Osipov, N.; Gourgues-Lorenzon, A.F.; Cailletaud, G.; Diard, O.; Marini, B.

    2006-01-01

    Models classically used to describe the probability of brittle fracture in nuclear power plants are written on the macroscopic scale. Its is not easy to surely capture the physical phenomena in such a type of approach, so that the application of the models far from their identification domain (temperature history, loading path) may become questionable. To improve the quality of the prediction of resistance and life time, microstructural information, describing the heterogeneous character of the material and its deformation mechanisms has to be taken into consideration. This paper is devoted to 16MND5 bainitic steel. Bainitic packets grow in former austenitic grains, and are not randomly oriented. Knowing the macroscopic stress is thus not sufficient to describe the stress-strain state in ferrite. An accurate model must take into account the actual microstructure, in order to provide realistic local stress and strain fields, to be used as inputs of a new class of cleavage models based on the local behavior. The paper shows the approach used to generate a synthetic microstructure and demonstrates that the resulting morphologies present a quantitative agreement with the experimental images. (authors)

  6. Angular dependence of spin transfer torque on magnetic tunnel junctions with synthetic ferrimagnetic free layer

    International Nuclear Information System (INIS)

    Ichimura, M; Hamada, T; Imamura, H; Takahashi, S; Maekawa, S

    2010-01-01

    Based on a spin-polarized free-electron model, spin and charge transports are analyzed in magnetic tunnel junctions with synthetic ferrimagnetic layers in the ballistic regime, and the spin transfer torque is derived. We characterize the synthetic ferrimagnetic free layer by extending an arbitrary direction of magnetizations of the two free layers forming the synthetic ferrimagnetic free layer. The synthetic ferrimagnetic configuration exerts the approximately optimum torque for small magnetization angle of the first layer relative to that of the pinned layer. For approximately anti-parallel magnetization of the first layer to that of the pinned layer, the parallel magnetization of two magnetic layers is favorable for magnetization reversal rather than the synthetic ferrimagnetic configuration.

  7. Measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  8. Microstructure of absorber layers in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Cousins, M.A.

    2001-04-01

    This work concerns the microstructure of CSS-grown CdTe layers used for CdTe/CdS solar cells. Particular attention is given to how the development of microstructure on annealing with CdCl 2 may correlate with increases in efficiency. By annealing pressed pellets of bulk CdTe powder, it is shown that microstructural change does occur on heating the material, enhanced by the inclusion of CdCl 2 flux. However, the temperature required to cause significant effects is demonstrated to be higher than that at which heavy oxidation takes place. The dynamics of this oxidation are also examined. To investigate microstructural evolution in thin-films of CdTe, bi-layers of CdTe and CdS are examined by bevelling, thus revealing the microstructure to within ∼1 μm of the interface. This allows optical microscopy and subsequent image analysis of grain structure. The work shows that the grain-size, which is well described by the Rayleigh distribution, varies linearly throughout the layer, but is invariant under CdCl 2 treatment. Electrical measurements on these bi-layers, however, showed increased efficiency, as is widely reported. This demonstrates that the efficiency of these devices is not dictated by the bulk microstructure. Further, the region within 1 μm of the interface, of similar bi-layers to above, is examined by plan-view TEM. This reveals five-fold grain-growth on CdCl 2 treatment. Moreover, these grains show a considerably smaller grain size than expected from extrapolating the linear trend in the bulk. These observations are explained in terms of the pinning of the CdTe grain size to the underlying CdS, and the small grain size this causes. A simple model was proposed for a link between the grain-growth to the efficiency improvement. The study also examines the behaviour of defects within grains upon CdCl 2 treatment provided the first direct evidence of recovery on CdCl 2 treatment in this system. Finally, a computer model is presented to describe the evolution of

  9. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.

    Science.gov (United States)

    Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish

    2016-08-01

    The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.

  10. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites

    International Nuclear Information System (INIS)

    Farid, Akhtar; Guo Shiju

    2007-01-01

    This study deals with layer composites of carbide reinforcements and stainless steel prepared successfully by powder technology. The layer material consisted of two layers. The top layer consisted of reinforcements (TiC and NbC) and 465 stainless steel as the binder material for the carbides. The bottom layer was entirely of binder material (465 stainless steel). The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the top layer (TiC-NbC/465 stainless steel) showed the typical core-rim microstructure of conventional steel bonded cermets and the bottom layer showed the structure of sintered steel. An intermediate layer was found with a gradient microstructure, having a higher carbide content towards the cermet layer and lower carbide content towards the stainless steel layer. The bending strength of the layered material measured in the direction perpendicular to the layer alignment was remarkably high. The variation of strength as a function of the thickness of the bottom layer revealed that the character of the material changed from the cermet, to a layer composite and then towards metallic materials. The wear resistance of the top layer was studied against high speed steel. The wear mechanisms were discussed by means of microscopical observations on the worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microploughing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microploughing and rapid removal of material from the wear surface was observed at high wear load. The fracture morphologies of the top, bottom and intermediate layers are reported

  11. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  12. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dziadoń, Andrzej [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Mola, Renata, E-mail: rmola@tu.kielce.pl [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Błaż, Ludwik [Department of Structure and Mechanics of Solids, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  13. Microstructural and compositional Evolution of Compound Layers during Gaseous Nitrocarburizing

    DEFF Research Database (Denmark)

    Du, Hong; Somers, Marcel A.J.; Ågren, John

    2000-01-01

    Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2 and CO. The microstructural evolution of the compound layer was stu...

  14. Spacer layer effect and microstructure on multi-layer [NdFeB/Nb]n films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Yao, Y.-D.; Chin, T.-S.; Kronmueller, H.

    2002-01-01

    Spacer layer effect on multi-layer [NdFeB/Nb] n films has been investigated from the variation of magnetic properties and microstructure of the films. From a HRTEM cross-section view observation, the average grain size of [NdFeB/Nb] n multi-layers was controlled by both annealing temperature and thickness of NdFeB layer. Selected area diffraction pattern indicated that the structure of Nb spacer layer was amorphous. The grain size and coercivity of [NdFeB x /Nb] n films change from 50 nm and 16.7 kOe to 167 nm and 9 kOe for films with x=40 nm, n=10 and x=200 nm, n=2, respectively

  15. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing

    2017-05-01

    The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  17. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  18. The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo Shuangmu [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Chen Jianxin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Jiang Xingshan [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Xie Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Chen Rong [Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Normal University, Ministry of Education, Fuzhou 350007 (China); Cao Ning [Fujian Medical University, Fuzhou 350004 (China); Zou Qilian [Fujian Medical University, Fuzhou 350004 (China); Xiong Shuyuan [Fujian Medical University, Fuzhou 350004 (China)

    2007-08-21

    The layered-resolved microstructure and spectroscopy of mouse oral mucosa are obtained using a combination of multiphoton imaging and spectral analysis with different excitation wavelengths. In the keratinizing layer, the keratinocytes microstructure can be characterized and the keratinizing thickness can be measured. The keratin fluorescence signal can be further characterized by emission maxima at 510 nm. In the epithelium, the cellular microstructure can be quantitatively visualized with depth and the epithelium thickness can be determined by multiphoton imaging excited at 730 nm. The study also shows that the epithelial spectra excited at 810 nm, showing a combination of NADH and FAD fluorescence, can be used for the estimation of the metabolic state in epithelium. Interestingly, a second-harmonic generation (SHG) signal from DNA was observed for the first time within the epithelial layer in backscattering geometry and provides the possibility of analyzing the chromatin structure. In the stroma, the combination of multiphoton imaging and spectral analysis excited at 850 nm in tandem can obtain quantitative information regarding the biomorphology and biochemistry of stroma. Specifically, the microstructure of collagen, minor salivary glands and elastic fibers, and the optical property of the stroma can be quantitatively displayed. Overall, these results suggest that the combination of multiphoton imaging and spectral analysis with different excitation wavelengths has the potential to provide important and comprehensive information for early diagnosis of oral cancer.

  19. Trajectory of a synthetic jet issuing into a high Reynolds number turbulent boundary layer

    Science.gov (United States)

    Berk, Tim; Baidya, Rio; de Silva, Charitha; Marusic, Ivan; Hutchins, Nicholas; Ganapathisubramani, Bharathram

    2017-11-01

    Synthetic jets are zero-net-mass-flux actuators that can be used in a range of flow control applications. For several pulsed/synthetic jet in cross-flow applications the variation of the jet trajectory in the mean flow with jet and boundary layer parameters is important. This trajectory will provide an indication of the penetration depth of the pulsed/synthetic jet into a boundary layer. Trajectories of a synthetic jet in a turbulent boundary layer are measured for a range of actuation parameters in both low- and high Reynolds numbers (up to Reτ = 13000). The important parameters influencing the trajectory are determined from these measurements. The Reynolds number of the boundary layer is shown to only have a small effect on the trajectory. In fact, the critical parameters are found to be the Strouhal number of the jet based on jet dimensions as well as the velocity ratio of the jet (defined as a ratio between peak jet velocity and the freestream velocity). An expression for the trajectory of the synthetic (or pulsed) jet is derived from the data, which (in the limit) is consistent with known expressions for the trajectory of a steady jet in a cross-flow. T.B. and B.G. are grateful to the support from the ERC (Grant Agreement No. 277472) and the EPSRC (Grant ref. no. EP/L006383/1).

  20. Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution

    International Nuclear Information System (INIS)

    Sarafian, P.G.

    1975-12-01

    The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain-assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible

  1. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  2. Influence of 1,3,6 naphthalene trisulfonic acid on microstructure & hardness in electrodeposited Ni-layers

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2002-01-01

    The influence of the additive 1,3,6 naphthalene trisulfonic acid on the microstructure and hardness of electrodeposited nickel layers was investigated. The microstructure was characterized using transmission electron microscopy; the Vickers hardness was measured in cross sections. The additive wa...

  3. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    International Nuclear Information System (INIS)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent

  4. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    Energy Technology Data Exchange (ETDEWEB)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent.

  5. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  6. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  7. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  8. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    Science.gov (United States)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  9. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  10. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    International Nuclear Information System (INIS)

    Gautron, E.; Buffière, M.; Harel, S.; Assmann, L.; Arzel, L.; Brohan, L.; Kessler, J.; Barreau, N.

    2013-01-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se 2 (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed

  11. Three dimensional rock microstructures: insights from FIB-SEM tomography

    Science.gov (United States)

    Drury, Martyn; Pennock, Gill; de Winter, Matthijs

    2016-04-01

    Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved

  12. Microstructure and thermal stability of nickel layers electrodeposited from an additive-free sulphamate-based electrolyte

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2006-01-01

    and scanning electron microscopy and X-ray diffraction; the Vickers hardness was measured in cross sections. The present is meant as a reference for forthcoming articles on the investigation of various strengthening mechanisms on the microstructure, hardness and thermal stability of Ni (alloys) electrodeposits.......The influences of the current density and the temperature on the microstructure and hardness of Ni layers electrodeposited from an additive-free sulphamate bath were investigated. The microstructure and thermal stability of the electrodeposits was investigated with a combination of transmission...

  13. Double layer resist process scheme for metal lift-off with application in inductive heating of microstructures

    DEFF Research Database (Denmark)

    Ouattara, Lassana; Knutzen, Michael; Keller, Stephan Urs

    2010-01-01

    We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end of the proce......We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end...

  14. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    International Nuclear Information System (INIS)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Hara, Motoaki; Kuwano, Hiroki; Yanazawa, Hiroshi

    2014-01-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm 2 , which is about 530 times larger than that of an EDLC consisting of flat Au electrodes

  15. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  16. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Ruiz-Morales, J.C.; Pena-Martinez, J.; Canales-Vazquez, J.; Nunez, P.

    2008-01-01

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range. - Graphical abstract: Thin films materials of mixed oxides with potential application in SOFC devices have been prepared with macroporous microstructure using PMMA microspheres as pore formers. Display Omitted

  17. The interaction of synthetic jets with turbulent boundary layers

    Science.gov (United States)

    Cui, Jing

    In recent years, a promising approach to the control of wall bounded as well as free shear flows, using synthetic jet (oscillatory jet with zero-net-mass-flux) actuators, has received a great deal of attention. A variety of impressive flow control results have been achieved experimentally by many researchers including the vectoring of conventional propulsive jets, modification of aerodynamic characteristics of bluff bodies, control of lift and drag of airfoils, reduction of skin-friction of a flat plate boundary layer, enhanced mixing in circular jets, and control of external as well as internal flow separation and of cavity oscillations. More recently, attempts have been made to numerically simulate some of these flowfields. Numerically several of the above mentioned flow fields have been simulated primarily by employing the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with a turbulence model and a limited few by Direct Numerical Simulation (DNS). In simulations, both the simplified boundary conditions at the exit of the jet as well as the details of the cavity and lip have been included. In this dissertation, I describe the results of simulations for several two- and three-dimensional flowfields dealing with the interaction of a synthetic jet with a turbulent boundary layer and control of separation. These simulations have been performed using the URANS equations in conjunction with either one- or a two-equation turbulence model. 2D simulations correspond to the experiments performed by Honohan at Georgia Tech. and 3D simulations correspond to the CFD validation test cases proposed in the NASA Langley Research Center Workshop---"CFD Validation of Synthetic Jets and Turbulent Separation Control" held at Williamsburg VA in March 2004. The sources of uncertainty due to grid resolution, time step, boundary conditions, turbulence modeling etc. have been examined during the computations. Extensive comparisons for various flow variables are made with the

  18. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  19. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  20. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  1. The control effect in a detached laminar boundary layer of an array of normal synthetic jets

    Science.gov (United States)

    Valenzuela Calva, Fernando; Avila Rodriguez, Ruben

    2016-11-01

    In this work, 3D numerical simulations of an array of three normal circular synthetic jets embedded in an attached laminar boundary layer that separates under the influence of an inclined flap are performed for flow separation control. At the beginning of the present study, three cases are used to validate the numerical simulation with data obtained from experiments. The experimental data is chosen based on the cases which presented higher repeatability and reliability. Simulations showed reasonable agreement when compared with experiments. The simulations are undertaken at three synthetic jet operating conditions, i.e. Case A: L = 2, VR = 0.32; Case B: L = 4, VR = 0.64 and Case C: L = 6, VR = 0.96. The vortical structures produced for each synthetic jet operating condition are hairpin vortices for Case A and tilted vortices for Case B and C, respectively. By examining the spatial wall shear stress variations, the effect on the boundary layer prior to separation of the middle synthetic jet is evaluated. For effective flow control, produced at a relatively low the finding from this study suggests that hairpin vortical structures are more desirable structures. Universidad Nacional Autonoma de Mexico.

  2. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Kou, Ronghui [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Sun, Cheng-Jun [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhao, Hu [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Zhang, Ming-Jian [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Li, Yan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Huq, Ashifia [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ko, J. Y. Peter [The Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853 USA; Pan, Feng [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Sun, Yang-Kook [Department of Energy Engineering, Hanyang University, Seoul 133-791 South Korea; Yang, Yong [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Bai, Jianming [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Wang, Feng [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.

  3. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  4. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    Science.gov (United States)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ

  5. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  6. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, C.-J., E-mail: cjtseng@ncu.edu.t [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320, Taiwan (China); Lo, S.-K. [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320, Taiwan (China)

    2010-04-15

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm{sup 2} is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability.

  7. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jen Tseng; Shih-Kun Lo [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320 (China)

    2010-04-15

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm{sup 2} is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability. (author)

  8. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    International Nuclear Information System (INIS)

    Tseng, C.-J.; Lo, S.-K.

    2010-01-01

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm 2 is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability.

  9. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  10. Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer.

    Science.gov (United States)

    Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J

    2018-03-01

    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.

  11. Multi-bits memory cell using degenerated magnetic states in a synthetic antiferromagnetic reference layer

    International Nuclear Information System (INIS)

    Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji

    2016-01-01

    We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]_3)/Ru/([Co/Pt]_6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed

  12. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load.

    Science.gov (United States)

    Krasny, Witold; Morin, Claire; Magoariec, Hélène; Avril, Stéphane

    2017-07-15

    The load bearing properties of large blood vessels are principally conferred by collagen and elastin networks and their microstructural organization plays an important role in the outcomes of various arterial pathologies. In particular, these fibrous networks are able to rearrange and reorient spatially during mechanical deformations. In this study, we investigate for the first time whether these well-known morphological rearrangements are the same across the whole thickness of blood vessels, and subsequently if the underlying mechanisms that govern these rearrangements can be predicted using affine kinematics. To this aim, we submitted rabbit carotid samples to uniaxial load in three distinct deformation directions, while recording live images of the 3D microstructure using multiphoton microscopy. Our results show that the observed realignment of collagen and elastin in the media layer, along with elastin of the adventitia layer, remained limited to small angles that can be predicted by affine kinematics. We show also that collagen bundles of fibers in the adventitia layer behaved in significantly different fashion. They showed a remarkable capacity to realign in the direction of the load, whatever the loading direction. Measured reorientation angles of the fibers were significantly higher than affine predictions. This remarkable property of collagen bundles in the adventitia was never observed before, it shows that the medium surrounding collagen in the adventitia undergoes complex deformations challenging traditional hyperelastic models based on mixture theories. The biomechanical properties of arteries are conferred by the rearrangement under load of the collagen and elastin fibers making up the arterial microstructure. Their kinematics under deformation is not yet characterized for all fiber networks. In this respect we have submitted samples of arterial tissue to uniaxial tension, simultaneously to confocal imaging of their microstructure. Our method allowed

  13. Microstructures of tribologically modified surface layers in two-phase alloys

    International Nuclear Information System (INIS)

    Figueroa, C G; Ortega, I; Jacobo, V H; Ortiz, A; Bravo, A E; Schouwenaars, R

    2014-01-01

    When ductile alloys are subject to sliding wear, small increments of plastic strain accumulate into severe plastic deformation and mechanical alloying of the surface layer. The authors constructed a simple coaxial tribometer, which was used to study this phenomenon in wrought Al-Sn and cast Cu-Mg-Sn alloys. The first class of materials is ductile and consists of two immiscible phases. Tribological modification is observed in the form of a transition zone from virgin material to severely deformed grains. At the surface, mechanical mixing of both phases competes with diffusional unmixing. Vortex flow patterns are typically observed. The experimental Cu-Mg-Sn alloys are ductile for Mg-contents up to 2 wt% and consist of a- dendrites with a eutectic consisting of a brittle Cu 2 Mg-matrix with α-particles. In these, the observations are similar to the Al-Sn Alloys. Alloys with 5 wt% Mg are brittle due to the contiguity of the eutectic compound. Nonetheless, under sliding contact, this compound behaves in a ductile manner, showing mechanical mixing of a and Cu 2 Mg in the top layers and a remarkable transition from a eutectic to cellular microstructure just below, due to severe shear deformation. AFM-observations allow identifying the mechanically homogenized surface layers as a nanocrystalline material with a cell structure associated to the sliding direction

  14. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.; Kelly, Deborah F.; Knight, Thomas F.; Belcher, Angela M.; Walz, Thomas

    2011-01-01

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally

  15. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  16. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium.

    Directory of Open Access Journals (Sweden)

    Katie Brenner

    Full Text Available Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.

  17. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer

    International Nuclear Information System (INIS)

    Park, Dong Jun; Kim, Dong Chan; Lee, Jeong Yong; Cho, Hyung Koun

    2006-01-01

    The growth direction and morphology of one-dimensional ZnO nanostructures grown by metal-organic chemical vapour deposition (MOCVD) were modulated by changing the growth temperature of previously deposited ZnO buffer layers that were used as a template. The ZnO nanorods grown on the low-temperature deposited buffer layer were regularly inclined with respect to the substrate surface and show in-plane alignment with azimuthally six-fold symmetry. In contrast, deposition of the buffer layer at higher growth temperature led to the formation of vertically well-aligned ZnO nanorods. In addition, the ZnO nanorods grown on the buffer layer deposited at low growth temperature show a growth direction of [1 0 1-bar 0], unlike the conventional ZnO nanorods showing a growth direction of [0001]. The microstructural analysis and atomic modelling of the formation of regularly inclined nanorods using transmission electron microscopy are presented

  18. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  19. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)

    International Nuclear Information System (INIS)

    Brandl, Erhard; Schoberth, Achim; Leyens, Christoph

    2012-01-01

    Highlights: ► The microstructure and hardness of deposited Ti-6Al-4V blocks are investigated. ► Hardness is influenced by post heat treatment rather than by process parameters. ► Microstructure within the prior β-grains varies to some extent from grain to grain. ► A 600 °C/4 h treatment significantly increased the average hardness. - Abstract: Additive layer manufacturing offers a potential for time and cost savings, especially for aerospace components made from costly titanium alloys. In this paper, the morphology, microstructure, chemical composition, and hardness of additive manufactured Ti-6Al-4V blocks are investigated and discussed. Blocks (7 beads wide, 7 layers high) were deposited using Ti-6Al-4V wire and a Nd:YAG laser. Two different sets of parameters are used and three different post heat treatment conditions (as-built, 600 °C/4 h, 1200 °C/2 h) are investigated. The experiments reveal elementary properties of additive manufactured Ti-6Al-4V material in correlation to process parameters and heat treatments, which are discussed comprehensively.

  20. Microstructures and properties of low-chromium high corrosion-resistant TiC-VC reinforced Fe-based laser cladding layer

    International Nuclear Information System (INIS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Highlights: • The cladding layer with 3.0%Cr and 0.25%CeO 2 showed a good corrosion resistance. • Passive film formed on the cladding layer without Cr and CeO 2 was Fe 3 O 4 . • Fe 3 O 4 displayed p type semiconductivity. • Passive film formed on the cladding layer with Cr and CeO 2 was Fe(OH) 3 and Cr(OH) 3 . • Fe(OH) 3 displayed n type while Cr(OH) 3 displayed p type semiconductivity. - Abstract: Effects of 3.0 wt.%Cr and/or 0.25 wt.%CeO 2 on microstructures and properties of TiC-VC reinforced Fe-based cladding layer were investigated by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Passive films formed on cladding layers surface were investigated by using X-ray photoelectron spectroscopy (XPS) and Mott-Schottky analysis. Results showed that phases of cladding layers were α-Fe, γ-Fe, TiC, VC and TiVC 2 . There were no obvious effects of adding 3.0 wt.%Cr and/or 0.25 wt.%CeO 2 on cladding layers phases. The microstructure of the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO 2 was lath martensite and retained austenite. Microhardness of the cladding layer with 0.25 wt.%CeO 2 decreased slightly. Microhardness and corrosion resistance of the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO 2 both increased, the corrosion resistance increased 7.33 times while the EIS Nyquist spectrum transformed into a capacitive arc. The passive film formed on the cladding layer without Cr and CeO 2 was Fe 3 O 4 which displayed p type semiconductivity. The passive film formed on the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO 2 was composed of Fe(OH) 3 and Cr(OH) 3 , which displayed n and p type semiconductivity respectively

  1. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  2. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  3. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  4. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  5. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  6. Grey-scale conversion X-ray mapping by EDS of multielement and multiphase layered microstructures

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2007-01-01

    been obtained for several long-term isothermal heat treatments in which significant interdiffusion has taken place. The resulting composition profiles have greatly improved counting statistics compared to traditional point-by-point scans for the same scanning electron microscope time and may......procedure for grey-scale conversion of energy dispersive spectroscopy X-ray maps has been developed, which is particularly useful for the plotting of line composition profiles across modified layered engineering surfaces. The method involves (a) the collection of grey-scale elemental maps, (b......, the procedure has been applied to a layered microstructure that results from a plasma-sprayed metallic MCrAlY coating onto a nickel-superalloy turbine blade. As a further demonstration of the accuracy and amount of compositional data that can be obtained with this procedure, measured compositional profiles have...

  7. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Erhard, E-mail: erhard.brandl@eads.net [EADS Innovation Works, Metallic Technologies and Surface Engineering, D-81663 Munich (Germany); Schoberth, Achim, E-mail: achim.schoberth@eads.net [EADS Innovation Works, Metallic Technologies and Surface Engineering, D-81663 Munich (Germany); Leyens, Christoph, E-mail: christoph.leyens@tu-dresden.de [Technical University of Dresden, Institute of Materials Science, Chair of Materials Technology, Berndt-Bau, Helmholtzstr. 7, D-01062 Dresden (Germany)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The microstructure and hardness of deposited Ti-6Al-4V blocks are investigated. Black-Right-Pointing-Pointer Hardness is influenced by post heat treatment rather than by process parameters. Black-Right-Pointing-Pointer Microstructure within the prior {beta}-grains varies to some extent from grain to grain. Black-Right-Pointing-Pointer A 600 Degree-Sign C/4 h treatment significantly increased the average hardness. - Abstract: Additive layer manufacturing offers a potential for time and cost savings, especially for aerospace components made from costly titanium alloys. In this paper, the morphology, microstructure, chemical composition, and hardness of additive manufactured Ti-6Al-4V blocks are investigated and discussed. Blocks (7 beads wide, 7 layers high) were deposited using Ti-6Al-4V wire and a Nd:YAG laser. Two different sets of parameters are used and three different post heat treatment conditions (as-built, 600 Degree-Sign C/4 h, 1200 Degree-Sign C/2 h) are investigated. The experiments reveal elementary properties of additive manufactured Ti-6Al-4V material in correlation to process parameters and heat treatments, which are discussed comprehensively.

  8. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  9. Microstructure and chemical analysis of Hf-based high-k dielectric layers in metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Thangadurai, P. [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Mikhelashvili, V.; Eisenstein, G. [Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Kaplan, W.D., E-mail: kaplan@tx.technion.ac.i [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2010-05-31

    The microstructure and chemistry of the high-k gate dielectric significantly influences the performance of metal-insulator-metal (MIM) and metal-oxide-semiconductor devices. In particular, the local structure, chemistry, and inter-layer mixing are important phenomena to be understood. In the present study, high resolution and analytical transmission electron microscopy are combined to study the local structure, morphology, and chemistry in MIM capacitors containing a Hf-based high-k dielectric. The gate dielectric, bottom and gate electrodes were deposited on p-type Si(100) wafers by electron beam evaporation. Four chemically distinguishable sub-layers were identified within the dielectric stack. One is an unintentionally formed 4.0 nm thick interfacial layer of Ta{sub 2}O{sub 5} at the interface between the Ta electrode and the dielectric. The other three layers are based on HfN{sub x}O{sub y} and HfTiO{sub y}, and intermixing between the nearby sub-layers including deposited SiO{sub 2}. Hf-rich clusters were found in the HfN{sub x}O{sub y} layer adjacent to the Ta{sub 2}O{sub 5} layer.

  10. Microstructures and properties of low-chromium high corrosion-resistant TiC-VC reinforced Fe-based laser cladding layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui; Zou, Yong, E-mail: yzou@sdu.edu.cn; Zou, Zengda; Wu, Dongting

    2015-02-15

    Highlights: • The cladding layer with 3.0%Cr and 0.25%CeO{sub 2} showed a good corrosion resistance. • Passive film formed on the cladding layer without Cr and CeO{sub 2} was Fe{sub 3}O{sub 4}. • Fe{sub 3}O{sub 4} displayed p type semiconductivity. • Passive film formed on the cladding layer with Cr and CeO{sub 2} was Fe(OH){sub 3} and Cr(OH){sub 3}. • Fe(OH){sub 3} displayed n type while Cr(OH){sub 3} displayed p type semiconductivity. - Abstract: Effects of 3.0 wt.%Cr and/or 0.25 wt.%CeO{sub 2} on microstructures and properties of TiC-VC reinforced Fe-based cladding layer were investigated by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Passive films formed on cladding layers surface were investigated by using X-ray photoelectron spectroscopy (XPS) and Mott-Schottky analysis. Results showed that phases of cladding layers were α-Fe, γ-Fe, TiC, VC and TiVC{sub 2}. There were no obvious effects of adding 3.0 wt.%Cr and/or 0.25 wt.%CeO{sub 2} on cladding layers phases. The microstructure of the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO{sub 2} was lath martensite and retained austenite. Microhardness of the cladding layer with 0.25 wt.%CeO{sub 2} decreased slightly. Microhardness and corrosion resistance of the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO{sub 2} both increased, the corrosion resistance increased 7.33 times while the EIS Nyquist spectrum transformed into a capacitive arc. The passive film formed on the cladding layer without Cr and CeO{sub 2} was Fe{sub 3}O{sub 4} which displayed p type semiconductivity. The passive film formed on the cladding layer with 3.0 wt.%Cr and 0.25 wt.%CeO{sub 2} was composed of Fe(OH){sub 3} and Cr(OH){sub 3}, which displayed n and p type semiconductivity respectively.

  11. Incrustation de microstructures par écarts chromatiques

    OpenAIRE

    Rudaz, Nicolas; Hersch, Roger-David

    2005-01-01

    Electronic imaging devices produce the illusion of synthesizing continuous colors by applying halftones, which are repetitive structures of discrete micro-elements. By themselves, these microstructures do not carry any meaning: their only purpose is to fool the eye. We explore a new approach for creating color images with two layers of information, one layer of information being the global image and the second layer of information being represented by a meaningful microstructure embedded with...

  12. Incrustation de microstructures par écarts chromatiques

    OpenAIRE

    Rudaz, Nicolas

    2003-01-01

    Electronic imaging devices produce the illusion of synthesizing continuous colors by applying halftones, which are repetitive structures of discrete micro-elements. By themselves, these microstructures do not carry any meaning: their only purpose is to fool the eye. We explore a new approach for creating color images with two layers of information, one layer of information being the global image and the second layer of information being represented by a meaningful microstructure embedded with...

  13. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    Science.gov (United States)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  14. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    Science.gov (United States)

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  16. Microstructural properties of non-supported microporous ceramic membrane top-layers obtained by the sol-gel process

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Dried and calcined non-supported membrane top-layers of SiO2, SiO2/TiO2, SiO2/ZrO2 (10, 20 and 30 mol% TiO2 and ZrO2, respectively) and SiO2/Al2O3 (10 mol% AlO1.5) were prepared using acid catalyzed hydrolysis and condensation of alkoxides in ethanol. The microstructure was determined using nitrogen

  17. Synthesis, microstructures and properties of {gamma}-aluminum oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Wang Fuming; Li Wenchao

    2003-02-15

    This paper deals with the synthesis, microstructures and properties of {gamma}-aluminum oxynitride (AlON). The thermodynamic properties of AlON were analyzed and the Gibbs energy of AlON with different compositions and temperatures were evaluated. Based on thermodynamic studies, AlON has been synthesized. The microstructures, mechanical properties and oxidation resistance of the synthetic AlON have been examined and discussed.

  18. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    Science.gov (United States)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  19. Highly tough and transparent layered composites of nanocellulose and synthetic silicate

    Science.gov (United States)

    Wu, Chun-Nan; Yang, Quanling; Takeuchi, Miyuki; Saito, Tsuguyuki; Isogai, Akira

    2013-12-01

    A highly tough and transparent film material was prepared from synthetic saponite (SPN) nanoplatelets of low aspect ratios and nanofibrillar cellulose. The nanofibrillar cellulose was chemically modified by topological surface oxidation using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) as a catalyst. Both synthetic SPN nanoplatelets and TEMPO-oxidized cellulose nanofibrils (TOCNs) have abundant negative charges in high densities on their surfaces and are dispersed in water at the individual nanoelement level. Layered nanocomposite structures of the SPN nanoplatelets and TOCNs were formed through a simple cast-drying process of the mixed aqueous dispersions. The TOCN/SPN composites with 0-50% w/w SPN content were optically transparent. Mechanical properties of the TOCN/SPN composites varied depending on the SPN content. The composite with 10% w/w SPN content (5.6% volume fraction) exhibited characteristic mechanical properties: Young's modulus of 14 GPa, tensile strength of 420 MPa, and strain-to-failure of 10%. The work of fracture of the composites increased from 4 to 30 MJ m-3 - or by more than 700% - as the SPN content was increased from 0 to 10% w/w. This surprising improvement in toughness was interpreted based on a model for fracture of polymer composites reinforced with low-aspect-ratio platelets.A highly tough and transparent film material was prepared from synthetic saponite (SPN) nanoplatelets of low aspect ratios and nanofibrillar cellulose. The nanofibrillar cellulose was chemically modified by topological surface oxidation using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) as a catalyst. Both synthetic SPN nanoplatelets and TEMPO-oxidized cellulose nanofibrils (TOCNs) have abundant negative charges in high densities on their surfaces and are dispersed in water at the individual nanoelement level. Layered nanocomposite structures of the SPN nanoplatelets and TOCNs were formed through a simple cast-drying process of the mixed aqueous dispersions. The

  20. Power efficiency of the active boundary layer control around the hump by a slotted synthetic jet generator

    Directory of Open Access Journals (Sweden)

    Pick Petr

    2015-01-01

    Full Text Available The present contribution summarizes the power efficiency of the active flow control of the boundary layer of air around a hump. The synthetic jet generator with a rectangular output part, i.e. a slot, is actuated using a modulated signal. The actuation of the synthetic jet is carried out by modulating the input voltage of acoustic transducers of the generator. This causes the decrease of the loss coefficient and the change of the mixing size area (e.g. wake. A comparison of three types of modulating signals and their influence on the loss coefficient is performed. The main advantages of modulated signal are then described.

  1. Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide

    International Nuclear Information System (INIS)

    Bae, Hyo Sun; Jung, Hyun

    2012-01-01

    We have developed a novel and eco-friendly synthetic route for the preparation of a two-dimensional layered zinc hydroxide with intercalated nitrate anions. The layered zinc hydroxide nitrate, called 'zinc basic salt', was, in general, successfully synthesized, using an electron beam irradiation technique. The 2-propanol solutions containing hydrated zinc nitrate were directly irradiated with an electron-beam at room temperature, under atmospheric conditions, without stabilizers or base molecules. Under electron beam irradiation, the reactive OH· radicals were generated by radiolysis of water molecules in precursor metal salts. After further radiolytic processes, the hydroxyl anions might be formed by the reaction of solvated electrons and the OH· radical. Finally, the Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O was precipitated by the reaction of zinc cation and hydroxyl anions. Structure and morphology of obtained compounds were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The chemical components of the products were determined by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA). The thermal behavior of products was studied by thermogravimetric (TG) and differential thermal analysis (DTA)

  2. Formation of layered microstructure in the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Kammlott, G.W.; Tiefel, T.H.; Chen, S.K.

    1992-01-01

    The layered grain microstructure is essential for overcoming the weak link problem and ensuring high transport critical currents in the cuprate superconductors. In this paper we discuss the processing and the mechanisms for layer information in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. In melt-processed Y-Ba-Cu-O, sympathetic nucleation on previously nucleated YBa 2 Cu 3 O 7-δ plates during solidification appears to be dominant mechanism for the formation of parallel plate-shaped grains. In the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons, the interface reaction between the superconductor layer and the silvers substrate seems to be the main mechanism for the c-axis texturing of the layered grains. The drastically different critical current behavior in the c-axis textured Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons is discussed in terms of possible differences in the nature of the twist and tilt grain boundaries. (orig.)

  3. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  4. Three-dimensional selective growth of nanoparticles on a polymer microstructure

    International Nuclear Information System (INIS)

    Wu Shaomin; Han, L-H; Chen Shaochen

    2009-01-01

    We demonstrate a new technique for selectively growing gold nanoparticles on a patterned three-dimensional (3D) polymer microstructure. The technique integrates 3D direct writing of heterogeneous microstructures with nanoparticle synthesis. A digital micromirror device is employed as a dynamic mask in the digital projection photopolymerization process to build the heterogeneous microstructure layer by layer. An amine-bearing polyelectrolyte, branched poly(ethylenimine), is selectively attached to the microstructure and acts as both a reducing and a protective agent in the nanoparticle synthesis. Scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy are utilized to analyze the microstructure and the 3D selectivity of the nanoparticle growth.

  5. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  6. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  7. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  8. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...... layers. In these layers, extended planar dislocation boundaries are frequently found to be inclined closely to the rolling direction. The subsurface and central layers of this plate exhibit microstructures similar to those in the plate rolled with intermediate draughts. It is suggested...

  9. Microstructural Evolution in Chroming Coatings Friction Pairs under Dry Sliding Test Conditions

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-01-01

    Full Text Available The microstructures of subsurface layers of 20CrMnTi steel pins against chroming and nonchroming T10 under dry sliding tests were studied by means of OM (optical microscopy, XRD (X-ray diffraction, and SEM (scanning electron microscopy. Results showed that the chroming coating strengthened the disc surface and significantly affected microstructural evolution. Three layers—the matrix, deformation layer (DL, and surface layer (SL—formed in 20CrMnTi for the chroming T10. The matrix and deformation layer (DL formed in 20CrMnTi for the nonchroming T10. The formation of the microstructure was considered as a result of the shear deformation.

  10. Synthetic staggered architecture composites

    International Nuclear Information System (INIS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  11. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.

    1999-01-01

    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  12. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  13. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au

    2015-04-17

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α{sub 2} grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method.

  14. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    International Nuclear Information System (INIS)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi

    2015-01-01

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α 2 grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method

  15. Microstructural evaluation of the lacquered layer quality after corrosion load

    Directory of Open Access Journals (Sweden)

    Jaroslava Svobodova

    2015-03-01

    Full Text Available Surface pre-treatment is one of the most important steps before applying the final surface treatment. These pre-treatments, like phosphating, alkaline degreasing, pickling in acids, is used to remove impurities from the surface of the base material and to create appropri-ate conditions for adhesion of the final coating (metal coatings, organic coatings. Currently are on the rise surface treatments technologies, which are based on nanotechnology. It's a new generation of chemical products for the chemical surface preparation. This paper deals with the evaluation of microstructure of painted sheet metal after corrosion load with salt spray in the corrosion chamber. Metal sheets used for the experiment have been produced from low-carbon non alloy steel. For pre-treatment of the sheet metal was used alkaline degreasing (CC, iron phosphating (Feph and nanotechnology based product Alfipas (Zr in combinations: group A - CC + Zr, group B - Feph + Zr and group C - CC + Feph + Zr. The aim of this paper is to analyze the behavior of painted sheet metal after corrosion load and evaluate the effect of pretreatment to resistance of painted surface layer.

  16. Microstructure analysis of magnesium alloy melted by laser irradiation

    International Nuclear Information System (INIS)

    Liu, S.Y.; Hu, J.D.; Yang, Y.; Guo, Z.X.; Wang, H.Y.

    2005-01-01

    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17 Al 12 and α-Mg as well as some phases unidentified

  17. Strain and defect microstructure in ion-irradiated GeSi/Si strained layers as a function of annealing temperature

    International Nuclear Information System (INIS)

    Glasko, J.M.; Elliman, R.G.; Zou, J.; Cockayne, D.J.H.; Fitz Gerald, J.D.

    1998-01-01

    High energy (1 MeV), ion irradiation of GeSi/Si strained layers at elevated temperatures can cause strain relaxation. In this study, the effect of subsequent thermal annealing was investigated. Three distinct annealing stages were identified and correlated with the evolution of the defect microstructure. In the temperature range from 350 to 600 deg C, a gradual recovery of strain is observed. This is believed to result from the annealing of small defect clusters and the growth of voids. The voids are visible at annealing temperatures in excess of 600 deg C, consistent with an excess vacancy concentration in the irradiated alloy layer. The 600 to 750 deg C range is marked by pronounced maximal recovery of strain, and is correlated with the dissolution of faulted loops in the substrate. At temperatures in the range 750-1000 deg C, strain relaxation is observed and is correlated with the growth of intrinsic dislocations within the alloy layer. These dislocations nucleate at the alloy-substrate interface and grow within the alloy layer, towards the surface. (authors)

  18. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.

    2011-06-17

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.

  20. Study on the development of coating technology for UO{sub 2} nuclear fuel pellet and the microstructural observation of the coated layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Song, Moon Sup; Cho, In Sik; Kim Yu Sin; Lim Young Kyun [Sunmoon University, Asan (Korea)

    1998-04-01

    In order to enhance inherent safety of UO{sub 2} nuclear fuel pellet and develop future nuclear fuel technology, a coating method for the preparation multi-layers of pyrolytic carbon and silicon carbide on the fuel was developed. Inner pyrolytic carbon layer and outer silicon layer were prepared by thermal decomposition of propane in a fluidized bed type CVD unit and silane in ECR PECVD, respectively. Combustion reaction between two layers resulted in forming silicon carbide layer. The morphology depended on the initial carbon shape. Phase identification and microstructural analysis of the combustion product with XRD, AES, SEM and TEM showed that final products of inner layer and outer layer were pyrolytic carbon with isotropic structure and fine crystalline {beta}-SiC, respectively. This coating process is very useful for the fabrication of coated UO{sub 2} nuclear fuel pellet an future nuclear fuel fabrication technology. (author). 45 refs., 47 figs., 5 tabs.

  1. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  2. Microstructural and magnetic properties of L10 FePt-C (0 0 1) textured nanocomposite films grown on different intermediate layers

    International Nuclear Information System (INIS)

    Chen, J S; Chow, G M; Lim, B C; Hu, J F; Ding, Y F; Ju, G

    2008-01-01

    The FePt : C films with different volume fractions of carbon and different thicknesses were epitaxially grown on a CrRu(2 0 0) underlayer with Pt and MgO intermediate layers. The magnetic properties and microstructure of these FePt : C films were investigated. The FePt : C films grown on the Pt intermediate layer consisted of a continuous layer of FePt, with overlying granular FePt grains, while the FePt : C films grown on the MgO intermediate layer consisted of granular FePt : C layers with overlying granular grains. The formation of the overlying granular FePt grains was attributed to carbon diffusion to the surface which resulted in the second nucleation of FePt. The different interface energies and surface energies of FePt on Pt and MgO intermediate layers caused the formation of an initial continuous FePt layer on the Pt intermediate layer and initial granular FePt layers on the MgO intermediate layer. The coupling between the continuous FePt layer or the granular FePt layer and the overlying granular FePt grains resulted in simultaneous magnetization reversal and thus strong exchange coupling in FePt : C films.

  3. A reformulated synthetic turbulence generation method for a zonal RANS–LES method and its application to zero-pressure gradient boundary layers

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2013-01-01

    Highlights: • A synthetic turbulence generation method (STGM) is presented. • STGM is applied to sub and supersonic flows at low and moderate Reynolds numbers. • STGM shows a convincing quality in zonal RANS–LES for flat-plate boundary layers (BLs). • A good agreement with the pure LES and reference DNS findings is obtained. • RANS-to-LES transition length is reduced to less than four boundary-layer thicknesses. -- Abstract: A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses

  4. An investigation into the effect of equal channel angular extrusion process on mechanical and microstructural properties of middle layer in copper clad aluminum composite

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Karimi Taheri, A.; Arabi, H.; Shahmiri, M.

    2009-01-01

    Equal channel angular extrusion is a promising technique for production of ultra fine-grain materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to Equal channel angular extrusion process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through Equal channel angular extrusion die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of Equal channel angular extrusion throughout the four consecutive passes and then it is slightly decreased when more Equal channel angular extrusion passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. lt was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a equal channel angular-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the Equal channel angular extrusion of the laminated composite compared to those of a single billet.

  5. Influence of the heat treatment condition of alloy AlCu4Mg1 on the microstructure and properties of anodic oxide layers

    Science.gov (United States)

    Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.

    2017-03-01

    Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.

  6. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  7. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  8. Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy.

    Science.gov (United States)

    Suh, Min Hee; Zangwill, Linda M; Manalastas, Patricia Isabel C; Belghith, Akram; Yarmohammadi, Adeleh; Akagi, Tadamichi; Diniz-Filho, Alberto; Saunders, Luke; Weinreb, Robert N

    2018-04-01

    To investigate the association between the microstructure of β-zone parapapillary atrophy (βPPA) and parapapillary deep-layer microvasculature dropout assessed by optical coherence tomography angiography (OCT-A). Thirty-seven eyes with βPPA devoid of the Bruch's membrane (BM) (γPPA) ranging between completely absent and discontinuous BM were matched by severity of the visual field (VF) damage with 37 eyes with fully intact BM (βPPA+BM) based on the spectral-domain (SD) OCT imaging. Parapapillary deep-layer microvasculature dropout was defined as a dropout of the microvasculature within choroid or scleral flange in the βPPA on the OCT-A. The widths of βPPA, γPPA, and βPPA+BM were measured on six radial SD-OCT images. Prevalence of the dropout was compared between eyes with and without γPPA. Logistic regression was performed for evaluating association of the dropout with the width of βPPA, γPPA, and βPPA+BM, and the γPPA presence. Eyes with γPPA had significantly higher prevalence of the dropout than did those without γPPA (75.7% versus 40.8%; P = 0.004). In logistic regression, presence and longer width of the γPPA, worse VF mean deviation, and presence of focal lamina cribrosa defects were significantly associated with the dropout (P 0.10). Parapapillary deep-layer microvasculature dropout was associated with the presence and larger width of γPPA, but not with the βPPA+BM width. Presence and width of the exposed scleral flange, rather than the retinal pigmented epithelium atrophy, may be associated with deep-layer microvasculature dropout.

  9. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Lindsey, J.S.

    1990-01-01

    One of our long-term goals is to develop robotic workstations for automated synthetic chemistry. Toward that goal we have constructed a 2nd generation instrument for performing TLC analysis. TLC has important advantages (over HPLC and GC) in analysis of crude reaction samples and parallel sample development. The TLC instrument consist of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) plate densitometry. A robot is used to move plates among stations. The combination of fixed automation and robotics gives high sample throughout (up to 10 samples per hour). A second robot performs reaction chemistry and feeds samples to the TLC instrument, thus enabling TLC analysis at the same time as synthetic reactions proceed on the workstation

  10. Performance degradation and microstructure changes in freeze-thaw cycling for PEMFC MEAs with various initial microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Yeop; Kim, Hyoung-Juhn; Cho, EunAe; Lee, Kug-Seung; Lim, Tae-Hoon; Jang, Jong Hyun [Fuel Cell Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Hwang, In Chul [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 446-912 (Korea, Republic of)

    2010-12-15

    When the temperature of a fuel cell vehicle is repeatedly reduced to subzero temperatures, volume changes by water/ice transformations and frost heave mechanism can cause microstructural changes in membrane-electrode assemblies (MEA), and a resultant permanent decrease in the performance of fuel cell stacks. In this study, five MEAs manufactured by different methods, were tested under repeated freeze-thaw (F-T) cycles between -20 C and 10 C, and the variations in their electrochemical and microstructural characteristics were analyzed according to the initial microstructures. When the MEAs were prepared by spraying catalyst inks on polymer membranes, no significant microstructural changes were observed. In the case of two supplied MEAs, void formations at the electrolyte/electrode interface or vertical cracks within the catalyst layers were observed after 120 F-T cycles. Void formation seems to be responsible for performance degradation as a result of ohmic loss, but the effect of cracks in the catalyst layers was not confirmed. In 120 F-T cycles, activation overpotentials and concentration overpotentials did not increase significantly for any of the MEAs, even although gradual decreases in the electrochemically active surface area of the platinum catalysts and changes in the porous structure were observed. (author)

  11. Properties of natural and synthetic hydroxyapatite and their surface free energy determined by the thin-layer wicking method

    Science.gov (United States)

    Szcześ, Aleksandra; Yan, Yingdi; Chibowski, Emil; Hołysz, Lucyna; Banach, Marcin

    2018-03-01

    Surface free energy is one of the parameters accompanying interfacial phenomena, occurring also in the biological systems. In this study the thin layer wicking method was used to determine surface free energy and its components for synthetic hydroxyapatite (HA) and natural one obtained from pig bones. The Raman, FTIR and X-Ray photoelectron spectroscopy, X-ray diffraction techniques and thermal analysis showed that both samples consist of carbonated hydroxyapatite without any organic components. Surface free energy and its apolar and polar components were found to be similar for both investigated samples and equalled γSTOT = 52.4 mJ/m2, γSLW = 40.2 mJ/m2 and γSAB = 12.3 mJ/m2 for the synthetic HA and γSTOT = 54.6 mJ/m2, γSLW = 40.3 mJ/m2 and γSAB = 14.3 mJ/m2 for the natural one. Both HA samples had different electron acceptor (γs+) and electron donor (γs-) parameters. The higher value of the electron acceptor was found for the natural HA whereas the electron donor one was higher for the synthetic HA

  12. Algorithm for calculating synthetic seismograms in a layered half-space with application of matrix impedance

    Science.gov (United States)

    Pavlov, V. M.

    2013-01-01

    A new algorithm is proposed for calculating the complete synthetic seismograms from a point source in the form of the sum of a single force and a dipole with an arbitrary seismic moment tensor in a plane layered medium composed of homogenous elastic isotropic layers. Following the idea of (Alekseev and Mikhailenko, 1978), an artificial cylindrical boundary is introduced, on which the boundary conditions are specified. For this modified problem, the exact solution (in terms of the displacements and stresses on the horizontal plane areal element) in the frequency domain is derived and substantiated. The unknown depth-dependent coefficients form the motion-stress vector, whose components satisfy the known system of ordinary differential equations. This system is solved by the method that involves the matrix impedance and propagator for the vector of motion, as previously suggested by the author in (Pavlov, 2009). In relation to the initial problem, the reflections from the artificial boundary are noise, which, to a certain degree, can be suppressed by selecting a long enough distance to this boundary and owing to the presence of a purely imaginary addition to the frequency. The algorithm is not constrained by the thickness of the layers, is applicable for any frequency range, and is suitable for computing the static offset.

  13. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  14. Influence of pulsed electron beam treatment on microstructure and properties of TA15 titanium alloy

    International Nuclear Information System (INIS)

    Gao Yukui

    2013-01-01

    Highlights: ► The hardness changes were determined by nanoindention method. ► The surface modification by pulsed electron beam treatment was investigated. ► The mechanism was analyzed based on XRD and TEM investigations. ► The modification effects were focused at the surface layer hardness. - Abstract: The surface of TA15 titanium alloy was modified by pulsed electron beam and the hardness distribution along the treated surface layer was investigated by nanoindent technology. The grade characteristics were therefore analyzed by studying the distribution of hardness along surface layer of specimens. Moreover, the microstructure was investigated by OM, XRD and TEM techniques. Furthermore, the correlation of hardness to microstructure was analyzed. The results show that the grade fine grain microstructure is formed in the upper surface layer and the temperature grade or heat effect caused by pulsed electron beam treatment is the main reason to form grade fine grain microstructure in the surface layer.

  15. Microstructures and thermoelectric properties of GeSbTe based layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Zhu, T.J.; Zhao, X.B. [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China); Dong, S.R. [Zhejiang University, Department of Information and Electronics Engineering, Hangzhou (China)

    2007-08-15

    Microstructures and thermoelectric properties of Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge{sub 2}Sb{sub 2}Te{sub 5} compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} attained 0.975 x 10{sup -3} Wm{sup -1}K{sup -2} at 750 K and 0.767 x 10{sup -3} Wm{sup -1}K{sup -2} at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. (orig.)

  16. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  17. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    Science.gov (United States)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  18. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  19. Deposition and Characterization of TRISO Coating Layers

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun; Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk

    2008-03-01

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed

  20. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun [KAIST, Daejeon (Korea, Republic of); Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk [Younsei University, Seoul (Korea, Republic of)

    2008-03-15

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed.

  1. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  2. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

    Science.gov (United States)

    Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind

    2011-10-01

    Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Disequilibrium dihedral angles in layered intrusions: the microstructural record of fractionation

    Science.gov (United States)

    Holness, Marian; Namur, Olivier; Cawthorn, Grant

    2013-04-01

    The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only rarely in textural equilibrium in gabbros from km-scale crustal layered intrusions. The median of a population of these disequilibrium angles, Θcpp, varies systematically within individual layered intrusions, remaining constant over large stretches of stratigraphy with significant increases or decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The step-wise changes in Θcpp are present in Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard Intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of Θcpp, dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the step-wise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the interstitial liquid inferred to be present in the crystal mush. Step-wise changes in the rate of change in enthalpy with temperature (ΔH) of the cooling and crystallizing magma correspond to the observed variation of Θcpp, with increases of both ΔH and Θcpp associated with the addition of another liquidus phase, and decreases of both associated with the removal of a liquidus phase. The replacement of one phase by another (e.g. olivine ⇔ orthpyroxene) has little effect on ΔH and no discernible effect on Θcpp. An increase of ΔH is manifest by an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also results in an increase in the amount crystallized in each incremental temperature drop (the crystal productivity). An increased fractional latent heat and crystal productivity result in an increased rate of plagioclase growth compared to that of augite during the final stages of solidification

  4. Microstructure evolution and microstructure/mechanical properties relationships in alpha+beta titanium alloys

    Science.gov (United States)

    Lee, Eunha

    In this study, the microstructural evolution of Timetal 550 was investigated. Timetal 550 showed two types of phase transformations (martensitic and nucleation and growth) depending on the cooling rate from the beta region. The alpha phase initially precipitated at the prior beta grain boundaries, and it had a Burgers OR with one of the adjacent grains. It was found that colonies could grow, even in the fast-cooled Timetal 550 sample, from the grain boundary alpha into the prior beta grain with which it exhibited the Burgers OR. Three orientation relationships were also found between alpha laths in the basketweave microstructure. Microhardness testing demonstrated that fast-cooled Timetal 550 samples with basketweave microstructure were harder than slowly-cooled samples with colony microstructure. Orientation-dependent deformation was found in the colony microstructure. Specifically, when the surface normal is perpendicular to the [0001] of alpha, the material deforms easily in the direction perpendicular to the [0001] of alpha. Fuzzy logic and Bayesian neural network models were developed to predict the room temperature tensile properties of Timetal 550. This involved the development of a database relating microstructural features to mechanical properties. A Gleeble 3800 thermal-mechanical simulator was used to develop various microstructures. Microstructural features of tensile-tested samples were quantified using stereological procedures. The quantified microstructural features and the tensile properties were used as inputs and outputs, respectively, for modeling the relationships between them. The individual influence of five microstructural features on tensile properties was determined using the established models. The microstructural features having the greatest impact on UTS and YS were the thickness of alpha laths and the width of grain boundary alpha layer, and the microstructural features having the greatest impact on elongation were the thickness of

  5. Helicoidal microstructure of Scarabaei cuticle and biomimetic research

    International Nuclear Information System (INIS)

    Chen, B.; Peng, X.; Cai, C.; Niu, H.; Wu, X.

    2006-01-01

    Insect cuticles as a natural biocomposite include many favorable microstructures which have been refined over centuries and endow the cuticles excellent mechanical and physical properties, such as light weight, high strength and toughness, etc. The various microstructures of a Scarabaei cuticle are investigated with a scanning electronic microscope and reported in this paper. It is found that the cuticle is a kind of fiber-reinforced biocomposite composed of chitin-fiber layers and sclerous protein matrixes. Different chitin-fiber layers have different orientations, composed of crossed and helicoidal structures at different location. In the helicoidal structure, each fiber layer rotates with an almost fixed angle against its neighboring layer. The maximum pullout energy of the helicoidal structure is analyzed based on the representative model of the structure. The result shows that the pullout energy of the helicoidal structure is markedly larger than that of the conventional 0 o -structure. A biomimetic composite with the observed helicoidal structure is designed and fabricated. A comparative test shows that the fracture toughness of the biomimetic composite is markedly larger than that of the 0 o -layer composite

  6. Influence of the Ti microstructure on anodic self-organized TiO{sub 2} nanotube layers produced in ethylene glycol electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.M., E-mail: jan.macak@upce.cz [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Jarosova, M. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the CAS, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Jäger, A. [Department of Structure analysis, Institute of Physics of the CAS, v.v.i., Cukrovarnicka 10, 16200 Prague 6 (Czech Republic); Sopha, H. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Klementová, M. [Institute of Inorganic Chemistry of the CAS, v.v.i., Husinec-Rez 1001, Rez 25068 (Czech Republic)

    2016-05-15

    Highlights: • The microstructure of Ti substrates investigated by EBSD. • Comparison of polished vs. unpolished substrates was carried out. • Grain orientation influences the uniformity of self-organized TiO{sub 2} nanotubes. • Tubes with different average diameter grow on grains with different orientation. • Grain size and boundaries influence the number of flaws in the tube layers. - Abstract: The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO{sub 2} nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH{sub 4}F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO{sub 2} nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of

  7. Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application

    Science.gov (United States)

    Guedes, A.; Mendes, M. J.; Freitas, P. P.; Martins, J. L.

    2006-04-01

    There has been a growing interest in using both synthetic ferrimagnet (SF) free and synthetic antiferromagnet (SAF) pinned layers for head and memory applications. In particular, for linear sensor applications, these structures lower the magnetostatic fields present at the free layer through the reduction of its effective thickness (teffSF). This allows higher sensitivity but at the expense of an increased offset field H0(Néel coupling field Hf+interlayer demagnetizing field HdSAF). In this work, results on a series of patterned 3×1 and 6×2 μm2 top-pinned SF-SAF spin valves are analyzed and compared with a three-dimensional micromagnetic simulation in order to clarify the role of the different ferromagnetic layers in the overall offset field and sensitivity. H0 varies as 1/teffSF[teffSF=(Mata-Mbtb)/MeffSF]. The magnetostatic field acting on the SF coming from the SAF (HdSAF) can act as a biasing field, partially counterbalancing the Néel coupling field (Hf) leading to a reduction of H0. In this work the offset field was reduced from an initial value of 25 Oe in a quasicompensated SAF to a value of -6 Oe, by unbalancing the SAF and consequently increasing its effective moment (teffSF=15 A˚).

  8. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  9. Membrane with Stable Nanosized Microstructure and Method for Producing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from...... an electrolyte material, a grain growth inhibitor and/or grain boundary modifier, and a method for producing same....

  10. Thermodynamics, Kinetics and Microstructural Evolution of the Compound Layer; a Comparison of the States of Knowledge of Nitriding and Nitrocarburising

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2000-01-01

    and atmospheric corrosion performance. The diffusion zone brings about an improvement of the endurance limit as compared to an untreated component. Hence, nitrocarburising is perhaps the most versatile surface treatment for ferritic steel and has a potential for wide application. From the literature...... conditions for tailoring a certain combination of properties. The present paper describes aspects of the thermodynamics, kinetics and microstructure evolution of the compound layer on pure iron during nitrocarburising, by comparing the current status of qualitative understanding with that for nitriding...

  11. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    International Nuclear Information System (INIS)

    Zeng Yanwei; Tian Changan; Liu Junliang

    2006-01-01

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut) 4 /alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut) 4 molecules in the films was found to show an incubation period of ∼15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut) 4 /PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut) 4 (∼1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to ∼10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut) 4 since these clusters act as a fast diffusion network due to percolation effect

  12. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    Science.gov (United States)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  13. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  14. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  15. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  16. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection

    International Nuclear Information System (INIS)

    Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin

    2015-01-01

    An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control. (paper)

  17. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  18. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    International Nuclear Information System (INIS)

    Škeren, M; Svoboda, J; Kveton, M; Fiala, P

    2013-01-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ∼ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  19. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    Science.gov (United States)

    Škereň, M.; Svoboda, J.; Květoň, M.; Fiala, P.

    2013-02-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ~ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  20. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding

    International Nuclear Information System (INIS)

    Wang, J.F.; Sun, Q.J.; Wang, H.; Liu, J.P.; Feng, J.C.

    2016-01-01

    Additive layer manufacturing (ALM), using gas tungsten arc welding (GTAW) as heat source, is a promising technology in producing Inconel 625 components due to significant cost savings, high deposition rate and convenience of processing. With the purpose of revealing how microstructure and mechanical properties are affected by the location within the manufactured wall component, the present study has been carried out. The manufactured Inconel 625 consists of cellular grains without secondary dendrites in the near-substrate region, columnar dendrites structure oriented upwards in the layer bands, followed by the transition from directional dendrites to equiaxed grain in the top region. With the increase in deposited height, segregation behavior of alloying elements Nb and Mo constantly strengthens with maximal evolution in the top region. The primary dendrite arm spacing has a well coherence with the content of Laves phase. The microhardness and tensile strength show obvious variation in different regions. The microhardness and tensile strength of near-substrate region are superior to that of layer bands and top region. The results are further explained in detail through the weld pool behavior and temperature field measurement.

  1. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.F. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Sun, Q.J., E-mail: qjsun@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wang, H. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.P. [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300 (China); Feng, J.C. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2016-10-31

    Additive layer manufacturing (ALM), using gas tungsten arc welding (GTAW) as heat source, is a promising technology in producing Inconel 625 components due to significant cost savings, high deposition rate and convenience of processing. With the purpose of revealing how microstructure and mechanical properties are affected by the location within the manufactured wall component, the present study has been carried out. The manufactured Inconel 625 consists of cellular grains without secondary dendrites in the near-substrate region, columnar dendrites structure oriented upwards in the layer bands, followed by the transition from directional dendrites to equiaxed grain in the top region. With the increase in deposited height, segregation behavior of alloying elements Nb and Mo constantly strengthens with maximal evolution in the top region. The primary dendrite arm spacing has a well coherence with the content of Laves phase. The microhardness and tensile strength show obvious variation in different regions. The microhardness and tensile strength of near-substrate region are superior to that of layer bands and top region. The results are further explained in detail through the weld pool behavior and temperature field measurement.

  2. Microstructure of buried CoSi2 layers formed by high-dose Co implantation into (100) and (111) Si substrates

    International Nuclear Information System (INIS)

    Bulle-Lieuwma, C.W.T.; Van Ommen, A.H.; Vandenhoudt, D.E.W.; Ottenheim, J.J.M.; de Jong, A.F.

    1991-01-01

    Heteroepitaxial Si/CoSi 2 /Si structures have been synthesized by implanting 170-keV Co + with doses in the range 1--3x10 17 Co + ions/cm 2 into (100) and (111) Si substrates and subsequent annealing. The microstructure of both the as-implanted and annealed structures is investigated in great detail by transmission electron microscopy, high-resolution electron microscopy, and x-ray diffraction. In the as-implanted samples, the Co is present as CoSi 2 precipitates, occurring both in aligned (A-type) and twinned (B-type) orientation. For the highest dose, a continuous layer of stoichiometric CoSi 2 is already formed during implantation. It is found that the formation of a connected layer, already during implantation, is crucial for the formation of a buried CoSi 2 layer upon subsequent annealing. Particular attention is given to the coordination of the interfacial Co atoms at the Si/CoSi 2 (111) interfaces of both types of precipitates. We find that the interfacial Co atoms at the A-type interfaces are fully sevenfold coordinated, whereas at the B-type interfaces they appear to be eightfold coordinated

  3. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  4. Microstructure and nanomechanical properties of Fe+ implanted silicon

    International Nuclear Information System (INIS)

    Nunes, B.; Magalhães, S.; Franco, N.; Alves, E.; Colaço, R.

    2013-01-01

    Silicon wafers were implanted with iron ions at different fluences (from 5 × 10 15 up to 2 × 10 17 cm −2 ), followed by annealing treatments at temperatures from 550 °C to 1000 °C, aiming at evaluating the nanomechanical response of the samples and its relation with the microstructural features and characteristics of the modified layer. After implantation, a homogeneous amorphous layer with a thickness between 200 nm and 270 nm is formed, without damaging the surface smoothness neither introducing surface defects. After annealing, recrystallization and formation of nanometric precipitates of iron silicides is observed, with the corresponding changes in the hardness and stiffness of the modified layer. These results indicate that ion implantation of silicon followed by annealing at proper temperatures, can be an alternative route to be deeper explored in what concerns the precise control of the microstructure and, thus, the improvement of nanomechanical properties of silicon.

  5. Mechanical properties of layers of corrosion products at steel / concrete interface

    International Nuclear Information System (INIS)

    Dehoux, Anita

    2012-01-01

    To take account of the development of corrosion products layers in residual lifetime calculations of reinforced concrete structures requires a good knowledge of the mechanical properties of these products. Our study aims to determine the mechanical properties of layers of corrosion products. The approach consists of an identification of the microstructure properties complemented by homogenization calculations to calculate a mesoscopic behavior in linear elasticity of layers of corrosion products. The study includes a series of experimental campaigns at the microscopic scale. Vickers micro indentation tests analyzed by a Gaussian mixture model approach allowed the acquisition of hardness and elastic moduli at the microscale. An identification of the microstructure products is performed by Raman microspectrometry. The microstructure's characterization brings valuable information for homogenization calculations. The first approach has consisted of calculations of random media homogenization by self-consistent and generalized self-consistent schemes. In the second approach, effective modulus calculations were performed using numerical microstructures resulting from 2D images taken with an optical microscope. The corpus is composed of samples of different ages and origins, their microstructures were compared. (author) [fr

  6. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    Science.gov (United States)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  7. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  8. Effect of laser modification of B-Ni complex layer on wear resistance and microhardness

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Popławski, Mikołaj; Bartkowski, Dariusz; Przestacki, Damian; Miklaszewski, Andrzej

    2015-09-01

    The paper presents the results of microstructure observations, microhardness measurements and wear resistance tests of B-Ni complex layers. Boronickelizing is a three-step process of layer production on metallic substrate. Nickel modified boronized layers were called 'boronickelized'. Nickel plating was applied first and, as a result, nickel coatings with a varying thickness were obtained. Diffusion boronizing was carried out as a second step. Boronickelized layer was formed following the merger of galvanic and diffusion processes. In the third step the galvanic-diffusion boronickelized layer was obtained by remelting it with a CO2 laser beam. Galvanic-diffusion boronickelized layer had a dual-zone microstructure. The first zone was continuous and nickel-enriched, and characterized by reduced microhardness, whereas the second zone was characterized by needle-shaped microstructure, with microhardness similar to Fe2B iron borides. After laser modification steel specimens with the boronickelized layer consisted of remelted zone (MZ), heat affected zone (HAZ), and substrate. It was found that increasing the thickness of nickel coating leads to decreasing the microhardness of the remelted zone. Increasing thickness of nickel coating causes the reduction of wear resistance of boronickelized layer modified by laser beam. The application of a nickel coating thicker than 20 μm causes incomplete remelting of needle-shaped microstructure of boronickelized layer.

  9. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  10. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  11. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kaibin; Li, Dong, E-mail: lid@sues.edu.cn; Liu, Dongyu; Pei, Guangyu; Sun, Lei

    2015-06-15

    Highlights: • Grain morphology transformations of 308L stainless steel multiple-layer are studied. • The cladding metals solidify in AF mode and consist of austenite and about 10.48% δ ferrite. • The ferrite content distributes into an increasing trend as the number of layers increase. • The distribution of hardness from the substrate to the coating is relatively uniform. • The cladding tensile sample shows good tensile properties, and the fracture mode is the ductile fracture. - Abstract: Multiple-layer laser cladding of 308L stainless steel was obtained by a fiber laser using a way of wire feeding to repair the surface scrapped or erosive parts of 316L stainless steel. The microstructure of the coating was measured by a metallographic microscope, and phase composition was determined by X-ray diffraction. The results show that good metallurgical bonding can be obtained between the 308L stainless steel coating and 316L stainless steel substrate. The coating is mainly composed of columnar dendrites, and there are also a few planar crystals and cellular dendrites distributed in the bonding zone. Meanwhile, some equiaxed grains and steering dendrites are distributed in the apex of the coating. Grains incorporate in epitaxial columnar dendrite's growth between different layers and tracks. It has been proved using XRD that the coating basically consists of austenite and a small amount of δ ferrite. The coating solidifies in FA mode according to the Creq/Nieq ratio and metallurgical analysis results. The average content of δ ferrite is about 10.48% and morphologies of the ferrite are mostly vermicular, skeletal and lathy. Due to heat treatment and different cooling rate, the δ ferrite content generally increases as the number of laser cladding layers increases. The coating and the substrate have equivalent microhardness, and softening zone does not appear in the heat affected zone. The tensile strength and elongation of the coating are 548 MPa and 40

  12. Microstructure evolution and liquid phase separation in Ta-O hypermonotectic melts during laser-cladding

    Directory of Open Access Journals (Sweden)

    *Hai-ou Yang,

    2018-05-01

    Full Text Available A three-layer Ta2O5-containing coating was successfully fabricated by laser cladding on a pure Ta substrate. The maximum thickness of such a coating is about 1.6 mm. The microstructure, phase constitution and elemental distribution in the coating were investigated. Results show that the coating has been metallurgically bonded to the Ta substrate and the microstructure exhibits a graded change along the deposition direction from Ta substrate to the top of coating. In the layers I and II of the graded coating, the microstructure evolution can be confirmed as a result of hypomonotectic reaction, but in the layer Ⅲ it was formed by hypermonotectic reaction. At the top of coating, the microstructure was still homogeneous although liquid phase separation had occurred,which can be attributed to the fact that the O-rich droplets do not have enough time to float at high cooling rate.The theoretical calculation results show that during laser cladding, the solidification time of the melt pool was less than 0.1 s, which fits well with the results from the experiment.

  13. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  14. Effect of using the double layer technique on the microstructure, microhardness and residual stress of welded ASTM A516 GR70 structural steel

    International Nuclear Information System (INIS)

    Oliveira, George Luiz Gomes de; Miranda, Helio Cordeiro de

    2010-01-01

    The aim of this work is to evaluate the effect of using the double layer technique on the microstructure, microhardness and residual stresses of welded ASTM A516 Gr70 structural steel. Samples were welded with the same welding parameters and two types of chamfers, while the samples welded using the double layer technique underwent a buttering process on their chamfer face. Residual stress measurement was accomplished through x-ray diffraction, using a mini diffractometer for measurement in field. Metallographic analysis was accomplished in the transverse section of the welded joint, using optic microscopy and scanning electron microscopy. The double layer technique showed that can be used in the welding of ASTM A516 Gr70 steel, because, besides promote a refinement and a drawing back of the CG-HAZ, it increased compressive residual stress in the whole surface of the analyzed samples.(author)

  15. Towards biochips using microstructured optical fiber sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Hoiby, Poul Erik; Jensen, Jesper Bo

    2006-01-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows...... the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing...... layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique...

  16. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    Science.gov (United States)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  17. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  18. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    International Nuclear Information System (INIS)

    Maresca, F; Kouznetsova, V G; Geers, M G D

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels. (paper)

  19. Microstructure and Mechanical Properties of Three-Layer TIG-Welded 2219 Aluminum Alloys with Dissimilar Heat Treatments

    Science.gov (United States)

    Zhang, Dengkui; Li, Quan; Zhao, Yue; Liu, Xianli; Song, Jianling; Wang, Guoqing; Wu, Aiping

    2018-05-01

    2219-C10S and 2219-CYS aluminum alloys are 2219 aluminum alloys with different heat treatment processes, and they have been widely used in the aerospace industry. In the present study, 2219-C10S and 2219-CYS aluminum alloys were butt-welded by three-layer tungsten inert gas arc welding (with the welding center of the third layer shifted toward the CYS side), and the microstructure characteristics and mechanical properties of the welded joint were investigated. The lamellar θ' phases, the bulk or rod θ phases, and the coarse rod-shaped or pancake-shaped Al-Cu-Fe-Mn phases coexisted in the two aluminum alloys. The Cu content of the α-Al matrix and the distribution of eutectic structures of different welding layers in the weld zone (WZ) were varied, implying that the segregation degrees of the Cu element were different due to the different welding thermal cycles in different welding layers. The microhardness values of the CYS side were much higher than those of the C10S side in each region on both sides of the joint. The tensile test deformation was concentrated mainly in the regions of WZ and the over aged zone (OAZ), where the microhardness values were relatively low. The main deformation concentrated region was transferred from the CYS side to the C10S side with the increase in the tensile load during the tensile test. The fracture behavior of the tensile test showed that the macroscopic crack initiated near the front weld toe had gone through the crack blunt region, the shear fracture region of the partially melted zone (PMZ), and the shear fracture region of OAZ. Meanwhile, the fracture characteristics gradually evolved from brittle to ductile. The concentrated stress and the dense eutectic structure in the region near the front weld toe of the C10S side contributed to the fracture of the joint. The shift of the welding center of the third layer to the CYS side resulted in two effects: (i) the microhardness values from the middle layer to the top layer in the

  20. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  1. Polymorphism of CaCO{sub 3} and microstructure of the shell of a Brazilian invasive Mollusc (Limnoperna fortunei)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura Filho, Arnaldo; Almeida, Arthur Correa de; Riera, Hernan Espinoza; Cardoso, Antonio Valadao, E-mail: nakamuraaf@gmail.com [Rede Tematica em Engenharia de Materiais (REDEMAT), Ouro Preto, MG (Brazil); Araujo, Joao Locke Ferreira de [Centro de Bioengenharia de Especies Invasoras de Hidreletricas(CBEIH), Belo Horizonte, MG (Brazil); Gouveia, Vitor Jose Pinto [Fundacao Centro Tecnologico de Minas Gerais (CETEC), Belo Horizonte, MG (Brazil); Carvalho, Marcela David de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    2014-08-15

    Applying the theories of Materials Science and Engineering to describe the composition and hierarchy of microstructures that comprise biological systems could help the search for new materials and results in a deeper insight into evolutionary processes. The layered microstructure that makes up the freshwater bivalve Limnoperna fortunei shell, an invasive specie in Brazil, was investigated utilizing SEM and AFM for the determination of the morphology and organization of the layers; and XRD was used to determine the crystalline phases of the calcium carbonate (CaCO{sub 3}) present in the shell. The presence of the polymorphs calcite and aragonite were confirmed and the calcite is present only on the external side of the shell. The shell of L. fortunei is composed of two layers of aragonite with distinct microstructures (the aragonite prismatic layer and the aragonite sheet nacreous layer) and the periostracum (a protein layer that covers and protects the ceramic part of the shell). A new morphology of the calcite layer was found, below the periostracum, without defined form, albeit crystal (author)

  2. Valve microstructure and phylomineralogy of New Zealand chitons.

    Science.gov (United States)

    Peebles, B A; Smith, A M; Spencer, H G

    2017-03-01

    The microstructure and mineralogy of chiton valves has been largely ignored in the literature and only described in 29 species to date. Eight species: Acanthochitona zelandica, Notoplax violacea (Family Acanthochitonidae, Suborder Acanthochitonina, Order Chitonida), Chiton glaucus, Onithochiton neglectus, Sypharochiton spelliserpentis, Sypharochiton sinclairi (Family Chitonidae, Suborder, Chitonina, Order Chitonida), Ischnochiton maorianus (Family Ischnochitonidae, Suborder Chitonina, Order Chitonida), and Leptochiton inquinatus (Family Leptochitonidae, Suborder Lepidopleurina, Order Lepidopleurida) were collected from the Otago Peninsula, South Island, New Zealand. The valves of these chitons were analysed with X-ray diffractometry, Raman spectrometry, and Scanning Electron Micrography (SEM) to determine their mineralogy and microstructure. Both the XRD and Raman data show that the valves consisted solely of aragonite. The observed microstructures of the valves were complex, typically composed of four to seven sublayers, and varied among species. The dorsal layer, the tegmentum, of each species was granular and the ventral layer, the articulamentum, was predominately composed of a spherulitic sublayer, a crossed lamellar sublayer, and an acicular sublayer. The chitonids Sypharochiton pelliserpentis and S. sinclairi had the most complex microstructure layering with three crossed lamellar, two spherulitic sublayers, and a ventral acicular sublayer while the acanthochitonids Acanthochitona zelandica and Notoplax violacea as well as the ischnochitonid Ischnochiton maorianus had the simplest structure with one spherulitic, one crossed lamellar sublayer, and a ventral acicular sublayer. Terminal valves were less complex than intermediate valves and tended to be dominated by the crossed lamellar structure. The leptochitonid Leptochiton inquinatus generated a unique crossed lamellar sublayer different from the other analysed chitonids. Acanthochitona zelandica is the only

  3. Human eye cataract microstructure modeling and its effect on simulated retinal imaging

    Science.gov (United States)

    Fan, Wen-Shuang; Chang, Chung-Hao; Horng, Chi-Ting; Yao, Hsin-Yu; Sun, Han-Ying; Huang, Shu-Fang; Wang, Hsiang-Chen

    2017-02-01

    We designed a crystalline microstructure during cataract lesions and calculated the aberration value of the eye by using ray trace modeling to identify the corresponding spherical aberration, coma aberration, and trefoil aberration value under different pathological-change degrees. The mutual relationship between microstructure and aberration was then discussed using these values. Calculation results showed that with increased layer number of microstructure, the influence of aberration value on spherical aberration was the greatest. In addition, the influence of a relatively compact microstructure on spherical aberration and coma aberration was small, but that on trefoil aberration was great.

  4. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    NARCIS (Netherlands)

    Maresca, F.; Kouznetsova, V.; Geers, M.G.D.

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers

  6. Origin of variation of shift field via annealing at 400°C in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer

    Directory of Open Access Journals (Sweden)

    H. Honjo

    2017-05-01

    Full Text Available We investigated properties of perpendicular-anisotropy magnetic tunnel junctions (p-MTJs with [Co/Pt]-multilayer based synthetic ferrimagnetic reference (SyF layer at elevated annealing temperature Ta from 350°C to 400°C. Shift field HS defined as center field of minor resistance versus magnetic field curve of the MTJs increased with increase of Ta from 350°C to 400°C. The variation of HS is attributed to the variation of saturation magnetic moment in the SyF reference layer. Cross sectional energy dispersive X-ray spectroscopy analysis revealed that Fe element of CoFeB in the reference layer diffuses to Co/Pt multilayers in the SyF reference layer.

  7. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  8. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  9. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors

  10. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuna; Kim, Seok [School of Chemical and Biomolecular Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors.

  11. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  12. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    Science.gov (United States)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  13. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  14. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: Dennis.Keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia)

    2012-06-15

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  15. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    Science.gov (United States)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  16. Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding

    Science.gov (United States)

    Feng, Hong-Liang; Huang, Ji-Hua; Yang, Jian; Zhou, Shao-Kun; Zhang, Rong; Wang, Yue; Chen, Shu-Hai

    2017-11-01

    Ni/Ni-Sn/Ni sandwiched simulated package structures were successfully bonded under low temperature and low pressure by Ni-Sn transient liquid-phase sintering bonding. The results show that, after isothermally holding for 240 min at 300 °C and 180 min at 340 °C, Sn was completely transformed into Ni3Sn4 intermetallic compounds. When the Ni3Sn4 phases around Ni particles were pressed together, the porosity of the bonding layer increased, which obviously differed from the normal sintering densification process. With further analysis of this phenomenon, it was found that large volume shrinkage (14.94% at 340 °C) occurred when Ni reacted with Sn to form Ni3Sn4, which caused void formation. A mechanistic model of the microstructural evolution in the bonding layer was proposed. Meanwhile, the resistivity of the bonding layer was measured and analyzed by using the four-probe method; the microstructural evolution was well reflected by the resistivity of the bonding layer. The relationship between the resistivity and microstructure was also discussed in detail.[Figure not available: see fulltext.

  17. Effect of initial as-cast microstructure on semisolid microstructure of AZ91D alloy during the strain-induced melt activation process

    International Nuclear Information System (INIS)

    Wang, J.G.; Lin, H.Q.; Li, Y.Q.; Jiang, Q.C.

    2008-01-01

    The effects of different as-cast microstructures which were initially cast in graphite, metal, sand and firebrick moulds, respectively on the semisolid microstructure of AZ91D alloy, have been investigated during the strain-induced melt activation (SIMA) process. The experimental results showed that the moulds with high cooling capacity could produce the fine-grained as-cast microstructure in which the fine α-Mg dendrites were surrounded by a narrow layer of eutectic mixtures. After compressive deformation, in the fine-grained as-cast microstructure, the more systemic strain energy would be gradually accumulated and abundantly stored due to uniform inner crystal lattice distortion, so the recrystallization was easily induced by the stored strain energy at the elevated temperature. As a channel for the diffusion of atoms, the subgrain boundary along which Al element was enriched, foremost melted above the eutectic temperature and resulted in the separation of neighboring subgrains from primary dendrites. Therefore, the refining role of recrystallization on the microstructural evolution from dendrite to globular particles in morphology was easier to play in the fine-grained as-cast microstructure, which was advantageous for the production of fine-grained semisolid microstructure. Additionally, in the fine-grained as-cast microstructure, the melting fracture of narrow secondary dendritic arms was easy to occur in their roots, which also attributed to the production of fine globular grains in semisolid microstructure from primary dendrites. The finer dendrites in the initial as-cast alloy could evolve into the finer globular grains with relatively small grain size distribution range in the semisolid microstructure during partial remelting; therefore, the finer the dendrites in the initial as-cast microstructure, the better were the tensile properties of the evolved semisolid microstructure

  18. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    Science.gov (United States)

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging

  19. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal-matrix composites

    International Nuclear Information System (INIS)

    Ilo, S.; Just, Ch.; Badisch, E.; Wosik, J.; Danninger, H.

    2010-01-01

    Research highlights: The dissolution reaction kinetics and the formation of intermediate layers of tungsten carbides in Ni-(Cr)-B-Si matrices were studied in liquid-phase sintering with well-defined temperature/time relationship. → The internal intermediate layer formation, close to the original primary tungsten carbide showed diffusion-controlled kinetic (∼t 0.5 ), whereas the outside layer thickness formation, proportional to the processing time (∼t), was formed by the subsequent eutectic reaction of the Ni-(Cr)-B-Si matrix with the WC/W 2 C component. → Cr-addition in the matrix highly influences the inner layer thickness caused probably by increasing the C-diffusion rate, whereas the outer layer thickness was not dependent on the initial Cr-content in the matrix. Generally, the Cr-addition in the Ni-based matrix increased the hardness and elastic modulus of the intermediate phases along the carbide/matrix interface. → The different microstructure gradients are depended mainly on the interface growth kinetics. → The intermediate layers are hard phases (carbides, borides or carbo-borides). → The hardness of the carbide/matrix interface area is significantly lower as the hardness of the original primary tungsten carbides. - Abstract: Hard-particle metal-matrix composites (MMC) are generally used to increase the lifetime of machinery equipment exposed to severe wear conditions. Depending on the manufacturing technology, dissolution reactions of hard phases undergo different temperature/time profiles during processing affecting the microstructure and mechanical properties of the MMCs. Therefore, quantification of the carbide dissolution effects on the microstructure and micro-mechanical properties is the key to success in the development and optimisation of MMCs. Dissolution kinetics of WC/W 2 C in Ni-based matrices were determined in the liquid-sintering with a well-defined temperature/time profile. Microscopic evaluation of the samples showed two

  20. Characterization of cylinder liners produced with hypereutectic Al-Si alloys and investigation of corrosion behaviour in synthetic automotive condensed solution

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    2006-01-01

    In the present study four hypereutectic Al-Si alloys, three produced by spray forming and one by casting, were characterized for microhardness, roughness, microstructure, texture and corrosion resistance in a synthetic automotive condensed solution (SACS). Two of the spray formed alloys tested were obtained from cylinder liners and the other was laboratory made. Spray forming involves alloy atomization and droplets deposition on a substrate, previous to the solidification of all of the droplets. This process favours the production of materials with a fine microstructure free of macrosegregation that is related to improved hot workability. The microstructure characterization of the four alloys revealed the presence of porosities in the laboratory made alloy. All the three alloys produced by spray forming showed a homogeneous distribution of primary precipitates. The microstructure of one of the alloys showed eutectic microstructure, indicating that this alloy was fabricated by casting. In the cylinder liners, the surface roughness was measured and the microhardness of all the alloys was also evaluated. Furthermore, the laboratory made alloy was hot and cold rolled. Texture determinations were carried out to investigate the correlation between the alloy type and their fabrication process. The texture investigation indicated that the fine distribution of primary silicon phase in the alloy hindered the development of texture typical of aluminium alloys deformation, even after severe mechanical work, such as those used in the conversion of pre-formed in cylinder liners. The surface roughness results indicated typical characteristics of the surface finishing used, honing or chemical etching. The microhardness results were dependent on the fabrication process used, with higher microhardness associated to the eutectic alloy comparatively to the spray formed ones. All hypereutectic alloys were tested for corrosion resistance using electrochemical impedance spectroscopy in

  1. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    Science.gov (United States)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field

  2. Visualization of Wave Propagation and Fine Structure in Frictional Motion of Unconstrained Soft Microstructured Tapes

    DEFF Research Database (Denmark)

    Heepe, Lars; Filippov, Alexander E.; Kovalev, Alexander E.

    2017-01-01

    from previous friction tests of microstructured elastomers fixed onto a rigid support, allowing only for shear deformations of surface microstructures and the backing layer, but not for stretching of the entire sample. Three different types of microstructured tapes were tested and their frictional...... behavior compared to results from numerical simulations. In both experimental and numerical cases, visualization of wave propagation and fine structure in friction is obtained....

  3. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  4. Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate

    International Nuclear Information System (INIS)

    Chaudhuri, Atanu; Raghupathy, Y.; Srinivasan, Dheepa; Suwas, Satyam; Srivastava, Chandan

    2017-01-01

    This study illustrates microstructural evolution of INCONEL 625 superalloy coatings cold-sprayed on a 4130 chrome alloy steel with medium carbon content. INCONEL 625 powder (5–25 μm) were successfully cold sprayed without any oxidation. The comprehensive microstructure analysis of the as-sprayed coatings and of the substrate-coating interface was carried out using EBSD, TEM, and XRD. The coating microstructure at the substrate-coating interface was markedly different from the microstructure away from the interface. The coating microstructure at steel-coating interface consisted of a fine layer of small grains. The microstructure beyond this fine layer can be divided into splats, inter splat and intra splat boundaries. Both splat and splat boundaries exhibited deformation induced dislocations. Dynamic recovery of dislocations-ridden regions inside the splat was responsible for the development of sub grain structure inside a splat with both low and high angle grain boundaries. Splat-splat (inter splat) boundary consisted of a relatively high density of dislocations and shear bands as a result of adiabatic shear flow localisation. This flow instability is believed to enhance the microstructural integrity by eliminating porosity at splat-splat boundaries. Based on the microstructural analysis using electron microscopy, a plausible mechanism for the development of microstructure has been proposed in this work. Cold spray technique can thus be deployed to develop high quality coatings of commercial importance. - Graphical abstract: Schematics of the evolution of microstructure at the 4130 steel substrate close to interface. i) initial deformation close to interface. ii) Accumulation of dislocation in the substrate. iii) Formation of cell structure due to dislocation tangling and arrangement. iv) Dislocation rearrangement and subgrain formation. v.a) Formation HAGB from dislocation accumulation into LAGB. v.b) HAGB formation through DRX by progressive lattice rotation

  5. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2017-02-01

    Full Text Available Room-temperature ionic liquids (RTILs are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonylimide ([Emim][Tf2N] and 1-ethyl-3-methylimidazolium 2-(cyanopyrrolide ([Emim][CNPyr] by molecular dynamics (MD simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.

  6. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  7. Microstructural and mechanical characterization of the parabolic spring steel 51CrV4

    Energy Technology Data Exchange (ETDEWEB)

    Koemec, Aydin [TT Celikyay Co., Duezce (Turkey); Dikci, Kazim [TT Celikyay Co., Duezce (Turkey). Quality Dept.; Atapek, S. Hakan; Polat, Seyda; Aktas Celik, Guelsah [Kocaeli Univ. (Turkey). Dept. of Metallurgical and Materials Engineering

    2017-07-01

    Findings about the microstructural features of, spring steels are necessary for the producers to enhance their mechanical properties. There are several reports revealing the basic relation between microstructure and fatigue performance. However, the results are commonly obtained from universal test procedures and have limited use due to the lack of real service conditions. In this study, the microstructural features of 51CrV4 alloy, used as spring steel component, were investigated by metallographic examinations starting from raw material to the final product. Its fatigue behavior was investigated using a self-designed test machine and a test procedure approved by the automotive industry to simulate the service conditions. Fractographic examination of fatigue failed surface was carried out to specify the effect of microstructural features on the fracture. It was concluded that (i) both oxide and decarburization layers were minimized by shot peening and (ii) although tested samples had superior fatigue resistance and failed above 10{sup 5} cycles limit, oxide layer played a major role for crack initiation.

  8. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    Science.gov (United States)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  9. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  10. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  11. Influence of microstructure on laser damage threshold of IBS coatings

    International Nuclear Information System (INIS)

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.; Long, D.; Lalazari, R.; Wu, Z.L.; Kuo, P.K.

    1996-01-01

    Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small ( 26 J/cm 2 at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm 2 area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO 2 with different microstructures were studied using transmission electron microscopy, ellipsometry, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented

  12. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  13. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  14. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Effect of the addition of Sm2O3 on the microstructure of laser cladding alloy coating layers

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Fang, Wei; Joo, Yun Kon; Kang, Jin Ho; Lee, Chan Gyu

    2008-06-01

    The effects on the microstructures and phases of coating layers by the addition of micron-sized (m) and nano-sized (n) (m&n) Sm2O3 powders were investigated. The coating materials, which were prepared by means of 2.0 kW CO2 laser cladding, consist of a powder mixture of m Ni-based alloy (NBA) powders comprising 1.5 wt.% m Sm2O3 and 3.0% n Sm2O3 powders. The results indicate that γ-Ni, Cr23C6 and Ni3B are the primary phases of the NBA coatings. The Fe7Sm and Ni3Si phases are highlighted by the addition of m&n Sm2O3 powders. From the substrate, planar crystal layers are first grown in all NBA and m&n Sm2O3/NBA coatings. The dendrite growth then occurs as a result of the addition of the m Sm2O3 powder, and the equiaxed dendrite growth occurs as a result of the addition of the n Sm2O3. With the addition of a rare earth oxide such as Sm2O3 powder, the width of the planar crystal becomes smaller than that of the NBA coating.

  16. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  17. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    International Nuclear Information System (INIS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V.

    2015-01-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr 7 C 3 is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr x C y )-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr 3 C 2 and Cr 7 C 3 , the clad layers showed only the presence of Cr 7 C 3 . Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr 7 C 3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr 7 C 3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ 2 ) of the Cr 7 C 3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  18. A spatial picture of the synthetic large-scale motion from dynamic roughness

    Science.gov (United States)

    Huynh, David; McKeon, Beverley

    2017-11-01

    Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.

  19. In-situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of x-ray diffraction analysis and simultaneous measurements of the electrical resistivity as a function of time. In situ studies were started immediately after deposition...... growth, crystallographic texture changes by multiple twinning, and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer, the slower the microstructure evolution is......, and self-annealing is suppressed completely for a thin layer with 0.4 µm. The preferred crystallographic orientation of the as-deposited crystallites is suggested to cause the observed thickness dependence of the self-annealing kinetics. ©2006 American Institute of Physics...

  20. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  1. Microstructure Reconstruction of Sheet Molding Composite Using a Random Chips Packing Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tianyu; Xu, Hongyi; Chen, Wei

    2017-04-06

    Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC). The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.

  2. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...... process, crystal and microstructure analyses were carried out to determine the optimal sintering condition. The results show that the thermoelectric properties of pure Ca3Co4O9+δ thick film are comparable to those of cold isostatic pressing (CIP) samples. We found that the maximum power factor...... was improved by about 67% (to 0.3 mW/m K2) for film with proper silver (Ag) metallic inclusions as compared with 0.18 mW/m K2 for pure Ca3Co4O9+δ film under the same sintering condition of 1223 K for 2 h in air....

  3. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  4. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  5. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  6. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  7. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Yadroitsev, I., E-mail: ihar.yadroitsau@enise.fr [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France); Krakhmalev, P. [Karlstad University, Department of Mechanical and Materials Engineering, SE-651 88 Karlstad (Sweden); Yadroitsava, I. [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France)

    2014-01-15

    Highlights: • Temperature measurements of molten pool were done using CCD camera. • Temperature of molten pool versus scanning speed and laser power was determined. • Microstructures and microhardness of SLM samples were analyzed. • Influence of heat treatment on microstructure were discussed and presented. -- Abstract: Selective laser melting (SLM) is a kind of additive manufacturing where parts are made directly from 3D CAD data layer-by-layer from powder material. SLM products are used in various industries including aerospace, automotive, electronic, chemical, biomedical and other high-tech areas. The properties of the parts produced by SLM depend strongly on the material nature, characteristics of each single track and each single layer, as well as the strength of the connections between them. Studying the temperature distribution during SLM is important because temperature gradient and heat transfer determine the microstructure and finally mechanical properties of the SLM part. In this study a CCD camera was applied for determination of the surface temperature distribution and the molten pool size of Ti6Al4V alloy. The investigation of the microstructure evolution after different heat treatments was carried out to determine the microstructure in terms of applicability for the biomedical industry.

  8. Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features

    International Nuclear Information System (INIS)

    Zeng, Rong-Chang; Sun, Lu; Zheng, Yu-Feng; Cui, Hong-Zhi; Han, En-Hou

    2014-01-01

    Highlights: •A schematic four-layered structural model of the natural oxide film has been constructed. •A novel concept for the Pilling–Bedworth ratios of chemical compounds is proposed. •Grain refinement in the microstructure leads to a shift from pitting corrosion to overall corrosion. •A method to characterise the corrosion rate of dual phase Mg–Li–Ca alloys is proposed. -- Abstract: The influence of the microstructure and the oxide film of the Mg–9.29Li–0.88Ca alloy on its corrosion behaviour was investigated using SEM, EPMA, XPS and corrosion measurements. The results demonstrated that the fine-grained microstructure improved the mechanical and corrosion resistance of the alloy and shifted pitting corrosion to overall corrosion. The oxide film contained a multi-layered structure, with the outer layer being enriched in lithium-bearing compounds; the interior layer predominantly consisting of oxides, hydroxides and carbonates of lithium and magnesium; and the bottom layer containing oxides. The Pilling–Bedworth ratio for chemical compounds was proposed, and the corrosion rates were characterised

  9. A three-dimensional microstructuring technique exploiting the positive photoresist property

    International Nuclear Information System (INIS)

    Hirai, Yoshikazu; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu

    2010-01-01

    The present paper describes a three-dimensional (3D) thick-photoresist microstructuring technique that exploits the effect of exposure wavelength on dissolution rate distributions in a thick-film diazonaphthoquinone (DNQ) photoresist. In fabricating 3D microstructure with specific applications, it is important to control the spatial dissolution rate distribution in the photoresist layer, since the lithographic performance for 3D microstructuring is largely determined by the details of the dissolution property. To achieve this goal, the effect of exposure wavelength on dissolution rate distributions was applied for 3D microstructuring. The parametric experimental results demonstrated (1) the advantages of the fabrication technique for 3D microstructuring and (2) the necessity of a dedicated simulation approach based on the measured thick-photoresist property for further verification. Thus, a simple and practical photolithography simulation model that makes use of the Fresnel diffraction theory and an empirically characterized DNQ photoresist property was adopted. Simulations revealed good quantitative agreement between the photoresist development profiles of the standard photolithography and the moving-mask UV lithography process. The simulation and experimental results conclude that the g-line (λ = 436 nm) process can reduce the dimensional limitation or complexity of the photolithography process for the 3D microstructuring which leads to nanoscale microstructuring.

  10. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.

    2017-12-01

    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of

  11. Microstructure of polymer-clay nanocomposites studied by positrons

    International Nuclear Information System (INIS)

    Wang, S.J.; Liu, L.M.; Fang, P.F.; Chen, Z.; Wang, H.M.; Zhang, S.P.

    2007-01-01

    The epoxy-rectorite nanocomposites with different rectorite contents, epoxide equivalent were prepared and its microstructure was studied by positron annihilation and X-ray diffraction (XRD). At low rectorite content (0-2.0%), the free volume size in nanocomposites is nearly the same, but its concentration decreases with increasing content; the exfoliated structure was observed by XRD and interfacial layer formation between rectorite platelets and epoxy matrix was probed by positrons. Comparing with epoxy-montmorillonite, the exfoliated structure and interfacial layers are easier formed in epoxy-rectorite nanocomposites

  12. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    Science.gov (United States)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  13. Experimental Investigation of White Layer formation in Hard Turning

    Science.gov (United States)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  14. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, L., E-mail: venkatesh@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Samajdar, I. [Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Tak, Manish [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Doherty, Roger D. [Department of Materials Engineering, Drexel University, Philadelphia, PA 19104 (United States); Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India)

    2015-12-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr{sub 7}C{sub 3} is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr{sub x}C{sub y})-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3}, the clad layers showed only the presence of Cr{sub 7}C{sub 3}. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr{sub 7}C{sub 3} with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr{sub 7}C{sub 3} is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ{sub 2}) of the Cr{sub 7}C{sub 3} dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  15. Fabrication of planar, layered nanoparticles using tri-layer resist templates.

    Science.gov (United States)

    Hu, Wei; Zhang, Mingliang; Wilson, Robert J; Koh, Ai Leen; Wi, Jung-Sub; Tang, Mary; Sinclair, Robert; Wang, Shan X

    2011-05-06

    A simple and universal pathway to produce free multilayer synthetic nanoparticles is developed based on lithography, vapor phase deposition and a tri-layer resist lift-off and release process. The fabrication method presented in this work is ideal for production of a broad range of nanoparticles, either free in solution or still attached to an intact release layer, with unique magnetic, optical, radioactive, electronic and catalytic properties. Multi-modal capabilities are implicit in the layered architecture. As an example, directly fabricated magnetic nanoparticles are evaluated to illustrate the structural integrity of thin internal multilayers and the nanoparticle stability in aggressive biological environments, which is highly desired for biomedical applications.

  16. Micro-buckling of periodically layered composites in regions of stress concentration

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    -buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....

  17. The effect of thermal history on microstructure of Er_2O_3 coating layer prepared by MOCVD process

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Takezawa, Makoto; Hishinuma, Yoshimitsu; Tanaka, Teruya; Muroga, Takeo; Ikeno, Susumu; Lee, Seungwon; Matsuda, Kenji

    2016-01-01

    Er_2O_3 is a high potential candidate material for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems with liquid metal or molten-salt types. Recently, Hishinuma et al. reported to form homogeneous Er_2O_3 coating layer on the inner surface of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this study, the influence of thermal history on microstructure of Er_2O_3 coating layer on stainless steel 316 (SUS 316) substrate by MOCVD process was investigated using SEM, TEM and XRD. The ring and net shape selected-area electron diffraction (SAED) patterns of Er_2O_3 coating were obtained each SUS substrates, revealed that homogeneous Er_2O_3 coating had been formed on SUS substrate diffraction patterns. Close inspection of SEM images of the surface on the Er_2O_3 coating before and after thermal cycling up to 700degC in argon atmosphere, it is confirmed that the Er_2O_3 particles were refined by thermal history. The column-like Er_2O_3 grains were promoted to change to granular structure by thermal history. >From the cross-sectional plane of TEM observations, the formation of interlayer between Er_2O_3 coating and SUS substrate was also confirmed. (author)

  18. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, G.Y. [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Yeon Soo; Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lee, K.H. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2017-04-15

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes including deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling resulting from a combination of fuel particle swelling and interaction layer (IL) growth. In some cases, pore growth in the interaction layers also contributed to meat swelling. The main objective of this work was to determine the stress distribution within the fuel meat that caused these phenomena. A mechanical equilibrium between the stress generated by fuel meat swelling and the stress relieved by fission-induced creep in the meat constituents (U-Mo particles, Al matrix, and IL) was considered. Test plates with well-recorded fabrication data and irradiation conditions were used, and their post-irradiation examination (PIE) data was obtained. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. The simulation results allowed for the determination of effective stress and hydrostatic stress exerted on the meat constituents. The effects of fabrication and irradiation parameters on the stress distribution that drives microstructural evolutions, such as pore growth in the IL and Al matrix rupture, were investigated. - Highlights: •Post-irradiation data for irradiated miniplates were analyzed by using their optical microscopy images. •ABAQUS finite element analysis (FEA) package was utilized to simulate the microstructural evolution of the selected plates. •Stresses were assessed to analyze their effects on microstructural changes during irradiation.

  19. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief

  20. Multi-antibody biosensing with Topas microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Bang, Ole; Hoiby, Poul E.

    We present a Topas based microstructured polymer optical fiber multi-antibody biosensor. This polymer allows localized activation of sensor layers on the inner side of the air holes. This concept is used to create two different sensor sections in the same fiber. Simultaneous detection of two kinds...

  1. Microstructure and Oxidation Behavior of CrAl Laser-Coated Zircaloy-4 Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Min Kim

    2017-02-01

    Full Text Available Laser coating of a CrAl layer on Zircaloy-4 alloy was carried out for the surface protection of the Zr substrate at high temperatures, and its microstructural and thermal stability were investigated. Significant mixing of CrAl coating metal with the Zr substrate occurred during the laser surface treatment, and a rapidly solidified microstructure was obtained. A considerable degree of diffusion of solute atoms and some intermetallic compounds were observed to occur when the coated specimen was heated at a high temperature. Oxidation appears to proceed more preferentially at Zr-rich region than Cr-rich region, and the incorporation of Zr into the CrAl coating layer deteriorates the oxidation resistance because of the formation of thermally unstable Zr oxides.

  2. Effects of Synchronous Rolling on Microstructure, Hardness, and Wear Resistance of Laser Multilayer Cladding

    Science.gov (United States)

    Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.

    2018-03-01

    A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.

  3. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  4. Mechanical properties and microstructure of nano grain nickel alloy deposit

    International Nuclear Information System (INIS)

    Seo, Moo Hong; Kim, Jung Su; Kim, Seung Ho; Jung, Hyun Kyu; Wyi, Jung Il; Hwang, Woon Suk; Jang, Si Sung; Chun, Byung Sun

    2003-01-01

    In this study, Ni-P layers were electroplated on the surface of stainless steel in order to investigate the effects of an additive and agitation on their mechanical properties and microstructure. The concentration of the additive in the plating solution increased, the pores formed in the layer decreased, while the residual stress developed in the layers during electroplating increased. Agitation of the solution during electroplating was observed to force to increase local pores in the layer which lowers its tensile properties. Grain growth was suppressed due to very fine Ni 3 P precipitates formed at its grain boundaries during heat treatment at 343 .deg. C for 1 hr in air

  5. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal

    Science.gov (United States)

    Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin

    2017-07-01

    Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.

  6. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  7. Atomic and microstructure of CMR materials

    International Nuclear Information System (INIS)

    Van Tendeloo, G.; Lebedev, O.I.; Amelinckx, S.

    2000-01-01

    The local structure of bulk and thin films of different perovskite-based CMR materials has been studied by high-resolution electron microscopy. The structure of Ln 1-x A x MnO 3 is not only a function of temperature and A-doping, but also of the thickness of the film. Evidence is produced for a slight monoclinic distortion at room temperature in most Ln 1-x A x MnO 3 compounds. For epitaxial La 0.7 Sr 0.3 MnO 3 (LSMO) films on a LaAlO 3 (0 0 1) the evolution of stress in the film is studied as a function of film thickness and thermal treatment. Close to the interface both film and substrate are elastically strained in opposite sense such that the interface is perfectly coherent for thin films not exceeding 30-35 nm. In thicker films the stress is partially relieved after annealing by the formation of misfit dislocations with an edge character. Thin films of La 1-x Ca x MnO 3 on a SrTiO 3 substrate, exhibit a remarkable microstructure. In direct contact with the SrTiO 3 substrate a thin featureless perfectly coherent La 1-x Ca x MnO 3 layer is formed. Subsequently, on top of this first layer a second thicker layer is deposited; it has a columnar microstructure. These columns, parallel to the interface normal, are in fact prismatic anti-phase domains. Their formation is attributed to the introduction of chemical faults during the film growth process. Islands of rocksalt-type MnO structure, nucleated within the regular La-O layer of the LCMO structure, initiate the formation of the prismatic anti-phase domains. Models of the domain boundaries and of the interface film/substrate are proposed. A growth mechanism for the domain structure is suggested

  8. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  9. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  10. Fabrication of fillable microparticles and other complex 3D microstructures

    Science.gov (United States)

    McHugh, Kevin J.; Nguyen, Thanh D.; Linehan, Allison R.; Yang, David; Behrens, Adam M.; Rose, Sviatlana; Tochka, Zachary L.; Tzeng, Stephany Y.; Norman, James J.; Anselmo, Aaron C.; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A.; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana

    2017-09-01

    Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.

  11. Behavior of porous beryllium under thermomechanical loading. Part 6. Effect of pressure on the microstructure of plasma-sprayed beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Snell, E.O.

    1975-01-01

    The effects of pressure and specimen preparation on the microstructure of two grades of porous plasma-sprayed beryllium were determined. One grade, P-1, was sintered after spraying while the other grade, P-10, was tested in the as-sprayed condition. the principal microstructural characteristics studied were grain size: grain morphology, and void distribution and size. It was found that machining can readily cause a significant dense surface layer on the porous beryllium specimens, and that the dense surface layer can be removed by etching. There was substantial difference in microstructure between the P-1 sintered and P-10 unsintered specimens both before and after being subjected to shock waves and static compression. (U.S.)

  12. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  13. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  14. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing

    International Nuclear Information System (INIS)

    Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A.

    2009-01-01

    In this study, a new processing technique, friction stir processing (FSP) was attempted to incorporate nano-sized Al 2 O 3 into 6082 aluminum alloy to form particulate composite surface layer. Samples were subjected to various numbers of FSP passes from one to four, with and without Al 2 O 3 powder. Microstructural observations were carried out by employing optical and scanning electron microscopy (SEM) of the cross sections both parallel and perpendicular to the tool traverse direction. Mechanical properties include microhardness and wear resistance, were evaluated in detail. The results show that the increasing in number of FSP passes causes a more uniform in distribution of nano-sized alumina particles. The microhardness of the surface improves by three times as compared to that of the as-received Al alloy. A significant improvement in wear resistance in the nano-composite surfaced Al is observed as compared to the as-received Al

  15. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    Science.gov (United States)

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  16. Moessbauer Study of Discoloration of Synthetic Resin Covered Electric Switches

    International Nuclear Information System (INIS)

    Kuzmann, E.; Muzsay, I.; Homonnay, Z.; Vertes, A.

    2002-01-01

    57 Fe Moessbauer spectroscopy and X-ray diffractometry were used to investigate brown discoloration and sediments formed on the surface of synthetic resin product covered electronic switches. The Moessbauer measurement revealed that alloyed steels and iron-containing corrosion products are associated with the discolored layers. Iron, and iron corrosion products were shown by both MS and XRD in the sediments formed eventually during the finishing of the synthetic resin products after machining and washing with water solution.

  17. Microstructures of group III-nitrides after implantation with gallium

    International Nuclear Information System (INIS)

    Kench, P.J.

    2001-05-01

    High doses of gallium have been implanted into layers of aluminium nitride (AIN), indium nitride (InN) and amorphous silicon nitride (a-SiN x ) in an attempt to bond gallium with nitrogen and form binary or ternary alloys. The microstructure of the resultant layers have been characterised using, principally, transmission electron microscopy and X-ray photoelectron spectroscopy. The implantation of a high dose of Ga ions into AIN was successful in synthesising a GaN/GaAlN compound. The resultant layers were largely uniform but contained aluminium precipitates near the surface. These precipitates were pure Al and were most common in the region associated with the maximum Ga concentration. Deconvolution of X-ray photoelectron spectroscopy peaks indicated that Ga existed in a number of chemical states, including the nitride. Electron diffraction patterns from the implanted layers were closely indexed to both AIN and GaN. A further N implant was used to reduce the concentration of the aluminium precipitates and increase the concentration of GaN bonds. The yield of Ga-N bonds dramatically increased and a reduction in the concentration of Al precipitates was observed. Laser and thermal annealing was performed on the implanted AIN substrates. The near surface regions of the implanted specimens appeared to free of precipitates and bubbles. Laser annealing did have a noticeable effect on the electrical and optical properties of the layers. After laser annealing the conductivity of the Ga implanted layer was lower, indicating that the quality of the material had improved. PL measurements showed that a new PL peak at 2.6 eV appeared after laser annealing. It has been found that implanting InN with gallium can yield Ga-N bonds. However, Ga implants into InN were not as successful at synthesising GaN compounds as those by implanting Ga into AIN, due to the low thermal stability of InN. The implanted InN layers were very irregular and contained large indium precipitates and

  18. Influence of laser alloyed layer of carbon steel with tantalum on the structure and surface layer properties

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.; Kac, S.

    1999-01-01

    The paper describes the microstructure and properties (chemical composition and microhardness) of the surface laser alloyed layer with tantalum. The surface alloyed zones varied in microstructure, zones depth and width, as well as Ta content according to the thickness of the coated layer, bonding paint type and process parameters (power and scanning velocity). The electron microprobe analysis of melts showed that higher tantalum content in the melted zone resulted from the thicker original Ta coating as well as slower scanning velocity. Scanning electron microscopy examinations show that dendritic structure of the melted zone becomes evident when carbon was used as one of the components of the binder, while structure is typically martensitic when silicon containing binder was used for powder deposition. Samples covered with Ta and carbon containing binder showed after laser alloying higher hardness than in case of using silicon containing binder. (author)

  19. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    Science.gov (United States)

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  20. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Omar M. Pecho

    2015-10-01

    Full Text Available 3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB length and polarization resistance (Rpol. Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  1. Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer

  2. Corroded microstructure of HDDR-NdFeB magnetic powders

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Itakura, M.; Tomokiyo, Y.; Kuwano, N.; Machida, K.

    2004-01-01

    The microstructure of corroded HDDR-NdFeB magnetic powders in bonded magnet has been investigated by transmission electron microscopy. Following an exposure time of 300 h at 398 K in air, the HDDR-NdFeB magnetic powders are found covered with an altered layer about 300 nm thick on the surface. The layer is composed of α-Fe grains 5-10 nm in diameter and h-Nd 2 O 3 grains smaller than 5 nm. Under the altered layer, corrosion has proceeded along the Nd 2 (Fe,Co) 14 B grain boundaries to leave a wetting layer composed of a dense mixture of α-Fe and h-Nd 2 O 3 phase. The appearance of α-Fe grains in both of the altered layer wetting layer leads to the high magnetic flux loss of the corroded HDDR-NdFeB bonded magnet

  3. Effects of Processing Parameters on the Density and Microstructure of Pyrolytic Carbon

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Park, Jeong Nam; Park, Jong Hoon; Cho, Moon Sung; Lee, Young Woo; Park, Ji Yeon

    2007-01-01

    Chemical vapor deposition (CVD) of pyrolytic carbon (PyC) and silicon carbide (SiC) has been applied to TRISO-coated fuel particles for high-temperature gas-cooled reactors (HTGR). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The inner PyC layer acts as a containment to gaseous products. The outer PyC layer protects the SiC coating layer by inducing a compressive stress and provides chemical compatibility with a graphite matrix in the fuel compact. The PyC layers undergo shrinkage due to neutron irradiation, affecting the design and modeling of fuel particles. Because the dimensional change of PyC depends on the detailed microstructure of PyC, it differs from one fabrication route to another one. This requires a new design of irradiation experiment applicable to spherical objects and leads to an international collaborative work called PYCASSO (PYrocarbon irradiation for Creep And Swelling/Shrinkage of Objects). KAERI proposed four different types of PyC layers coated on ZrO 2 particles, buffer with a density of 1.0 and dense PyCs with densities of 1.7, 1.9 and 2.1 g/cm 3 , for the irradiation experiment. In this study, we fabricated PyC-coated particles with various coating densities for supporting the PYCASSO experiment. We also investigated effects of processing parameters such as temperature, hydrocarbon concentration and gas flow rate on the density and microstructure of the PyC layer

  4. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    Science.gov (United States)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  5. Microstructure in electrodeposited copper layers; the role of the substrate

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Jensen, Jens Dahl; Horsewell, Andy

    2001-01-01

    -crystalline Ni-P layer. The evolutions of surface topography, morphology and crystallographic texture in the layers were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis, respectively. Distinct surface topographies were observed for Cu...

  6. Effect of TiON–MgO intermediate layer on microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J.Y. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Dong, K.F. [School of Automation, China University of Geosciences, Wuhan 430074 (China); Peng, Y.G.; Ju, G.P. [Seagate Technology, Fremont, CA 94538 (United States); Hu, J.F. [Data Storage Institute (DSI), Singapore 117608 (Singapore); Chow, G.M.; Chen, J.S. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2016-11-01

    The microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films grown on TiON–MgO intermediate layer were studied. TiON–MgO layer was deposited by co-sputtering TiN and MgO–TiO{sub 2} targets at 380 °C. With increasing MgO–TiO{sub 2} doping concentration, the contact angle between FePt grains with intermediate layer gradually increased, and it was close to 90° when the volume percentage of MgO–TiO{sub 2} reached 30%. At this condition, a high out-of-plane coercivity of 19.1 kOe was obtained, while the opening-up of in-plane M-H loop was very narrow. Moreover, it was found that the out-of-plane coercivity can be further improved to 21.6 kOe, by slightly increasing the percentage of MgO–TiO{sub 2} to 35 vol%. - Highlights: • The effect of TiON–MgO intermediate layer was studied. • With increasing the MgO composition, the surface energy of intermediate layer increased, and the FePt/TiON–MgO interfacial energy decreased. The contact angle of FePt grains with intermediate layer increased with the MgO composition, and 90° contact angle could be achieved by optimizing the MgO composition. • Good perpendicular magnetic anisotropy was retained with large out-of-plane coercivity and narrow in-plane opening-up.

  7. The leak microstructure, preliminary results

    International Nuclear Information System (INIS)

    Lombardi, M.

    1997-01-01

    The leak microstructure, a new type of element for position-sensitive proportional gas counter, is introduced. For every single detected ionizing radiation it gives a pair of ''induced'' charges of the same quantity (pulses of the same amplitude), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the collected primary ionization. A gas multiplication up to 1.5 x 10 5 was achieved. The complete absence of insulating materials in the active volume of this microstructure enables to avoid problems of charging-up and makes its behaviour stable and repeatable. By using the charge-pair generated, it allows the development of a position-sensitive detecting board with a two-dimensional read-out. Between the two external surfaces of this board it is possible to insert an intermediate third conducting layer which reduces (or practically suppresses) the capacitive cross-talk between the X and Y read-out strip systems. Furthermore, this intermediate layer can give a very fast trigger to coordinate the charge-pair and to govern the data acquisition system. By reading every strip separately it is possible to resolve the multi hit problem in two-dimensions. Using isobutane as the gas, an energy resolution of about 8% FWHM was recorded with α-particles from an 241 Am source. In isobutane gas, X-rays from a 55 Fe source and β-particles from a 14 C source were also detected. (orig.)

  8. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

    Science.gov (United States)

    Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.

    2018-02-01

    Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.

  9. Nano-scale characterization of white layer in broached Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  10. Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al-Zn-Mg-Cu alloy processed by sliding friction treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanxia [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Yang, Yanqing, E-mail: yqyang@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Feng, Zongqiang [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhao, Guangming; Huang, Bin; Luo, Xian [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Zhang, Yusheng; Zhang, Wei [Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China)

    2017-01-15

    Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafine grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the

  11. New Development in Selective Laser Melting of Ti-6Al-4V: A Wider Processing Window for the Achievement of Fully Lamellar α + β Microstructures

    Science.gov (United States)

    Lui, E. W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M.

    2017-12-01

    Recent progress has shown that Ti-6Al-4V fabricated by selective laser melting (SLM) can achieve a fully lamellar α + β microstructure using 60 µm layer thickness in the as-built state via in situ martensite decomposition by manipulating the processing parameters. The potential to broaden the processing window was explored in this study by increasing the layer thickness to the less commonly used 90 µm. Fully lamellar α + β microstructures were produced in the as-built state using inter-layer times in the range of 1-12 s. Microstructural features such as the α-lath thickness and morphology were sensitive to both build height and inter-layer time. The α-laths produced using the inter-layer time of 1 s were much coarser than those produced with the inter-layer time of 12 s. The fine fully lamellar α + β structure resulted in tensile ductility of 11% and yield strength of 980 MPa. The tensile properties can be further improved by minimizing the presence of process-induced defects.

  12. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  13. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    Science.gov (United States)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  14. Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer

    Institute of Scientific and Technical Information of China (English)

    SHAN Jiguo; DONG Wei; TAN Wenda; ZHANG Di; PEN Jialie

    2007-01-01

    Surfacing beads are prepared by a direct current tungsten inert gas arc nickel-aluminum (Ni-Al) powder surfacing process. With the aim of controlling the dilution rate and obtaining surfacing beads rich in intermetallic compounds, the effects of surfacing parameters on geometric parameters, dilution rate, composition, and microstructure of the bead are investigated. An assistant cooler, which can potentially reduce the temperature of the base metal, is used in the surfacing process and its effect on dilution rate and microstructure is studied. The result indicates that with the surfacing parameter combination of low current and speed, the width and penetration of the bead decrease, reinforcement increases, and dilution rate drops markedly. With the reduc- tion of the parameter combination, the intergranular phase T-(Fe, Ni) is formed in the grain boundaries of Ni-Al interme- tallic matrix instead of the intergranular phase α-Fe, and large amount of intermetallics are obtained. With the use of an assistant cooler on a selected operation condition during the surfacing process, the reinforcement of the bead increases, penetration decreases, and dilution rate declines. The use of an assistant cooler helps obtain a surfacing bead composed of only intermetallics.

  15. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  17. Micro-structured Beta-Tricalcium Phosphate for Repair of the Alveolar Cleft in Cleft Lip and Palate Patients : A Pilot Study

    NARCIS (Netherlands)

    de Ruiter, AP; Janssen, Nard; van Es, Robert; Frank, Michael; Meijer, Gert; Koole, Ron; Rosenberg, Toine

    2015-01-01

    OBJECTIVES: Can a synthetic bone substitute be used to repair the alveolar cleft to bypass donor site morbidity as well as to shorten the operating time? In earlier experimental studies, micro-structured beta-tricalcium phosphate (β-TCP) provided similar bone healing when compared with grafting with

  18. 3-D printed composites with ultrasonically arranged complex microstructure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-04-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis gantry-mounted 405nm laser. Ultrasonic forces are used to arrange the microfibres into predetermined patterns within the resin, with unidirectional microfibre alignment and a hexagonal lattice structure demonstrated. An example of dynamic microstructure variation within a single print layer is also presented.

  19. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  20. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  1. The properties and microstructure of padding welds built up on the surface of forging dies

    Directory of Open Access Journals (Sweden)

    S. Pytel

    2010-07-01

    Full Text Available The study presents selected results of the examinations of the properties and microstructure of weld overlays built up with the UTOP38,F-812 and F-818 welding wires on a substrate of the 42CrMo4 structural steel. Among others, the following investigations were carriedout: bend tests, hardness measurements and determination of ferrite content in a bainitic-martensitic microstructure of UTOP38 and F-812layers.

  2. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  3. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, Ivan A

    2007-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  4. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, I A

    2012-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  5. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    Science.gov (United States)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  6. Microstructural aspects of materials failure and corrosion

    International Nuclear Information System (INIS)

    Ferguson, I.F.

    1979-02-01

    Scanning and transmission electron microscopy, microprobe (electron, nuclear and Auger) analysis, X-ray diffraction and ferrography are applied to a wide range of problems of interest to the UKAEA. These include: the preparation of transistors, the coating of bearings, component reliability, the microstructure and behaviour of type 316 and other steels, the examination of the surface layers of various ceramics, steels and other alloys, as well as the corrosion of steels and Zircaloy. (author)

  7. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  8. Influence of slight microstructural gradients on the surface properties of Ti6Al4V irradiated by UV

    International Nuclear Information System (INIS)

    Gallardo-Moreno, A.M.; Multigner, M.; Pacha-Olivenza, M.A.; Lieblich, M.; Jimenez, J.A.; Gonzalez-Carrasco, J.L.; Gonzalez-Martin, M.L.

    2009-01-01

    Ti6Al4V alloy is one of the most widely used materials for biomedical implants. Among its properties, it is remarkable the photoactivity displayed by its passive layer, which is mainly composed by titanium dioxide. However, variations in the processing conditions may yield to differences in the microstructure which can be reflected on the surface properties of the machined product. From contact angle measurements taken on different zones of samples removed from a commercial bar of Ti6Al4V, it has been shown that the modifications of the surface Gibbs energy suffered by the alloy under UV irradiation have a radial dependence. This behaviour is related to slight microstructural changes of the alloy, particularly with an increase in the volume fraction of the β-phase when moving to the interior of the sample, which alters the composition and/or microstructure of the passive layer along its radius. This study shows that gradients in the microstructure and physical properties are sample size dependent and are likely related to thermal gradients during processing.

  9. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-07-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  10. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    International Nuclear Information System (INIS)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-01-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  11. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  12. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  13. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    Science.gov (United States)

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  14. Microstructure of III-N semiconductors related to their applications in optoelectronics

    Science.gov (United States)

    Leszczynski, M.; Czernetzki, R.; Sarzynski, M.; Krysko, M.; Targowski, G.; Prystawko, P.; Bockowski, M.; Grzegory, I.; Suski, T.; Domagala, J.; Porowski, S.

    2005-03-01

    There has been more than a decade since Shuji Nakamura from Japanese company Nichia constructed the first blue LED based on structure of (AlGaIn)N semiconductor and eight years since he made the first blue laser diode (LD). This work gives a survey on the current technological status with green/blue/violet/UV optoelectronics based on III-N semiconductors in relation with their microstructure. The following devices are presented: i) Low-power green and blue LEDs, ii) High-power LEDs targeting solid-state white lighting, iii) Low-power violet LDs for high definition DVD market, iv) High-power violet LDs, v) UV LEDs. The discussion will be focused on three main technological problems related to the microstructure of (AlGaIn)N layers in emitters based on III-N semiconductors: i) high density of dislocations in epitaxial layers of GaN on foreign substrates (sapphire, SiC, GaAs), ii), presence of strains, iii) atom segregation in ternary and quaternary compounds.

  15. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  16. Near-surface microstructural modification of (Ti,W)(C,N)-based compacts with nitrogen

    International Nuclear Information System (INIS)

    Ucakar, V.; Kral, C.; Lengauer, W.

    2001-01-01

    For developing of functional-gradient hardmetals the interaction of nitrogen with (Ti,W)(C,N)-based compacts was investigated. Hot-pressed (Ti,W)(C,N) compacts as well as sintered compacts of (Ti,W)(C,N)+Co were subjected to sintering and heat treatment at 1200-1500 o C and up to 30 bar N 2 . In (Ti,W)(C,N) compacts four microstructure types were obtained upon reaction with nitrogen. A uniform single-phase (Ti,W)(C,N) forms in samples with a low WC and high TiN content. If medium WC and high TiN/TiC ratio is present a core-rim type structure forms during Ar annealing which remains the same when nitrogen in-diffusion occurs. The third type of microstructure shows sub-micron lamellae of nitrogen-rich fcc phase and WC. This structure forms at increased WC and/or TiC content. If the WC content is increased again a WC layer forms at the outermost surface. Compressive stresses introduced by phase formation/decomposition were obtained for the nitrogen in-diffusion. Sintered (Ti,W)(C,N)+Co compacts were heat treated above and below the eutectic temperature. Above the eutectic temperature compact Ti(C,N) top-layers independent an sample composition were observed. Below the eutectic temperature the microstructure formation is mainly influenced by the sample composition. A Ti(C,N) top-layer forms in materials with a high Ti(C,N) content. Contrary, interaction zones without a layer were obtained in compacts with high WC/Ti(C,N) ratio. Some of these surface modified compacts show surfaces and particle sizes favorable for a cutting tool. (author)

  17. Altered vocal fold kinematics in synthetic self-oscillating models that employ adipose tissue as a lateral boundary condition.

    Science.gov (United States)

    Saidi, Hiba; Erath, Byron D.

    2015-11-01

    The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.

  18. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  19. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  20. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  1. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  2. Application of improved PSO-RBF neural network in the synthetic ammonia decarbonization

    Directory of Open Access Journals (Sweden)

    Yongwei LI

    2017-12-01

    Full Text Available The synthetic ammonia decarbonization is a typical complex industrial process, which has the characteristics of time variation, nonlinearity and uncertainty, and the on-line control model is difficult to be established. An improved PSO-RBF neural network control algorithm is proposed to solve the problems of low precision and poor robustness in the complex process of the synthetic ammonia decarbonization. The particle swarm optimization algorithm and RBF neural network are combined. The improved particle swarm algorithm is used to optimize the RBF neural network's hidden layer primary function center, width and the output layer's connection value to construct the RBF neural network model optimized by the improved PSO algorithm. The improved PSO-RBF neural network control model is applied to the key carbonization process and compared with the traditional fuzzy neural network. The simulation results show that the improved PSO-RBF neural network control method used in the synthetic ammonia decarbonization process has higher control accuracy and system robustness, which provides an effective way to solve the modeling and optimization control of a complex industrial process.

  3. Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms.

    Science.gov (United States)

    Lu, Xin; Qu, Hang; Skorobogatiy, Maksim

    2017-06-06

    We demonstrate planar laminated piezoelectric generators and piezoelectric microstructured fibers based on BaTiO 3 -polyvinylidene and carbon-loaded-polyethylene materials combinations. The laminated piezoelectric generators were assembled by sandwiching the electrospun BaTiO 3 -polyvinylidene mat between two carbon-loaded-polyethylene films. The piezoelectric microstructured fiber was fabricated via drawing of the multilayer fiber preform, and features a swissroll geometry that have ~10 alternating piezoelectric and conductive layers. Both piezoelectric generators have excellent mechanical durability, and could retain their piezoelectric performance after 3 day's cyclic bend-release tests. Compared to the laminated generators, the piezoelectric fibers are advantageous as they could be directly woven into large-area commercial fabrics. Potential applications of the proposed piezoelectric fibers include micro-power-generation and remote sensing in wearable, automotive and aerospace industries.

  4. Synthetic and Bio-Artificial Tactile Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2013-01-01

    Full Text Available This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.

  5. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  6. Microstructure and mechanical properties of nanostructure multilayer CrN/Cr coatings on titanium alloy

    International Nuclear Information System (INIS)

    Wiecinski, Piotr; Smolik, Jerzy; Garbacz, Halina; Kurzydlowski, Krzysztof J.

    2011-01-01

    Five different nanostructured, multilayer coatings (CrN/Cr)x8 with different thickness ratio of Cr and CrN layers were deposited by PAPVD (Plasma Assisted Physical Vapour Deposition) vacuum arc method on Ti6Al4V titanium alloy. The microstructure, chemical and phase composition of the CrN and Cr sub-layers were characterized by SEM with EDX and Cs-corrected dedicated STEM on cross-sections prepared by focus ion beam. Besides, hardness and Young's modulus of the (Cr/CrN)x8 coatings has been measured. The adhesion has been tested by scratch test method. The obtained (CrN/Cr) multilayer coatings, 5-6 μm in thickness, have homogeneous and nanocrystalline structure, free of pores and cracks. The microstructures of Cr and CrN layers consist of columnar grains below 100 nm in diameter. The hardness and Young's modulus of these coatings depend linearly on thickness ratio of Cr and CrN layers. The decrease of the thickness ratio Cr/CrN 0.81 to 0.15 results in the increase of hardness from 1275 HV to 1710 HV and Young's modulus from 260 GPa to 271 GPa.

  7. Study creep in 4340 steels with different microstructure and plasma carbon nitridation processing

    International Nuclear Information System (INIS)

    Abdalla, A.J.; Carrer, I.R.; Barboza, M.J.R.; Baggio-Scheid, V.H.; Moura Neto, C.; Reis, D.A.P.

    2010-01-01

    From the AISI 4340 bars specimens were made-for-test of creep, they were subjected to different heat treatments for the formation of multiphase microstructures. After this initial treatment, a lot of the specimens were tested in creep. One second batch of specimens was treated with a plasma carbonitriding, and later, were also tested. The carbonitriding layer and microstructure were characterized with X-ray analysis, laser confocal microscopy and hardness testing. Tests showed that the hardness in the steel was reduced due to thermochemical treatment at 500 deg C. We observed variation in creep behavior due to different microstructures formed. After the plasma treatment, there was a considerable reduction in the rate of creep and an increase in the time required for fracture. (author)

  8. Morphological and microstructural studies on aluminizing coating of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  9. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures

    Science.gov (United States)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2017-06-01

    A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.

  10. Microstructure and oxidation behaviour of aluminized coating of inconel 625

    International Nuclear Information System (INIS)

    Khalid, F.A.; Hussain, N.; Shahid, K.A.; Rehman, S.; Qureshi, A.H.; Khan, I.H.

    1999-01-01

    Microstructural and oxidation characteristics of aluminized coated Inconel 625 have been examined using scanning electron microscopy (SEM) and fine-probe spot and linescan EDS microanalysis techniques. The formation of slowly growing adherent metallic coatings is essential for protection against the severe environments. Aluminising of the superalloy samples was carried out by pack cementation process at 900 deg. C. in an argon atmosphere. The samples were subsequently oxidized in air at various temperatures to examine performance of the pack aluminized coated alloy. The microstructural changes that occurred in the aluminized layer at various exposure temperature and time were examined to study the oxidation behavior and formation of different phases in the aluminized coating deposited on Inconel 625. (author)

  11. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...... of 313 nm and 405 nm were optimized and compared in terms of structural stability, control of suspended layer thickness and resolution limits. A novel fabrication process combining the two photoresists SU-8 and mr-DWL with two UV exposures at 365 nm and 405 nm respectively provided a wider processing...... window for definition of well-defined suspended microstructures with lateral dimensions down to 5 μmwhen compared to 313 nm or 365 nm UV photolithography processes....

  12. Electron holography study on the microstructure of magnetic tunnelling junctions

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Y.G.; You, B.; Du, J.; Hu, A.; Zhang, Z.

    2004-01-01

    Electron holography was applied to study the microstructure evolution of magnetic tunnelling junctions (MTJs) CoFe/AlO x /Co annealed at different temperatures. A mean inner potential barrier was observed in the as-deposited MTJ sample, while it was changed to a potential well after a 200 deg. C or a 400 deg. C annealing. It is suggested that the oxygen atoms were redistributed during the annealing, which left metallic atoms acting as acceptors to confine the electrons, leading to the decrease of the potential of the AlO x barrier layer. The results suggest that the electron holography may be a useful tool for the study of the microstructure of amorphous materials

  13. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  14. Comparative analysis of graphite oxidation behaviour based on microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Badenhorst, Heinrich, E-mail: heinrich.badenhorst@up.ac.za; Focke, Walter

    2013-11-15

    Two unidentified powdered graphite samples, from a natural and a synthetic origin respectively, were examined. These materials are intended for use in nuclear applications, but have an unknown treatment history since they are considered proprietary. In order to establish a baseline for comparison, the samples were compared to two commercial flake natural graphite samples with varying impurity levels. The samples were characterized by conventional techniques such as powder X-ray diffraction, Raman spectroscopy and X-ray fluorescence. The results indicated that all four samples were very similar, with low impurity levels and good crystallinity, yet they exhibit remarkably different oxidation behaviours. The oxidized microstructures of the materials were examined using high-resolution scanning electron microscopy at low acceleration voltages. The relative influence of each factor affecting the oxidation was established, enabling a structured comparison of the different oxidative behaviours. Based on this analysis, it was possible to account for the measured differences in oxidative reactivity. The material with the lowest reactivity was a flake natural graphite which was characterized as having highly visible crystalline perfection, large particles with a high aspect ratio and no traces of catalytic activity. The second sample, which had an identical inherent microstructure, was found to have an increased reactivity due to the presence of small catalytic impurities. This material also exhibited a more gradual reduction in the oxidation rate at higher conversion, caused by the accumulation of particles which impede the oxidation. The sample with the highest reactivity was found to be a milled, natural graphite material, despite its evident crystallinity. The increased reactivity was attributable to a smaller particle size, the presence of catalytic impurities and extensive damage to the particle structure caused by jet milling. Despite displaying the lowest levels of

  15. Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure.

    Science.gov (United States)

    Munde, M S; Mehonic, A; Ng, W H; Buckwell, M; Montesi, L; Bosman, M; Shluger, A L; Kenyon, A J

    2017-08-24

    We studied intrinsic resistance switching behaviour in sputter-deposited amorphous silicon suboxide (a-SiO x ) films with varying degrees of roughness at the oxide-electrode interface. By combining electrical probing measurements, atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM), we observe that devices with rougher oxide-electrode interfaces exhibit lower electroforming voltages and more reliable switching behaviour. We show that rougher interfaces are consistent with enhanced columnar microstructure in the oxide layer. Our results suggest that columnar microstructure in the oxide will be a key factor to consider for the optimization of future SiOx-based resistance random access memory.

  16. Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-04-07

    Research highlights: > The microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with dendritic structure. Primary phases formed during the process were identified as Co(FCC) and lamellar eutectic phases (M{sub 23}C{sub 6}, M{sub 6}C, Cr{sub 7}C{sub 3}). > Microhardness profiles showed that hardness increases from interface to the coating surface. This is due to the finer size of the grains at coating surface in comparison to that at interface and also diffusion of Fe adjacent to the interface. > The delamination was suggested as the dominant mechanism of the wear. In this regard, plate-like wear debris consisted of voids and cracks. In addition, due to increase in surface temperature, Cr{sub 2}O{sub 3} oxide phase was formed during wear tests. - Abstract: This paper deals with the investigation of the microstructure and wear behavior of the stellite 6 cladding on precipitation hardening martensitic stainless steel (17-4PH) using gas tungsten arc welding (GTAW) method. 17-4 PH stainless steel is widely used in oil and gas industries. Optical metallography, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to study the microstructure and wear mechanisms. X-ray diffraction analysis was also used to identify phases formed in the coating. The results showed that the microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with a dendritic structure. In addition, the dendritic growth in the coating was epitaxial. Primary phases formed during the process were Co (fcc), Co (hcp), lamellar eutectic phases, M{sub 23}C{sub 6} and Cr{sub 7}C{sub 3} type carbides. The results of the wear tests indicated that the delamination was the dominant mechanism. So, it is necessary to apply an inter-layer between the substrate and top coat.

  17. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  18. Plasma arc cutting: Microstructural modifications of hafnium cathodes during first cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rotundo, F., E-mail: fabio.rotundo@unibo.it [Dept. of Mechanical Engineering (DIEM), Alma Mater Studiorum, Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Martini, C.; Chiavari, C.; Ceschini, L. [Dept. of Metals Science, Electrochemistry and Chemical Techniques (SMETEC), Alma Mater Studiorum, Universita di Bologna, Viale Risorgimento 4, 40136 Bologna (Italy); Concetti, A.; Ghedini, E.; Colombo, V. [Dept. of Mechanical Engineering (DIEM), Alma Mater Studiorum, Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S. [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)

    2012-06-15

    In the present work, the microstructural modifications of the Hf insert in plasma arc cutting (PAC) electrodes operating at 250 A were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Standard electrodes were subjected to an increasing number of cutting cycles (CCs) on mild steel plates in realistic operative conditions, with oxygen/air as plasma/shield gas. Microstructural analysis was performed for each electrode at different erosion stages by means of scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and Raman spectroscopy. Electrodes cross sections were also observed by means of optical microscopy (both in bright field and in reflected polarised light) after chemical etching. In the insert, three typical zones were found after cutting: monoclinic HfO{sub 2} layer; thermally-modified transition zone with O{sub 2}-Hf solid solution; unmodified Hf. The erosion cavity and the oxide layer thickness increase with the number of cutting cycles. Macrocracking was observed in the oxide layer, while microcracking and grain growth were detected in the remelted Hf. Moreover, detachment was found at the Hf/Cu interface. Based on thermodynamics and kinetics of the Hf high temperature oxidation, conclusions can be drawn on the erosion mechanism involved. - Highlights: Black-Right-Pointing-Pointer Hf microstructural modifications in cathodes after plasma arc cutting cycles investigated. Black-Right-Pointing-Pointer 3 zones identified after cutting: HfO{sub 2} layer; remelted zone with O{sub 2}-Hf solid solution; unmodified Hf. Black-Right-Pointing-Pointer Hf-based ejections both in arc-on and arc-off phases; erosion cavity deepens with cutting cycles. Black-Right-Pointing-Pointer Detachment at the Hf/Cu interfaces, worsening heat dissipation and oxidation/erosion phenomena. Black-Right-Pointing-Pointer The use

  19. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  20. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  1. Comparative Observation of Silver Nano and Microstructures Deposited from Aerosol and Fog

    Directory of Open Access Journals (Sweden)

    Zheltova Anna

    2017-01-01

    Full Text Available A comparative study of the structure and fractal properties of arrays of the silver nano-/micro-particles deposited on the silicon substrate both from the aerosol and fog showed that the form of the silver individual particles and nano-/microstructures greatly depends on the deposition conditions. By passing an aerosol through isopropyl alcohol, the formation of fractal aggregates of the silver nano-/micro-particles both in the air and in alcohol was observed. Deposition of the silver nano-/micro-particles in the atmosphere of the saturated isopropyl alcohol vapours led to formation of fog. Micro-droplets of the silver colloidal solution were deposited on the substrate. The further evaporation of alcohol created the silver nano/microstructures in the form of annular layers. It was found that the concerned annular layers contained silver particles of the same shape in the form of a Crescent (or Janus-nano-/microparticles. The nature of discovered effects is discussed.

  2. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil

    International Nuclear Information System (INIS)

    Gul, M; Uzol, O; Akmandor, I S

    2014-01-01

    This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x10 5 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x10 5 Reynolds number at zero angle of attack

  3. Terahertz Mapping of Microstructure and Thickness Variations

    Science.gov (United States)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  4. Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Radu, Teodora, E-mail: teodora.radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Culic, Bogdan [Faculty of Dental Medicine,Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Str., 400006 Cluj-Napoca (Romania); Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania)

    2016-12-30

    Highlights: • New magnetite clusters covered with inorganic oxides double layers. • Coating layers influence on the surface properties of the magnetic clusters. • Color parameters assessment for the inorganic oxides coated magnetic clusters. • High magnetization clusters with appropiate color for magnetic security paper. - Abstract: New magnetic nanoparticles based on Fe{sub 3}O{sub 4} clusters covered with a double layer of inorganic salts/oxides with high magnetization for incorporation in security materials such as security paper were synthesized. For the inorganic layers ZnO, SiO{sub 2} and BaSO{sub 4} were used. The microstructure and composition of the products were determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on the obtained samples show a straightforward correlation between the saturation magnetization (M{sub s}) and morphology of the samples. The results obtained from color parameter assessment are discussed in relation with the morphology and microstructure of the prepared samples.

  5. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  6. Microstructure Changes in a high burn up Spent Fuel (57,900 MWd/tU)

    International Nuclear Information System (INIS)

    Park, Yang Soon; Kwon, Hyoung Mun; Seo, Hang Seok; Ha, Yeong Keong; Song, Kyuseok

    2009-01-01

    In the nuclear industry, an increase in the burn up and the residence time of fuels is being considered because of the advantages in the fuel cycle cost and the spent fuel management. But, it leads to structural changes in an outer zone (rim) of a UO 2 pellet within a few hundreds of micrometers in thickness. Despite its thin layer, this rim would determine the thermal behavior of a fuel. Therefore, to identify a rim zone effect, the microstructures such as the pores, the grains and the UO 2 lattice size have been investigated by many researchers. In this study, the microstructure changes in the rim of a UO 2 spent fuel, the corrosion layer of a Zry-4 cladding and the interface between a fuel and a cladding were investigated by a micro-XRD and a SEM

  7. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  8. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  9. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  10. Inhomogeneity of Microstructure and Properties of 7085-T651 Aluminum Alloy Extra-thick Plate

    Directory of Open Access Journals (Sweden)

    LI Chengbo

    2016-12-01

    Full Text Available Inhomogeneity of microstructure and properties of 7085-T651 aluminum alloy extra-thick plate were investigated by tensile properties, exfoliation corrosion, optical microscopy(OM, composition analysis, scanning electron microscopy(SEM,differential scanning calorimetry (DSC and transmission electron microscopy (TEM. The results show that the microstructure, tensile property and exfoliation corrosion in different layers of 7085-T651 aluminum alloy of 110 mm thick are inhomogeneous. For the 1/4 thickness layer, the tensile strength is the minimum, 540 MPa, and the resistance to exfoliation corrosion of this layer is the worst, with exfoliation corrosion classification of EB. For the core layer, the tensile strength is the maximum, 580 MPa. The resistance to exfoliation corrosion of the surface layer is the best, with exfoliation corrosion classification of EA. For the 1/4 thickness layer, it has the largest recrystallized fraction up to about 47.7% and the grain size is about 105 μm; there are equilibrium phase particles precipitated on grain boundaries or within grains; the size of aging precipitates is small; and thus both mechanical properties and resistance to exfoliation corrosion are the worst. For the core layer, it has the smallest recrystallized fraction of about 14.8% and there are a large amount of sub-grains; the fraction of residual phase Al7Cu2Fe almost reaches up to about 1.43%; the size of the equilibrium phase on grain boundaries, the size of aging precipitates and the width of PFZ are large, and therefore good mechanical properties and bad resistance to exfoliation corrosion are obtained.

  11. Nanocomposites from polymers and layered minerals

    NARCIS (Netherlands)

    Fischer, H.R.; Gielgens, L.H.; Koster, T.P.M.

    1999-01-01

    Composites consisting of polymer matrix materials and natural or synthetic layered minerals e.g. clays were prepared by using special compatibilizing agents betsveen these two intrinsically non-miscible components. Block or graft copolymers combining one part of the polymer that is identically

  12. Optically Designed Anodised Aluminium Surfaces: Microstructural and Electrochemical Aspects

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy

    is not possible as the anodic pore sizes are an order of magnitude smaller than the traditional white pigments. The approaches presented in this thesis focus on different techniques like modification of the aluminium microstructure, engineering of the aluminium surface, and application on non...... the microstructure in order to impart light scattering ability to the anodised layer. Coatings based on Al-Zr and Al-Ti binary system were studied for their anodising behaviour with and without heat treatment. The structure evolution of the Al-Zr sputtered coatings and the effect of Si during heat treatment...... Emission Spectroscopy, and Scanning Kelvin Probe Force Microscopy. Optical characterization was performed using integrating sphere measurements. Combining the results and understanding obtained from anodising of magnetron sputtered coatings, Al-TiO2 surface composites and their electrochemical behaviour...

  13. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  14. Microstructure taxonomy based on spatial correlations: Application to microstructure coarsening

    International Nuclear Information System (INIS)

    Fast, Tony; Wodo, Olga; Ganapathysubramanian, Baskar; Kalidindi, Surya R.

    2016-01-01

    To build materials knowledge, rigorous description of the material structure and associated tools to explore and exploit information encoded in the structure are needed. These enable recognition, categorization and identification of different classes of microstructure and ultimately enable to link structure with properties of materials. Particular interest lies in the protocols capable of mining the essential information in large microstructure datasets and building robust knowledge systems that can be easily accessed, searched, and shared by the broader materials community. In this paper, we develop a protocol based on automated tools to classify microstructure taxonomies in the context of coarsening behavior which is important for long term stability of materials. Our new concepts for enhanced description of the local microstructure state provide flexibility of description. The mathematical description of microstructure that capture crucial attributes of the material, although central to building materials knowledge, is still elusive. The new description captures important higher order spatial information, but at the same time, allows down sampling if less information is needed. We showcase the classification protocol by studying coarsening of binary polymer blends and classifying steady state structures. We study several microstructure descriptions by changing the microstructure local state order and discretization and critically evaluate their efficacy. Our analysis revealed the superior properties of microstructure representation is based on the first order-gradient of the atomic fraction.

  15. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    International Nuclear Information System (INIS)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-01-01

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry

  16. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    Energy Technology Data Exchange (ETDEWEB)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Ondra, Peter; Válka, Ivo [Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146 (Czech Republic); Ševčík, Juraj [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Chrastina, Jan [Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146 (Czech Republic); Maier, Vítězslav, E-mail: vitezslav.maier@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic)

    2015-05-18

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  17. Microstructure characteristics of high borated stainless steel fabricated by hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Wang, Mingjia, E-mail: mingjiawangysu@126.com; Zhao, Hongchang

    2016-04-25

    The present study investigated the microstructure of powder metallurgy (P/M) high borated stainless steel through hot-pressing sintering in a temperature range of 1000–1150 °C within 30 min under 30 MPa. Microstructure and phase examinations were carried out by applying scanning electron microscope, electron backscatter diffraction and X-ray diffraction analysis. The results of as-atomized powders demonstrated that many powders kept egg-type structure with an austenite outer layer and the eutectic borides were much finer than those in traditional cast products. Microstructure studies revealed that borides suffered Ostwald ripening and were significantly influenced by the sintering temperature. Orientation maps indicated that the inter-particle contact areas consisted of equiaxed grains and the regions consisting of large elongated grains partly inherited the microstructure characteristics of as-atomized powder particles. Furthermore, the mechanisms governing the morphological changes in microstructure were discussed. - Highlights: • Near-complete densification could be obtained through hot-pressing sintering. • There was no phase transformation and present phases were M{sub 2}B and austenite. • Borides suffered Ostwald ripening and were significantly influenced by temperature. • Inter-particle contact areas consisted of equiaxed grains for recrystallization. • Deformation-free zones exhibited elongated grains for dendritic arms coarsening.

  18. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes

    International Nuclear Information System (INIS)

    Xu Guojian; Kutsuna, Muneharu; Liu Zhongjie; Zhang Hong

    2006-01-01

    The clad layers of Ni-based alloy were deposited on the SUS316L stainless plates by CO 2 laser and plasma cladding processes. The smooth clad bead was obtained by CO 2 laser cladding process. The phases of clad layer were investigated by an optical microscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe microanalysis (EPMA) and energy-dispersive spectrometer (EDS). The microstructures of clad layers belonged to a hypereutectic structure. Primary phases consist of boride CrB and carbide Cr 7 C 3 . The eutectic structure consists of Ni + CrB or Ni + Cr 7 C 3 . Compared with the plasma cladding, the fine microstructures, low dilutions, high Vickers hardness and excellent wear resistance were obtained by CO 2 laser cladding. All that show the laser cladding process has a higher efficiency and good cladding quality

  19. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    Science.gov (United States)

    Tau Leung, Pak

    2011-11-01

    The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil

  20. Assessment of Choroidal Microstructure and Subfoveal Thickness Change in Eyes With Different Stages of Age-Related Macular Degeneration.

    Science.gov (United States)

    Lu, Linna; Xu, Shiqiong; He, Fangling; Liu, Yan; Zhang, Yidan; Wang, Jing; Wang, Zhiliang; Fan, Xianqun

    2016-03-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness. Choroidal structural changes seem to be inevitable in AMD pathogenesis. Our study revealed associated choroidal microstructural changes in AMD eyes.The aim of the study was to compare choroidal microstructural changes in eyes with AMD of different stages.The study was a retrospective, cross-sectional case series.The participants comprised of 32 age-matched normal eyes as controls, and 26 fellow uninvolved eyes of intermediate/late AMD, 29 of early AMD, 28 of intermediate AMD, and 39 of late AMD.All subjects underwent comprehensive ophthalmologic examination. The choroid images, including subfoveal choroidal thickness, percentage of Sattler layer area, and en face images of the choroid, were obtained using spectral-domain optical coherence tomography.The main outcome measures were subfoveal choroidal thickness changes, percentage of Sattler layer area changes, and en face images of the choroid in AMD eyes.One hundred fifty-four eyes of 96 individuals with mean age of 67.1±9.2 years were included. The mean subfoveal choroidal thickness was 295.4 ± 56.8 μm in age-matched normal eyes, 306.7 ± 68.4 μm in fellow uninvolved eyes with AMD, 293.8 ± 80.4 μm in early AMD, 215.6 ± 80.4 μm in intermediate AMD, and 200.4 ± 66.6 μm in late AMD (F = 14.2, all P < 0.001). Choroidal thickness was greater in early AMD eyes than in intermediate/late AMD eyes (P < 0.001). Mean percentage of Sattler layer area in each group showed a similar tendency. Microstructure of the choroid showed reduced vascular density of Sattler layer areas in late AMD eyes compared with normal eyes.Decreasing subfoveal choroidal thickness and percentage of Sattler layer area were demonstrated in the progression of AMD. The choroidal change was related to atrophy of the microstructural changes of underlying capillaries and medium-sized vessels.

  1. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  2. Microstructures using RF sputtered PSG film as a sacrificial layer in ...

    Indian Academy of Sciences (India)

    These films are also used for surface passivation and improving the metal layer step coverage in device fabrication (Sze 1988; Takamatsu et al. 1984). In MEMS, PSG films have been reported to be one of the most suitable materials for sacrificial layer because of its high etch rate. Atmospheric Pressure Chemical Vapor ...

  3. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  4. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  5. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  6. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  7. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  8. Detailed microstructure analysis of as-deposited and etched porous ZnO films

    International Nuclear Information System (INIS)

    Shang, Congcong; Thimont, Yohann; Barnabé, Antoine; Presmanes, Lionel; Pasquet, Isabelle; Tailhades, Philippe

    2015-01-01

    Graphical abstract: - Highlights: • Porous ZnO thin films were deposited by rf magnetron sputtering. • Surface enhancement factors were deduced from geometrical considerations. • Enlargement of the inter-grain spaces have been achieved by HCl chemical etching. • Microstructural parameters were deduced from SEM, AFM and optical measurements. - Abstract: ZnO nanostructured materials in thin film forms are of particular interest for photovoltaic or photocatalysis processes but they suffer from a lack of simple methods for optimizing their microstructure. We have demonstrated that microporous ZnO thin films with optimized inter grain accessibility can be produce by radio frequency magnetron sputtering process and chemical etching with 2.75 mM HCl solution for different duration. The as-deposited ZnO thin films were first characterized in terms of structure, grain size, inter grain space, open cavity depth and total thickness of the film by XRD, AFM, SEM, profilometry and optical measurements. A specific attention was dedicated to the determination of the surface enhancement factor (SEF) by using basic geometrical considerations and images treatments. In addition, the porous fraction and its distribution in the thickness have been estimated thanks to the optical simulation of the experimental UV–Visible–IR spectrums using the Bruggeman dielectric model and cross section SEM images analysis respectively. This study showed that the microstructure of the as-deposited films consists of a dense layer covered by a porous upper layer developing a SEF of 12–13 m 2 m −2 . This two layers architecture is not modified by the etching process. The etching process only affects the upper porous layer in which the overall porosity and the inter-grain space increase with the etching duration. Column diameter and total film thickness decrease at the same time when the films are soaked in the HCl bath. The microporous structure obtained after the etching process could

  9. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P., E-mail: pkalisvaart@gmail.com [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Mitlin, David, E-mail: dmitlin@ualberta.ca [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada)

    2011-03-15

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  10. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi; Mitlin, David

    2011-01-01

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  11. Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuemei; Meng, Fangli [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Kong, Mingguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Yongzhe [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Liping; Zheng, Xuebin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Yi, E-mail: zengyi@mail.sic.ac.cn [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-10-15

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are prepared by plasma spraying. Thermally grown oxide (TGO) would be formed between YSZ topcoat and bond coat after 50 h thermal service for YSZ TBCs. The electron back scattered diffraction (EBSD) results reveal that the TGO layer is composed of α-Al{sub 2}O{sub 3} and cubic Al{sub 2}NiO{sub 4} layers. Measured values of TGO thickness from the 2D-SEM image are greater than or equal to its real thickness due to the fact that the TGO layer is much rolling so that up and down surfaces of the TGO can't be completely perpendicular to the cross-section direction confirmed by 3D-SEM. Furthermore, 3D-SEM results reveal that the real thickness of TGO layer is 3.10 μm instead of 7.1 μm. In addition, 3D-EBSD confirmed that α-Al{sub 2}O{sub 3} layer in TGO is composed of single layer of grains and Al{sub 2}NiO{sub 4} layer consist of multilayer of grains while α-Al{sub 2}O{sub 3} layer is mixed with single layer and multilayer of α-Al{sub 2}O{sub 3} grains from observation of the 2D-EBSD image. It provides a new method to characterize real thickness and microstructure of TGO, which is also applied to other film materials. - Highlights: •This work provides a new method to measure the real thickness of TGO. •YSZ TBCs were prepared by plasma spraying. •TGO is formed in TBCs by simulating thermal service at 1100 °C for 50 h. •Real thickness and microstructure of TGO were investigated by 3D reconstruction.

  12. Microstructural studies on steam oxidised Zr-2.5%Nb pressure tube under simulated LOCA condition

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Pandit, K.M.; Anantharaman, S.; Srivastava, D.; Sah, D.N.

    2013-03-01

    Study of the microstructural evolution of Zr-2.5%Nb pressure tube material of Indian Pressurized Heavy Water Reactors (PHWRs) due to steam oxidation at high temperature (in the range 500-1050°C) was carried out on pressure tube coupons. Hydrogen pick up was less than 55 ppm in the samples oxidized at temperatures up to 850°C but high (250-400 ppm) in the samples oxidized in the β phase region (900°C and above). The microstructure of the samples oxidized above the α-Zr/β-Zr transition temperature showed from the surface inwards sequentially the presence of an oxide layer, an underlying oxygen stabilized α-Zr layer and a prior β-Zr phase containing hydride precipitates. An increase in the hardness was observed near the oxide-metal interface in the coupons oxidized above 900°C, due to formation of oxygen stabilized α-Zr layer. Higher hardness was also observed in the base metal in the samples oxidized at 1000 and 1050°C (author)

  13. Optical methods for microstructure determination of doped samples

    Science.gov (United States)

    Ciosek, Jerzy F.

    2008-12-01

    The optical methods to determine refractive index profile of layered materials are commonly used with spectroscopic ellipsometry or transmittance/reflectance spectrometry. Measurements of spectral reflection and transmission usually permit to characterize optical materials and determine their refractive index. However, it is possible to characterize of samples with dopants, impurities as well as defects using optical methods. Microstructures of a hydrogenated crystalline Si wafer and a layer of SiO2 - ZrO2 composition are investigated. The first sample is a Si(001):H Czochralski grown single crystalline wafer with 50 nm thick surface Si02 layer. Hydrogen dose implantation (D continue to be an important issue in microelectronic device and sensor fabrication. Hydrogen-implanted silicon (Si: H) has become a topic of remarkable interest, mostly because of the potential of implantation-induced platelets and micro-cavities for the creation of gettering -active areas and for Si layer splitting. Oxygen precipitation and atmospheric impurity are analysed. The second sample is the layer of co-evaporated SiO2 and ZrO2 materials using simultaneously two electron beam guns in reactive evaporation methods. The composition structure was investigated by X-Ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry methods. A non-uniformity and composition of layer are analysed using average density method.

  14. Study of the properties of plasma deposited layers of nickel-chrome-aluminium-yttrium coatings resistant to oxidation and hot corrosion

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2012-04-01

    Full Text Available The aim of this study was to examine the properties of Ni22Cr10Al1Y layers in order to obtain optimal structural - mechanical properties with the optimization of depositing parameters. Powder was deposited by the atmospheric plasma spray (APS process with the current intensity of 600, 700 and 800A, with a corresponding plasma gun power supply of 22KW, 34KW and 28KW. The evaluation of the Ni22Cr10Al1Y coating layers was made on the basis of their microhardness, tensile strength and microstructure performance. The best performance was obtained in the layers deposited with 800A and the 34KW plasma gun power supply. The coating with the best characteristics was tested to oxidation in the furnace for heat treatment without a protective atmosphere at 1100°C for one hour. The examination of the morphology of Ni22Cr10Al1Y powder particles was carried out on the SEM (Scanning Electron Microscope as well as the EDS analysis of the best layers. The microstructure of the deposited coating layers was examined with a light microscope. The microstructure analysis was performed according to the TURBOMECA standard. The mechanical properties of layers were evaluated by the method HV0.3 for microhardness and by tensile testing for bond strength. The research has shown that plasma gun power supply significantly affects the mechanical properties and microstructure of coatings that are of crucial importance for the protection of components exposed to high temperature oxidation and hot corrosion.

  15. Microstructure and tensile properties of Ti-6Al-4V alloys manufactured by selective laser melting with optimized processing parameters

    Science.gov (United States)

    Wang, L.; Ma, C.; Huang, J.; Ding, H. Y.; Chu, M. Q.

    2017-11-01

    Selective laser melting (SLM) is a precise additive manufacturing process that the metallic powders without binder are melted layer by layer to complex components using a high bright fiber laser. In the paper, Ti-6Al-4V alloy was fabricated by SLM and its microstructure and mechanical properties were investigated in order to evaluate the SLM process. The results show that the microstructure exists anisotropy between the horizontal and vertical section due to the occurrence of epitaxial growth, and the former microstructure seems equal-axis and the latter is column. Moreover, there is little difference in tensile test between the horizontal and vertical sections. Furthermore, the tensile properties of fabricated Ti-6Al-4V alloy by SLM are higher than the forged standard ones. However, the fatigue results show that there are some scatters, which need further investigation to define the fatigue initiation.

  16. Impact of Microstructure on MoS2 Oxidation and Friction.

    Science.gov (United States)

    Curry, John F; Wilson, Mark A; Luftman, Henry S; Strandwitz, Nicholas C; Argibay, Nicolas; Chandross, Michael; Sidebottom, Mark A; Krick, Brandon A

    2017-08-23

    This work demonstrates the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2 ). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures-amorphous and planar/highly-ordered-before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showed a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.

  17. The effects of different types of investments on the alpha-case layer of titanium castings.

    Science.gov (United States)

    Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang

    2007-03-01

    Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface

  18. The Impact of Seed Layer Structure on the Recrystallization of ECD Cu and its Alloys

    Science.gov (United States)

    O'Brien, Brendan B.

    Despite the significant improvements originally offered by the use of Cu over Al as the interconnect material for semiconductor devices, the continued down-scaling of interconnects has presented significant challenges for semiconductor engineers. As the metal line widths shrink, both the conductivity and reliability of lines decrease due to a stubbornly fine-grained microstructure in narrow lines. Understanding microstructural transformation of the ECD Cu in narrow features which leads to this polygranular microstructure is the first focus of this dissertation. As in the case of Cu films, the underlying seed layer strongly influences progress of transformation. Unlike films, however, the seed layer is not homogenous in patterned substrates, but differs according to the size of the trench and the location within the trench (field, bottom, and sidewall). Based on these findings, and the known influence of texture on the transformation of ECD Cu, a rapid trench initiated transformation process was posited for narrow interconnect lines. Time-resolved TEM observation of the ECD Cu in 48 nm lines during the transformation process confirmed the hypothesis. In fact, the TEM images revealed that the transformation was even faster than anticipated, and that the microstructure of the Cu inside the lines was stagnant after a mere 1.5 hours at room temperature. Studies of the transformation at elevated temperatures found that, despite anneals at 250°C for up to an hour, the grain size distribution for the Cu in narrow lines for all times converged, whether annealed at room temperature or 250°C. These data suggest that process was being driven by the 'consumable' internal energy stored in the as-plated microstructure. This is different than the transformation of the overburden, which is driven by a competition between surface energy and internal stress buildup due to film densification and relief due to the secondary growth of a 200 texture component. Based on these findings

  19. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    International Nuclear Information System (INIS)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-01-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0 . Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  20. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Joelle T. [Washington State University, Chemistry Department, Pullman, WA 99164 (United States); Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Parruzot, Benjamin [Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Weber, Marc H. [Washington State University, Center for Materials Research, Pullman, WA 99164 (United States); Ryan, Joseph V., E-mail: joe.ryan@pnnl.gov [Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); McCloy, John S. [Washington State University, Chemistry Department, Pullman, WA 99164 (United States); Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Washington State University, School of Mechanical and Materials Engineering, Pullman, WA 99164 (United States); Wall, Nathalie A., E-mail: nawall@wsu.edu [Washington State University, Chemistry Department, Pullman, WA 99164 (United States)

    2017-07-15

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe{sup 0} in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe{sup 0}. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  1. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    Science.gov (United States)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-07-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  2. In situ synchrotron X-ray diffraction study of the effect of microstructure and boundary layer conditions on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Ko, M.; Ingham, B.; Laycock, N.; Williams, D.E.

    2015-01-01

    Highlights: • We studied the effects of steel microstructures and local conditions on CO 2 corrosion. • Microstructure influences the development of surface roughness during corrosion. • The effects of Cr alloying, on average, dominate over the effects of microstructure. • Spatial segregation of Cr between the phases in the steel may result in localised corrosion. - Abstract: This study demonstrates that the nucleation of crystalline scales of siderite and chukanovite onto the surface of low-alloy steels under CO 2 corrosion at elevated temperature is critically dependent on initial surface roughness, on microstructure-related surface roughness developed during corrosion, and on stirring in the solution. This study confirms that effects due to chromium micro-alloying in the steel are extremely important for siderite nucleation. On average, these effects dominate over the effects of microstructure. However, spatial variation of the corrosion deposit thickness indicates an interdependence between microstructure and chromium-enhanced siderite nucleation with the possibility of localised corrosion developing as a result

  3. Microstructure of nitrides grown on inclined c-plane sapphire and SiC substrate

    International Nuclear Information System (INIS)

    Imura, M.; Honshio, A.; Miyake, Y.; Nakano, K.; Tsuchiya, N.; Tsuda, M.; Okadome, Y.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.

    2006-01-01

    High-quality (112-bar 0) GaN layers with atomically flat surface have been grown on a precisely offset-angle-controlled (11-bar 02) sapphire substrate by metal-organic vapor phase epitaxy (MOVPE). Insertion of AlGaN layer between underlying AlN layer and GaN was found to improve crystalline quality of upper GaN layer. In addition, a combination of high growth condition followed and epitaxial lateral overgrowth has been employed for the growth of GaN and this helped in reducing the dislocation density in the resultant layers. GaN and AlN were grown on (303-bar 8) SiC substrates by MOVPE and sublimation methods, respectively. The crystal orientation of GaN and AlN could be just aligned to that of the substrate. Microstructure analysis of the layers was also carried out by transmission electron microscopy

  4. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  5. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  6. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  7. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  8. Localized biosensing with Topas microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Bang, Ole

    2007-01-01

    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may...... be activated on the inner side of the air holes in a predetermined section of the mPOF. The concept is demonstrated using a fluorescencebased method for selective detection of fluorophore-labeled antibodies. © 2007 Optical Society of America...

  9. Structural characterization of amorphous Fe-Si and its recrystallized layers

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2006-01-01

    We have synthesized amorphous Fe-Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe + ions to a fluence of 4.0 x 10 17 cm -2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe-Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi 2 thin layer

  10. Microstructure and Magnetic Properties of NdFeB Films through Nd Surface Diffusion Process

    OpenAIRE

    Liu, Wenfeng; Zhang, Mingang; Zhang, Kewei; Chai, Yuesheng

    2017-01-01

    Ta/Nd/NdFeB/Nd/Ta films were deposited by magnetron sputtering on Si (100) substrates and subsequently annealed for 30 min at 923 K in vacuum. It was found that the microstructure and magnetic properties of Ta/Nd/NdFeB/Nd/Ta films strongly depend on the NdFeB layer thickness. With NdFeB layer thickness increasing, both the grain size and the strain firstly reduce and then increase. When NdFeB layer thickness is 750 nm, the strain reaches the minimum value. Meanwhile, both the in-plane and per...

  11. TiC对铁基合金喷焊层组织与性能影响%Effects of TiC on Microstructure and Properties of Fe-based Alloy Spray-welding Layer

    Institute of Scientific and Technical Information of China (English)

    熊中; 王艳; 徐强; 何芹

    2017-01-01

    The work aims to study effects of different TiC content on microstructure and properties of Fe-based spray welding layer.The Fe-based spray welding layer was prepared on the surface of Q235 by plasma spray welding technology.Phase,microstructure,microhardness and wear resistance of the spray welding layer was tested with X-ray diffractometer,metallographic microscope,microhardness tester and abrasive wear tester,respectively.The TiC-free spray welding layer was mainly composed of martensite,austenite,(Fe,Cr)7C3 and (Fe,Ni) solid solution,new phases including TiC and TiB2 were present after different content of TiC was added,but diffraction intensity of each sample reduced to a certain degree,and diffraction peaks even disappeared in some areas.With the increase of TiC content,both hardness and wear resistance of the spray welding layer increased but decreased when TiC addition reached a certain extent (WTic> 3.0%).When the content of TiC was up to 3%,the spray welding layer features in dense microstructure,refined grains and dispersedly distributed TiC,the particles strengthened dispersion and grain refining on the spray welding layer.The microhardness was up to 843HV0.5,about 300HV0.5 higher than that of the non-TiC spray welding layer,relative wear resistance of the layer was about 12 times higher than that of the Q235 steel,both microhardness and wear resistance of the layer were improved significantly.Adding appropriate amount of TiC particles realizes favorable match between the metal substrate and hard phase,thus guaranteeing high hardness and good wear resistance of spray welding layer.%目的 研究不同TiC添加量对铁基合金喷焊层组织与性能的影响.方法 采用等离子喷焊技术在Q235表面制备了铁基合金喷焊层,借助X射线衍射分析、金相显微镜、显微硬度计以及磨粒磨损试验设备,分别对喷焊层的物相、显微组织、显微硬度、耐磨性能进行测试.结果

  12. A Study on the Microstructural Evolution of a Low Alloy Steel by Different Shot Peening Treatments

    Directory of Open Access Journals (Sweden)

    Juan González

    2018-03-01

    Full Text Available Recent studies have shown that severe shot peening can be categorized as a severe plastic deformation surface treatment that is able to strongly modify the microstructure of the surface layer of materials, by both increasing the dislocation density and introducing a large number of defects that define new grain boundaries and form ultrafine structure. In this work, conventional shot peening and severe shot peening treatments were applied to 39NiCrMo3 steel samples. The samples were characterized in terms of microstructure, surface roughness, microhardness, residual stresses, and surface work-hardening as a function of surface coverage. Particular attention was focused on the analysis of the microstructure to assess the evolution of grain size from the surface to the inner material to capture the gradient microstructure. Severe shot peening proved to cause a more remarkable improvement of the general mechanical characteristics compared to conventional shot peening; more significant improvement was associated with the microstructural alteration induced by the treatment. Our datas provide a detailed verification of the relationship between shot peening treatment parameters and the microstructure evolution from the treated surface to the core material.

  13. Microstructural growth increments in the brachiopods Liothyrella uva and L. neozelanica: preliminary study of growth analysis and proxy calibration

    Science.gov (United States)

    Romanin, Marco; Aleksandra Bitner, Maria; Brand, Uwe

    2017-04-01

    Brachiopods secrete low-Mg calcite shells in near equilibrium with the surrounding sea water, with respect to their secondary and tertiary layers. For this reason, in recent years they have been intensively studied as archives for oceanographic and environmental proxies. The primary layer has been shown not to be deposited in equilibrium with the ambient sea water, leading to a novel cleaning protocol proposed by Zaki et al (2015). In the spite of improving on existing proxies, the shell microstructure and growth has to be taken in to account in their applications. The secretion of the primary layer is known to be external of the shell, but in SEM investigations of Liothyrella uva and L. neozelanica we discovered that the primary layer has its origin within the fibres of the secondary layer. Furthermore, the primary layer calcite is not a continuum but instead it consists of a 'new' band for each major growth increment. There is overlap between the preceding and subsequent 'band' (or shingles) of the primary layer, which may extend into the secondary/tertiary layer. This finding may lead to more comprehensive knowledge of shell microstructure processes in L. uva and L. neozelanica that may be applied and extended to other modern and fossil brachiopods, including age dating of brachiopods. This discovery may make brachiopod archives more reliable and consistent proxies when applied to and interpreting their geological record.

  14. Longitudinal Associations Between Microstructural Changes and Microperimetry in the Early Stages of Age-Related Macular Degeneration.

    Science.gov (United States)

    Wu, Zhichao; Cunefare, David; Chiu, Elizabeth; Luu, Chi D; Ayton, Lauren N; Toth, Cynthia A; Farsiu, Sina; Guymer, Robyn H

    2016-07-01

    To determine whether longitudinal changes in mesopic visual function on microperimetry occurred independent of its associations with microstructural parameters on spectral-domain optical coherence tomography (SD-OCT) in the early stages of AMD. Forty-one AMD eyes underwent microperimetry testing and SD-OCT scans over a 12-month period at 6-month intervals. Microstructural parameters analyzed include the retinal pigment epithelium-drusen complex (RPEDC) layer thickness, number of hyperreflective foci (HF) and their inner retinal migration (represented by a weighted axial distribution score; AxD), and the number of atrophic areas. Microperimetric sensitivity was 0.29 dB (95% confidence interval [CI] = -0.38 to -0.20 dB, P < 0.001) and 0.13 dB (95% CI = -0.22 to -0.03 dB, P = 0.008) lower in each sector for every 10-μm higher RPEDC layer thickness and 1-HF present, but was not associated with the AxD score or the number of atrophic areas present (P ≤ 0.464). However, each 10-μm greater RPEDC layer thickness and 1-HF present was not independently associated with a further decline in sensitivity (-0.08 dB/year, 95% CI = -0.24 to 0.07 dB/year, P = 0.288 and 0.09 dB/year, 95% CI = -0.06 to 0.24 dB/year, P = 0.242, respectively) over time when accounting for the association between RPEDC layer thickness and number of HF with microperimetric sensitivity. Longitudinal changes in mesopic visual function measured on microperimetry paralleled changes in the microstructural changes over a 12-month time frame, without any changes occurring independent of the associations between structure and function alone.

  15. Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Reed, A.N., E-mail: amber.reed.5@us.af.mil [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469 (United States); Shamberger, P.J. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); University of Dayton Research Institute, University of Dayton, Dayton, OH 45469 (United States); Muratore, C. [Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469 (United States); Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); University of Dayton Research Institute, University of Dayton, Dayton, OH 45469 (United States); Voevodin, A.A., E-mail: andrey.voevodin@us.af.mil [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States)

    2015-03-31

    High power impulse magnetron sputtering was used to deposit thin (~ 100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates heated to 150 °C. The resulting films had strong crystallinity, highly aligned (002) texture and low surface roughness (root mean square roughness less than 10 nm), as determined by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and atomic force spectroscopy measurements. Deposition pressure and target–substrate distance had the greatest effect on film microstructure. The degree of alignment in the films was strongly dependent on the gas pressure. Deposition at pressures less than 0.93 Pa resulted in a bimodal distribution of grain sizes. An initial growth layer with preferred orientations (101) and (002) parallel to the interface was observed at the film–substrate interface under all conditions examined here; the extent of that competitive region was dependent on growth conditions. Time-resolved current measurements of the target and ion energy distributions, determined using energy resolved mass spectrometry, were correlated to film microstructure in order to investigate the effect of plasma conditions on film nucleation and growth. - Highlights: • Low temperature growth of nanocrystalline zinc oxide (ZnO) films. • ZnO films had a highly (002) textured, smooth, dense microstructure. • Dominant (002) orientation of films was pressure dependent. • Interfacial (101)/(002) mixed orientation layer controlled by substrate location.

  16. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  17. Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting

    International Nuclear Information System (INIS)

    Tan, Xipeng; Kok, Yihong; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2015-01-01

    Electron beam melting (EBM®)-built Ti–6Al–4V has increasingly shown great potential for orthopedic implant and aerospace applications in recent years. The microstructure and mechanical properties of EBM-built Ti–6Al–4V have been systematically investigated in this work. Its microstructure consists of columnar prior β grains delineated by wavy grain boundary α and transformed α/β structures with both cellular colony and basket-weave morphology as well as numerous singular α bulges within the prior β grains. The β phase is found to form as discrete flat rods embedded in continuous α phase and its volume fraction is determined to be ∼3.6%. Moreover, α′ martensite was not observed as it has decomposed into α and β phases. In particular, the α/β interface was studied in detail combined transmission electron microscopy with atom probe tomography. Of note is that graded Ti–6Al–4V microstructure i.e. both prior β grain width and β phase interspacing continuously increase with the build height, was observed, which mainly arises from the decreasing cooling rate. Furthermore, an increasingly pronounced strain hardening effect was also observed as the previously built layers undergo a longer annealing compared to the subsequent layers. As a result, graded mechanical properties of Ti–6Al–4V with degraded microhardness and tensile properties were found. A good agreement with the Hall–Petch relation indicates that the graded property takes place mainly due to the graded microstructure. In addition, this graded microstructure and mechanical properties were discussed based on a quantitative characterization

  18. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures.

    Science.gov (United States)

    Li, Hui; Zhao, Lei; Chen, Xiao Dong; Mercadé-Prieto, Ruben

    2016-02-01

    Swelling of protein hydrogels in alkaline conditions strongly depends on the gel microstructure. Stranded transparent gels swell as predicted using a modified Flory-Rehner model with the net protein charge. Particulate opaque gels swell very differently, with a sudden increase at a narrow pH range. Its swelling is not controlled by the protein charge, but by the destruction of the non-covalent interactions. Comparable dissolution thresholds, one with pH and another with the degree of swelling, are observed in both types of microstructures. These conclusions are valid for both whey protein isolate (WPI) gels and egg white gels, suggesting that they are universal for all globular proteins that can form such microscructures. Differences are observed, however, from the prevalent chemical crosslinks in each protein system. Non-covalent interactions dominate WPI gels; when such interactions are destroyed at pH≥11.5 the gels swell extensively and eventually dissolve. In egg white gels, the higher degree of disulphide crosslinking allows extensive swelling when non-covalent interactions are destroyed, but dissolution only occurs at pH≥13 when covalent crosslinks are cleaved. The current study highlights that the microstructure of protein hydrogels, a unique particularity of protein systems compared to other synthetic hydrogels, defines swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  1. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    International Nuclear Information System (INIS)

    Kikuchi, T.; Takahashi, H.; Maruko, T.

    2007-01-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZθ stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 μm line width were obtained successfully

  2. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan); Maruko, T. [Furuya Metal Co. Ltd., R and D Group, Shimodate Daiichi Kogyodanchi 1915, Morisoejima, Chikusei, Ibaraki (Japan)

    2007-02-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZ{theta} stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 {mu}m line width were obtained successfully.

  3. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  4. Microstructure and microhardness characterization of Cr{sub 3}C{sub 2}-SiC coatings produced by the plasma transferred arc method

    Energy Technology Data Exchange (ETDEWEB)

    Islak, Serkan [Kastamonu Univ. (Turkey). Cide Rifat Ilgaz Vocational High School; Eski, Oezkan [Kastamonu Univ. (Turkey). Kastamonu Vocational High School; Buytoz, Soner [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials Engineering; Karagoez, Muzaffer [Bartin Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Stokes, Joseph [Dublin City Univ. (Ireland). School of Mechanical and Manufacturing Engineering

    2012-07-01

    The purpose of this work was to investigate the coatings made of Cr{sub 3}C{sub 2} and SiC powder manufactured on AISI 304 stainless steel applied by the plasma transferred arc (PTA) welding process. SiC content in the produced coated layer was varied between 0-100 wt. % and the effect of SiC concentration on the microstructure and hardness of the coating was measured experimentally. SEM analyses revealed that the composite coatings had a homogeneous, nonporous, and crack-free microstructure. Dendrites and interdendrite eutectics formed on the coating layer, subject to the temperature gradient and the solidification ratio. There was a significant increase in the hardness of coating layers with the effect of the {gamma}-(Fe,Ni), Cr{sub 7}C{sub 3}, Cr{sub 23}C{sub 6}, Fe{sub 5}C{sub 2}, Cr{sub 3}Si, CrSi{sub 2}, Fe{sub 0.64}Ni{sub 0.36}, CFe{sub 15.1}, C-(Fe,Cr)-Si phases formed in the microstructure. In comparison to the substrate, the microhardness of the coatings produced by PTA were 2.5-3.5 times harder. (orig.)

  5. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  6. Fabrication of surface micromachined ain piezoelectric microstructures and its potential apllication to rf resonators

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    We report on a novel microfabrication method to fabricate aluminum nitride (AlN) piezoelectric microstructures down to 2 microns size by a surface micromachining process. Highly c-axis oriented AlN thin films are deposited between thin Cr electrodes on polysilicon structural layers by rf reactive

  7. Microscopic thermal characterization of HTR particle layers

    International Nuclear Information System (INIS)

    Rochais, D.; Le Meur, G.; Basini, V.; Domingues, G.

    2008-01-01

    This paper presents thermal diffusivity measurements of HTR fuel particle pyrolytic carbon layers at room temperature. The photoreflectance microscopy (PM) technique is used to characterize particle layers at a microscopic scale. Nevertheless, buffer layer needs a particular analysis due to its porous structure. Indeed, measurements by PM on this material only permit to obtain the thermal diffusivity of the solid skeleton, whose homogeneous zones surface does not exceed 100 μm 2 . These characteristics make, on the one hand, delicate the use of PM, and on the other hand, require the use of a numerical homogenization technique. This model takes into account the properties of gas confined in the pores, to simulate the conduction heat flux traveling through the layer in relation with its microstructure and to estimate an effective thermal conductivity of the entire layer. This approach is validated by infrared microscopy measurement of the effective thermal diffusivity of the especially elaborated thicker buffer layer. Last, the first tests to characterize the silicon carbide layer are presented

  8. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    International Nuclear Information System (INIS)

    Li, P.; Lei, M.K.; Zhu, X.P.

    2011-01-01

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: → A modified layer about 30 μm thick is obtained by HIPIB irradiation. → Selective ablation of element/impurity phase having lower melting point is observed. → More importantly, microstructural refinement occurred on the irradiated surface. → The modified layer exhibited a significantly improved corrosion resistance. → Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  10. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting

    Science.gov (United States)

    Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong

    2018-03-01

    Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.

  11. In situ observations of microstructural changes in SOFC anodes during redox cycling

    DEFF Research Database (Denmark)

    Klemensø, Trine; Appel, C. C.; Mogensen, Mogens Bjerg

    2006-01-01

    The anode-supported solid oxide fuel cell (SOFC) degrades when the anode is subjected to redox cycling. The degradation has qualitatively been related to microstructural changes in the nickel-yttria stabilized zirconia anode of the tested cells. In this work, the microstructural changes were...... observed in situ using environmental scanning electron microscopy. In the reduced state, a dynamic rounding of the nickel particles occurred. The oxide growth upon re-oxidation depended on the oxidation kinetics. During rapid oxidation, the NiO particles divided into 2-4 particles, which grew...... into the surrounding voids. For slower oxidation, an external oxide layer was seen to develop around the individual particles. (c) 2006 The Electrochemical Society....

  12. The effects of boro-tempering heat treatment on microstructural properties of ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz

    2011-01-01

    In this study, the effects of boro-tempering heat treatment on microstructural properties of ductile iron were investigated. Test samples with dimensions of 10 x 10 x 55 mm were boronized at 900 o C for 1, 3 and 5 h and then tempered at four different temperatures (250, 300, 350 and 450 o C) for 1 h. Both optical microscopy and scanning electron microscopy were used to reveal the microstructural details of coating and matrix of boro-tempered ductile iron. X-ray diffraction was used to determine the constituents of the coating layer. The boride layer formed on the surface of boro-tempered ductile cast iron is tooth shape form and consisted of FeB and Fe 2 B phases. The thickness of boride layer increases as the boronizing time increases and tempering temperature decreases. Tempering temperature is more effective than boronizing time on the matrix structure. Boro-tempering heat treatment reduces the formation of lower and upper ausferritic matrix temperature according to classical austempering. This causes formation of upper ausferritic matrix in the sample when tempered at 300 o C. This is in contrast to general case which is the formation of lower ausferritic matrix via austempering at this temperature.

  13. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  14. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    Science.gov (United States)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  15. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    Science.gov (United States)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  16. The roles of texture and microstructure for seismic properties and anisotropy of the continental crust

    Science.gov (United States)

    Almqvist, B. S. G.; Mainprice, D.

    2017-12-01

    New seismic methods provide images of the continental crust with improved resolution, carrying unique information on the structure and mass transfer regimes within the crust. At the intrinsic scale components contributing to these images are grains and the microfabric, which includes information on grain characteristics. At the extrinsic scale the presence of micro-cracks, fractures and layering are important in controlling seismic velocities. Although the wavelength of a seismic wave is orders of magnitude larger than the intrinsic scale the minerals and microstructures, the interpretations of seismic images are critically dependent on our understanding and quantification of these microscopic constituents. This contribution explores the role of texture and microstructure in governing seismic properties of rocks. We focus on prediction of seismic velocities based on calculations that take into account mineral composition and microfabric of rocks. Emphasis is placed on recent developments in modeling efforts and analytical techniques, which can consider microfabric parameters such as crystallographic preferred orientation (CPO), grain shape, layering and elastic interaction among grains. Static schemes that use Christoffel's equation, and active/dynamic wave propagation methods provide the general techniques to predict seismic velocities. Single crystal elastic constants are essential in predicting seismic properties. However, the database is incomplete considering the variation of crustal mineralogy and lack of data at elevated pressure and temperature conditions occurring in the middle and lower crust. Finally, the method used to measure CPO and microstructure data has an influence on model predictions. Neutron and X-ray goniometry techniques enable investigation of CPO for large sample volumes, but lack other microstructural information. In contrast, electron backscatter diffraction provides data on both CPO and microstructure, but for a relatively small sample

  17. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  18. Discrete element modeling of microstructure of nacre

    Science.gov (United States)

    Chandler, Mei Qiang; Cheng, Jing-Ru C.

    2018-04-01

    The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.

  19. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    Science.gov (United States)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  20. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?

    Science.gov (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio

    2016-03-01

    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn–Al–Mg coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Caizhen; Lv, Haibing [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Zhu, Tianping [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Zheng, Wanguo [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Yuan, Xiaodong, E-mail: xdyuan@caep.cn [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Gao, Wei, E-mail: w.gao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand)

    2016-06-15

    In this article, Zn–Al–Mg coatings were prepared by hot dipping method. The surface morphology, cross–section microstructure, microhardness, composition, corrosion behaviour of ZAM coatings were investigated by using X–ray diffraction (XRD), Optical microscope, Environmental scanning electron microscopy equipped with EDS (FESEM–EDS), Microhardness tester and Electrochemical analysis respectively. Corrosion test was also performed in a standard salt fog spray chamber. Microstructure studies indicates that Zn grain size was refined and eutectic areas at Zn grain boundary areas increased with increasing Mg content. ZA5M1.5 and ZA5M2 coatings have two distinct layers. Mg tends to exist in the outer layer while Al is in the inner layer. The inner layer is composed of Al{sub 5}Fe{sub 2}Zn{sub 0.4} intermetallic, which may to contribute to the microhardness. The outer layer is Zn grains surrounded by Zn–Mg etutectics, which may improve the corrosion resistance. The microhardness is more than 700 HV{sub 50g} for Al-rich layer and around 151 HV{sub 25g} for Mg-rich layer. The improved corrosion resistance of Zn–5%Al-1.5%Mg coating comes from the corrosion product of flocculent type simonkolleite, which prolongs the micro-path and impedes the movement of O{sub 2} and H{sub 2}O, ultimately retards the overall corrosion process. - Highlights: • Two-layer structured Zn–Al–Mg coatings were prepared by hot dipping method. • Mg exists in the outer layer while Al exists in the inner layer of Zn–Al–Mg coating. • Zn–Al–Mg coating has better protective ability than Zn and Zn–Al coatings. • The Mg-modified simonkolleite is the reason of the enhanced corrosion resistance.

  2. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  3. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  4. A model for fracture toughness evaluation of the carburized layer for SAE 5115 steel

    OpenAIRE

    Sandor, Leonardo Taborda; Ferreira, Itamar

    2006-01-01

    The purpose of this work is to propose a model for evaluating the fracture toughness along the SAE 5115 steel carburized layer. Due to the small thickness of those layers, it is impossible to machine specimens from those layer in accordance with standards. For simulating the microstructures of the carburized layer in order to get samples for tensile and the fracture toughness testing, specimens of SAE 5115, 5140, 5160, and 52100 steels have been machined, assuming the local influence just the...

  5. Corrosion behaviour in saline environments of single-layer titanium and aluminium coatings, and of Ti/Al alternated multi-layers elaborated by a multi-beam PVD technique

    International Nuclear Information System (INIS)

    Merati, Abdenacer

    1994-01-01

    This research thesis reports the characterization of anti-corrosion titanium and aluminium coatings deposited on a 35CD4 steel under the form of mono-metallic layers or alternated Ti/Al multi-layers, and obtained by a multibeam PVD technique. The influence of different parameters is studied: single-layer thickness (5, 15 or 30 micro-metres), multi-layer distribution (5 to 6) and substrate (smooth or threaded). Layer nature and microstructure are studied by optical microscopy and scanning electron microscopy (SEM), as well as corrosion toughness in aqueous saline environments. Coated threaded samples have been studied after tightening tests. It appears that titanium layers are denser and more uniform than aluminium layers, and that multi-layer coatings provide a better protection than single-layer coatings. The best behaviour is obtained when titanium is in contact with steel, and aluminium is the outer layer in contact with the corroding environment [fr

  6. Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus.

    Science.gov (United States)

    Gil-Duran, S; Arola, D; Ossa, E A

    2016-03-01

    This paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail). Results showed that the scales are composed of collagen and hydroxyapatite, and these constituents are distributed within three well-defined layers from the bottom to the top of the scale. The proportion of these layers with respect to the total scale thickness varies radially. The collagen fibers are arranged in plies with different orientations and with preferred orientation in the longitudinal direction of the fish. Results from the tensile tests showed that scales from Megalops Atlanticus exhibit variations in the elastic modulus as a function of body position. Additional testing performed with and without the highly mineralized top layers of the scale revealed that the mechanical behavior is anisotropic and that the highest strength was exhibited along the fish length. Furthermore, removing the top mineralized layers resulted in an increase in the tensile strength of the scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-01-01

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C

  8. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  9. Surface modification of investment cast-316L implants: microstructure effects.

    Science.gov (United States)

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade (Serbia); Karanovic, Ljiljana [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11000 Belgrade (Serbia); Bracko, Ines, E-mail: dragan.uskokovic@itn.sanu.ac.rs [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 {sup 0}C, from HAp to {beta}-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  11. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology

    International Nuclear Information System (INIS)

    Markovic, Smilja; Veselinovic, Ljiljana; Lukic, Miodrag J; Ignjatovic, Nenad; Uskokovic, Dragan; Karanovic, Ljiljana; Bracko, Ines

    2011-01-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [0 0 l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 0 C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  12. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals

    Science.gov (United States)

    Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.

    2010-05-01

    Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly

  13. Microstructure, surface characterization and long-term stability of new quaternary Ti-Zr-Ta-Ag alloy for implant use.

    Science.gov (United States)

    Vasilescu, C; Osiceanu, P; Moreno, J M Calderon; Drob, S I; Preda, S; Popa, M; Dan, I; Marcu, M; Prodana, M; Popovici, I A; Ionita, D; Vasilescu, E

    2017-02-01

    The novel Ti-20Zr-5Ta-2Ag alloy was characterised concerning its microstructure, morphology, mechanical properties, its passive film composition and thickness, its long-term electrochemical stability, corrosion resistance, ion release rate in Ringer solution of acid, neutral and alkaline pH values and antibacterial activity. The new alloy has a crystalline α microstructure (by XRD). Long-term XPS and SEM analyses show the thickening of the passive film and the deposition of hydroxyapatite in neutral and alkaline Ringer solution. The values of the electrochemical parameters confirm the over time stability of the new alloy passive film. All corrosion parameters have very favourable values in time which attest a high resistance to corrosion. Impedance spectra evinced a bi-layered passive film formed by the barrier, insulating layer and the porous layer. The monitoring of the open circuit potentials indicated the stability of the protective layers and their thickening in time. The new alloy releases (by ICP-MS measurements) very low quantities of Ti, Zr, Ag ions and no Ta ions. The new alloy exhibits a low antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  15. Microstructure and wear-resistance of laser clad TiC particle-reinforced coating

    NARCIS (Netherlands)

    Lei, T.C.; Ouyang, J.H.; Pei, Y.T.; Zhou, Y.

    A TiC-Ni alloy composite coating was clad to 1045 steel substrate using a 2kW CO2 laser. The microstructural constituents of the clad layer are found to be gamma-Ni and TiCp in the dendrites, and a fine eutectic of gamma-Ni plus (Fe, Cr)(23)C-6 in the interdendritic areas. Partial dissolution and

  16. Study on the dual-synthetic antiferromagnetic property using the Co2FeAl Heulser electrodes

    International Nuclear Information System (INIS)

    Zhang, D L; Xu, X G; Wu, Y; Li, X Q; Miao, J; Jiang, Y

    2011-01-01

    In this paper, we present the experimental results of dual-synthetic antiferromagnets (DSyAFs) with Co 2 FeAl (CFA) Heusler electrodes. It is shown that when the thicknesses of Ru layers are (0.45, 0.65) and (0.45, 1.00) (in nm), the CFA-based DSyAFs have a strong synthetic antiferromagnetic coupling among three CFA layers at room temperature, with a large saturation magnetic field Hs of ∼11000 Oe, a low saturation magnetization Ms of ∼708 emu/cm 3 and a switching field Hsw of ∼2.0 Oe, respectively. It is exciting that the CFA-based DSyAFs have an excellent thermal stability up to 400 0 C. Therefore, the CFA-based DSyAFs are favourable for applications in future spintronic devices.

  17. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Investigation of InN layers grown by MOCVD using analytical and high resolution TEM: The structure, band gap, role of the buffer layers

    International Nuclear Information System (INIS)

    Ruterana, P.; Abouzaid, M.; Gloux, F.; Maciej, W.; Doualan, J.L.; Drago, M.; Schmidtling, T.; Pohl, U.W.; Richter, W.

    2006-01-01

    In this work we investigate the microstructure of InN layers grown by MOCVD on different buffer layers using TEM (InN, GaN). The large mismatch between the various lattices (InN, sapphire or GaN) leads to particular interface structures. Our local analysis allows to show that at atomic scale, the material has the InN lattice parameters and that no metallic In precipitates are present, meaning that the PL emission below 0.8 eV is a genuine property of the InN semiconductor. It is also shown that the N polar layers, which exhibit a 2D growth, have poorer PL emission than In polar layers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    Science.gov (United States)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  20. Microstructure of aluminized coating on a Ni-Cr alloy after annealing treatment

    International Nuclear Information System (INIS)

    Huang, H.-L.; Gan Dershin

    2008-01-01

    The effects of annealing on the microstructure of first stage (high-Al activity pack) aluminized coating on Ni-15Cr alloy prepared by pack cementation method were analyzed by transmission electron microscope. The coating consists of a thin layer of γ'-Ni 3 Al, an interfacial zone of mixed β-NiAl and α-Cr, and a thick outer zone of β-NiAl (A layer) and mixed β-NiAl and α-Cr (B layer). Martensitic transformation was observed in the β-NiAl grains in the interfacial zone. Parallel crystallographic relationship was found at the γ/γ' interface in the substrate and the α/β interface in the interfacial zone. Cr 2 Al was found to precipitate in the β-NiAl and α-Cr grains in the B layer of the outer zone. The formation mechanisms of the coating layers, the precipitates, and the observed crystallographic relationships are discussed

  1. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  2. High strain rate deformation of layered nanocomposites.

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  3. Model Research On Synthesis Of Al2O3-C Layers By MOCVD

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available These are model studies whose aim is to obtain information that would allow development of new technology for synthesizing monolayers of Al2O3-C with adjusted microstructure on cemented carbides. The Al2O3-C layer will constitute an intermediate layer on which the outer layer of Al2O3 without carbon is synthesized. The purpose of the intermediate layer is to block the cobalt diffusion to the synthesized outer layer of Al2O3 and to stop the diffusion of air oxygen to the substrate during the synthesis of the outer layer. This layer should be thin, continuous, dense and uniform in thickness.

  4. Effect of TiN-ZrO{sub 2} intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO{sub 2}-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, K.F., E-mail: dongkf1981@163.com; Mo, W.Q.; Jin, F.; Song, J.L.

    2017-06-15

    Highlights: • The TiN-ZrO{sub 2} consisted of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. • With doping ZrO{sub 2} into TiN layer, grain size of FePt films significantly decreased. • By introducing TiN-ZrO{sub 2}/TiN combined layer, the magnetic properties were improved. - Abstract: The microstructures and magnetic properties of FePt based thin films grown on TiN-ZrO{sub 2} and TiN-ZrO{sub 2}/TiN intermediate layers were systematically investigated. The TiN-ZrO{sub 2} intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. It was found with doping ZrO{sub 2} into TiN intermediate layer, grain size of FePt-SiO{sub 2}-C films significantly decreased. Simultaneously, the isolation was obviously improved and grain size distribution became more uniform. However, the magnetic properties of the FePt-SiO{sub 2}-C films grown on TiN-ZrO{sub 2} intermediate layers were slowly deteriorated, which was due to the disturbance of the epitaxial growth of FePt by amorphous ZrO{sub 2} in TiN-ZrO{sub 2} intermediate layer. In order to improve the TiN-ZrO{sub 2} (0 0 2) texture and the crystallinity of TiN-ZrO{sub 2}, TiN-ZrO{sub 2}/TiN combined intermediate layer was introduced. And the magnetic properties were improved, simultaneously, achieving the benefit of grain size reduction. For the FePt 4 nm-SiO{sub 2} 40 vol%-C 20 vol% film grown on TiN/TiN-ZrO{sub 2} 30 vol% combined intermediate layer, well isolated FePt (0 0 1) granular films with coercivity higher than 17.6 kOe and an average size as small as 6.5 nm were achieved.

  5. A new approach to control a deflection of an electroplated microstructure: dual current electroplating methods

    International Nuclear Information System (INIS)

    Yang, Hyun-Ho; Seo, Min-Ho; Han, Chang-Hoon; Yoon, Jun-Bo

    2013-01-01

    We propose and demonstrate a simple and novel method to control the deflection in a suspended microstructure by using a dual current electroplating (DuCE) method. The key concept of this method is to divide the structure into two layers—a bottom layer and a top layer—and then apply respective current densities in electroplating to those two layers while all other conditions are kept the same. In addition to a flat structure, the direction of structure bending is freely controlled by virtue of the DuCE method. Cantilever Ni beams with a length of 400 µm, which were electroplated by the conventional single current electroplating method, bent downward with a deflection of 3.4 µm. On the contrary, by the DuCE method, cantilever beams with a length of 400 µm showed an almost flat structure as desired. (The current densities of the bottom layer, the top layer, and the ratio of the two current densities, are 0.15, 1.24 A dm −2 , and 8.3, respectively.) Consequently, a nickel electroplated spiral structure with a length of 8600 µm was suspended flat with an end deflection of less than 0.7 µm (the ratio between the deflection and length is 0.007%). This work therefore represents the unprecedented ultra-long suspended microstructure with submicrometer deflection. (paper)

  6. Digital laser printing of aluminum micro-structure on thermally sensitive substrates

    International Nuclear Information System (INIS)

    Zenou, Michael; Sa’ar, Amir; Kotler, Zvi

    2015-01-01

    Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated. (paper)

  7. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong

    2018-01-01

    Subsequent thermal cycling (STC), as the unique thermal behavior during the multi-layer manufacturing process of selective laser melting (SLM), brings about unique microstructure of the as-produced parts. A multi-layer finite element (FE) model was proposed to study the STC along with a contrast experiment. The FE simulational results show that as layer increases, the maximum temperature, dimensions and liquid lifetime of the molten pool increase, while the heating and cooling rates decrease. The maximum temperature point shifts into the molten pool, and central of molten pool shifts backward. The neighborly underlying layer can be remelted thoroughly when laser irradiates a powder layer, thus forming an excellent bonding between neighbor layers. The contrast experimental results between the single-layer and triple-layer samples show that grains in of latter become coarsen and tabular along the height direction compared with those of the former. Moreover, this effect become more serious in 2nd and 1st layers in the triple-layer sample. All the above illustrate that the STC has an significant influence on the thermal behavior during SLM process, and thus affects the microstructure of SLMed parts.

  8. Microstructural control during direct laser deposition of a β-titanium alloy

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Ravi, G.A.; Attallah, Moataz M.

    2015-01-01

    Graphical abstract: Microstructural development of Ti5553 during Direct Laser Deposition (DLD). - Highlights: • Good structural and geometrical integrity could be achieved by process design. • Build height increases with decreased scanning speed and increased powder flow rate. • Keeping Z increment close to actual layer thickness is crucial for consistent building. • The laser deposited Ti5553 are dominated by mixed columnar and equiaxed grains. • In situ dwelling and annealing promote α precipitation which improves microhardness. - Abstract: A concern associated with Direct Laser Deposition (DLD) is the difficulty in controlling microstructure due to rapid cooling rates after deposition, particularly in beta-Ti alloys. In these alloys, the beta-phase is likely to exist following DLD, instead of the desirable duplex alpha + beta microstructure that gives a good balance of properties. Thus, in this work, a parametric study was performed to assess the role of DLD parameters on porosity, build geometry, and microstructure in a beta-Ti alloy, Ti–5Al–5Mo–5V–3Cr (Ti5553). The builds were examined using optical microscopy, scanning electron microscopy, and X-ray diffraction. Microhardness measurements were performed to assess the degree of re-precipitation of alpha-phase following an in situ dwelling and laser annealing procedure. The study identified several processing conditions that enable deposition of samples with the desired geometry and low porosity level. The microstructure was dominated by beta-phase, except for the region near the substrate where a limited amount of alpha-precipitates was present due to reheating effect. Although the microstructure was a mixture of equiaxed and columnar beta-grains alongside infrequent fine alpha-precipitates, the builds showed fairly uniform microhardness in different regions. In situ dwelling and annealing did not cause an obvious change in porosity, but did promote the formation of alpha-precipitates

  9. The microstructural evolution of nanometer ruthenium films in Ru/C multilayers with thermal treatments

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Gronsky, R.; Kortright, J.B.

    1991-04-01

    The evolution of nanometer Ru films sandwiched between various C layer thickness with thermal treatments was studied by plan-view and cross-sectional Transmission Electron Microscopy. Plan-view observation provides information on the Ru grain size, while cross- sectional studies allow examination of the multilayer morphology. After annealing at 800 degrees C for 30 minutes, the grain size in the 2 and 4 nm Ru layers show little difference from each other, while that in the 1 nm Ru layers depends strongly on the thickness of the C layers in the multilayers. It increases with decreasing C layer thickness. Agglomeration of the Ru layers is observed in 1nm Ru/1nm C multilayers after annealing at 600 degrees C for 30 minutes. The evolution of the microstructures and layered structure stability of the Ru/C system is compared to that of W/C and Ru/B 4 C systems. 10 refs., 2 figs

  10. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH

    1995-01-01

    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  11. Research on the transformation mechanism of graphite phase and microstructure in the heated region of gray cast iron by laser cladding

    Science.gov (United States)

    Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong

    2018-03-01

    A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.

  12. Reassembly of S-layer proteins

    International Nuclear Information System (INIS)

    Pum, Dietmar; Sleytr, Uwe B

    2014-01-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology. (topical review)

  13. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  14. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Microstructure characterization of porous microalloyed aluminium-silicate ceramics

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2011-01-01

    Full Text Available Kaolinite and bentonite clay powders mixed with active additives, based on Mg(NO32 and Al(NO32, sintered at high temperatures produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. The ceramics samples were characterized by scanning electron microscopy (SEM, energy dispersive spectrometer (EDS, X-ray diffraction analysis (XRD and IR spectroscopy analysis, prior and after treatment in “synthetic water”, i.e. in aqueous solution of arsenic-salt. Grain size distribution for untreated and treated samples was done with software SemAfore 4. It has shown great variety in size distribution of grains from clay powders to sintered samples.

  16. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  17. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  18. Structure optimization of cathode microporous layer for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Ding, Xianan; Zhou, Hongwei; Chen, Ming; Wang, Manxiang; Zhao, Zhenxuan; Yin, Zhuang; Wang, Xindong

    2015-01-01

    Highlights: • Pore-forming technology was introduced to optimize microporous layer microstructure. • The water removal and gas mass transfer property of diffusion layer were improved. • The optimum DMFC performance reached 292 mW cm −2 at 80 °C. - Abstract: To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5 mg cm −2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292 mW cm −2 at 80 °C under 0.3 MPa O 2 . Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures

  19. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    Science.gov (United States)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  20. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    OpenAIRE

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-01-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal ...

  1. Microstructure of a SiC/Ti-15-3 composite

    Science.gov (United States)

    Lerch, B. A.; Hull, D. R.; Leonhardt, T. A.

    1990-01-01

    A continuous SiC-fiber-reinforced titanium (Ti-15V-3Cr-3Sn-3A1) composite was metallographically examined. Several methods for examining composite materials were investigated and documented. Polishing techniques for this material are described. An interference layering method was developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and TEM analyses were performed on the fiber-matrix interface. Detailed descriptions of the fiber distribution and the microstructure of the fiber and matrix are presented.

  2. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths

    Science.gov (United States)

    Zhang, H.-m.; Chen, X.-f.; Chang, S.

    - It is difficult to compute synthetic seismograms for a layered half-space with sources and receivers at close to or the same depths using the generalized R/T coefficient method (Kennett, 1983; Luco and Apsel, 1983; Yao and Harkrider, 1983; Chen, 1993), because the wavenumber integration converges very slowly. A semi-analytic method for accelerating the convergence, in which part of the integration is implemented analytically, was adopted by some authors (Apsel and Luco, 1983; Hisada, 1994, 1995). In this study, based on the principle of the Repeated Averaging Method (Dahlquist and Björck, 1974; Chang, 1988), we propose an alternative, efficient, numerical method, the peak-trough averaging method (PTAM), to overcome the difficulty mentioned above. Compared with the semi-analytic method, PTAM is not only much simpler mathematically and easier to implement in practice, but also more efficient. Using numerical examples, we illustrate the validity, accuracy and efficiency of the new method.

  3. Interfacial Microstructure Formed by Reactive Metal Penetration of Al into Mullite

    International Nuclear Information System (INIS)

    Du, T.B.; Ewsuk, K.G.; Fahrenholtz, W.G.; Loehman, R.E.; Lu, P.

    1999-01-01

    Microstructure in the reaction interface between molten Al and dense mullite have been studied by transmission electron microscopy to provide insight into mechanisms for forming ceramic-metal composites by reactive metal penetration. The reactions, which have the overall stoichiometry, 3Al number sign iz01 + (8+ x)A1 + 13 AlzO + xA1 + 6Si, were carried out at temperatures of 900, 1100, and 1200oC for 5 minutes and 60 minutes, and 1400oC for 15 minutes. Observed phases generally were those given in the above reaction, although their proportions and interracial rnicrostructures differed strongly with reaction temperature. After reaction at 900oC, a thin Al layer separated unreacted mullite from the cx-AlzO and Al reaction products. No Si phase was found near the reaction front. After 5 minutes at 1100''C, the nxtction front contained Si, ct-A120, and an aluminum oxide phase with a high concentration of Si. After 60 minutes at 11O(YC many of the cx-A120g particles were needle-shaped with a preferred orientation. After reaction at 1200oC, the reaction front contained a high density of Si particles that formed a continuous layer over many of the mullite grains. The sample reacted at 140VC for 15 minutes had a dense ct-A120J reaction layer less than 2m thick. Some isolated Si particles were present between the a-AlzO layer and the unreacted mullite. Using previously measured reaction kinetics data, the observed temperature dependence of the interracial microstructure have been modeled as three sequential steps, each one of which is rate-limiting in a different temperature range

  4. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kanagarajah, P., E-mail: p.kanagarajah@uni-paderborn.de [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Brenne, F. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Niendorf, T. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Maier, H.J. [Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany)

    2013-12-20

    Nickel-based superalloys, such as Inconel 939, are a long-established construction material for high-temperature applications and profound knowledge of the mechanical properties for this alloy produced by conventional techniques exists. However, many applications demand for highly complex geometries, e.g. in order to optimize the cooling capability of thermally loaded parts. Thus, additive manufacturing (AM) techniques have recently attracted substantial interest as they provide for an increased freedom of design. However, the microstructural features after AM processing are different from those after conventional processing. Thus, further research is vital for understanding the microstructure-processing relationship and its impact on the resulting mechanical properties. The aim of the present study was to investigate Inconel 939 processed by selective laser melting (SLM) and to reveal the differences to the conventional cast alloy. Thorough examinations were conducted using electron backscatter diffraction, transmission electron microscopy, optical microscopy and mechanical testing. It is demonstrated that the microstructure of the SLM-material is highly influenced by the heat flux during layer-wise manufacturing and consequently anisotropic microstructural features prevail. An epitaxial grain growth accounts for strong bonding between the single layers resulting in good mechanical properties already in the as-built condition. A heat treatment following SLM leads to microstructural features different to those obtained after the same heat treatment of the cast alloy. Still, the mechanical performance of the latter is met underlining the potential of this technique for producing complex parts for high temperature applications.

  5. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    Science.gov (United States)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  6. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. © 2013 American Chemical Society.

  7. Analysis of microstructure in electro-spark deposited IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanrewaju.ojo@umanitoba.ca

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free of the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.

  8. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  9. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela

    2016-09-15

    Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental

  10. Structure and characteristics of EB-PVD thermal insulation layers; Struktur und Eigenschaften von EB-PVD-Waermedaemmschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1996-12-31

    Thermal insulation layers for guide blades and rotor blades in the first two stages of a high-pressure turbines are produced by electron-beam physical vapour deposition for maximum quality. The layers have a lifetime that is longer by a factor of 2 to 10 than for plasma-sprayed layers. The following characteristics of the ceramic layer have a decisive influence on the life of the composite system: Phase composition, distribution and stability, microstructure, density, thickness, crack distribution and cohesive strength. Some selected aspects of the interdependence between production parameters, microstructure of the thermal insulation layer and service life are gone into. [Deutsch] Zur Herstellung von Waermedaemmschichten (WDS) fuer Turbinenleit- und Laufschaufeln der ersten beiden Stufen in der Hochdruckturbine wird fuer hoechste Ansprueche an die Schichtqualitaet das EB-PDV-Verfahren (electron-beam physical vapour deposition) eingesetzt. Die Lebensdauer dieser Schichten ist um den Faktor 2 bis 10 besser als beim Plasmaspritzen. Bei der keramischen Waermedaemmschicht selbst beeinflussen folgende Eigenschaften die Lebensdauer des Gesamtschichtsystems nachhaltig: Phasenzusammensetzung, -verteilung und -stabilitaet, Mikrogefuege, Dichte, Dicke, Rissverteilung und kohaesive Festigkeit. Auf einige ausgewaehlt Aspekte des Zusammenhangs zwischen Herstellungsparametern, Mikrostruktur der Waermedaemmschicht und Lebensdauer wird kurz eingegangen. (orig.)

  11. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  12. Oxidation behaviour of Zr-Ce alloys. Kinetic and microstructure aspects

    International Nuclear Information System (INIS)

    Rouillon, Ludovic

    1996-01-01

    As Zircaloy alloys are used for fuel rods in pressurized water nuclear reactors, this research thesis aims at studying and improving corrosion resistance of zirconium alloys while maintaining their mechanical properties. It more precisely deals with the kinetic and microstructure aspects of the external corrosion of the cladding by the coolant. In the case of Zircaloys, this corrosion is characterized by a kinetic transition from an initially parabolic to a linear regime. This research aims at intervening on this transition by elaborating zirconium alloys containing an element which stabilizes zirconia, in this case cerium. After having reported a bibliographical study on sheath oxidation, on parameters which influence sheath oxidation kinetics, on zirconia stabilization by doping elements, on the interest of lanthanide oxides, the author reports a feasibility study on the use of cerium (choice and preparation, sintered ceramic characterization, annealing of stabilized zirconia), reports a metallurgical study of Zr-Ce alloys, reports the study of the oxidation behaviour of these alloys (in autoclave, in presence of oxygen, under oxygen and then water) and the characterization of the microstructures of the oxide layers. He finally discusses the relationship between microstructure and oxidation kinetics, the role of cerium in the oxidation process, and the role of water in the oxidation process [fr

  13. Characterization of cylinder liners produced with hypereutectic Al-Si alloys and investigation of corrosion behaviour in synthetic automotive condensed solution; Caracterizacao de camisas de cilindro em ligas Al-Si hipereuteticas e investigacao do comportamento de corrosao em meio de condensado sintetico automotivo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Hamilta de Oliveira

    2006-07-01

    In the present study four hypereutectic Al-Si alloys, three produced by spray forming and one by casting, were characterized for microhardness, roughness, microstructure, texture and corrosion resistance in a synthetic automotive condensed solution (SACS). Two of the spray formed alloys tested were obtained from cylinder liners and the other was laboratory made. Spray forming involves alloy atomization and droplets deposition on a substrate, previous to the solidification of all of the droplets. This process favours the production of materials with a fine microstructure free of macrosegregation that is related to improved hot workability. The microstructure characterization of the four alloys revealed the presence of porosities in the laboratory made alloy. All the three alloys produced by spray forming showed a homogeneous distribution of primary precipitates. The microstructure of one of the alloys showed eutectic microstructure, indicating that this alloy was fabricated by casting. In the cylinder liners, the surface roughness was measured and the microhardness of all the alloys was also evaluated. Furthermore, the laboratory made alloy was hot and cold rolled. Texture determinations were carried out to investigate the correlation between the alloy type and their fabrication process. The texture investigation indicated that the fine distribution of primary silicon phase in the alloy hindered the development of texture typical of aluminium alloys deformation, even after severe mechanical work, such as those used in the conversion of pre-formed in cylinder liners. The surface roughness results indicated typical characteristics of the surface finishing used, honing or chemical etching. The microhardness results were dependent on the fabrication process used, with higher microhardness associated to the eutectic alloy comparatively to the spray formed ones. All hypereutectic alloys were tested for corrosion resistance using electrochemical impedance spectroscopy in

  14. Insights into the microstructural and physical properties of colloidal Fe:ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Yuanli [Department of Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Jiang, Linhai; Zhang, Xingquan [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-30

    Highlights: • We present a facile and environmentally friendly protocol to fabricate Fe:ZnSe nanocrystals. • The microstructural and physical properties of Fe:ZnSe nanocrystals were systematically investigated. • The current synthesis is dramatically simple and highly reproducible, it will facilitate the commercial scale synthesis of highly luminescent water-soluble nanocrystals with surface functionality in the near future. - Abstract: Here, we present a facile and environmentally friendly synthetic protocol to fabricate highly luminescent and water-soluble Fe:ZnSe nanocrystals in aqueous solution at low temperature. The microstructure and various physical properties (e.g., crystal structure, interplanar spacing, lattice parameter, crystalline size, lattice microstrain, intrinsic stress, X-ray density, specific surface area, dislocation density, porosity, agglomeration number) of the Fe:ZnSe nanocrystals were systematically investigated using X-ray diffraction. The particle size and morphology of the Fe:ZnSe nanocrystals were determined by transmission electron microscopy. The optical properties (e.g., absorption and photoluminescence) of the fabricated nanocrystals were explored using ultraviolet–visible absorption and photoluminescence spectroscopies, respectively. The surface functionalization of the Fe:ZnSe nanocrystals by mercaptoacetic acid ligand was evidenced by Fourier transform infrared spectroscopy. To confirm the elementary composition of the obtained nanocrystals, Energy dispersive X-ray spectroscopy was performed. To further shed light upon elemental distribution of the resulting nanocrystals, elemental mapping measurements were conducted. Moreover, the underlying mechanisms were also elucidated. As a consequence, the current investigation not only provides a deep insight into exploring the physical properties of doped nanocrystals, but also demonstrates a useful synthetic strategy for producing water-soluble and highly fluorescent doped

  15. Microstructure and mechanical characteristics of laser coating-texturing alloying dimples

    International Nuclear Information System (INIS)

    Wan Daping; Chen Bingkui; Shao Yimin; Wang Shilong; Hu Dejin

    2008-01-01

    A novel laser coating-texturing (LCT) technique was proposed to achieve appropriate surface topographies and frictional behaviour. The LCT process was realized by applying laser pulses at very high repetition rate to produce innumerable micro-craters with required shape profile on the surface of the workpiece. Moreover, surface alloying of the dimples was carried out by melting submicron WC-TiC-Co alloy powder on the substrates. Morphology and microstructures of the texturing layers were characterised using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Mechanical properties of the textured samples were evaluated by abrasive resistance tests and microhardness measurement. Experimental results show that good fusion bonding between the texturing layers and the substrate has been formed, and the texturing layers are mainly composed of dense and hard fine-grained structures. The abrasive wear resistance of the laser coating-textured surface was 10 times higher than that of the substrates. The average surface microhardness values were as high as 830 HV.

  16. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Science.gov (United States)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  17. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  18. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  19. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer.

    Science.gov (United States)

    Gronowicz, Gloria; Jacobs, Emily; Peng, Tao; Zhu, Li; Hurley, Marja; Kuhn, Liisa T

    2017-12-01

    A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in

  20. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    Science.gov (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  1. Polarity and microstructure in InN thin layers grown by MOVPE

    International Nuclear Information System (INIS)

    Kuwano, N.; Nakahara, Y.; Amano, H.

    2006-01-01

    Microstructures in InN grown on sapphire (0001) and yttria-stabilized zirconia (YSZ) (111) by metal-organic vapor phase epitaxy (MOVPE) were analyzed by means of transmission electron microscopy (TEM) in order to clarify the growth process. Special attention was paid to the selectivity of the crystal polarity of InN. The InN thin films grown on sapphire after nitridation has a flat surface while those grown on YSZ has hillocks on the surface. The crystal polarity was determined by comparing the experimentally observed intensity distribution in convergent beam electron diffraction (CBED) disks with those simulated by the Broch-wave method. It was found that the InN grown on the sapphire has a nitrogen-polarity and the one on YSZ has a mixture of In- and N-polarities. The effect of surface-nitridation of sapphire on the growth process is also discussed (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Perpendicularly magnetized CoFeB multilayers with tunable interlayer exchange for synthetic ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, P., E-mail: ppirro@physik.uni-kl.de [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Hamadeh, A.; Lavanant-Jambert, M. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Meyer, T. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Tao, B.; Rosario, E.; Lu, Y.; Hehn, M.; Mangin, S.; Petit Watelot, S. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France)

    2017-06-15

    Highlights: • MgO/CoFeB/Ta/CoFeB/MgO multilayers as synthetic ferrimagnets. • Comprehensive characterization by measurement of static and dynamic properties. • Different pinning for domain walls with different alignment of the individual layers. - Abstract: A study of the multilayer system MgO/CoFeB(1.1 nm)/Ta(t)/CoFeB(0.8 nm)/MgO is presented, where the two CoFeB layers are separated by a Ta interlayer of varying thickness t. The magnetization properties deduced from complementary techniques such as superconducting quantum interference magnetometry, ferromagnetic resonance frequency measurements and Brillouin light scattering spectroscopy can be tuned by changing the Ta thickness between t = 0.25 nm, 0.5 nm and 0.75 nm. For t = 0.5 nm, a ferromagnetic coupling is observed, whereas for t = 0.75 nm, the antiferromagnetic coupling needed to construct a synthetic ferrimagnet is realized. In the latter case, the shape of magnetic domain walls between two ferrimagnetic alignments or between a ferro- and a ferrimagnetic alignment is very different. This behavior can be interpreted as a result of the change in dipolar as well as interlayer exchange energy and domain wall pinning, which is an important conclusion for the realization of data storage devices based on synthetic ferri- and antiferromagnets.

  3. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  4. Cover-layer with High Refractive Index for Near-Field Recording Media

    Science.gov (United States)

    Kim, Jin-Hong; Lee, Jun-Seok

    2007-06-01

    TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  5. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  6. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  7. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  8. Thermal stability of electrodeposited Ni and Ni-Co layers; an EBSD-study

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Gholinia, A.; Trimby, P.W.

    2004-01-01

    The influence of heat treatment on the microstructure and the microtexture of electrodeposited Ni and Ni-Co layers was investigated with Electron Backscatter Diffraction (EBSD) with high resolution. Samples were annealed for 1 hour at 523 K and 673 K, the temperature region wherein...

  9. The influence of Ni, Mo, Si, Ti on the surface alloy layer quality

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2011-07-01

    Full Text Available The paper presents research results of microstructure and selected mechanical properties of alloy layer. The aim of the researches was to determine the influence of Ni, Mo, Si and Ti with high-carbon ferrochromium (added separately to pad on the alloy layer on the steel cast. Metallographic studies were made with use of light microscopy. During studies of usable properties measurements of hardness, microhardness and abrasive wear resistance of type metal-mineral for creation alloy layer were made. As thick as possible composite layer without any defects and discontinuity was required. The conducted researches allowed to take the suitable alloy addition of the pad material which improved the quality of the surface alloy layer.

  10. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  11. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    International Nuclear Information System (INIS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-01-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS − ) and perchlorate (ClO 4 − ) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO 4 ) electrodes was 401 ± 18 mF cm −2 , which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes. (paper)

  12. Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values

    International Nuclear Information System (INIS)

    Tomozawa, Masanari; Hiromoto, Sachiko

    2011-01-01

    Hydroxyapatite (HAp) coatings with and without octacalcium phosphate (OCP) were uniformly formed on pure magnesium by a hydrothermal treatment using a Ca-EDTA solution. The crystal structure, crystallographic orientation and lattice images were investigated using transmission electron microscopy (TEM) and high-resolution TEM. It was demonstrated that the crystal phase and microstructure of the calcium phosphate-coatings can vary with the pH of the treatment solution. In a weak acid treatment solution, a dual-layer structure was formed: an outer coarse layer consisting of plate-like OCP crystals and an inner dense layer consisting primarily of HAp crystals. One piece of the OCP plate corresponded to a single OCP crystal growing parallel to the (1 0 0) OCP . In a weak alkali treatment solution, a dual-layer structure was also formed: an outer coarse layer consisting of rod-like HAp crystals and an inner dense layer consisting of HAp crystals. One piece of the HAp rod corresponded to a single HAp crystal growing along [0 0 2] HAp . In a strong alkali treatment solution, needle-like HAp crystals were formed. No defect was observed in the lattice image of the OCP and HAp. The corrosion current density of pure magnesium in a 3.5 wt.% NaCl solution decreased with the HAp coating more significantly than the OCP + HAp coating. It is revealed that the degree of protection afforded by calcium phosphate-coatings varies with their crystal phase and microstructure.

  13. Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation.

    Science.gov (United States)

    Jonas, Alain M; Glinel, Karine; Behrens, Adam; Anselmo, Aaron C; Langer, Robert S; Jaklenec, Ana

    2018-05-16

    Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.

  14. Dense and refined microstructure 3D measurement method based on an optical microscope and varying illuminations

    International Nuclear Information System (INIS)

    Li, Zhongwei; Li, Y F

    2011-01-01

    We propose a novel microscopic photometric stereo (MPS) method based on a conventional optical microscope and varying illuminations for dense and refined microstructure 3D measurement. To guarantee the flexibility of the MPS, an uncalibrated photometric stereo (UPS) method, which does not require a priori knowledge of the light-source direction or the light-source intensity, is employed to recover surface normals and albedos from the captured multiple micro-images. Although the UPS has been studied before, there are some particular issues to be addressed to make it suitable for microscopic cases. For resolving the inherent generalized bas-relief (GBR) ambiguity of the UPS, we present a GBR disambiguation method based on a framework of entropy minimization, and extend it using a graph-cut energy minimization to decrease the influence of noise and further refine the recovered surface normal. The proposed MPS method has been tested on synthetic as well as real images and very encouraging results have been obtained. The experimental results show that this novel method can reconstruct dense and refined 3D points for the microstructure. It is an easy-to-implement yet effective alternative method for microstructure 3D measurement and can be applied to many potential fields

  15. Development of advanced, non-toxic, synthetic radiation shielding aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Mudgal, Manish; Chouhan, Ramesh Kumar; Verma, Sarika; Amritphale, Sudhir Sitaram; Das, Satyabrata [CSIR-Advanced Materials and Processes Research Institute, Bhopal (India); Shrivastva, Arvind [Nuclear Power Corporation of India Ltd. (NPCIL), Mumbai (India)

    2018-04-01

    For the first time in the world, the capability of red mud waste has been explored for the development of advanced synthetic radiation shielding aggregate. Red mud, an aluminium industry waste consists of multi component, multi elemental characteristics. In this study, red mud from two different sources have been utilized. Chemical formulation and mineralogical designing of the red mud has been done by ceramic processing using appropriate reducing agent and additives. The chemical analysis, SEM microphotographs and XRD analysis confirms the presence of multi-component, multi shielding and multi-layered phases in both the different developed advance synthetic radiation shielding aggregate. The mechanical properties, namely aggregate impact value, aggregate crushing value and aggregate abrasion value have also been evaluated and was compared with hematite ore aggregate and found to be an excellent material useful for making advanced radiation shielding concrete for the construction of nuclear power plants and other radiation installations.

  16. A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate, Mammalia)--Implications for Multituberculate Biology and Phylogeny.

    Science.gov (United States)

    Mao, Fangyuan; Wang, Yuanqing; Meng, Jin

    2015-01-01

    Tooth enamel microstructure is a reliable and widely used indicator of dietary interpretations and data for phylogenetic reconstruction, if all levels of variability are investigated. It is usually difficult to have a thorough examination at all levels of enamel structures for any mammals, especially for the early mammals, which are commonly represented by sparse specimens. Because of the random preservation of specimens, enamel microstructures from different teeth in various species are often compared. There are few examples that convincingly show intraspecific variation of tooth enamel microstructure in full dentition of a species, including multituberculates. Here we present a systematic survey of tooth enamel microstructures of Lambdopsalis bulla, a taeniolabidoid multituberculate from the Late Paleocene Nomogen Formation, Inner Mongolia. We examined enamel structures at all hierarchical levels. The samples are treated differently in section orientations and acid preparation and examined using different imaging methods. The results show that, except for preparation artifacts, the crystallites, enamel types, Schmelzmuster and dentition types of Lambdopsalis are relatively consistent in all permanent teeth, but the prism type, including the prism shape, size and density, may vary in different portions of a single tooth or among different teeth of an individual animal. The most common Schmelzmuster of the permanent teeth in Lambdopsalis is a combination of radial enamel in the inner and middle layers, aprismatic enamel in the outer layer, and irregular decussations in tooth crown area with great curvature. The prism seam is another comparably stable characteristic that may be a useful feature for multituberculate taxonomy. The systematic documentation of enamel structures in Lambdopsalis may be generalized for the enamel microstructure study, and thus for taxonomy and phylogenetic reconstruction, of multituberculates and even informative for the enamel study of

  17. A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate, Mammalia) - Implications for Multituberculate Biology and Phylogeny

    Science.gov (United States)

    Mao, Fangyuan; Wang, Yuanqing; Meng, Jin

    2015-01-01

    Tooth enamel microstructure is a reliable and widely used indicator of dietary interpretations and data for phylogenetic reconstruction, if all levels of variability are investigated. It is usually difficult to have a thorough examination at all levels of enamel structures for any mammals, especially for the early mammals, which are commonly represented by sparse specimens. Because of the random preservation of specimens, enamel microstructures from different teeth in various species are often compared. There are few examples that convincingly show intraspecific variation of tooth enamel microstructure in full dentition of a species, including multituberculates. Here we present a systematic survey of tooth enamel microstructures of Lambdopsalis bulla, a taeniolabidoid multituberculate from the Late Paleocene Nomogen Formation, Inner Mongolia. We examined enamel structures at all hierarchical levels. The samples are treated differently in section orientations and acid preparation and examined using different imaging methods. The results show that, except for preparation artifacts, the crystallites, enamel types, Schmelzmuster and dentition types of Lambdopsalis are relatively consistent in all permanent teeth, but the prism type, including the prism shape, size and density, may vary in different portions of a single tooth or among different teeth of an individual animal. The most common Schmelzmuster of the permanent teeth in Lambdopsalis is a combination of radial enamel in the inner and middle layers, aprismatic enamel in the outer layer, and irregular decussations in tooth crown area with great curvature. The prism seam is another comparably stable characteristic that may be a useful feature for multituberculate taxonomy. The systematic documentation of enamel structures in Lambdopsalis may be generalized for the enamel microstructure study, and thus for taxonomy and phylogenetic reconstruction, of multituberculates and even informative for the enamel study of

  18. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  19. Microstructure and Properties of Composite Coatings Obtained on Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Bara M.

    2016-09-01

    Full Text Available This paper presents methods of modifying the anode surface layers of Al2O3 by introducing carbon to their microstructure. Composite coatings were prepared using two different methods. In the first, coatings were formed by means of oxidation under constant current conditions. Anodic oxidation of aluminium was conducted in a multicomponent electrolyte with the addition of organic acids and graphite. The second method was based on the formation of oxide coatings in an electrolyte without the addition of graphite or heat treatment of the layers of succinic acid. The obtained coatings were tested using SEM, TEM, and GDOES (glow discharge optical emission spectrometry and their tribological and stereometric properties were measured. The study demonstrated the beneficial effects of the methods when used to improve the tribological properties of sliding couples.

  20. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhaoyun, E-mail: zhaoyunchenlaoshi@126.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China); Zhou Guijuan, E-mail: zgjghpx@126.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China); Chen Zhonghua, E-mail: jickdahua@163.com [College of Materials Science and Chemical Engineering, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Nantong ST 145, Harbin 150001 (China)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Surface hardening of 17-4PH is highly achieved by laser transformation hardening. Black-Right-Pointing-Pointer A hardened layer with a thickness of 1.75 mm is formed. Black-Right-Pointing-Pointer The phase similar to {epsilon}-Cu precipitates re-segregation after dissolved. Black-Right-Pointing-Pointer The strengthening phase is composed of classic lath martensite, coarse NbC and a lot of finer fcc copper-rich phases. - Abstract: Surface hardening of 17-4PH was achieved by laser transformation hardening using 5 kW continuous wave CO{sub 2} laser system. The microstructure of the laser-quenched sample was investigated by optical microscopy, transmission electron microscope and {sup 57}Fe Moessbauer spectrometer. The hardness profile was determined by a Vickers hardness tester. The hardened layer with a thickness of 1.75 mm was formed, and it was composed of classic lath martensite, coarse NbC and a lot of finer fcc copper-rich phases which were similar to {epsilon}-Cu precipitates. The maximal hardness value of hardened zone is 446 HV which is 50 HV higher than that of the substrate (386-397 HV). The higher hardness in laser transformation layer of the 17-4PH steel could be attributed to the following aspects: the matrix with a high dislocation density; the fine microstructure; the finer fcc copper-rich phases that were similar to the {epsilon}-Cu precipitates as well as the transforming of retained austenite into lath martensite.

  1. Effects of Wire EDM on the Microstructure of P/M Titanium Samples.

    Science.gov (United States)

    Viskić, Joško; Schauperl, Zdravko; Ćatić, Amir; Balog, Martin; Krizik, Peter; Gržeta, Biserka; Popović, Jasminka; Ortolan, Slađana Milardović; Mehulić, Ketij

    2014-12-01

    Commercially pure titanium (CP Ti) has been recognized in dentistry for its biocompatibility, good mechanical properties and corrosion resistance. Conventional manufacturing processes can affect surface quality and result in poor bonding of dental ceramics to CP Ti. This is why powder metallurgy (P/M) and wire electro-discharge machining (WEDM) are being introduced in the manufacturing process. The aim of this study was to evaluate the effect of WEDM on the surface composition and microstructure of P/M CP Ti samples produced for bond strength testing according to ISO 9693. Eight samples of P/M CP Ti, dimensions according to ISO 9693, were made using WEDM and divided in two groups (untreated and grinded). Microanalyses of chemical composition and microstructure of both groups were made using SEM, EDS and XDR. SEM and EDS analysis of untreated samples showed a thin layer on surfaces with fractures in it. Grinded samples showed homogenous structure with no layer and no fractures. XDR analysis showed high level of oxides on the surface of untreated samples, while after grinding only pure α-phase was found. WEDM is a suitable method of sample production for ISO 9693 if accompanied by grinding with silicon carbide papers P320-P4000.

  2. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  3. Effect of La doping on crystalline orientation, microstructure and dielectric properties of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wencai; Li, Qi; Wang, Xing [Dalian Univ. of Technology, Dalian (China). School of Mechanical Engineering; Yin, Zhifu [Jilin Univ., Changchun (China). Faculty of the School of Mechanical Science and Engineering; Zou, Helin [Dalian Univ. of Technology, Dalian (China). Key Lab. for Micro/Nano Systems and Technology

    2017-11-01

    Lanthanum (La)-modified lead zirconate titanate (PLZT) thin films with doping concentration from 0 to 5 at.-% have been fabricated by sol-gel methods to investigate the effects of La doping on crystalline orientation, microstructure and dielectric properties of the modified films. The characterization of PLZT thin films were performed by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and precision impedance analysis. XRD analysis showed that PLZT films with La doping concentration below 4 at.-% exhibited (100) preferred orientation. SEM results indicated that PLZT films presented dense and columnar microstructures when La doping concentration was less than 3 at.-%, while the others showed columnar microstructures only at the bottom of the cross section. The maximum dielectric constant (1502.59 at 100 Hz) was obtained in a 2 at.-% La-doped film, which increased by 53.9 % compared with undoped film. Without introducing a seed layer, (100) oriented PLZT thin films were prepared by using conventional heat treatment process and adjusting La doping concentration.

  4. Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianbin [College of Automotive Collaborative Innovation Center, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China); Yuan, Xinjian, E-mail: xinjianyuan@yahoo.com [College of Materials Science and Engineering, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China); Hu, Zhan; Sun, Changzheng; Zhang, Yanxin; Zhang, Yuxuan [College of Materials Science and Engineering, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China)

    2016-10-15

    The microstructure and mechanical properties of resistance-spot-welded A5052 aluminum alloy and DP 600 dual-phase steel joint were studied. The fusion zone (FZ) and heat-affected zone (HAZ) of DP 600 exhibited lath martensite and ferrite-martensite structures, respectively. The microstructure of FZ and HAZ in the A5052 side was composed of cellular crystals and the boundary region of FZ exhibited a columnar crystal morphology. A Fe{sub 2}Al{sub 5} intermetallic compound (IMC) layer with 3.3 μm thickness was found adjacent to the DP 600 side, whereas a needle-shaped Fe{sub 4}Al{sub 13} IMC layer with length of 0.67 μm to 15.8 μm was found adjacent to the aluminum alloy side. The maximum tensile shear load of the A5052/DP 600 joint was 5.5 KN, with a corresponding molten nugget diameter of 6.3 mm. The fracture morphology of the optimized A5052/DP 600 joint was mainly an elongated dimple fracture accompanied by cleavage fracture. - Highlights: •A5052 and DP 600 with large gaps in properties were investigated by RSW. •The microstructures of RSW joints in DP 600/A5052 were examined detailedly. •The micro/macro-characteristics and strength relations of joints were analyzed.

  5. Evaluation of interfacial microstructures in dissimilar joints of aluminum alloys to steel using nanoindentation technique

    International Nuclear Information System (INIS)

    Ogura, Tomo; Hirose, Akio; Saito, Yuichi; Ueda, Keisuke

    2009-01-01

    The characteristics of interfacial microstructures with additional elements in dissimilar 6000 system aluminum/steel joints were basically evaluated using tensile test, EPMA, TEM and nanoindentation. For Si (and Cu)-added alloy (S1 and SC), EPMA analysis showed that Si (and Cu) was enrichment in the reaction layers, which were formed during diffusion bonding. SAED pattern clarified that the reaction compounds at the interface changed from AlFe intermetalic compounds to AlFeSi intermetalic compounds by Si addition. Nanoindentation technique was successfully applied to the interfacial microstructures to understand directly the nanoscopic mechanical properties in the interfacial microstructures. The hardness and Young's modulus of Al 3 Fe intermetalic compounds was lower than those of Al 2 Fe 5 intermetalic compounds. Moreover, the hardness and Young's modulus of AlFeSi(Cu) compounds were lower than those of Al 3 Fe, indicating that the crystal system changed from orthorhombic structure to cubic structure. Joint strength of SC/steel joints was higher than that of the aluminum alloy with no additional element (Base)/ steel joint, indicating that interfacial microstructure was modified by the addition of Si and Cu to the 6000 system aluminum alloy. These results suggest that the nanoscopic mechanical properties at the interface microstructures affect greatly the macroscopic deformation behavior of the aluminum /steel dissimilar joints.

  6. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Oh, B.S.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Saito, S.; Yoshimura, S.; Tsunoda, M.; Takahashi, M.; Kim, Y.K.

    2006-01-01

    Ferromagnetic amorphous Ni 16 Fe 62 Si 8 B 14 layer have been studied as free layers for magnetic tunnel junctions (MTJs) to enhance cell switching performance. Traditional MTJ free layer materials such as NiFe and CoFe were also prepared for switching comparison purposes. Both NiFeSiB and NiFe resulted in an order of magnitude smaller switching fields compared to the CoFe. The switching field was further reduced for the synthetic antiferromagnetic NiFeSiB free layered structure

  7. In Situ XRD Investigations on Structural Change of P2-Layered Materials during Electrochemical Sodiation/Desodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Johnsen, Rune E.; Christiansen, Ane Sælland

    2014-01-01

    Sodium layered oxides (NaxMO2) are attractive as positive electrode materials for rechargeable sodium-ion batteries (SIBs) due to high capacity, fast ionic diffusion and simple synthetic process. O3-layered lithium compounds have led successful commercialization of current lithium-ion batteries; ...

  8. Toward the existence of ultrafast diffusion paths in Cu with a gradient microstructure: Room temperature diffusion of Ni

    Science.gov (United States)

    Wang, Z. B.; Lu, K.; Wilde, G.; Divinski, S.

    2008-09-01

    Room temperature diffusion of Ni63 in Cu with a gradient microstructure prepared by surface mechanical attrition treatment (SMAT) was investigated by applying the radiotracer technique. The results reveal significant penetration of Ni into the nanostructured layer. The relevant diffusivity is higher than that along the conventional high-angle grain boundaries by about six orders of magnitude. This behavior is associated with a higher energy state of internal interfaces produced via plastic deformation. The diffusivity in the top surface layer is somewhat smaller than that in the subsurface layer. This fact is related to nanotwin formation in the former during SMAT.

  9. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  10. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, Mélanie, E-mail: melanie.chollet@psi.ch [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Valance, Stéphane; Abolhassani, Sousan; Stein, Gene [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Grolimund, Daniel [Paul Scherrer Institute, SLS, 5232 Villigen (Switzerland); Martin, Matthias; Bertsch, Johannes [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland)

    2017-05-15

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO{sub 2} are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO{sub 2} uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  11. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-01-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO 2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO 2 uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  12. Stochastic Effects in Microstructure

    Directory of Open Access Journals (Sweden)

    Glicksman M.E.

    2002-01-01

    Full Text Available We are currently studying microstructural responses to diffusion-limited coarsening in two-phase materials. A mathematical solution to late-stage multiparticle diffusion in finite systems is formulated with account taken of particle-particle interactions and their microstructural correlations, or "locales". The transition from finite system behavior to that for an infinite microstructure is established analytically. Large-scale simulations of late-stage phase coarsening dynamics show increased fluctuations with increasing volume fraction, Vv, of the mean flux entering or leaving particles of a given size class. Fluctuations about the mean flux were found to depend on the scaled particle size, R/, where R is the radius of a particle and is the radius of the dispersoid averaged over the population within the microstructure. Specifically, small (shrinking particles tend to display weak fluctuations about their mean flux, whereas particles of average, or above average size, exhibit strong fluctuations. Remarkably, even in cases of microstructures with a relatively small volume fraction (Vv ~ 10-4, the particle size distribution is broader than that for the well-known Lifshitz-Slyozov limit predicted at zero volume fraction. The simulation results reported here provide some additional surprising insights into the effect of diffusion interactions and stochastic effects during evolution of a microstructure, as it approaches its thermodynamic end-state.

  13. Analysis of sulphurisation processes of electrodeposited S-rich CuIn (S,Se){sub 2} layers for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo-Roca, V.; Fontane, X. [EME/CERMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Calvo-Barrio, L. [EME/CERMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Lab. Analisis de Superficies, SCT, Univ. Barcelona, C. Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME/CERMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)], E-mail: perez-ro@el.ub.es; Morante, J.R. [EME/CERMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Travessera de Gracia 108, 08012 Barcelona (Spain); Duault, F.; Parissi, L.; Bermudez, V. [IRDEP, Institute of Research and Development of Photovoltaic Energy (UMR 71714, CNRS/EDF/ENSCP), 6 Quai Watier - BP 49, 78401 Chatou cedex (France)

    2009-02-02

    This work reports a microstructural analysis of S-rich CuIn (S,Se){sub 2} layers produced by electrodeposition of CuInSe{sub 2} precursors followed by annealing at 500 deg. C under sulphurising conditions, as function of the annealing time (t{sub ann}). The characterisation of the layers by Raman scattering (RS) and Scanning Electron Microscopy (SEM) techniques has allowed to observe a strong dependence of the layer microstructure and the secondary phases synthesised during the sulphurising step on the annealing parameters. The experimental data show the existence of two distinct regimes: For t{sub ann} < 20 min, increasing t{sub ann} leads to a significant improvement of the crystalline quality of the absorbers. For longer annealing times, the changes observed in the frequency of the main CuIn (S,Se){sub 2} A{sub 1} mode in the Raman spectra have been attributed to a higher incorporation of S in the chalcopyrite lattice. The characterisation of devices fabricated with these absorbers has allowed to analyse the impact of the microstructural features on the parameters of the solar cells, observing the existence of a strong correlation between the solar cell parameters and the spectral features of the main Raman mode.

  14. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jin [School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, Shandong 250353 (China); Liu, Zhanqiang, E-mail: melius@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Shandong (China); Lv, Shaoyu [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China)

    2014-02-15

    Ni-based superalloy represents a significant metal portion of the aircraft critical structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels and excellent service performance, surface integrity is one of the most relevant parameter used for evaluating the quality of finish machined surfaces. In the study of surface integrity, the formation white layer is a very important research topic. The formation of white layer on the Ni-based superalloy machined surface will reduce the machined parts service performance and fatigue life. This paper was conducted to determine the effects of cutting speed on white layer formation in high speed machining of FGH95 Ni-based superalloy. Optical microscope, scanning electron microscope and X-ray diffraction were employed to analyze the elements and microstructures of white layer and bulk materials. The statistical analysis for grain numbers was executed to study the influence of cutting speed on the grain refinement in the machined surface. The investigation results showed that white layer exhibits significantly different microstructures with the bulk materials. It shows densification, no obvious structural features characteristic. The microstructure and phase of Ni-based solid solution changed during cutting process. The increase of cutting speed causes the increase of white layer thickness when the cutting speed is less than 2000 m/min. However, white layer thickness reduces with the cutting speed further increase. The higher the cutting speed, the more serious grains refinement in machined surface. 2-D FEM for machining FGH95 were carried out to simulate the cutting process and obtained the cutting temperature field, cutting strain field and strain rate field. The impact mechanisms of cutting temperature, cutting strain and strain rates on white layer formation were analyzed. At last, deformation-phase transformation

  15. Boiling heat transfer on single phosphor bronze and copper mesh microstructures

    Directory of Open Access Journals (Sweden)

    Orman Łukasz J.

    2014-03-01

    Full Text Available The paper presents experimental results of boiling heat transfer of distilled water and ethyl alcohol on surfaces covered with single layers of wire mesh structures made of phosphor bronze and copper. For each material two kinds of structures have been considered (higher and lower in order to determine the impact of the height of the structure on boiling heat transfer. The wire diameter of the copper meshes was 0,25 mm and 0,32 mm, while of the bronze meshes: 0,20 mm and 0,25 mm. The structures had the same mesh aperture (distance between the wires – 0,50 mm for copper and 0,40 for bronze but different wire diameter and, consequently, different height of the layers. The tests have been performed under ambient pressure in the pool boiling mode. The obtained results indicate a visible impact of the layer height on the boiling heat transfer performance of the analysed microstructures.

  16. Luminescence of quantum-well exciton polaritons from microstructured AlxGa1-xAs-GaAs multiple quantum wells

    Science.gov (United States)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    1988-06-01

    Periodic multiple-quantum-well wires have been prepared by etching five-layer quantum-well structures through a holographically prepared mask. The periodicity was 380 nm, the lateral confinement 180 nm, and the quantum-well width 13, nm. The luminescence from these microstructured systems in the frequency regime of the one-electron-one-heavy-hole transition was strongly polarized with the electric field perpendicular to the periodic structure. This effect was caused by the resonantly enhanced emission of quantum-well-exciton (QWE) polaritons. Excitation of QWE polaritons was also observed in reflection measurements on the microstructured samples.

  17. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...... equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents...

  18. Effect of air humidity on microstructure and phase composition of lithium deuteride corrosion products

    International Nuclear Information System (INIS)

    Liu, Xiaobo; Liu, Jiping

    2017-01-01

    Highlights: • Lithium deuteride samples are corroded by air with different relative humidity. • Show the structure and composition of fracture surface of corrosion particle. • The lithium carbonate formation is related to air humidity. • The lithium carbonate only exists in the surface of lithium hydroxide layer. • There is a concentration gradient of H 2 O across the lithium hydroxide layer. - Abstract: Lithium deuteride (LiD) was exposed to air for 600 min to determine the effect of air humidity on its microstructure and phase composition. XRD and XPS results revealed that LiOH and Li 2 CO 3 formed at relative humidity values of >30%, whereas only LiOH formed at values <20%. SEM and EDS images showed a clear LiOH layer; Li 2 CO 3 was confined to the surface of this layer. The schematic illustration revealed that the concentration gradient of H 2 O across the LiOH layer resulted in little Li 2 CO 3 formed in the layer. This work will contribute to increase understanding of LiD corrosion in air.

  19. The role of pores and microstructural heterogeneity on the tooth root fatigue strength of sintered spur gears

    Directory of Open Access Journals (Sweden)

    Benedetti Matteo

    2018-01-01

    Full Text Available The automotive industry employs a considerable amount of sintered parts, mainly as transmission and engine components. Gears are the parts that mostly benefit, in terms of cost saving, from the near net shape P/M technology. However, the porosity along with the heterogeneous microstructure can detrimentally affect the mechanical behaviour, especially the fatigue strength. The possibility of increasing sintered density up to 90% and more, the use of high strength alloys, as well as post sintering treatments have been extensively investigated obtaining consistent increases in the fatigue strength. The present study focuses on the effects of porosity and microstructure on tooth root bending fatigue of small module spur gears. The aim is to investigate the synergistic contribution of pore morphology and microstructure heterogeneity to the initiation of fatigue cracks and to the following crack paths. High density parts produced by high strength pre-alloyed powders were studied. Part of the specimens was case-hardened to obtain a martensitic/bainitic microstructure in the surface layer. Bending fatigue tests up to a fatigue endurance of three million cycles were performed. A careful fractographic analysis was conducted. The obtained results were discussed using the fracture mechanics approach of Murakami, considering the pores as pre-existing defects, whose propagation strongly depends on the microstructural heterogeneity.

  20. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  1. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  2. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass; Influencia da temperatura de queima na microestrutura de espumas vitreas obtidas a partir de residuos de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P., E-mail: andrea_pokorny@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2012-07-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MnO{sub 2}, Na{sub 2}O, K{sub 2}O, TiO{sub 2} and P{sub 2}O{sub 5}). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  3. Contact problem for a composite material with nacre inspired microstructure

    Science.gov (United States)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  4. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  5. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    Science.gov (United States)

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  7. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  8. Microstructural and electron-structural anomalies and high temperature superconductivity

    International Nuclear Information System (INIS)

    Gao, L.; Huang, Z.J.; Bechtold, J.; Hor, P.H.; Chu, C.W.; Xue, Y.Y.; Sun, Y.Y.; Meng, R.L.; Tao, Y.K.

    1989-01-01

    Microstructural and electron-structural anomalies have been found to exist in all HYSs by x-ray diffraction and positron annihilation experiments. These anomalies are induced either by doping near the metal-insulator phase boundary at 300 K, or by cooling the HTSs below T c . This has been taken as evidence for a charge transfer between the CuO 2 -layers and their surroundings, which suggests the importance of charge transfers and implies the importance of charge fluctuations in HTS. Several new compounds with the T'- and T*-phases have been found. Further implications of these observations are discussed

  9. Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting

    Science.gov (United States)

    Scherillo, F.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Squillace, A.; Langella, A.; Carrino, L.

    2016-10-01

    Additive Layer Manufacturing is one of the most promising and investigated manufacturing system due to its advantages to produces near net shape components, also with a very complex shape, in a single shot. Among the different techniques now available, the Electron Beam Melting (EBM) is of particular interest in the production of metal components. Particularly the application of this technique to titanium alloys allows to produces components with a very low buy to fly ratio. In the present paper the microstructure attained is accurately described and mini tensile tests performed allowed to understand the fracture behavior of specimen with the specific microstructure realized under static load.

  10. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    DEFF Research Database (Denmark)

    Yang, R.; Wu, G. L.; Zhang, X.

    2017-01-01

    measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient...... in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure....

  11. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  12. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  13. Imaging brain tumour microstructure.

    Science.gov (United States)

    Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C

    2018-05-08

    Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.

  14. Microstructure of (Ga,Mn)As/GaAs digital ferromagnetic heterostructures

    International Nuclear Information System (INIS)

    Kong, X.; Trampert, A.; Guo, X.X.; Kolovos-Vellianitis, D.; Daeweritz, L.; Ploog, K.H.

    2005-01-01

    We report on the microstructure of (Ga,Mn)As digital ferromagnetic heterostructures grown on GaAs (001) substrates by low-temperature molecular-beam epitaxy. The Mn concentration and the As 4 /Ga beam equivalent pressure (BEP) ratio are varied in the samples containing periods of Mn sheets separated by thin GaAs spacer layers. Transmission electron microscopy studies reveal that decreasing the Mn doping concentration and reducing the BEP ratio lead to smaller composition fluctuations of Mn and more homogeneous (Ga,Mn)As layers with abrupt interfaces. Planar defects are found as the dominant defect in these heterostructures and their density is related to the magnitude of the composition fluctuation. These defects show a noticeable anisotropy in the morphologic distribution parallel to the orthogonal [110] and [110] direction. Along the [110] direction, they are stacking faults, which are preferentially formed in V-shaped pairs and nucleate at the interfaces between (Ga,Mn)As and GaAs layers. Along the [110] direction, the planar defects are isolated thin twin lamellae. The character of the planar defects and their configuration are analyzed in detail

  15. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    Science.gov (United States)

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  16. Simultaneous identification of synthetic and natural dyes in different food samples by UPLC-MS

    Science.gov (United States)

    Mandal, Badal Kumar; Mathiyalagan, Siva; Dalavai, Ramesh; Ling, Yong-Chien

    2017-11-01

    Fast foods and variety food items are populating among the food lovers. To improve the appearance of the food product in surviving gigantic competitive environment synthetic or natural food dyes are added to food items and beverages. Although regulatory bodies permit addition of natural colorants due to its safe and nontoxic nature in food, synthetic dyes are stringently controlled in all food products due to their toxicity by regulatory bodies. Artificial colors are need certification from the regulatory bodies for human consumption. To analyze food dyes in different food samples many analytical techniques are available like high pressure liquid chromatography (HPLC), thin layer chromatography (TLC), spectroscopic and gas chromatographic methods. However all these reported methods analyzed only synthetic dyes or natural dyes. Not a single method has analyzed both synthetic and natural dyes in a single run. In this study a robust ultra-performance liquid chromatographic method for simultaneous identification of 6 synthetic dyes (Tartrazine, Indigo carmine, Briliant blue, Fast green, malachite green, sunset yellow) and one natural dye (Na-Cu-Chlorophyllin) was developed using acquitic UPLC system equipped with Mass detector and acquity UPLC HSS T3 column (1.8 μm, 2.1 × 50 mm, 100Å). All the dyes were separated and their masses were determined through fragments’ masses analyses.

  17. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  18. Surface and Microstructural Failures of PET-Coated ECCS Plates by Salmon-Polymer Interaction

    Directory of Open Access Journals (Sweden)

    Ernesto Zumelzu

    2016-03-01

    Full Text Available The new types of knowledge-intensive, multilayer containers consist of steel plates protected against corrosion by nanometric electrolytic chromium (Cr0 and chromium oxide (Cr2O3 layers chemically bonded to polyethylene terephthalate (PET polymer coating to preserve food. It was observed that after emptying the cans, the salmon adhered to the polymer coating, changing its color, and that this adhesion increased with longer storage times. This work was aimed at determining the product-container interactions and their characterization by X-ray diffraction (XRD, confocal Raman and micro-Raman imaging and scanning electron microscopy (SEM analysis. The zones of adhesion showed surface changes, variations in crystallinity and microstructural degradation of the PET coating. In addition, localized damages altering the functional properties of the multilayer system were observed as microcracking in the chromium layers that protect the steel. The degradation undergone was evaluated and characterized at a surface and microstructural level to establish the failure mechanisms, which were mainly associated with the activity of the adhered muscle and its biochemical components. Finally, a recommendation is done to preserve the useful life and functionality of cans for the preservation and efficient use of resources with an impact on recycling and environmental conservancy.

  19. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-01-01

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  20. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Di Jin

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.