WorldWideScience

Sample records for layer inline separator

  1. In-Line Oil-Water Separation in Swirling Flow (USB stick)

    NARCIS (Netherlands)

    Slot, J.J.; van Campen, L.J.A.M.; Hoeijmakers, Hendrik Willem Marie; Mudde, R.F.; Johansen, S.T.

    2011-01-01

    An in-line oil-water separator has been designed and is investigated for single- and two-phase flow. Numerical single-phase flow results show an annular reversed flow region. This flow pattern agrees qualitatively with results from measurements. In the two-phase flow simulations two different drag

  2. Development of a centrifugal in-line separator for oil-water flows

    NARCIS (Netherlands)

    Slot, J.J.

    2013-01-01

    The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line

  3. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    Science.gov (United States)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  4. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak; Jansen, Johannes C.; Tasselli, Franco; Barbieri, Giuseppe; Drioli, Enrico

    2010-01-01

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical

  5. [In-line leukocyte depletion ov thrombocytapheresis concentrates with the Fresenius-AS-104 cell separator].

    Science.gov (United States)

    Zeiler, T; Kretschmer, V

    1997-01-01

    This study reports on in-line filtration of 72 platelet concentrates (PC) collected by the Fresenius AS 104 cell separator, using the new C4F sets with integrated leukocyte filters (Biofil P plus). 72 volunteer donors, automatic counts of platelets, microscopical counting of residual leukocytes with the Nageotte chamber, GMP-140 by flow cytometrie, beta-thromboglobulin release, platelet aggregation (ADP, collagen). Filtration reduced leukocytes by 98.5%. Residual leukocyte contamination remained clearly below 5 x 10(6) (mean 0.5 +/- 0.6 x 10(6), maximum 2.8 x 10(6). Platelet loss by filtration was found to be between 27.4 and 0.7% (median 8.5%). Filtration caused a significant decrease of platelet aggregability (p < 0.005), but no significant increase of beta-thromboglobulin release and only a slight decrease of GMP-140 expression. From these data can be concluded that in-line filtration was highly efficient with acceptable platelet retention. No significant platelet activation could be observed in the PC. The decrease of platelet aggregability have been due to the reduction of activated platelets which are believed to show reduced in vivo survival.

  6. In-line near real time monitoring of fluid streams in separation processes for used nuclear fuel - 5146

    International Nuclear Information System (INIS)

    Nee, K.; Nilsson, M.

    2015-01-01

    Applying spectroscopic tools for chemical processes has been intensively studied in various industries owing to its rapid and non-destructive analysis for detecting chemical components and determine physical characteristic in a process stream. The general complexity of separation processes for used nuclear fuel, e.g., chemical speciation, temperature variations, and prominent process security and safety concerns, require a well-secured and robust monitoring system to provide precise information of the process streams at real time without interference. Multivariate analysis accompanied with spectral measurements is a powerful statistic technique that can be used to monitor this complex chemical system. In this work, chemometric models that respond to the chemical components in the fluid samples were calibrated and validated to establish an in-line near real time monitoring system. The models show good prediction accuracy using partial least square regression analysis on the spectral data obtained from UV/Vis/NIR spectroscopies. The models were tested on a solvent extraction process using a single stage centrifugal contactor in our laboratory to determine the performance of an in-line near real time monitoring system. (authors)

  7. Shifted knife-edge aperture digital in-line holography for fluid velocimetry.

    Science.gov (United States)

    Palero, Virginia; Lobera, Julia; Andrés, Nieves; Arroyo, M Pilar

    2014-06-01

    We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

  8. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    Science.gov (United States)

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    Science.gov (United States)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  10. Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Jørgensen, Mikkel

    2013-01-01

    layer. The third and fourth layers were slot-die coated at the same time again using inline processing at a web speed of 10 mmin1 of firstly zinc oxide as the electron transport layer followed by P3HT:PCBM as the active layer. The first three layers (silver-grid/PEDOT:PSS/ZnO) comprise a generally......Fast inline roll-to-roll printing and coating on polyethylene terephthalate (PET) and barrier foil was demonstrated under ambient conditions at web speeds of 10 mmin1 for the manufacture of indium-tin-oxide-free (ITO-free) polymer solar cells comprising a 6-layer stack: silver-grid/PEDOT:PSS/ Zn...

  11. A high-sensitive and quantitative in-line monitoring method for transplutonium elements separation processes

    International Nuclear Information System (INIS)

    Zhu Rongbao; Wang Shiju; Xu Yingpu; Zhang Zengrui

    1986-04-01

    A high-sensitive monitoring device and a quantitative analys technigue for transplutonium elements separation processes are described. X-ray and low energy γ-ray are measured by means of a scintillation monitor with two NaI(Tl) thin crystals. The α spectra of the fluents of ion-exchange column is measured by means of Si(Au) surface barrier in-line monitor. The construction of the monitors, auxiliary electronics, investigation result for the α spectra character of thick source and the calibration method were described. The determination results for extracting process of 243 Am and 244 Cm by ion-exchange chromatography were given. The sensitivity of total adding amount for 243 Am using the 4π scintillation monitor is better than 0.1 μCi. The precision of 243 Am and 244 Cm concentration determination using Si(Au) monitor is +- 5%. The precision of the two metals contents in containers is about +- 10%

  12. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Science.gov (United States)

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  14. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in-line

  15. Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood

    DEFF Research Database (Denmark)

    Zhou, Chen; Keshavarz Hedayati, Mehdi; Zhu, Xiaolong

    2018-01-01

    Hemolysis is the rupture of red blood cells and constitutes the most common reason for unsuitable blood samples in the clinic. To detect hemolysis, one has to separate the hemoglobin in blood plasma from that in red blood cells. However, current methods entail centrifugation for cell......-time inline detection on whole blood without extra sample preparation like centrifugation. Long-term testing with inline integration in a modified, commercial blood gas analyzer shows high reliability and repeatability of the measurements even with the presence of interference from bilirubin. We envision...... that the present work has large potential in improving diagnosis quality by enabling PoC hemolysis detection in blood gas analyzers and can also lend unique sensing capabilities to other applications dealing with complex turbid media....

  16. Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood

    DEFF Research Database (Denmark)

    Zhou, Chen; Keshavarz Hedayati, Mehdi; Zhu, Xiaolong

    2018-01-01

    -plasma separation, which is complex, time-consuming, and not easy to integrate into point-of-care (PoC) systems. Here, we demonstrate an optofluidic sensor composed of nanofilters on an optical waveguide, which enables evanescent-wave absorption measurement of hemoglobin in plasma with the capability of real......-time inline detection on whole blood without extra sample preparation like centrifugation. Long-term testing with inline integration in a modified, commercial blood gas analyzer shows high reliability and repeatability of the measurements even with the presence of interference from bilirubin. We envision...... that the present work has large potential in improving diagnosis quality by enabling PoC hemolysis detection in blood gas analyzers and can also lend unique sensing capabilities to other applications dealing with complex turbid media....

  17. Age group athletes in inline skating: decrease in overall and increase in master athlete participation in the longest inline skating race in Europe - the Inline One-Eleven.

    Science.gov (United States)

    Teutsch, Uwe; Knechtle, Beat; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    Participation and performance trends in age group athletes have been investigated in endurance and ultraendurance races in swimming, cycling, running, and triathlon, but not in long-distance inline skating. The aim of this study was to investigate trends in participation, age, and performance in the longest inline race in Europe, the Inline One-Eleven over 111 km, held between 1998 and 2009. The total number, age distribution, age at the time of the competition, and race times of male and female finishers at the Inline One-Eleven were analyzed. Overall participation increased until 2003 but decreased thereafter. During the 12-year period, the relative participation in skaters younger than 40 years old decreased while relative participation increased for skaters older than 40 years. The mean top ten skating time was 199 ± 9 minutes (range: 189-220 minutes) for men and 234 ± 17 minutes (range: 211-271 minutes) for women, respectively. The gender difference in performance remained stable at 17% ± 5% across years. To summarize, although the participation of master long-distance inline skaters increased, the overall participation decreased across years in the Inline One-Eleven. The race times of the best female and male skaters stabilized across years with a gender difference in performance of 17% ± 5%. Further studies should focus on the participation in the international World Inline Cup races.

  18. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Science.gov (United States)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  19. Age group athletes in inline skating: decrease in overall and increase in master athlete participation in the longest inline skating race in Europe – the Inline One-Eleven

    Science.gov (United States)

    Teutsch, Uwe; Knechtle, Beat; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    Background Participation and performance trends in age group athletes have been investigated in endurance and ultraendurance races in swimming, cycling, running, and triathlon, but not in long-distance inline skating. The aim of this study was to investigate trends in participation, age, and performance in the longest inline race in Europe, the Inline One-Eleven over 111 km, held between 1998 and 2009. Methods The total number, age distribution, age at the time of the competition, and race times of male and female finishers at the Inline One-Eleven were analyzed. Results Overall participation increased until 2003 but decreased thereafter. During the 12-year period, the relative participation in skaters younger than 40 years old decreased while relative participation increased for skaters older than 40 years. The mean top ten skating time was 199 ± 9 minutes (range: 189–220 minutes) for men and 234 ± 17 minutes (range: 211–271 minutes) for women, respectively. The gender difference in performance remained stable at 17% ± 5% across years. Conclusion To summarize, although the participation of master long-distance inline skaters increased, the overall participation decreased across years in the Inline One-Eleven. The race times of the best female and male skaters stabilized across years with a gender difference in performance of 17% ± 5%. Further studies should focus on the participation in the international World Inline Cup races. PMID:23690697

  20. [Injury patterns and prophylaxis in inline skating].

    Science.gov (United States)

    Jerosch, J; Heck, C

    2005-05-01

    Inline skating has become one of the fastest growing sports since its appearance in 1980. The increasing number of inline skaters has also led to a rising incidence of injuries. The most common injury is the distal fracture of the radius, which occurs in 50% of all fractures. There are several reasons for increasing serious injuries in inline skating. The majority of skaters do not wear proper protective equipment (helmet, elbow, knee and wrist protectors), however, many users can not handle their inline skates in dangerous situations. All skaters should take care by buying industrially tested inline skates and appropriate protective equipment; novice skaters should additionally attend special skating schools to learn skating, braking and the the correct falling techniques.

  1. Airfoil boundary layer separation and control at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yarusevych, S.; Sullivan, P.E. [University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada); Kawall, J.G. [Ryerson University, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada)

    2005-04-01

    The boundary layer separation on a NACA 0025 airfoil was studied experimentally via hot-wire anemometry and surface pressure measurements. The results provide added insight into periodic boundary layer control, suggesting that matching the excitation frequency with the most amplified disturbance in the separated shear layer is optimal for improving airfoil performance. (orig.)

  2. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  3. Reliability and Validity of the Inline Skating Skill Test

    Science.gov (United States)

    Radman, Ivan; Ruzic, Lana; Padovan, Viktoria; Cigrovski, Vjekoslav; Podnar, Hrvoje

    2016-01-01

    This study aimed to examine the reliability and validity of the inline skating skill test. Based on previous skating experience forty-two skaters (26 female and 16 male) were randomized into two groups (competitive level vs. recreational level). They performed the test four times, with a recovery time of 45 minutes between sessions. Prior to testing, the participants rated their skating skill using a scale from 1 to 10. The protocol included performance time measurement through a course, combining different skating techniques. Trivial changes in performance time between the repeated sessions were determined in both competitive females/males and recreational females/males (-1.7% [95% CI: -5.8–2.6%] – 2.2% [95% CI: 0.0–4.5%]). In all four subgroups, the skill test had a low mean within-individual variation (1.6% [95% CI: 1.2–2.4%] – 2.7% [95% CI: 2.1–4.0%]) and high mean inter-session correlation (ICC = 0.97 [95% CI: 0.92–0.99] – 0.99 [95% CI: 0.98–1.00]). The comparison of detected typical errors and smallest worthwhile changes (calculated as standard deviations × 0.2) revealed that the skill test was able to track changes in skaters’ performances. Competitive-level skaters needed shorter time (24.4–26.4%, all p skating skills in amateur competitive and recreational level skaters. Further studies are needed to evaluate the reproducibility of this skill test in different populations including elite inline skaters. Key points Study evaluated the reliability and construct validity of a newly developed inline skating skill test. Evaluated test is a first protocol designed to assess specific inline skating skill. Two groups of amateur skaters with different skating proficiency repeated the skill test in four separate occasions. The results suggest that evaluated test is reliable and valid to evaluate inline skating skill in amateur skaters. PMID:27803616

  4. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach.

    Science.gov (United States)

    Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun

    2017-12-01

    In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    NARCIS (Netherlands)

    Bongers, W.A.; Kasparek, W.; Doelman, N. J.; Braber, R. van den; Brand, H. van den; Meo, F.; Baar, M.R. de; Amerongen, F.J.; Donné, A.J.H.; Elzendoorn, B.S.Q.; Erckmann, V.; Goede, A.P.H.; Giannone, L.; Grünwald, G.; Hollman, F.; Kaas, G.; Krijger, B.; Michel, G.; Lubyako, L.; Monaco, F.; Noke, F.; Petelin, M.; Plaum, B.; Purps, F.; Pierik, J.G.W. ten; Schüller, C.; Slob, J.W.; Stober, J.K.; Schütz, H.; Wagner, D.; Westerhof, E.; Ronden, D.M.S.

    2012-01-01

    A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with

  6. Age group athletes in inline skating: decrease in overall and increase in master athlete participation in the longest inline skating race in Europe – the Inline One-Eleven

    Directory of Open Access Journals (Sweden)

    Teutsch U

    2013-05-01

    Full Text Available Uwe Teutsch,1 Beat Knechtle,1,2 Christoph Alexander Rüst,1 Thomas Rosemann,1 Romuald Lepers31Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland; 2Gesundheitszentrum St Gallen, St Gallen, Switzerland; 3INSERM U1093, Faculty of Sport Sciences, University of Burgundy, Dijon, FranceBackground: Participation and performance trends in age group athletes have been investigated in endurance and ultraendurance races in swimming, cycling, running, and triathlon, but not in long-distance inline skating. The aim of this study was to investigate trends in participation, age, and performance in the longest inline race in Europe, the Inline One-Eleven over 111 km, held between 1998 and 2009.Methods: The total number, age distribution, age at the time of the competition, and race times of male and female finishers at the Inline One-Eleven were analyzed.Results: Overall participation increased until 2003 but decreased thereafter. During the 12-year period, the relative participation in skaters younger than 40 years old decreased while relative participation increased for skaters older than 40 years. The mean top ten skating time was 199 ± 9 minutes (range: 189–220 minutes for men and 234 ± 17 minutes (range: 211–271 minutes for women, respectively. The gender difference in performance remained stable at 17% ± 5% across years.Conclusion: To summarize, although the participation of master long-distance inline skaters increased, the overall participation decreased across years in the Inline One-Eleven. The race times of the best female and male skaters stabilized across years with a gender difference in performance of 17% ± 5%. Further studies should focus on the participation in the international World Inline Cup races.Keywords: endurance, men, women, gender

  7. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    DEFF Research Database (Denmark)

    Bongers, W. A.; Kasparek, W.; Doelman, N.

    2012-01-01

    A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with di...

  8. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes

    DEFF Research Database (Denmark)

    Rantanen, Jukka; Wikström, Håkan; Turner, Rebecca

    2005-01-01

    was extracted. Principal component loadings were fully interpreted to validate the conclusions drawn from scores and predictions. Thus NIR spectroscopy could be used to determine the end points of the three subphases of high shear wet granulation and, as such, provide a fast in-line quality control tool....... solid dosage form. In this study, the use of in-line near-infrared (NIR) spectroscopy as a process analytical tool for high shear granulation was investigated. In combination with principal component-based methods, process analysis of three separate phases of high shear wet granulation (mixing, spraying...

  9. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  10. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Zillner, Elisabeth Franziska

    2013-01-01

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  11. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    Science.gov (United States)

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  12. Thin-layer approximation and algebraic model for separated turbulent flows

    Science.gov (United States)

    Baldwin, B.; Lomax, H.

    1978-01-01

    An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.

  13. Plasmons in spatially separated double-layer graphene nanoribbons

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-01-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons

  14. Passive Flap Actuation by Reversing Flow in Laminar Boundary Layer Separation

    Science.gov (United States)

    Parsons, Chase; Lang, Amy; Santos, Leo; Bonacci, Andrew

    2017-11-01

    Reducing the flow separation is of great interest in the field of fluid mechanics in order to reduce drag and improve the overall efficiency of aircraft. This project seeks to investigate passive flow control using shark inspired microflaps in laminar boundary layer separation. This study aims to show that whether a flow is laminar or turbulent, laminar and 2D or turbulent and 3D, microflaps actuated by reversing flow is a robust means of controlling flow separation. In order to generate a controlled adverse pressure gradient, a rotating cylinder induces separation at a chosen location on a flat plate boundary layer with Re above 10000. Within this thick boundary layer, digital particle image velocimetry is used to map the flow. This research can be used in the future to better understand the nature of the bristling shark scales and its ability to passively control separation. Results show that microflaps successfully actuated due to backflow and that this altered the formation of flow separation. I would like to thank the NSF for REU Grant EEC 1659710 and the Army Research Office for funding this project.

  15. Ultrasound transmission spectroscopy: in-line sizing of nanoparticles

    NARCIS (Netherlands)

    Neer, P.L.M.J. van; Volker, A.W.F.; Pierre, G.; Bouvet, F.; Crozat, S.

    2014-01-01

    Nanoparticles are increasingly used in a number of applications, e.g. coatings or paints. To optimize nanoparticle production in-line quantitative measurements of their size distribution and concentration are needed. Ultrasound-based methods are especially suited for in-line particle sizing. These

  16. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The characteristics of the separated shear layer are very well documented through ...

  17. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    Directory of Open Access Journals (Sweden)

    Donné A.J.H.

    2012-09-01

    Full Text Available A CW capable inline electron cyclotron emission (ECE separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG. The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.

  18. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    Science.gov (United States)

    Bongers, W. A.; Kasparek, W.; Doelman, N.; van den Braber, R.; van den Brand, H.; Meo, F.; de Baar, M. R.; Amerongen, F. J.; Donné, A. J. H.; Elzendoorn, B. S. Q.; Erckmann, V.; Goede, A. P. H.; Giannone, L.; Grünwald, G.; Hollman, F.; Kaas, G.; Krijger, B.; Michel, G.; Lubyako, L.; Monaco, F.; Noke, F.; Petelin, M.; Plaum, B.; Purps, F.; ten Pierik, J. G. W.; Schüller, C.; Slob, J. W.; Stober, J. K.; Schütz, H.; Wagner, D.; Westerhof, E.; Ronden, D. M. S.

    2012-09-01

    A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.

  19. Acute physiological responses to recreational in-line skating in young adults.

    Science.gov (United States)

    Orepic, Paula; Mikulic, Pavle; Soric, Maroje; Ruzic, Lana; Markovic, Goran

    2014-01-01

    We examined the physiological responses to in-line skating exercise at self-selected paces in recreationally trained adults. Seven men and 10 women performed in-line skating exercise during which oxygen uptake (VO2) and heart rate (HR) were recorded continuously. Ratings of perceived exertion (RPE) and blood lactate concentration were also obtained at the end of exercise. Furthermore, subjects' peak VO2, peak HR, RPE and gas-exchange thresholds were determined in laboratory settings. The average exercise intensity during in-line skating was 90% of peak HR, 67% of peak VO2, 84% of HR reserve and 64% of VO2 reserve. When expressed as RPE and as metabolic equivalents (METs), the average exercise intensity was 13.1 RPE and 9.4 METs. Overall, these indicators of exercise intensity categorise in-line skating at self-selected paces as a vigorous physical activity. Notably, at similar VO2 values, significantly higher HR (174 ± 16 vs. 156 ± 6 bpm; pskating compared with treadmill running. We conclude that 1. recreational in-line skating induces physiological responses that are sufficient for improving and maintaining cardiovascular fitness in healthy adults, 2. HR- and RPE-based methods for quantifying the exercise intensity during in-line skating may overestimate the actual metabolic load and 3. the derivation of exercise prescriptions for in-line skating should be preferably based on specific (i.e. in-line skating) graded exhaustive exercise test.

  20. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class II...

  1. Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia

    International Nuclear Information System (INIS)

    Speetjens, M. F. M.; Demissie, E. A.; Metcalfe, G.; Clercx, H. J. H.

    2014-01-01

    Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zones between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its

  2. Pilot experimental study on continual spectrum thermal neutron in-line phase contrast radiography

    International Nuclear Information System (INIS)

    Tang Bin; Huo Heyong; Wu Yang

    2009-01-01

    The in-line phase contrast radiography is one of phase contrast imaging methods. The neutron in-line phase contrast is developed with X-rays phase contrast radiography. In the paper, the principle of in-line phase contrast is introduced briefly and the experimental result of thermal neutron in-line contrast at SPRR-300 is analysed. It shows that thermal neutron can be used as in-line phase contrast radiography and enhances the edge of some sample in radiography and complements the disadvantage of conventional neutron radiography. (authors)

  3. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    Science.gov (United States)

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  4. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  5. Resolution in in-line digital holography

    International Nuclear Information System (INIS)

    Fournier, C; Denis, L; Fournel, T

    2010-01-01

    Digital in-line holography is a 3D imaging technique which has been widely developed during the last two decades. This technique achieves the 3D reconstruction of volume objects from a 2D image-hologram. It is a metrological tool and therefore the improvement of resolution is one of the current challenges. However the resolution depends on several experimental parameters and the experimenters have to choose the parameters which will lead to the best resolution. This paper presents the study of resolution in in-line digital holography from the asymptotical bounds of the covariance of estimators used in hologram reconstruction.

  6. Effects of boundary-layer separation controllers on a desktop fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  7. Predictor variables of performance in recreational male long-distance inline skaters.

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Senn, Oliver; Rosemann, Thomas; Lepers, Romuald

    2011-06-01

    We investigated the associations between selected anthropometric and training characteristics with race time in 84 recreational male long-distance inline skaters at the longest inline marathon in Europe, the 'Inline One-eleven' over 111 km in Switzerland, using bi- and multivariate analysis. The mean (s) race time was 264 (41) min. The bivariate analysis showed that age (r = 0.30), body mass (r = 0.42), body mass index (r = 0.35), circumference of upper arm (r = 0.32), circumference of thigh (r = 0.29), circumference of calf (r = 0.38), skin-fold of thigh (r = 0.22), skin-fold of calf (r = 0.27), the sum of skin-folds (r = 0.43), percent body fat (r = 0.45), duration per training unit in inline skating (r = 0.33), and speed during training (r = -0.46) were significantly and positively correlated to race time. Stepwise multiple regression showed that duration per training unit (P = 0.003), age (P = 0.029) and percent body fat (P = 0.016) were the best correlated with race time. Race time in a long-distance inline race such as the 'Inline One-eleven' over 111 km with a mean race time of ∼260 min might be predicted by the following equation (r(2) = 0.41): Race time (min) = 114.91 + 0:51* (duration per training unit, min) + 0:85* (age, years) +3:78* (body fat, %) for recreational long-distance inline skaters.

  8. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  9. Skateboarding: more dangerous than roller skating or in-line skating.

    Science.gov (United States)

    Osberg, J S; Schneps, S E; Di Scala, C; Li, G

    1998-10-01

    To describe the circumstances, severity, and outcomes of skating-related injuries among children admitted to trauma centers. A cross-sectional comparison of roller skaters (n = 154), in-line skaters (n = 190), and skateboarders (n = 254) aged 5 to 19 years who were hospitalized with injuries. Seventy-nine hospitals and pediatric trauma centers participating in the National Pediatric Trauma Registry between October 1988 and April 1997. Three quarters (75.8%) of the study sample were male, nearly half (47.8%) were injured on roads, and more than one third (37.1%) had head injuries. Among skateboarders, 50.8% had head injuries compared with 33.7% of in-line skaters and 18.8% of roller skaters (Pskateboarders were 8 times more likely to be severe or critical compared with roller skaters' injuries and more than 2 times as likely to be severe or critical compared with in-line skaters' injuries. Mean hospital length of stay was 6.0 days for skateboarders, 3.4 days for in-line skaters, and 2.4 days for roller skaters (PSkateboarders were more likely to be male and to be injured on roads than were in-line skaters or roller skaters. Skateboarding-related injuries are more severe and have more serious consequences than roller skating or in-line skating injuries. Research is needed to identify ergonomic and behavioral factors responsible for higher head injury risk to skateboarders, and interventions are needed to reduce the risk.

  10. Dental injuries in inline skating - level of information and prevention.

    Science.gov (United States)

    Fasciglione, Daniele; Persic, Robert; Pohl, Yango; Filippi, Andreas

    2007-06-01

    Inline skating belongs like ice hockey, rugby, and boxing to sporting activities with high-risk of suffering tooth accidents. Because of high velocity and loss of balance, especially on uneven ground, the injury potential in inline skating is higher. The objective of this work was to conduct a comparative study between Switzerland and Germany. The questions focussed on the frequency of tooth accidents, their prevention by mouthguard and the level of information about emergency measures after dental trauma and the resulting consequences for athletes. Using a standardized questionnaire totally 612 individuals, 324 men and 288 women, in two countries belonging to three different divisions (fun, fitness and speed) were surveyed. Fifty-six (9.2%) of these 612 interviewees have already experienced a tooth injury while inline skating. More than half of all interviewed players (68.3%) were aware of the possibility of replanting avulsed teeth. Only 32.4% were familiar with the tooth rescue kit. Just 65.4% knew mouthguard and only 1.9% of those athletes (n = 12) wore a mouthguard while inline skating. The results show that the area of inline skating requires more information about preventing dental trauma through sports associations and dentists.

  11. Separation prediction in two dimensional boundary layer flows using artificial neural networks

    International Nuclear Information System (INIS)

    Sabetghadam, F.; Ghomi, H.A.

    2003-01-01

    In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)

  12. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  13. Kill ratio calculation for in-line yield prediction

    Science.gov (United States)

    Lorenzo, Alfonso; Oter, David; Cruceta, Sergio; Valtuena, Juan F.; Gonzalez, Gerardo; Mata, Carlos

    1999-04-01

    The search for better yields in IC manufacturing calls for a smarter use of the vast amount of data that can be generated by a world class production line.In this scenario, in-line inspection processes produce thousands of wafer maps, number of defects, defect type and pictures every day. A step forward is to correlate these with the other big data- generator area: test. In this paper, we present how these data can be put together and correlated to obtain a very useful yield predicting tool. This correlation will first allow us to calculate the kill ratio, i.e. the probability for a defect of a certain size in a certain layer to kill the die. Then we will use that number to estimate the cosmetic yield that a wafer will have.

  14. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

    Science.gov (United States)

    Kim, Byungsuk; Woo, Young-Ah

    2018-05-30

    In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding

  15. Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells.

    Science.gov (United States)

    Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-20

    For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.

  16. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  17. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  18. Specialization of Generic Array Accesses After Inlining

    Directory of Open Access Journals (Sweden)

    Ryohei Tokuda

    2017-02-01

    Full Text Available We have implemented an optimization that specializes type-generic array accesses after inlining of polymorphic functions in the native-code OCaml compiler. Polymorphic array operations (read and write in OCaml require runtime type dispatch because of ad hoc memory representations of integer and float arrays. It cannot be removed even after being monomorphized by inlining because the intermediate language is mostly untyped. We therefore extended it with explicit type application like System F (while keeping implicit type abstraction by means of unique identifiers for type variables. Our optimization has achieved up to 21% speed-up of numerical programs.

  19. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  20. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    Science.gov (United States)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  1. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak

    2010-12-13

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical modification was conducted by controlled immersion of the coagulated fibre in an aqueous 1,5-diamino-2-methylpentane (DAMP) cross-linker solution before the take-up. The effect of the cross-linker concentration on the thermal, mechanical, chemical and gas transport properties of the membranes was investigated. FT-IR/ATR analysis was used to identify the chemical changes in the polymer, while DSC analysis confirmed the changes in the Tg and the specific heat of the polymer upon cross-linking. Chemical cross-linking with a 10 wt.% aqueous DAMP solution strongly enhanced the H2/CO2 ideal selectivity from 5.3 to 16.1, while the H2 permeance of the membranes decreased from 7.06 × 10−3 to 1.01 × 10−3 m3(STP) m−2 h−1 bar−1 for a feed pressure of 1 bar at 25 °C. The increase of selectivity with decreasing permeance is somewhat higher than the slope in the Robeson upper bound, evidencing the positive effect of the cross-linking on the separation performance of the fibres. Simultaneously, the cross-linking leads to improved mechanical resistance of the membranes, which could be further enhanced by an additional thermal treatment. The produced membranes are therefore more suitable for use under harsh conditions and have a better overall performance than the uncross-linked ones.

  2. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  3. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    Science.gov (United States)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  4. Comparison Of Several Metrology Techniques For In-line Process Monitoring Of Porous SiOCH

    International Nuclear Information System (INIS)

    Fossati, D.; Imbert, G.; Beitia, C.; Yu, L.; Plantier, L.; Volpi, F.; Royer, J.-C.

    2007-01-01

    As porous SiOCH is a widely used inter-metal dielectric for 65 nm nodes and below, the control of its elaboration process by in-line monitoring is necessary to guarantee successful integration of the material. In this paper, the sensitivities of several non-destructive metrology techniques towards the film elaboration process drifts are investigated. It appears that the two steps of the process should be monitored separately and that corona charge method is the most sensitive technique of the review for this application

  5. In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine

    Czech Academy of Sciences Publication Activity Database

    Pantůčková, Pavla; Kubáň, Pavel

    2017-01-01

    Roč. 1519, OCT (2017), s. 137-144 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : supported liquid membrane extraction * capillary electrophoresis * in-line sample treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  6. In-line digital holography with phase-shifting Greek-ladder sieves

    Science.gov (United States)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  7. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  8. Genetic analysis of processed in-line mastitis indicator data

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Løvendahl, Peter

    2013-01-01

    indicates high risk of mastitis. The EMR values were summarized for each cow using the log-transformed median EMR. A second trait was defined as the median of the log-transformed SCC values from 5 to 305 d in milk. A bivariate animal model was used for estimation of co-variance components for the 2 traits......The aim of this study was to estimate heritability of elevated mastitis risk (EMR), a trait derived from in-line measurements of cell counts expressing risk of mastitis on a continuous scale, and its genetic correlation with in-line somatic cell counts. Log-transformed somatic cell counts (SCC; n...... = 855,181) based on in-line measurements (OCC, DeLaval, Sweden) in automatic milking systems were collected from 2007 to2013 in 7 herds from a total of 1986 first and second parity cows (5 to 305 d in milk). Only data from the lactation with most measurements was used from each cow. A bio-model based...

  9. Ultrasound imaging for quantitative evaluation of magnetic density separation

    NARCIS (Netherlands)

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was

  10. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    Science.gov (United States)

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  11. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    Science.gov (United States)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  12. In-line coupling of microextractions across polymer inclusion membranes to capillary zone electrophoresis for rapid determination of formate in blood samples

    Czech Academy of Sciences Publication Activity Database

    Pantůčková, Pavla; Kubáň, Pavel; Boček, Petr

    2015-01-01

    Roč. 887, AUG (2015), s. 111-117 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA13-05762S Grant - others:GA AV ČR(CZ) R200311404 Institutional support: RVO:68081715 Keywords : capillary electrophoresis * in-line coupling * polymer inclusion membrane extraction Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.712, year: 2015

  13. Off-axis and inline electron holography: Experimental comparison

    International Nuclear Information System (INIS)

    Latychevskaia, Tatiana; Formanek, Petr; Koch, C.T.; Lubk, Axel

    2010-01-01

    Electron holography is a very powerful technique for mapping static electric and magnetic potentials down to atomic resolution. While electron holography is commonly considered synonymous with its off-axis variant in the high energy electron microscopy community, inline electron holography is widely applied in low-energy electron microscopy, where the realization of the off-axis setup is still an experimental challenge. This paper demonstrates that both inline and off-axis holography may be used to recover amplitude and phase shift of the very same object, in our example latex spheres of 90 and 200 nm in diameter, producing very similar results, provided the object does not charge under the electron beam.

  14. Industrial inline PVD metallization for silicon solar cells with laser fired contacts leading to 21.8% efficiency

    OpenAIRE

    Nekarda, J.; Reinwand, D.; Hartmann, P.; Preu, R.

    2010-01-01

    In this contribution we present the latest results of our experiments in regard to an industrially feasible inline physical vapor deposition (PVD) metallization method for the rear side of passivated solar cells. In an earlier publication, the quality of such processed layers and the feasibility of the tool was already shown and compared with a commonly used laboratory process based on electron beam evaporation. Since then a difference in the Voc potential in the range of ~ 4 mV between both ...

  15. In-line estimation of sulfur and nitrogen contents during hydrotreating of middle distillates

    Directory of Open Access Journals (Sweden)

    M. E. Pacheco

    2009-12-01

    Full Text Available The main objective of this work is analyzing whether it is possible to develop an empirical correlation for in-line estimation of the sulfur and nitrogen contents of the middle distillates Hydrotreating (HDT products for control purposes. Correlations are based only on readily available in-line information of specific gravity variation between feedstock and products, without considering any piece of information about the kinetic behavior of the catalyst. Experimental data were obtained in pilot plants under operating conditions that are representative of refinery operations. Results indicate that the removal of nitrogen and sulfur compounds during middle distillates HDT can be monitored in-line in real time, based on the available measurements of specific gravity. This allows for development and implementation of advanced in-line procedures for monitoring and control of the HDT process in real time.

  16. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    Science.gov (United States)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  17. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    Science.gov (United States)

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  18. The role of interfacial water layer in atmospherically relevant charge separation

    Science.gov (United States)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no

  19. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  20. Innovative technologies for emitter formation of crystalline silicon solar cells using in-line diffusion; Innovative Technologien zur Emittererzeugung fuer kristalline Silizium-Solarzellen mittels Durchlaufdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Voyer, Catherine

    2009-04-20

    An in-line emitter formation process for crystalline silicon solar cells was developed. The wafers were coated at room temperature with dilute phosphoric acid (2.5 w/w% in water) using ultrasonic spraying and then heated up to temperatures around 900 C in a metal-contamination-free in-line furnace. In the first zones of the furnace, a phosphosilicate glass (PSG) is formed on the silicon surface and serves as the doping source. The PSG thickness was adjusted by varying the flow rate of dilute phosphoric acid to the spray nozzle and took on values appropriate for emitter formation, in the range of {proportional_to}40-120 nm. A surfactant mixture was added to the dilute phosphoric acid in order to obtain complete wetting of the silicon surface. The mixture, which was composed of a hydrocarbon surfactant and of a fluorosurfactant, achieved better wetting properties than would be possible when using only one of the two surfactants. The spray solution containing only the hydrocarbon surfactant achieved a faster drop flattening, while the spray solution containing only the fluorosurfactant achieved a lower static surface tension. The mixture allowed for a combination of these desired properties: The drops coalesced together sufficiently rapidly (before drying) on the silicon surface to form a complete dopant source liquid layer and this layer remains sufficiently homogeneous during the layer drying. The sprayed-on layer is thicker ({proportional_to}15 microns) than the height of the surface texture ({proportional_to}5-10 microns). The liquid strives for a state of equilibrium, a convex meniscus. The topography of the liquid surface at the time at which the increase in viscosity puts an end to the liquid flow is reflected in the topography of the PSG thickness. The corresponding variations in sheet resistance across a wafer are sufficiently small for solar cells. Furthermore, the liquid layer conforms itself, during the drying, to the surface texture on a microscopic scale

  1. A Simple Thin Layer Chromatography Method for Separation of Selected Natural Steroid Hormones

    International Nuclear Information System (INIS)

    Nowakowska, J.; Rudnicka-Litka, K.; Ciura, K.; Pikul, P.; Piotrowicz, J.

    2015-01-01

    Chromatographic properties of seven steroids: estrogens (β-estradiol and estrone), androgens (testosterone, methyltestosterone, trans-androsterone), progesterone and cholesterol have been studied by planar chromatography with usage of High Performance Thin Layer Chromatography (HPTLC) and Thin Layer Chromatography (TLC) plates. Normal, reversed and cyano-bonded silica stationary phases were tested with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier varied from 0 to 100 % (v/v). This study reports the optimization of steroid hormones separation. Principal Component Analysis (PCA) based on calculated molecular descriptors quantitatively differentiating solutes was performed in order to investigate the similarity and dissimilarity between tested compounds. The separation abilities of mobile and stationary phases were compared based on separation factor α. Chromatographic retention data and possible retention mechanisms also were discussed. (author)

  2. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators

    Science.gov (United States)

    Lee, Hoogil; Jeon, Hyunkyu; Gong, Seokhyeon; Ryou, Myung-Hyun; Lee, Yong Min

    2018-01-01

    To enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene (PE) separators, their surfaces were treated with thin and hydrophilic polydopamine layers. As a result, an aqueous ceramic coating slurry consisting of Al2O3 particles, carboxyl methyl cellulose (CMC) binders, and water solvent was easily spread on the separator surface, and a uniform ceramic layer was formed after solvent drying. Moreover, the ceramic coating layer showed greatly improved adhesion properties to the PE separator surface. Whereas the adhesion strength within the bulk coating layer (Fmid) ranged from 43 to 86 N m-1 depending on the binder content of 1.5-3.0 wt%, the adhesion strength at the interface between the ceramic coating layer and PE separator (Fsepa-Al2O3) was 245-360 N m-1, a value equivalent to an increase of four or five times. Furthermore, an additional ceramic coating layer of approximately 7 μm did not degrade the ionic conductivity and electrochemical properties of the bare PE separators. Thus, all the LiMn2O4/graphite cells with ceramic-coated separators delivered an improved cycle life and rate capability compared with those of the control cells with bare PE separators.

  3. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  4. Age, training, and previous experience predict race performance in long-distance inline skaters, not anthropometry.

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-02-01

    The association of characteristics of anthropometry, training, and previous experience with race time in 84 recreational, long-distance, inline skaters at the longest inline marathon in Europe (111 km), the Inline One-eleven in Switzerland, was investigated to identify predictor variables for performance. Age, duration per training unit, and personal best time were the only three variables related to race time in a multiple regression, while none of the 16 anthropometric variables were related. Anthropometric characteristics seem to be of no importance for a fast race time in a long-distance inline skating race in contrast to training volume and previous experience, when controlled with covariates. Improving performance in a long-distance inline skating race might be related to a high training volume and previous race experience. Also, doing such a race requires a parallel psychological effort, mental stamina, focus, and persistence. This may be reflected in the preparation and training for the event. Future studies should investigate what motivates these athletes to train and compete.

  5. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Parsa, Z.; Ko, S.K.

    1995-01-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given

  6. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  7. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  8. Direct analysis of formate in human plasma, serum and whole blood by in-line coupling of microdialysis to capillary electrophoresis for rapid diagnosis of methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Boček, Petr

    2013-01-01

    Roč. 768, 21 JAN (2013), s. 82-89 ISSN 0003-2670 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : capillary electrophoresis * in-line microdialysis * methanol intoxication Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.517, year: 2013

  9. 40 CFR 63.1343 - Standards for kilns and in-line kiln/raw mills.

    Science.gov (United States)

    2010-07-01

    .../raw mills. 63.1343 Section 63.1343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Industry Emission Standards and Operating Limits § 63.1343 Standards for kilns and in-line kiln/raw mills. (a) General. The provisions in this section apply to each kiln, each in-line kiln/raw mill, and any...

  10. Relationship of the Functional Movement Screen In-Line Lunge to Power, Speed, and Balance Measures

    OpenAIRE

    Hartigan, Erin H.; Lawrence, Michael; Bisson, Brian M.; Torgerson, Erik; Knight, Ryan C.

    2014-01-01

    Background: The in-line lunge of the Functional Movement Screen (FMS) evaluates lateral stability, balance, and movement asymmetries. Athletes who score poorly on the in-line lunge should avoid activities requiring power or speed until scores are improved, yet relationships between the in-line lunge scores and other measures of balance, power, and speed are unknown. Hypothesis: (1) Lunge scores will correlate with center of pressure (COP), maximum jump height (MJH), and 36.6-meter sprint time...

  11. Final Technical Report - In-line Uranium Immunosensor

    International Nuclear Information System (INIS)

    Blake, Diane A.

    2006-01-01

    In this project, personnel at Tulane University and Sapidyne Instruments Inc. developed an in-line uranium immunosensor that could be used to determine the efficacy of specific in situ biostimulation approaches. This sensor was designed to operate autonomously over relatively long periods of time (2-10 days) and was able to provide near real-time data about uranium immobilization in the absence of personnel at the site of the biostimulation experiments. An alpha prototype of the in-line immmunosensor was delivered from Sapidyne Instruments to Tulane University in December of 2002 and a beta prototype was delivered in November of 2003. The beta prototype of this instrument (now available commercially from Sapidyne Instruments) was programmed to autonomously dilute standard uranium to final concentrations of 2.5 to 100 nM (0.6 to 24 ppb) in buffer containing a fluorescently labeled anti-uranium antibody and the uranium chelator, 2,9-dicarboxyl-1,10-phenanthroline. The assay limit of detection for hexavalent uranium was 5.8 nM or 1.38 ppb. This limit of detection is well below the drinking water standard of 30 ppb recently promulgated by the EPA. The assay showed excellent precision; the coefficients of variation (CV's) in the linear range of the assay were less than 5% and CV?s never rose above 14%. Analytical recovery in the immunosensors-based assay was assessed by adding variable known quantities of uranium to purified water samples. A quantitative recovery (93.75% - 108.17%) was obtained for sample with concentrations from 7.5 to 20 nM (2-4.75 ppb). In August of 2005 the sensor was transported to Oak Ridge National Laboratory, for testing of water samples at the Criddle test site (see Wu et al., Environ. Sci. Technol. 40:3978-3985 2006 for a description of this site). In this first on-site test, the in-line sensor was able to accurately detect changes in the concentrations of uranium in effluent samples from this site. Although the absolute values for the uranium

  12. Single-shot dual-wavelength in-line and off-axis hybrid digital holography

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2018-02-01

    We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.

  13. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  14. Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

    Science.gov (United States)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

    2017-11-01

    Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

  15. Odlišnosti a identita in-line bruslení a bruslení na ledě

    OpenAIRE

    Rampich, Lukáš

    2010-01-01

    The main aim of the present study was to compare two types of skating - in-line skating and ice skating. An experiment method was used to evaluate an impact of in-line skating lessons on ice-skating skills in 12 and 13 years old children. We tried to find out which skills were transferable and which were not. The secondary aim was to suggest teaching methods of both above mentioned types of skating, point out uniquenesses of in-line skating, and apply them to improve the ice skating skills. T...

  16. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    Science.gov (United States)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  17. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  18. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    He, Jian-Bo; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-01-01

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  19. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  20. Validation of the Sensewear Armband during recreational in-line skating.

    Science.gov (United States)

    Soric, Maroje; Mikulic, Pavle; Misigoj-Durakovic, Marjeta; Ruzic, Lana; Markovic, Goran

    2012-03-01

    Multi-sensor body monitors that combine accelerometry with other physiological data are designed to overcome drawbacks of accelerometers in assessing activities with little or no vertical movement. One of such devices is the Sensewear Armband (SWA) which has been extensively validated during various activities. However, very few of the validation studies included activities other than walking and running. The aim of this investigation was to assess the validity of the SWA during recreational in-line skating. Nineteen participants (11 females and 8 males), 28 (±6) years of age, performed in-line skating exercise on a circular track at a self-selected pace. Energy expenditure was measured with the SWA and the Cosmed K4b(2) breath-by-breath portable metabolic unit. The mean (SD) energy expenditure during in-line skating estimated by the SWA [25.5 (5.8) kJ/min] was significantly lower compared with indirect calorimetry [44.2 (9.7) kJ/min, P skating by as much as 24-56% compared with indirect calorimetry. In conclusion, the results of the present study indicate that the SWA is not able to overcome the drawbacks of accelerometry in assessing activities with limited vertical movement.

  1. Effect of alternate-vortex on flow-induced in-line oscillation

    International Nuclear Information System (INIS)

    Kondo, Masaya; Anoda, Yoshinari

    1999-01-01

    Experiments were performed to study the in-line oscillations of a flexible cylinder in a water crossflow to estimate the effects of alternate-vortex. The measured oscillations were analyzed using the Gabor wavelet function to define the temporal phase relation between the in-line displacement and the vortex-induced force. The analysis shows that 1) the stability region located between two excited regions is generated by alternate vortex effect, 2) the phase relation, which was changed as the crossflow velocity increased, can be classified into three categories, 3) though the contribution of the alternate vortex at the excited region was positive, the contribution at the stability region was negative. (author)

  2. Inline skating for balance and strength promotion in children during physical education.

    Science.gov (United States)

    Muehlbauer, Thomas; Kuehnen, Matthias; Granacher, Urs

    2013-12-01

    Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength.

  3. Partition calculation for zero-order and conjugate image removal in digital in-line holography.

    Science.gov (United States)

    Ma, Lihong; Wang, Hui; Li, Yong; Jin, Hongzhen

    2012-01-16

    Conventional digital in-line holography requires at least two phase-shifting holograms to reconstruct an original object without zero-order and conjugate image noise. We present a novel approach in which only one in-line hologram and two intensity values (namely the object wave intensity and the reference wave intensity) are required. First, by subtracting the two intensity values the zero-order diffraction can be completely eliminated. Then, an algorithm, called partition calculation, is proposed to numerically remove the conjugate image. A preliminary experimental result is given to confirm the proposed method. The method can simplify the procedure of phase-shifting digital holography and improve the practical feasibility for digital in-line holography.

  4. Updates to In-Line Calculation of Photolysis Rates

    Science.gov (United States)

    How photolysis rates are calculated affects ozone and aerosol concentrations predicted by the CMAQ model and the model?s run-time. The standard configuration of CMAQ uses the inline option that calculates photolysis rates by solving the radiative transfer equation for the needed ...

  5. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation.

    Science.gov (United States)

    Harting, Julia; Kleinebudde, Peter

    2018-04-01

    Raman spectroscopy was evaluated as a process analytical technology (PAT) tool for continuous API quantification during twin-screw wet granulation. Therefore, a Raman probe was implemented in front of the granulator barrel. This setup enabled the collection of Raman spectra upon a constant granule flow. To develop an in-line PLS calibration model, eight binary mixtures of the API and lactose monohydrate with API contents between 5 and 50% were pre-blended and granulated in a twin-screw granulator with a screw speed of 150 rpm and a powder feed rate of 40 g/min. Water was used as a granulation liquid with different liquid to solid ratios depending on the API content. Ibuprofen and diclofenac sodium were chosen as model drugs and separated PLS models were built for each API. The predictive performance of the developed PLS models was determined by granulating and monitoring new test samples containing different API concentrations. This evaluation showed that the models were able to predict the API concentration with an RMSEP of 0.59% for ibuprofen and 1.5% for diclofenac sodium. In a second part, the developed in-line Raman spectroscopic method was used to determine the API concentration during a split feeding process. Therefore, the API and lactose monohydrate were added by two independently adjustable feeders into the twin-screw granulator barrel. The in-line spectroscopy analysis which was verified by UV-analysis indicated that the mixing ability of the twin-screw granulator was good for the used settings and all adjusted API concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  7. Thin-layer chromatography - liquid chromatography, an ideal supplement demonstrated by the separation of lanthanoids

    International Nuclear Information System (INIS)

    Specker, H.; Hufnagel, A.

    1984-01-01

    All lanthanoids have been separated by thin-layer chromatography (TLC) with short retention times by using a mixture of ether/tetrahydrofurane (THF)/bis-(2-ethylhexyl)-phosphate (HDEHP)/nitric acid. The eluent was empirically tested by synergistic effects. The results have been transferred to high-performance liquid chromatography /HPLC). It was possible to use the same eluent in TLC and HPLC both for the analytical separation of all lanthanoids and for the separation of fission products. The experimental experience gained in HPLC could be applied to the pre-concentration of isotopes in TLC. Both methods excellently supplemented each other in the separation of lanthanoids. (orig.) [de

  8. Relationship of the functional movement screen in-line lunge to power, speed, and balance measures.

    Science.gov (United States)

    Hartigan, Erin H; Lawrence, Michael; Bisson, Brian M; Torgerson, Erik; Knight, Ryan C

    2014-05-01

    The in-line lunge of the Functional Movement Screen (FMS) evaluates lateral stability, balance, and movement asymmetries. Athletes who score poorly on the in-line lunge should avoid activities requiring power or speed until scores are improved, yet relationships between the in-line lunge scores and other measures of balance, power, and speed are unknown. (1) Lunge scores will correlate with center of pressure (COP), maximum jump height (MJH), and 36.6-meter sprint time and (2) there will be no differences between limbs on lunge scores, MJH, or COP. Descriptive laboratory study. Level 3. Thirty-seven healthy, active participants completed the first 3 tasks of the FMS (eg, deep squat, hurdle step, in-line lunge), unilateral drop jumps, and 36.6-meter sprints. A 3-dimensional motion analysis system captured MJH. Force platforms measured COP excursion. A laser timing system measured 36.6-m sprint time. Statistical analyses were used to determine whether a relationship existed between lunge scores and COP, MJH, and 36.6-m speed (Spearman rho tests) and whether differences existed between limbs in lunge scores (Wilcoxon signed-rank test), MJH, and COP (paired t tests). Lunge scores were not significantly correlated with COP, MJH, or 36.6-m sprint time. Lunge scores, COP excursion, and MJH were not statistically different between limbs. Performance on the FMS in-line lunge was not related to balance, power, or speed. Healthy participants were symmetrical in lunging measures and MJH. Scores on the FMS in-line lunge should not be attributed to power, speed, or balance performance without further examination. However, assessing limb symmetry appears to be clinically relevant.

  9. Relationship of the Functional Movement Screen In-Line Lunge to Power, Speed, and Balance Measures

    Science.gov (United States)

    Hartigan, Erin H.; Lawrence, Michael; Bisson, Brian M.; Torgerson, Erik; Knight, Ryan C.

    2014-01-01

    Background: The in-line lunge of the Functional Movement Screen (FMS) evaluates lateral stability, balance, and movement asymmetries. Athletes who score poorly on the in-line lunge should avoid activities requiring power or speed until scores are improved, yet relationships between the in-line lunge scores and other measures of balance, power, and speed are unknown. Hypothesis: (1) Lunge scores will correlate with center of pressure (COP), maximum jump height (MJH), and 36.6-meter sprint time and (2) there will be no differences between limbs on lunge scores, MJH, or COP. Study Design: Descriptive laboratory study. Level of Evidence: Level 3. Methods: Thirty-seven healthy, active participants completed the first 3 tasks of the FMS (eg, deep squat, hurdle step, in-line lunge), unilateral drop jumps, and 36.6-meter sprints. A 3-dimensional motion analysis system captured MJH. Force platforms measured COP excursion. A laser timing system measured 36.6-m sprint time. Statistical analyses were used to determine whether a relationship existed between lunge scores and COP, MJH, and 36.6-m speed (Spearman rho tests) and whether differences existed between limbs in lunge scores (Wilcoxon signed-rank test), MJH, and COP (paired t tests). Results: Lunge scores were not significantly correlated with COP, MJH, or 36.6-m sprint time. Lunge scores, COP excursion, and MJH were not statistically different between limbs. Conclusion: Performance on the FMS in-line lunge was not related to balance, power, or speed. Healthy participants were symmetrical in lunging measures and MJH. Clinical Relevance: Scores on the FMS in-line lunge should not be attributed to power, speed, or balance performance without further examination. However, assessing limb symmetry appears to be clinically relevant. PMID:24790688

  10. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  11. Validity of Lactate Thresholds in Inline Speed Skating.

    Science.gov (United States)

    Hecksteden, Anne; Heinze, Tobias; Faude, Oliver; Kindermann, Wilfried; Meyer, Tim

    2015-09-01

    Lactate thresholds are commonly used as estimates of the highest workload where lactate production and elimination are in equilibrium (maximum lactate steady state [MLSS]). However, because of the high static load on propulsive muscles, lactate kinetics in inline speed skating may differ significantly from other endurance exercise modes. Therefore, the discipline-specific validity of lactate thresholds has to be verified. Sixteen competitive inline-speed skaters (age: 30 ± 10 years; training per week: 10 ± 4 hours) completed an exhaustive stepwise incremental exercise test (start 24 km·h, step duration 3 minutes, increment 2 km·h) to determine individual anaerobic threshold (IAT) and the workload corresponding to a blood lactate concentration of 4 mmol·L (LT4) and 2-5 continuous load tests of (up to) 30 minutes to determine MLSS. The IAT and LT4 correlated significantly with MLSS, and the mean differences were almost negligible (MLSS 29.5 ± 2.5 km·h; IAT 29.2 ± 2.0 km·h; LT4 29.6 ± 2.3 km·h; p > 0.1 for all differences). However, the variability of differences was considerable resulting in 95% limits of agreement in the upper range of values known from other endurance disciplines (2.6 km·h [8.8%] for IAT and 3.1 km·h [10.3%] for LT4). Consequently, IAT and LT4 may be considered as valid estimates of the MLSS in inline speed skating, but verification by means of a constant load test should be considered in cases of doubt or when optimal accuracy is needed (e.g., in elite athletes or scientific studies).

  12. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    Energy Technology Data Exchange (ETDEWEB)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); Dong, B.; Zhang, K. [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); and others

    2016-09-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical

  13. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  14. [Clinical research of arthroscopic separate double-layer suture bridge technique for delaminated rotator cuff tear].

    Science.gov (United States)

    Ren, Jiangtao; Xu, Cong; Liu, Xianglin; Wang, Jiansong; Li, Zhihuai; Lü, Yongming

    2017-10-01

    To explore the effectiveness of the arthroscopic separate double-layer suture bridge technique in treatment of the delaminated rotator cuff tear. Between May 2013 and May 2015, 54 patients with the delaminated rotator cuff tears were recruited in the study. They were randomly allocated into 2 groups to receive repair either using arthroscopic separate double-layer suture bridge technique (trial group, n =28) or using arthroscopic whole-layer suture bridge technique (control group, n =26). There was no significant difference in gender, age, injured side, tear type, and preoperative visual analogue scale (VAS) score, Constants score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) score, and the range of motion of shoulder joint between 2 groups ( P >0.05). Postoperative functional scores, range of motion, and recurrence rate of tear in 2 groups were observed and compared. The operation time was significant longer in trial group than in control group ( t =8.383, P =0.000). All incisions healed at stage Ⅰ without postoperative complication. All the patients were followed up 12 months. At 12 months postoperatively, the UCLA score, ASES score, VAS score, Constant score, and the range of motion were significantly improved when compared with the preoperative values in 2 groups ( P 0.05). Four cases (14.3%) of rotator cuff tear recurred in trial group while 5 cases (19.2%) in control group, showing no significant difference ( χ 2 =0.237, P =0.626). Compared with the arthroscopic whole-layer suture bridge technique, arthroscopic separate double-layer suture bridge technique presents no significant difference in the shoulder function score, the range of motion, and recurrence of rotator cuff tear, while having a longer operation time.

  15. [Injury pattern caused by aggressive inline skating].

    Science.gov (United States)

    Hilgert, R E; Besch, L; Behnke, B; Egbers, H-J

    2004-12-01

    In order to evaluate the special injury pattern of aggressive inline skating, a field study was conducted in a local, non-commercial skate park equipped with all the typical features like ramps, halfpipes, gully areas. 66 unselected aggressive inline skaters were randomly enrolled and interviewed concerning their skating habits and their skating injury history. Average age was 15 (10 to 41) years, skating was performed since 2.1 (0.1 to 6) years, as aggressive skating since 1.3 (0.1 to 4) years. Medical treatment in a doctor's practice or in a hospital had been necessary in 66 cases, averaging 1.4 times per skater and year, averaging one injury per 586 hours of aggressive skating. The injury pattern reflected the regions typically injured in fitness skating, too, with a higher percentage of injuries concerning knee, tibia and ankle region. The use of protective devices varied from 41 % (wrist guards) to 94 % (knee pads), with an average of 69 %. Only 32 % of skaters wore all protective devices. As the personal thrill is an important motivation for aggressive skating, safer skating campaigns are quite unlikely to decrease the risk of injury in aggressive skaters.

  16. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection

    Science.gov (United States)

    Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan

    2018-03-01

    X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.

  18. Digital twin image elimination in soft x-ray in-line holography

    International Nuclear Information System (INIS)

    Koren, G.; Joyeux, D.

    1993-01-01

    In-line holography is attractive for X-ray microscopy due to its recording simplicity. A drawback of this method is the superposition of the virtual and real images, in which structures and details can be modified or lost. This superposition effectively limits the application of in-line holography to X-ray microscopy. The authors present an iterative constrained algorithm for twin image elimination from Gabor holograms of finite support objects. It is based in the different spatial extent of both images, together with a finite support constraint. The conditions under which the algorithm is applicable will be presented, together with an alternative Monte Carlo method for holograms of complex objects recorded in the shadow region

  19. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    OpenAIRE

    Václav URUBA

    2010-01-01

    Separation of the turbulent boundary layer (BL) on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition) and its extension BOD (Bi-Orthogonal Decomposition) techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns) method. The study contributes...

  20. OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Lenzmann, Frank O.; Ryley, Stephen

    2013-01-01

    Organic photovoltaic modules have been evaluated for their integration in mobile electronic applications such as a laser pointer. An evaluation of roll-to-roll processed indium and silver free polymer solar cells has been carried out from different perspectives: life cycle assessment, cost analysis...... and layer quality evaluation using inline optical and functional inspection tools. The polymer solar cells were fabricated in credit card sized modules by three routes, and several encapsulation alternatives have been explored, with the aim to provide the simplest but functional protection against moisture...... a low carbon footprint. From the economic perspective there is a huge reduction in the cost of the ITO- and silver-free options, reaching as low as 0.25 V for the OPV module. We used inspection tools such as a roll-to-roll inspection system to evaluate all processing steps during the fabrication...

  1. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    Science.gov (United States)

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  2. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    2014-09-04

    Sep 4, 2014 ... to obtain in-line rheological parameters of opaque fluids with suspended ... ing, e.g., paper pulp, foods, transient flows and model mineral suspensions. ..... on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid.

  3. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P [University of Sydney, Camperdown, New South Wales (Australia); Dong, B; Zhang, K; Liney, G [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Vial, P; Walker, A; Begg, J; Rai, R [Liverpool Hospital, Sydney, New South Wales (Australia); Holloway, L; Barton, M [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Liverpool Hospital, Sydney, New South Wales (Australia); Crozier, S [University of Queensland, Brisbane, Queensland (Australia)

    2016-06-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.

  4. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    International Nuclear Information System (INIS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-01-01

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  5. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qingxue [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Rong [Department of Fundamental Theories, Shandong Institute of Physical Education and Sports, Jinan 250063 (China); Xiao, Hongdi, E-mail: hdxiao@sdu.edu.cn [School of Physics, Shandong University, Jinan, 250100 (China); Cao, Dezhong; Liu, Jianqiang; Ma, Jin [School of Physics, Shandong University, Jinan, 250100 (China)

    2016-11-30

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  6. Inline pressure sensing mechanisms enabling scalable range and sensitivity

    NARCIS (Netherlands)

    Alveringh, Dennis; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2015-01-01

    We report on two novel capacitive pressure sensing mechanisms that allow measurements inline with other fluidic devices on one chip, without introducing a large internal volume to the fluid path. The first sensing mechanism is based on out-of-plane bending of a U-shaped channel and the same

  7. In-Line Filtration Reduces Postoperative Venous Peripheral Phlebitis Associated With Cannulation: A Randomized Clinical Trial.

    Science.gov (United States)

    Villa, Gianluca; Chelazzi, Cosimo; Giua, Rosa; Tofani, Lorenzo; Zagli, Giovanni; Boninsegni, Paolo; Pinelli, Fulvio; De Gaudio, A Raffaele; Romagnoli, Stefano

    2018-04-23

    Peripheral venous cannulation is an everyday practice of care for patients undergoing anesthesia and surgery. Particles infused with intravenous fluids (eg, plastic/glass/drugs particulate) contribute to the pathogenesis of peripheral phlebitis. The aim of this study is to demonstrate the efficacy of in-line filtration in reducing the incidence of postoperative phlebitis associated with peripheral short-term vascular access. In this controlled trial, 268 surgical patients were randomly assigned to in-line filtration and standard care (NCT03193827). The incidence of phlebitis (defined as visual infusion phlebitis [VIP] score, ≥2) within 48 hours was compared between the 2 groups, as well as the onset and severity of phlebitis and the reasons for removal of the cannula. The lifespan of venous cannulae was compared for the in-line filter and no-filter groups through a Kaplan-Meier curve. The incidence of phlebitis within 48 hours postoperatively was 2.2% and 26.9% (difference, 25% [95% confidence interval {CI}, 12%-36%]; odds ratio, 0.05 [0.01-0.15]), respectively, for the in-line filter and no-filter groups (P phlebitis (hazard ratio, 0.05 [95% CI, 0.014-0.15]; P phlebitis and prolongs cannula lifespan during peripheral venous cannulation in surgical patients.

  8. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which

  9. In-line bruslení jako tréninkový prostředek letní přípravy v ledním hokeji

    OpenAIRE

    Gebhart, Martin

    2014-01-01

    TITLE: In-line skating as a training tool for summer preparation in ice hockey AUTHOR: Martin Gebhart DEPARTMENT: Department of Physical Education SUPERVISOR: PaedDr. Ladislav Pokorný ABSTRACT: Bachelor thesis surveys the use of in-line skating in the summer preparing for ice hockey. Mapping the use of in-line skating is based on a survey questionnaire. The aim is to determine for what purpose is in-line skating used in summer training. The paper focuses on the development of motor skills in ...

  10. Raytheon's next generation compact inline cryocooler architecture

    Science.gov (United States)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  11. Raytheon's next generation compact inline cryocooler architecture

    International Nuclear Information System (INIS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  12. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  13. OPV for mobile applications. An evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools

    Energy Technology Data Exchange (ETDEWEB)

    Espinos, N.; Angmo, D.; Hoesel, M.; Soendergaard, R.R.; Joergensen, M.; Krebs, F.C. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Lenzmann, F.O. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Ryley, S. [UK Materials Technology Research Institute, Nottingham Road, Melton Mowbray (United Kingdom); Huss, D.; Dafinger, S.; Gritsch, S. [Dr. Schenk GmbH Industriemesstechnik, Einsteinstrasse 37, D-82152 Planegg (Germany); Kroon, J.M. [ECN Solar Energy, High Tech Campus 5 P-61, 5656 AE Eindhoven (Netherlands)

    2013-05-08

    Organic photovoltaic modules have been evaluated for their integration in mobile electronic applications such as a laser pointer. An evaluation of roll-to-roll processed indium and silver free polymer solar cells has been carried out from different perspectives: life cycle assessment, cost analysis and layer quality evaluation using inline optical and functional inspection tools. The polymer solar cells were fabricated in credit card sized modules by three routes, and several encapsulation alternatives have been explored, with the aim to provide the simplest but functional protection against moisture and oxygen, which could deteriorate the performance of the cells. The analysis shows that ITO- and silver-free options are clearly advantageous in terms of energy embedded over the traditional modules, and that encapsulation must balance satisfying the protection requirements while having at the same time a low carbon footprint. From the economic perspective there is a huge reduction in the cost of the ITO- and silver-free options, reaching as low as 0.25 euro for the OPV module. We used inspection tools such as a roll-to-roll inspection system to evaluate all processing steps during the fabrication and analyse the layers' quality and forecast whether a module will work or not and establish any misalignment of the printed pattern or defects in the layers that can affect the performance of the devices. This has been found to be a good tool to control the process and to increase the yield.

  14. Drying of upper peat of a low degree of separation in a vibro-boiling layer

    Energy Technology Data Exchange (ETDEWEB)

    Naumovich, V M; Goryachev, V I; Shafeyev, R S

    1981-01-01

    The boiling layer created by a gas flow in its motion upward through friable material finds wide application for the drying of different dispersed materials. In spite of the significant superiority of a boiling layer to other methods of drying, it is not universal and possesses a series of important drawbacks. For an intensification of the boiling layer and an upgrading of its structure, different mechanical systems are employed: agitators, impulses, ultrasound, and other actions on the material. In particular with the development of the vibration technique, vibrated low-frequency oscillations are not only a means of structurally upgrading the boiling layer, but serve as the basic factor in creating an intensively blended layer of friable material. According to the character of the motion of the particles, such a layer resembles a boiling liquid. Therefore, in the given case, it is called vibro-boiling. An appartus working on the principle of a vibro-boiling layer, in many cases, is eliminated of faults, a characteristic worthy of considering by installations with a boiling layer. A considered created department of machines and processes of refining peat, the KPI, is a vibration-drying installatin of the VSU type, designed for the drying of peat with a low degree of separation in a vibro-boiling layer.

  15. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    Science.gov (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  16. Reliability and Validity of the Inline Skating Skill Test

    Directory of Open Access Journals (Sweden)

    Ivan Radman, Lana Ruzic, Viktoria Padovan, Vjekoslav Cigrovski, Hrvoje Podnar

    2016-09-01

    Full Text Available This study aimed to examine the reliability and validity of the inline skating skill test. Based on previous skating experience forty-two skaters (26 female and 16 male were randomized into two groups (competitive level vs. recreational level. They performed the test four times, with a recovery time of 45 minutes between sessions. Prior to testing, the participants rated their skating skill using a scale from 1 to 10. The protocol included performance time measurement through a course, combining different skating techniques. Trivial changes in performance time between the repeated sessions were determined in both competitive females/males and recreational females/males (-1.7% [95% CI: -5.8–2.6%] – 2.2% [95% CI: 0.0–4.5%]. In all four subgroups, the skill test had a low mean within-individual variation (1.6% [95% CI: 1.2–2.4%] – 2.7% [95% CI: 2.1–4.0%] and high mean inter-session correlation (ICC = 0.97 [95% CI: 0.92–0.99] – 0.99 [95% CI: 0.98–1.00]. The comparison of detected typical errors and smallest worthwhile changes (calculated as standard deviations × 0.2 revealed that the skill test was able to track changes in skaters’ performances. Competitive-level skaters needed shorter time (24.4–26.4%, all p < 0.01 to complete the test in comparison to recreational-level skaters. Moreover, moderate correlation (ρ = 0.80–0.82; all p < 0.01 was observed between the participant’s self-rating and achieved performance times. In conclusion, the proposed test is a reliable and valid method to evaluate inline skating skills in amateur competitive and recreational level skaters. Further studies are needed to evaluate the reproducibility of this skill test in different populations including elite inline skaters.

  17. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  18. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  19. Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries

    Science.gov (United States)

    Shen, Xiu; Li, Chao; Shi, Chuan; Yang, Chaochao; Deng, Lei; Zhang, Wei; Peng, Longqing; Dai, Jianhui; Wu, Dezhi; Zhang, Peng; Zhao, Jinbao

    2018-05-01

    Safety is one of the most factors for lithium-ion batteries (LIBs). In this work, a novel kind of ceramic separator with high safety insurance is proposed. We fabricated the core-shell nanofiber separators for LIBs by atomic layer deposition (ALD) of 30 nm Al2O3 on the electrospinning nonwoven fiber of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). The separators show a pretty high heat resistance up to 200 °C without any shrinkage, an excellent fire-resistant property and a wide electrochemical window. Besides, with higher uptake and ionic conductivity, cells assembled with the novel separator shows better electrochemical performance. The ALD produced separators exhibit great potential in elaborate products like 3C communications and in energy field with harsh requirements for safety such as electric vehicles. The application of ALD on polymer fiber membranes brings a new strategy and opportunity for improving the safety of the advanced LIBs.

  20. Experimental results of the ATF in-line injection system

    International Nuclear Information System (INIS)

    Wang, X.J.; Srinivasan-Rao, T.; Batchelor, K.

    1995-01-01

    The initial experimental results of the Brookhaven accelerator test facility (ATF) in-line injector is presented. The ATF in-line injector employed a full copper RF gun with a pair of solenoid magnets for emittance compensation. The maximum acceleration field of the RF gun was measured to be 130 MV/m. The electron yield from the copper cathode was maximized using p- polarized laser and the Schottky effect. The quantum efficiency under optimum conditions was measured to be 0.04%. The measured electron bunch length was less than 11 ps, which agreed with the laser pulse length measurement using a streak camera. The normalized rms. emittance for 0.25 nC charge is 0.9 ± 0.1 mm-mrad, which is almost four times smaller than the emittance predicted by the space-charge effect for a non-emittance compensation photocathode RF gun. The normalized rms for 0.6 nC charge was measured range from 1 to 3 mm-mrad. This measurement was first experimental demonstration of emittance compensation in a high-gradient, S-band photocathode RF gun

  1. In-line instrumentation and computer-controlled process supervision in reprocessing

    International Nuclear Information System (INIS)

    Mache, H.R.; Groll, P.

    Measuring equipment is needed for continuous monitoring of concentration in radioactive process solutions. A review is given of existing in-line apparatus and of computer-controlled data processing. A process control system is described for TAMARA, a model extraction facility for the U/HNO 3 /TBP system

  2. Manual In-Line Stabilization of the Cervical Spine Increases the ...

    African Journals Online (AJOL)

    injury present with loss of consciousness and suspected cervical fracture. The aim of this study was to determine the rate of difficult orotracheal intubation in surgical patients undergoing various procedures when manual in-line neck immobilization technique was applied. Methods: This was a randomized prospective study ...

  3. Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka

    2003-01-01

    The purpose of this research was to study the effect of two process parameters (temperature and moisture content) on dehydration behavior of different materials using a novel multichamber microscale fluid bed dryer with a process air control unit and in-line near-infrared (NIR) spectroscopy....... The materials studied were disodium hydrogen phosphates with three different levels of hydrate water and wet theophylline granules. Measured process parameters of fluid bed drying were logged, including in-line NIR signals. Off-line analyses consisted of X-ray powder diffraction patterns, Fourier transform NIR...... spectra and moisture contents of studied materials. During fluid bed drying, the stepwise dehydration of materials was observed by the water content difference of inlet and outlet air, the pressure difference over the bed, and the in-line NIR spectroscopy. The off-line analysis confirmed the state...

  4. Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.

    Science.gov (United States)

    Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F

    2005-01-01

    A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.

  5. Application Of The SPV-based Surface Lifetime Technique To In-Line Monitoring Of Surface Cu Contamination

    Science.gov (United States)

    D'Amico, John; Savtchouk, Alexandre; Wilson, Matthew; Kim, Chul Hong; Yoo, Hyung Won; Lee, Chang Hwan; Kim, Tae Kyoung; Son, Sang Hoon

    2009-09-01

    Implementation of Cu interconnects into Silicon Integrated Circuits (IC's) has been instrumental in the continuing improvement of IC device performance. Copper as a well known Gate Oxide Integrity (GOI) killer [1, 2] requires extensive protocols to minimize the possibility of cross contamination. Despite such protocols the risk for cross contamination exists, and consequently there is the need for in-line Cu cross-contamination detection metrology. Preferably the metrology will be non-destructive, fast, and capable of mapping on product wafers. Up to now the most common approaches for monitoring Cu contamination in IC fabrication lines either measure Cu in the bulk Si, which is not applicable to Cu cross-contamination monitoring because Back-End-of-the-Line thermal budgets restrict the ability to diffuse the surface Cu into the bulk Si; or the techniques are not optimal for in-line monitoring due to their destructive, time-consuming, or costly nature. In this work we demonstrate for the first time the application of the ac-Surface Photo Voltage (ac-SPV) surface lifetime approach [3] to in-line, full wafer coverage mapping of low level (metrology system. Furthermore, because the metrology is non-contact (utilizing edge-grip handling) and non-destructive, it is directly applicable to measurement of production wafers. In-line fab data acquired using this metrology is presented and compared to data from Inductively Coupled Plasma Mass Spectroscopy (ICP-MS).

  6. 40 CFR 63.1348 - Standards for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and...

    Science.gov (United States)

    2010-07-01

    ... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. 63.1348 Section 63.1348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and...

  7. A comparison and assessment of approaches for modelling flow over in-line tube banks

    International Nuclear Information System (INIS)

    Iacovides, Hector; Launder, Brian; West, Alastair

    2014-01-01

    Highlights: • We present wall-resolved LES and URANS simulations of periodic flow in heated in-line tube banks. • Simulations of flow in a confined in-line tube-bank are compared with experimental data. • When pitch-to-diameter (P/D) ratio becomes less than 1.6, the periodic flow becomes skewed. • URANS tested here unable to mimic the periodic flow at P/D = 1.6. • In confined tube banks URANS suggest alternate, in the axial direction, flow deflection. - Abstract: The paper reports experiences from applying alternative strategies for modelling turbulent flow and local heat-transfer coefficients around in-line tube banks. The motivation is the simulation of conditions in the closely packed cross-flow heat exchangers used in advanced gas-cooled nuclear reactors (AGRs). The main objective is the flow simulation in large-scale tube banks with confining walls. The suitability and accuracy of wall-resolved large-eddy simulation (LES) and Unsteady Reynolds-Averaged Navier–Stokes (URANS) approaches are examined for generic, square, in-line tube banks, where experimental data are limited but available. Within the latter approach, both eddy-viscosity and Reynolds-stress-transport models have been tested. The assumption of flow periodicity in all three directions is investigated by varying the domain size. It is found that the path taken by the fluid through the tube-bank configuration differs according to the treatment of turbulence and whether the flow is treated as two- or three-dimensional. Finally, the important effect of confining walls has been examined by making direct comparison with the experiments of the complete test rig of Aiba et al. (1982)

  8. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  9. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  10. Separation of metals in the form of ion associates by the method of thin-layer chromatography

    International Nuclear Information System (INIS)

    Shapovalova, E.N.; Timerbaev, A.R.; Bol'shova, T.A.; Mel'nik, S.V.; Kordejro, E.

    1990-01-01

    Behaviour of pyridylazo resorcinates of certain metals (Ga, In, Fe, Co) in the form of ionic pairs with tri-n-octylamine (TOA) under conditions of thin-layer chromatography (TLC) has been studied. For all eluents investigated Ga and In complexes possess the highest mobility. Selectivity of ionic associate separation decreases with an increase in mobile phase polarity. Mixtures with 10-15 % content of isopropanol in eluating solution are the optimal ones. Separation of Ga and In from Fe 3+ and Co takes place with separation criterion 3.1 and 4.1 respectively. An attempt to separate ionic associates of In and Ga failed owing to similar stability of their pyridylazoresorcinates. Solution of the problem of In and Ga determination in the presence of iron can contribute to concrete application of the method

  11. An integrated in-line fluid characterization system for industrial applications(In-situ fluid mechanics experiments)

    OpenAIRE

    Johan, Wiklund; Reinhardt, Kotze; Beat, Birkhofer; Stefano, Ricci; Valentino, Meacci; Mats, Stading; Rainer, Haldenwang; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology; Sika Services AG; Information Engineering Department - University of Florence; Information Engineering Department - University of Florence; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology

    2015-01-01

    In this work we have presented the world's first commercially available embedded in-line fluids characterization system, "Flow-Viz". It has been specifically designed for the non-invasive, in-line, continuous, real-time velocity profile and rheological assessment of opaque, non-Newtonian industrial fluids. The Flow-Viz system has been successfully installed in pilot plants of international companies and used also for academic research. The technology has been applied to a wide range of fluids...

  12. Study of effect of in-line hydropneumatic accumulators on output characteristics of hydraulic hammer

    Science.gov (United States)

    Redelin, R. A.; Kravchenko, V. A.; Kamanin, Y. N.; Panichkin, A. V.; Bozhanov, A. A.

    2017-10-01

    The article presents the results of studies of the effect of in-line hydropneumatic accumulators on the output parameters of a hydraulic hammer during their joint operation. Based on mathematical modeling, computational experiments were performed and the output characteristics of the hammer, depending on the design and operating parameters of the in-line hydropneumatic accumulators, were obtained. It was established that for the most effective operation of the hammer, the precharge pressure of the pressure line hydropneumatic accumulator should be 70-80% of the working pressure of the hydraulic system. The utilization of a hydropneumatic accumulator without special additional devices in the discharge line is impractical.

  13. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    Science.gov (United States)

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  14. Shortening of the process chain by tactile inline measurement

    Science.gov (United States)

    Doering, Lutz; Thronicke, Nicole; Löbner, Christian; Frank, Thomas; Reich, Steffen; Völlmeke, Stefan; Steinke, Arndt

    2013-05-01

    This article describes the application of a microelectromechanical system (MEMS) with a beam-shaped cantilever and an integrated piezo-resistive measuring bridge. This device is used for a quick inline control of building panels, which consist of different materials (e.g. metals, polymers and elastomers). The micro sensing device distinguishes itself by a comparatively very low probing force (floor Δf = 1,6 kHz).

  15. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    Science.gov (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  16. Micro-Injection Moulding In-Line Quality Assurance Based on Product and Process Fingerprints

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    2018-01-01

    significant dimensional features of the micro part were measured using a focus variation microscope. Their dependency on the variation of µIM process parameters was studied with a Design of Experiments (DoE) statistical approach. A correlation study allowed the identification of the product fingerprint, i...... of the study showed that the dimensional quality of the micro component could be effectively controlled in-line by combining the two fingerprints, thus opening the door for future µIM in-line process optimization and quality assessment.......Micro-injection moulding (μIM) is a replication-based process enabling the cost-effective production of complex and net-shaped miniaturized plastic components. The micro-scaled size of such parts poses great challenges in assessing their dimensional quality and often leads to time...

  17. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  18. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  19. Digital in-line holography assessment for general phase and opaque particle

    NARCIS (Netherlands)

    Coëtmellec, S.; Wichitwong, W.; Gréhan, G.; Lebrun, D.; Brunel, M.; Janssen, A.J.E.M.

    2014-01-01

    We propose using the circle polynomials to describe a particle’s transmission function in a digital holography setup. This allows both opaque and phase particles to be determined. By means of this description, we demonstrate that it is possible to estimate the digital in-line hologram produced by a

  20. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    International Nuclear Information System (INIS)

    Markl, Daniel; Sacher, Stephan; Khinast, Johannes G; Hannesschläger, Günther; Leitner, Michael; Buchsbaum, Andreas

    2015-01-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm. (paper)

  1. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  2. Status of a reformer design for a modular HTGR in an in-line configuration

    International Nuclear Information System (INIS)

    Gluck, R.; Whitling, W.H.; Lipps, A.J.

    1984-01-01

    For the past several years the General Electric Company has had the technical lead on advanced concept studies for the Modular High Temperature Gas Cooled Reactor (HTGR) programs sponsored by the United States Department of Energy. The focus of the Modular Reactor System (MRS) effort is the development of a generic nuclear heat source capable of supplying heat to either a steam generator/electric cycle or a high temperature steam /methane reforming cycle. Some early ground rules for this study were that the reactor be designed for 950 deg. C direct cycle reforming and that the core be of the prismatic type. Since the prismatic core required control rods near the center of the core, the vertical in-line concept was selected to promote natural circulation cooling of the core for all potential transients except the depressurized core heatup transient. Although the requirement for a prismatic core has been eliminated for recent cost reduction studies, the vertical in-line configuration has been retained for its potential as the lowest cost configuration. This paper presents the results of recent design and analytical studies conducted to evaluate the feasibility of using a steam/methane reformer in a Vertical In-Line (VIL) arrangement with the generic nuclear heat source

  3. Near-field ptychography: phase retrieval for inline holography using a structured illumination.

    Science.gov (United States)

    Stockmar, Marco; Cloetens, Peter; Zanette, Irene; Enders, Bjoern; Dierolf, Martin; Pfeiffer, Franz; Thibault, Pierre

    2013-01-01

    Inline holography is a common phase-contrast imaging method which uses free-space propagation to encode the phase signal into measured intensities. However, quantitative retrieval of the sample's image remains challenging, imposing constraints on the nature of the sample or on the propagation distance. Here, we present a way of simultaneously retrieving the sample's complex-valued transmission function and the incident illumination function from near-field diffraction patterns. The procedure relies on the measurement diversity created by lateral translations of the sample with respect to a structured illumination. The reconstruction approach, in essence identical to that employed in ptychography, is applied to hard X-ray synchrotron measurements and to simulations. Compared to other inline holography techniques, we expect near-field ptychography to reduce reconstruction artefacts by factoring out wavefront imperfections and relaxing constraints on the sample's scattering properties, thus ultimately improving the robustness of propagation-based X-ray phase tomography.

  4. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Science.gov (United States)

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Separate the inseparable one-layer mapping

    Science.gov (United States)

    Hu, Chia-Lun J.

    2000-04-01

    When the input-output mapping of a one-layered perceptron (OLP) does NOT meet the PLI condition which is the if-and- only-if, or 'IFF, condition that the mapping can be realized by a OLP, then no matter what learning rule we use, a OLP just cannot realize this mapping at all. However, because of the nature of the PLI, one can still construct a parallel- cascaded, two-layered perceptron system to realize this `illegal' mapping. Theory and design example of this novel design will be reported in detail in this paper.

  6. Safety shutdown separators

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  7. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  8. Measurement of Ratios of inline'>νμ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2–20 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Tice, B. G.; Datta, M.; Mousseau, J.; Aliaga, L.; Altinok, O.; Barrios Sazo, M. G.; Betancourt, M.; Bodek, A.; Bravar, A.; Brooks, W. K.; Budd, H.; Bustamante, M. J.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kordosky, M.; Kulagin, S. A.; Le, T.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martin Mari, C.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Miller, J.; Mislivec, A.; Morfín, J. G.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Savage, D. G.; Schellman, H.; Schmitz, D. W.; Simon, C.; Snider, F. D.; Solano Salinas, C. J.; Tagg, N.; Valencia, E.; Velásquez, J. P.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Ziemer, B. P.

    2014-06-01

    We present measurements of <inline-formula>inline">νμ-formula> charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies <inline-formula>inline">2<Eν<20GeVinline-formula>, with <inline-formula>inline">(Eν)=8GeVinline-formula>, which have a reconstructed <inline-formula>inline">μ--formula> scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy <inline-formula>inline">Eν-formula> and flux-integrated differential cross sections with respect to the Bjorken scaling variable <inline-formula>inline">x-formula>. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative

  9. Multifunctional high-reflective and antireflective layer systems with easy-to-clean properties

    International Nuclear Information System (INIS)

    Gloess, D.; Frach, P.; Gottfried, C.; Klinkenberg, S.; Liebig, J.-S.; Hentsch, W.; Liepack, H.; Krug, M.

    2008-01-01

    High-reflective (HR) and even more antireflective (AR) layer systems are in use for widespread applications. Multifunctional layer systems providing high optical functionality with an easy-to-clean or a self-cleaning behaviour would be preferable for many applications to avoid soiling of the surface. In this paper, the feasibility of fabrication by highly productive pulse magnetron sputtering in an in-line coating plant is investigated. Easy-to-clean properties are achieved by a top layer of photocatalytic and photoinduced hydrophilic TiO 2 . Multifunctional HR layer systems were successfully deposited on glass and polyethylene terephthalate (PET) substrates at a low deposition temperature of 150 deg. C, demonstrating the possibility of coating certain polymer materials. Double-sided multifunctional AR layer systems with a single-sided photoinduced hydrophilic TiO 2 top coating have a resulting reflectivity of about 3% and transmittance of about 97% in the visible range of light

  10. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography.

    Science.gov (United States)

    Großhans, Steffen; Rüdt, Matthias; Sanden, Adrian; Brestrich, Nina; Morgenstern, Josefine; Heissler, Stefan; Hubbuch, Jürgen

    2018-04-27

    Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q 2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q 2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The structure of a separating turbulent boundary layer. IV - Effects of periodic free-stream unsteadiness

    Science.gov (United States)

    Simpson, R. L.; Shivaprasad, B. G.; Chew, Y.-T.

    1983-01-01

    Measurements were obtained of the sinusoidal unsteadiness of the free stream velocity during the separation of the turbulent boundary layer. Data were gathered by single wire and cross-wire, anemometry upstream of flow detachment, by laser Doppler velocimetry to detect the movement of the flow in small increments, and by a laser anemometer in the detached zone to measure turbulence and velocities. The study was restricted to a sinusoidal instability frequency of 0.61 and a ratio of oscillation amplitude to mean velocity of 0.3. Large amplitude and phase variations were found after the detachment, with unsteady effects producing hysteresis in the relationships between flow parameters. The detached shear layer decreased in thickness with increasing free-stream velocity and increases in the Reynolds shear stress. Deceleration of the free stream velocity caused thickening in the shear layer and upstream movement of the flow reversal location. The results are useful for studies of compressor blade and helicopter rotors in transition.

  12. Raytheon's next generation compact inline cryocooler architecture

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. [Raytheon Space and Airborne Systems, 2000 E. El Segundo Blvd., El Segundo, CA 90245 (United States)

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  13. Raman Spectroscopy for In-Line Water Quality Monitoring—Instrumentation and Potential

    Directory of Open Access Journals (Sweden)

    Zhiyun Li

    2014-09-01

    Full Text Available Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  14. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  15. Fatigue failure by in-line flow-induced vibration and fatigue life evaluation

    International Nuclear Information System (INIS)

    Odahara, Satoru; Murakami, Yukitaka; Inoue, Masahiro; Sueoka, Atsuo

    2004-01-01

    The phenomenon of fatigue failure by the In-line flow-induced vibration was studied. A newly water-flow-induced vibration system was made and used to reproduce fatigue failure by flow-induced vibration. A medium carbon steel specimen was fixed to the experimental equipment. A small artificial hole was introduced onto the specimen surface. Fatigue crack initiated from the artificial hole. A small portable strain histogram recorder (Mini Rainflow Corder, MRC) developed in another project of the authors' team was used to acquire the service strain hisogram at a critical point of the specimen and to measure the variation of natural frequency. Cumulative fatigue damage D defined by the Modified Miner Rule was calculated by using the strain histogram at the initial stage of test. The value of D was almost unity in the case of In-line vibration, while the values of D in the case of the Cross-flow vibration ranged from 0.2 to 0.8. (author)

  16. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, Danny S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  17. A fluidized layer of granular material used for the separation of particulate impurities in drinking water treatment

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Bubáková, Petra; Hnaťuková, Petra; Knesl, Bohuslav

    2011-01-01

    Roč. 59, č. 2 (2011), s. 95-106 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600902 Institutional research plan: CEZ:AV0Z20600510 Keywords : aggregation * destabilization * fluidized layer * separation * water treatment Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  18. Separation of the Stern and diffuse layer in coarse-grained models: the cases of phosphatidyl serine, phosphatidic acid, and PIP2 monolayers.

    Science.gov (United States)

    Vangaveti, S; Travesset, A

    2014-12-28

    We present here a method to separate the Stern and diffuse layer in general systems into two regions that can be analyzed separately. The Stern layer can be described in terms of Bjerrum pairing and the diffuse layer in terms of Poisson-Boltzmann theory (monovalent) or strong coupling theory plus a slowly decaying tail (divalent). We consider three anionic phospholipids: phosphatidyl serine, phosphatidic acid, and phosphatidylinositol(4,5)bisphosphate (PIP2), which we describe within a minimal coarse-grained model as a function of ionic concentration. The case of mixed lipid systems is also considered, which shows a high level of binding cooperativity as a function of PIP2 localization. Implications for existing experimental systems of lipid heterogeneities are also discussed.

  19. Industrial application of ultrasound based in-line rheometry: Visualization of steady shear pipe flow of chocolate suspension in pre-crystallization process

    Science.gov (United States)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Zeng, Yuantong; Birkhofer, Beat

    2003-12-01

    In the present work an in-line ultrasonic method for investigation of the rheological flow behavior of concentrated suspensions was created. It is based on a nondestructive rheological measuring technique for pilot plant and industrial scale applications. Elsewhere the author discusses a tremendous need for in-line rheological characterization of highly concentrated suspensions exposed to pressure driven shear flow conditions. Most existing on-line methods are based on destructive macro actuators, which are not suitable for materials with sensitive to applied deformation structure. Since the process of our basic interest influences the structure of suspension it would be difficult to separate the effects of rheometric measurement and weakly pronounced structural changes arising from a fine adjustment of the process parameters. The magnitude of these effects is usually associated with the complex flow dynamics of structured liquids and is sensitive to density or temperature fluctuations around the moving rheometric actuator. Interpretation of the results of such measurements can be hindered by process parameter influences on liquid product structure. Therefore, the author introduces an in-line noninvasive rheometric method, which is implemented in a pre-crystallization process of chocolate suspension. Use of ultrasound velocity profile pressure difference (UVP-PD) technique enabled process monitoring of the chocolate pre-crystallization process. Influence of seeded crystals on Rheology of chocolate suspension was recorded and monitored on line. It was shown that even slight velocity pulsations in chocolate mainstream can strongly influence rheological properties besides influencing flow velocity profiles. Based on calculations of power law fit in raw velocity profiles and calculation of wall shear stress from pressure difference measurement, a viscosity function was calculated and monitored on line. On-line results were found to be in a good agreement with off

  20. Field validation of protocols developed to evaluate in-line mastitis detection systems.

    Science.gov (United States)

    Kamphuis, C; Dela Rue, B T; Eastwood, C R

    2016-02-01

    This paper reports on a field validation of previously developed protocols for evaluating the performance of in-line mastitis-detection systems. The protocols outlined 2 requirements of these systems: (1) to detect cows with clinical mastitis (CM) promptly and accurately to enable timely and appropriate treatment and (2) to identify cows with high somatic cell count (SCC) to manage bulk milk SCC levels. Gold standard measures, evaluation tests, performance measures, and performance targets were proposed. The current study validated the protocols on commercial dairy farms with automated in-line mastitis-detection systems using both electrical conductivity (EC) and SCC sensor systems that both monitor at whole-udder level. The protocol for requirement 1 was applied on 3 commercial farms. For requirement 2, the protocol was applied on 6 farms; 3 of them had low bulk milk SCC (128×10(3) cells/mL) and were the same farms as used for field evaluation of requirement 1. Three farms with high bulk milk SCC (270×10(3) cells/mL) were additionally enrolled. The field evaluation methodology and results were presented at a workshop including representation from 7 international suppliers of in-line mastitis-detection systems. Feedback was sought on the acceptance of standardized performance evaluation protocols and recommended refinements to the protocols. Although the methodology for requirement 1 was relatively labor intensive and required organizational skills over an extended period, no major issues were encountered during the field validation of both protocols. The validation, thus, proved the protocols to be practical. Also, no changes to the data collection process were recommended by the technology supplier representatives. However, 4 recommendations were made to refine the protocols: inclusion of an additional analysis that ignores small (low-density) clot observations in the definition of CM, extension of the time window from 4 to 5 milkings for timely alerts for CM

  1. Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaohui; Cho, Eou-Sik [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of); Kwon, Sang Jik, E-mail: sjkwon@kyungwon.ac.kr [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of)

    2011-09-01

    In this paper, we reported the effect of the power and the working pressure on the molybdenum (Mo) films deposited using an in-line direct current (DC) magnetron sputtering system. The electrical and the structural properties of Mo film were improved by increasing DC power from 1 to 3 kW. On the other side, the resistivity of the Mo films became higher with the increasing working pressure. However, the adhesion property was improved when the working pressure was higher. In this work, in order to obtain an optimal Mo film as a back metal contact of Cu(In,Ga)Se{sub 2} (CIGS) solar cells, a bilayer Mo film was formed through the different film structures depending on the working pressure. The first layer was formed at a high pressure of 12 mTorr for a better adhesion and the second layer was formed at a low pressure of 3 mTorr for a lower resistivity.

  2. Redox‐Active Separators for Lithium‐Ion Batteries

    Science.gov (United States)

    Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria

    2017-01-01

    Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967

  3. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    Science.gov (United States)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  4. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    Science.gov (United States)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  5. Role of the electron blocking layer in the graded-index separate confinement heterostructure nitride laser diodes

    Science.gov (United States)

    Bojarska, Agata; Goss, Jakub; Stanczyk, Szymon; Makarowa, Irina; Schiavon, Dario; Czernecki, Robert; Suski, Tadeusz; Perlin, Piotr

    2018-04-01

    In this work, we investigate the role of the electron blocking layer (EBL) in laser diodes based on a graded index separate confinement heterostructure. We compare two sets of devices with very different EBL aluminum composition (3% and 12%) and design (graded and superlattice). The results of electro-optical characterization of these laser diodes reveal surprisingly modest role of electron blocking layer composition in determination of the threshold current and the differential efficiency values. However, EBL structure influences the operating voltage, which is decreased for devices with lower EBL and superlattice EBL. We observe also the differences in the thermal stability of devices - characteristic temperature is lower for lasers with 3% Al in EBL.

  6. Basic performance metrics of in-line inspection tools

    Energy Technology Data Exchange (ETDEWEB)

    Timashev, Sviatoslav A. [Russian Academy of Sciences (Russian Federation). Ural Branch. Science and Engineering Center

    2003-07-01

    The paper discusses current possibilities and drawbacks of in-line inspection (ILI) in detecting, identifying, locating and sizing of all types of defects in oil and gas pipelines. A full set of consistent and universal ILI tool performance metrics is constructed. A holistic methodology that extracts maximum value from the ILI measurements in defect detecting, locating, identifying, sizing and verifying the results of ILI is presented. The outlined approach is being implemented as a software component of a multi-purpose HR MFL ILI tool and is proposed for the new API 1163 ILI Qualification Standard. (author)

  7. An Automated Statistical Process Control Study of Inline Mixing Using Spectrophotometric Detection

    Science.gov (United States)

    Dickey, Michael D.; Stewart, Michael D.; Willson, C. Grant

    2006-01-01

    An experiment is described, which is designed for a junior-level chemical engineering "fundamentals of measurements and data analysis" course, where students are introduced to the concept of statistical process control (SPC) through a simple inline mixing experiment. The students learn how to create and analyze control charts in an effort to…

  8. Should in-line filters be used in peripheral intravenous catheters to prevent infusion-related phlebitis? A systematic review of randomized controlled trials.

    Science.gov (United States)

    Niël-Weise, Barbara S; Stijnen, Theo; van den Broek, Peterhans J

    2010-06-01

    In this systematic review, we assessed the effect of in-line filters on infusion-related phlebitis associated with peripheral IV catheters. The study was designed as a systematic review and meta-analysis of randomized controlled trials. We used MEDLINE and the Cochrane Controlled Trial Register up to August 10, 2009. Two reviewers independently assessed trial quality and extracted data. Data on phlebitis were combined when appropriate, using a random-effects model. The impact of the risk of phlebitis in the control group (baseline risk) on the effect of in-line filters was studied by using meta-regression based on the bivariate meta-analysis model. The quality of the evidence was determined by using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) method. Eleven trials (1633 peripheral catheters) were included in this review to compare the effect of in-line filters on the incidence of phlebitis in hospitalized patients. Baseline risks across trials ranged from 23% to 96%. Meta-analysis of all trials showed that in-line filters reduced the risk of infusion-related phlebitis (relative risk, 0.66; 95% confidence interval, 0.43-1.00). This benefit, however, is very uncertain, because the trials had serious methodological shortcomings and meta-analysis revealed marked unexplained statistical heterogeneity (P < 0.0000, I(2) = 90.4%). The estimated benefit did not depend on baseline risk. In-line filters in peripheral IV catheters cannot be recommended routinely, because evidence of their benefit is uncertain.

  9. Effect of inlet conditions for numerical modelling of the urban boundary layer

    Science.gov (United States)

    Gnatowska, Renata

    2018-01-01

    The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.

  10. Storage and Retrieval of Encrypted Data Blocks with In-Line Message Authentication Codes

    NARCIS (Netherlands)

    Bosch, H.G.P.; McLellan Jr, Hubert Rae; Mullender, Sape J.

    2007-01-01

    Techniques are disclosed for in-line storage of message authentication codes with respective encrypted data blocks. In one aspect, a given data block is encrypted and a message authentication code is generated for the encrypted data block. A target address is determined for storage of the encrypted

  11. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  12. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    Science.gov (United States)

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  13. Optimization of X-ray phase-contrast imaging based on in-line holography

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  14. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing; Plume, Stephan; Ernst, Mathias; Croue, Jean-Philippe; Jekel, Martin R.

    2012-01-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  15. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing

    2012-06-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  16. Development of an in-line grout meter for improved quality control

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Gilliam, T.M.

    1991-05-01

    This report documents progress to date on the development of an in-line grout meter and demonstration of its applicability at operating temperature of 50 degree C. The grout meter, which is based on measurement of grout electrical resistance/capacitance, is intended to provide real-time measurements of grout mix ratio (ratio of dry-solids-blend materials to waste). 4 refs., 6 figs., 5 tabs

  17. Reliability and Validity of the Inline Skating Skill Test.

    Science.gov (United States)

    Radman, Ivan; Ruzic, Lana; Padovan, Viktoria; Cigrovski, Vjekoslav; Podnar, Hrvoje

    2016-09-01

    This study aimed to examine the reliability and validity of the inline skating skill test. Based on previous skating experience forty-two skaters (26 female and 16 male) were randomized into two groups (competitive level vs. recreational level). They performed the test four times, with a recovery time of 45 minutes between sessions. Prior to testing, the participants rated their skating skill using a scale from 1 to 10. The protocol included performance time measurement through a course, combining different skating techniques. Trivial changes in performance time between the repeated sessions were determined in both competitive females/males and recreational females/males (-1.7% [95% CI: -5.8-2.6%] - 2.2% [95% CI: 0.0-4.5%]). In all four subgroups, the skill test had a low mean within-individual variation (1.6% [95% CI: 1.2-2.4%] - 2.7% [95% CI: 2.1-4.0%]) and high mean inter-session correlation (ICC = 0.97 [95% CI: 0.92-0.99] - 0.99 [95% CI: 0.98-1.00]). The comparison of detected typical errors and smallest worthwhile changes (calculated as standard deviations × 0.2) revealed that the skill test was able to track changes in skaters' performances. Competitive-level skaters needed shorter time (24.4-26.4%, all p skating skills in amateur competitive and recreational level skaters. Further studies are needed to evaluate the reproducibility of this skill test in different populations including elite inline skaters.

  18. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers

    Directory of Open Access Journals (Sweden)

    Naoki Kabeya

    2014-06-01

    Full Text Available Two-component hydrograph separation using oxygen-18 concentrations was conducted at a sediment runoff observation weir installed in a small subcatchment of a forested gneiss catchment in Japan. The mean soil thickness of this catchment is 7.27 m, which comprises 3.29 m of brown forest soil (A and B layers and a 3.98-m layer of heavily weathered gneiss. Data were collected for a storm on 20–21 May 2003, and the percentage of event water separated by the stable isotope ratio in comparison with the total rainfall amount was about 1%. This value is within the ratio of a riparian zone in a drainage area. Temporal variation of suspended sediment concentration exhibited higher correlation with the event water component than with the total runoff or pre-event water component. This shows that the riparian zone causes rainwater to flow out quickly during a rain event, and that this is an important area of sediment production and transportation in a forested headwater with thick soil and weathered gneiss layers.

  19. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  20. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    The suitability of a commercial scattered light sensor for in-line characterization of fine surfaces in the roughness range Sa 1 – 30 nm generated by the Robot Assisted Polishing (RAP) was investigated and validated. A number of surfaces were generated and directly measured with the scattered light...

  1. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kononova

    2017-12-01

    Full Text Available Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3− for sulfoethylcellulose show high permselectivity (the water content in the permeate was 100%. Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  2. Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body

    Science.gov (United States)

    Das, S. P.; Srinivasan, U.; Arakeri, J. H.

    2013-07-01

    Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.

  3. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  4. Filtration of lager beer with microsieves: Flux, permeate haze and in-line microscope observations

    NARCIS (Netherlands)

    Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Raspe, Onno; van Wolferen, Hendricus A.G.M.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    Membrane fouling during filtration of lager beer with microsieves was studied through in-line microscope observations. It was observed that the main fouling was caused by micrometre-sized particles, presumably aggregated proteins. These particles formed flocks covering parts of the membrane surface.

  5. Simultaneous Multiple-Location Separation Control

    Science.gov (United States)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  6. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco; Kumar, Vikas; Scopigno, Tullio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2017-01-01

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  7. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco

    2017-08-31

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  8. A non-iterative twin image elimination method with two in-line digital holograms

    Science.gov (United States)

    Kim, Jongwu; Lee, Heejung; Jeon, Philjun; Kim, Dug Young

    2018-02-01

    We propose a simple non-iterative in-line holographic measurement method which can effectively eliminate a twin image in digital holographic 3D imaging. It is shown that a twin image can be effectively eliminated with only two measured holograms by using a simple numerical propagation algorithm and arithmetic calculations.

  9. Solution In-Line Alpha Counter (SILAC) Instruction Manual-Version 4.00

    International Nuclear Information System (INIS)

    Alferink, Steven M.; Farnham, Joel E.; Fowler, Malcolm M.; Wong, Amy S.

    2002-01-01

    The Solution In-Line Alpha Counter (SILAC) provides near real-time alpha activity measurements of aqueous solutions in gloveboxes located in the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The SILAC detector and its interface software were first developed by Joel Farnham at LANL [1]. This instruction manual describes the features of the SILAC interface software and contains the schematic and fabrication instructions for the detector

  10. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms.

    Science.gov (United States)

    Orzó, László

    2015-06-29

    Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

  11. Estimating genetic parameters for fertility in dairy cows from in-line milk progesterone profiles

    NARCIS (Netherlands)

    Tenghe, A.M.M.; Bouwman, A.C.; Berglund, B.; Strandberg, E.; Blom, J.; Veerkamp, R.F.

    2015-01-01

    The aim of this study was to define endocrine fertility traits from in-line milk progesterone (P4) records and to estimate genetic parameters for these traits. Correlations of classical fertility (calving interval and calving to first service) and milk production traits with endocrine fertility

  12. Embedded vision equipment of industrial robot for inline detection of product errors by clustering–classification algorithms

    Directory of Open Access Journals (Sweden)

    Kamil Zidek

    2016-10-01

    Full Text Available The article deals with the design of embedded vision equipment of industrial robots for inline diagnosis of product error during manipulation process. The vision equipment can be attached to the end effector of robots or manipulators, and it provides an image snapshot of part surface before grasp, searches for error during manipulation, and separates products with error from the next operation of manufacturing. The new approach is a methodology based on machine teaching for the automated identification, localization, and diagnosis of systematic errors in products of high-volume production. To achieve this, we used two main data mining algorithms: clustering for accumulation of similar errors and classification methods for the prediction of any new error to proposed class. The presented methodology consists of three separate processing levels: image acquisition for fail parameterization, data clustering for categorizing errors to separate classes, and new pattern prediction with a proposed class model. We choose main representatives of clustering algorithms, for example, K-mean from quantization of vectors, fast library for approximate nearest neighbor from hierarchical clustering, and density-based spatial clustering of applications with noise from algorithm based on the density of the data. For machine learning, we selected six major algorithms of classification: support vector machines, normal Bayesian classifier, K-nearest neighbor, gradient boosted trees, random trees, and neural networks. The selected algorithms were compared for speed and reliability and tested on two platforms: desktop-based computer system and embedded system based on System on Chip (SoC with vision equipment.

  13. In-line digital holographic sensor for monitoring and characterizing marine particulates

    International Nuclear Information System (INIS)

    Owen, Robert B.; Zozulya, Alex A.

    2000-01-01

    We report an in-line digital holographic sensor (DHS) for monitoring and characterizing marine particulates. This system images individual particles over a deep depth of field (>25 cm) with a resolution of 5 μm. The DHS projects a collimated beam through the water column and onto a lensless CCD array. Some light is diffracted by particulates and forms an object beam; the undeflected remainder constitutes the reference beam. The two beams combine at the CCD array and create an in-line hologram, which is then numerically reconstructed. The DHS eliminates many problems traditionally associated with holography. The CCD recording material considerably lowers the exposure time and eliminates most vibration problems. The laser power needs are low; the DHS uses a small 10-mW diode laser. Rapid numerical reconstruction eliminates photographic processing and optical reconstruction. We successfully operated the DHS underwater on a remotely operated vehicle; our test results include tracing a single particle from one hologram to the next, thus deriving a velocity vector for marine mass transport. We outline our digital holographic reconstruction procedure, and present our graphical user interface and user software tools. The DHS is particularly useful for providing in situ ground-truth measurements for environmental remote sensing. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  14. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    Science.gov (United States)

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies. Copyright © 2013. Published by Elsevier B.V.

  15. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Performance Enhancement of the In-Line Fan Equipped with the Guiding Vane and the Tail Body

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Yen

    2014-02-01

    Full Text Available This integrated numerical and experimental study intends to enhance the performance of an in-line fan with the implement of the guiding vane and the tail body. At first the flow flied associated with the original in-line fan is simulated and analyzed within the framework of CFD code Fluent, in which the finite volume method is applied. Next, the guiding vane is constructed based on the calculated flow characteristics, and attached in the downstream of rotor to smoothen the flow pattern. An appropriate guiding vane with high-performance and low-noise features can be achieved after several design iterations. In addition, the tail body connected to the motor is introduced for further enhancing the fan performance by reducing the sizes of wake and reversed flow behind the hub. Thereafter, to manufacture the mockup for experimental verification, the modified fan with guiding vane is plotted in the CAD/CAM format for mockup fabrication via the rapid-prototype technique. Moreover, a set of relations correlating the performance and noise of this fan prototype are executed inside AMCA test chamber and semianechoic chamber, respectively. Consequently, the feasibility of design scheme and numerical system can be verified according to these experimental results. In summary, this work provides a systematic scheme for designing and analyzing the in-line fan.

  17. Intraindividuální komparace vybraných koordinačních ukazatelů bruslařského kroku na ledě a při in-line

    OpenAIRE

    Hospůdka, Jakub

    2010-01-01

    4 Summary: Title: Intraindividual comparison of selected indicators of coordinating steps on the ice skating and in-line. Objective: Assessment of coordination relationship rate of the skating forward during ice hockey and inline skating. Methods: Surface electromyography combinated with kinematography analysis used synchronized video recording. Results: Kinesiological content of movement during ice skating and inline skating is not the same. The general stereotype of the skating step is sign...

  18. Laser based thermo-conductometry as an approach to determine ribbon solid fraction off-line and in-line.

    Science.gov (United States)

    Wiedey, Raphael; Šibanc, Rok; Kleinebudde, Peter

    2018-06-06

    Ribbon solid fraction is one of the most important quality attributes during roll compaction/dry granulation. Accurate and precise determination is challenging and no in-line measurement tool has been generally accepted, yet. In this study, a new analytical tool with potential off-line as well as in-line applicability is described. It is based on the thermo-conductivity of the compacted material, which is known to depend on the solid fraction. A laser diode was used to punctually heat the ribbon and the heat propagation monitored by infrared thermography. After performing a Gaussian fit of the transverse ribbon profile, the scale parameter σ showed correlation to ribbon solid fraction in off-line as well as in-line studies. Accurate predictions of the solid fraction were possible for a relevant range of process settings. Drug stability was not affected, as could be demonstrated for the model drug nifedipine. The application of this technique was limited when using certain fillers and working at higher roll speeds. This study showed the potentials of this new technique and is a starting point for additional work that has to be done to overcome these challenges. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2015-01-01

    Full Text Available The paper presents a conducted experimental study of the heat exchange intensification on the surfaces covered with a regular vortex-generating relief that is an in-line array of the shallow hemispherical dimples. Using 12 configuration options with the Reynolds numbers in the range of (0.2-7.0 106 as an example, it analyses how a longitudinal and cross step of the in-line dimple array (density dimples effects on the processes of heat exchange intensification and resistance.The monocomponent strain-gauge balance allows us to define a value of the resistance coefficient by direct weighing of models (located in parallel in a flow of "relief" and smooth "reference" ones being under study. Distribution fields of heat – transfer factor are determined by recording a cooling process of the surface of studied models having high spatial and temporary resolution. All researches were conducted with one-shot data record of these thermal and hydraulic measurements for the smooth (reference surfaces and the studied surfaces covered with a regular vortex-generating relief (dimples. The error of determined parameters was no more than ±5%.The oil-sooty method allows us to visualize flow around a regular relief and obtain a flow pattern for 12 options of dimples configuration. The analysis has been carried out and a compliance of the flow patterns with the field of heat-transfer factors has been obtained.It has been found that for the in-line configuration a Reynolds analogy factor for most models is nonlinearly dependent on the Reynolds number. The friction intensification, at first, falls (to some Reynolds number and, further, starts increasing, tending to the friction intensification value with self-similarity flow around. Thus with increasing Reynolds number, the heattransfer factor intensification falls (more slowly than resistance intensification.

  20. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    Science.gov (United States)

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process.

  1. An inline ion-exchange system in a chemiluminescence-based analyzer for direct analysis of N-nitrosamines in treated wastewater.

    Science.gov (United States)

    Kodamatani, Hitoshi; Roback, Shannon L; Plumlee, Megan H; Ishida, Kenneth P; Masunaga, Hiroto; Maruyama, Noboru; Fujioka, Takahiro

    2018-04-13

    A newly developed, ion exchange-based inline pretreatment system was used to mitigate the effect of background constituents in natural water and treated wastewater to achieve rapid, reliable, and sensitive analysis of N-nitrosamines. The pretreatment system (anion exchange module, AEM) was incorporated into a high-performance liquid chromatograph (HPLC) coupled with a photochemical reactor (PR) and chemiluminescence (CL) detector (HPLC-PR-CL), which can analyze four hydrophilic N-nitrosamines at ng/L levels. This system requires no pre-concentration of the water sample nor the use of deuterated surrogates, unlike other conventional N-nitrosamine analytical techniques. The AEM converted anions in the eluent to hydroxide ions after HPLC separation and increased eluent pH, allowing for the subsequent photochemical reactions, which are otherwise achieved by pH conditioning with an additional dosing pump of basic chemical. The AEM also removed anionic interfering compounds (e.g. nitrate) from the samples, allowing for improved N-nitrosamine analysis in treated wastewater. The operating conditions of the AEM and PR were optimized to obtain sensitive and stable analytical performance. As a result, the lowest-concentration minimum reporting levels of N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N- nitrosopyrrolidine using the optimized system were 0.42, 0.54, 0.58, and 1.4 ng/L, respectively. The improved analytical method was validated by comparing the results with a conventional method based on gas chromatography coupled with a mass spectrometric ion trap detector. These results indicated that HPLC-PR-CL equipped with an inline AEM can be competitively applied as a rapid analytical technique for the determination of N-nitrosamines in various water matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  3. Protein Adsorption to In-Line Filters of Intravenous Administration Sets.

    Science.gov (United States)

    Besheer, Ahmed

    2017-10-01

    Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Demissie, E.A.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Laminar mixing by the inline-mixing principle is key to many industrial fluids-engineering systems of size extending from microns to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains

  5. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  6. Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon

    Science.gov (United States)

    Xi, Teli; Dou, Jiazhen; Di, Jianglei; Li, Ying; Zhang, Jiwei; Ma, Chaojie; Zhao, Jianlin

    2017-06-01

    Short-coherence in-line phase-shifting digital holographic microscopy based on Michelson interferometer is proposed to measure internal structure in silicon. In the configuration, a short-coherence infrared laser is used as the light source in order to avoid the interference formed by the reference wave and the reflected wave from the front surface of specimen. At the same time, in-line phase-shifting configuration is introduced to overcome the problem of poor resolution and large pixel size of the infrared camera and improve the space bandwidth product of the system. A specimen with staircase structure is measured by using the proposed configuration and the 3D shape distribution are given to verify the effectiveness and accuracy of the method.

  7. In-line UV spectroscopy for the quantification of low-dose active ingredients during the manufacturing of pharmaceutical semi-solid and liquid formulations.

    Science.gov (United States)

    Bostijn, N; Hellings, M; Van Der Veen, M; Vervaet, C; De Beer, T

    2018-07-12

    UltraViolet (UV) spectroscopy was evaluated as an innovative Process Analytical Technology (PAT) - tool for the in-line and real-time quantitative determination of low-dosed active pharmaceutical ingredients (APIs) in a semi-solid (gel) and a liquid (suspension) pharmaceutical formulation during their batch production process. The performance of this new PAT-tool (i.e., UV spectroscopy) was compared with an already more established PAT-method based on Raman spectroscopy. In-line UV measurements were carried out with an immersion probe while for the Raman measurements a non-contact PhAT probe was used. For both studied formulations, an in-line API quantification model was developed and validated per spectroscopic technique. The known API concentrations (Y) were correlated with the corresponding in-line collected preprocessed spectra (X) through a Partial Least Squares (PLS) regression. Each developed quantification method was validated by calculating the accuracy profile on the basis of the validation experiments. Furthermore, the measurement uncertainty was determined based on the data generated for the determination of the accuracy profiles. From the accuracy profile of the UV- and Raman-based quantification method for the gel, it was concluded that at the target API concentration of 2% (w/w), 95 out of 100 future routine measurements given by the Raman method will not deviate more than 10% (relative error) from the true API concentration, whereas for the UV method the acceptance limits of 10% were exceeded. For the liquid formulation, the Raman method was not able to quantify the API in the low-dosed suspension (0.09% (w/w) API). In contrast, the in-line UV method was able to adequately quantify the API in the suspension. This study demonstrated that UV spectroscopy can be adopted as a novel in-line PAT-technique for low-dose quantification purposes in pharmaceutical processes. Important is that none of the two spectroscopic techniques was superior to the other

  8. Measurement of the forward-backward asymmetry in top quark-antiquark production in inline'>pp¯ collisions using the inline'>lepton+jets channel

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Falkowski, A.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orbaker, D.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-10-01

    We present a measurement of the forward–backward asymmetry in top quark–antiquark production using the full Tevatron Run II data set collected by the D0 experiment at Fermilab. The measurement is performed in <inline-formula>inline">lepton+jets-formula> final states using a new kinematic fitting algorithm for events with four or more jets and a new partial reconstruction algorithm for events with only three jets. Corrected for detector acceptance and resolution effects, the asymmetry is evaluated to be <inline-formula>inline">AFB=(10.6±3.0)%inline-formula>. Results are consistent with the standard model predictions which range from 5.0% to 8.8%. We also present the dependence of the asymmetry on the invariant mass of the top quark–antiquark system and the difference in rapidities of the top quark and antiquark.

  9. Surgical Repair of an Impalement Genital Injury from an Inline Skating Accident in a 7-Year-Old Prepubertal Girl: A Case Report.

    Science.gov (United States)

    Csorba, Roland; Engel, Joerg B; Wieg, Christian

    2017-02-01

    In girls who present with vaginal trauma, sexual abuse is often the primary diagnosis. The differential diagnosis must include patterns and the mechanism of injury that differentiate accidental injuries from inflicted trauma. A 7-year-old prepubertal girl presented to the emergency department with genital bleeding after a serious accidental impaling injury from inline skating. After rapid abduction of the legs and a fall onto the blade of an inline skate this child incurred an impaling genital injury consistent with an accidental mechanism. The dramatic genital injuries when repaired healed with almost imperceptible residual evidence of previous trauma. To our knowledge, this case report represents the first in the medical literature of an impaling vaginal trauma from an inline skate and describes its clinical and surgical management. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  10. The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology.

    Science.gov (United States)

    Holland, Tanja; Blessing, Daniel; Hellwig, Stephan; Sack, Markus

    2013-10-01

    Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  12. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  13. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    Science.gov (United States)

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  14. Simultaneous in-line concentration for spectrophotometric determination of cations and anions

    Directory of Open Access Journals (Sweden)

    Rocha Fábio R. P

    2004-01-01

    Full Text Available A flow system is proposed for simultaneous in-line concentration of cations and anions. A sliding-bar commutator was employed to insert an anion and a cation exchange column into a flowing sample stream for serial retention of the analytes. In the injector alternative position, different solutions flowed through the columns for parallel elution of the species in different analytical paths. Three-way solenoid valves allowed the intermittent reagent introduction in the sample zones. Signals were measured by employing two flow-through LED-based detectors. The simultaneous retention of the sample zones in coiled reactors can be also performed to increase the residence time and the analyte conversion rate. The analytical potentiality was demonstrated by the in-line concentration of ammonium and phosphate followed by spectrophotometric detection. For a 90 s loading time, the sampling rate was estimated as 40 determinations per hour, which is three-fold higher than the obtained without performing the tasks simultaneously. Enrichment factors of 8.0 and 18 were estimated for phosphate and ammonium, respectively, yielding detection limits of 1 mg L-1 PO4(3- and 1 mg L-1 NH4+ (99.7% confidence level. The reagent consumption was lower than 2 mg per determination. Results for freshwater samples agreed with the obtained by reference APHA procedures at the 95% confidence level.

  15. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. In-line femtosecond common-path interferometer in reflection mode.

    Science.gov (United States)

    Chandezon, J; Rampnoux, J-M; Dilhaire, S; Audoin, B; Guillet, Y

    2015-10-19

    An innovative method to perform femtosecond time-resolved interferometry in reflection mode is proposed. The experiment consists in the combined use of a pump-probe setup and of a fully passive in-line femtosecond common-path interferometer. The originality of this interferometer relies on the use of a single birefringent crystal first to generate a pair of phase-locked pulses and second to recombine them to interfere. As predicted by analytical modeling, this interferometer measures the temporal derivative of the ultrafast changes of the complex optical reflection coefficient of the sample. Working conditions are illustrated through picosecond opto-acoustic experiments on a thin film.

  17. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of a transonic separating/reattaching shear layer by means of PIV

    Directory of Open Access Journals (Sweden)

    S. Scharnowski

    2015-01-01

    Full Text Available The separating/reattaching flow over an axisymmetric backward-facing step is analyzed experimentally by means of particle image velocimetry (PIV. The main purpose of the measurements is the investigation of the mean flow field as well as of the Reynolds stress distributions at a Mach number of 0.7 and at a Reynolds number of 3.3×105 based on the step height. Due to the strong progress of optical flow measurements in the last years it was possible to resolve all flow scales down to 180μm (≈1% of the step height with high precision. Thanks to the high spatial resolution it was found for the first time that the Reynolds stress distribution features a local minimum between the first part of the shear layer and a region inside the recirculation region. This implies a more complex wake dynamics than assumed before.

  19. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count

    NARCIS (Netherlands)

    Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H.

    2008-01-01

    This study explored the potential value of in-line composite somatic cell count (ISCC) sensing as a sole criterion or in combination with quarter-based electrical conductivity (EC) of milk, for automatic detection of clinical mastitis (CM) during automatic milking. Data generated from a New Zealand

  20. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  1. SICS. A Sensor-Based In-Line Control System for the Surfaces of Continuously Cast Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tzyy-Shuh [OG Technologies, Inc., Ann Arbor, MI (United States)

    2013-09-23

    The Phase II project has been carried out in accordance to the proposed tasks and budget, based on the original and extended schedule. The R&D team designed and implemented the test unit for the full width coverage, installed the unit in a caster. The development work further included enhanced image processing, in-depth defect study and process control models. The function, operation, and maintenance of the SICS was thoroughly studied during the Phase II research. The experience indicates additional hardware and procedures are required to make the SICS a commercially ready product in operation and maintenance aspect. Such developments have been finished and the team is contacting potential customers for the first commercial installation of SICS. Additionally, OGT is exploring the possibility to team up with a US company that specializes in surface cleaning for slabs/blooms/billets such that the in-line surface inspection can be integrated with in-line surface clean up for the maximum benefit to the steel industry.

  2. 40 CFR 63.1344 - Operating limits for kilns and in-line kiln/raw mills.

    Science.gov (United States)

    2010-07-01

    ... kiln/raw mills. 63.1344 Section 63.1344 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... mills. (a) The owner or operator of a kiln subject to a D/F emission limitation under § 63.1343 must... specified in paragraph (b) of this section. The owner or operator of an in-line kiln/raw mill subject to a D...

  3. Numerical Models for Exact Description of in-situ Digital In-Line Holography Experiments with Irregularly-Shaped Arbitrarily-Located Particles

    Directory of Open Access Journals (Sweden)

    Marc Brunel

    2015-04-01

    Full Text Available We present the development of a numerical simulator for digital in-line holography applications. In-line holograms of arbitrarily shaped and arbitrarily located objects are calculated using generalized Huygens-Fresnel integrals. The objects are 2D opaque or phase objects. The optical set-up is described by its optical transfer matrix. A wide variety of optical systems, involving windows, spherical or cylindrical lenses, can thus be taken into account. It makes the simulator applicable for design and description of in situ experiments. We discuss future applications of this simulator for detection of nanoparticles in droplets, or calibration of airborne instruments that detect and measure ice crystals in the atmosphere.

  4. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  5. Pain originating from the sacroiliac joint is a common non-traumatic musculoskeletal complaint in elite inline-speedskaters - an observational study

    Directory of Open Access Journals (Sweden)

    Ruhe Alexander

    2012-03-01

    Full Text Available Abstract Study design Observational study Objectives To investigate common non-traumatic musculoskeletal complaints of the low back in elite inline-speedskaters of the German national team. Summary of background data Traumatic injuries associated with falls or collisions are well documented in speedskaters but so far no studies have investigated non-traumatic low back pain. Previously, the sacroiliac joint was suspected as a frequent origin of complaint, we aimed to investigate this assumption. Methods Two chiropractors examined elite inline-speedskaters of the German national team during three sports events between summer 2010 and 2011. A test cluster of five provocative tests for the sacroiliac joint was selected based on reliability and validity. Results A total of 37 examinations were conducted on 34 athletes with low back pain during the three sport events. The reported pain intensities ranged from mild to moderate pain (VAS 23.4 ± 13.4 to 35.1 ± 19.2. About 90% of cases showed involvement of the SI joint of which again 90% presented with left sided symptoms. Conclusions Non-traumatic complaints of the low back originating from the left sacroiliac joint frequently occur in competitive inline speedskaters.

  6. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used

  7. In-line metallurgical process control in the steel industry

    International Nuclear Information System (INIS)

    Wanin, M.

    1993-01-01

    The steel products manufacturing involves a long line of complex processes: liquid metal elaboration, solidification, hot and cold transformation by rolling surface protection by coating. The Process Control aims at improving global productivity and quality of the resulting products by optimizing each elementary process as well as management of tools or workshops interfaces. Complex processes, involving generally many variables, require for their control more or less sophisticated models. These process models are either analytical when physical and thermodynamical mechanisms are known or statistical or knowledge based, according to circumstances. In any case, it is necessary to have a reliable and precise instrumentation to adjust undetermined parameters during model development and to be able to take into account external parameters variability during current working. This instrumentation concerns both running of machines and testing of manufactured materials under harsh environment conditions of Iron and Steel industry: temperature, dusts, steam, electromagnetic interferences, vibrations, .. . In this context, in-line Non Destructive Testing methods contribute efficienly because they may give directly and in real time products characteristics, integrating both drifts of machines and sensors due to their ageing and the abnormal spread of material entering the process. These methods induce the development of sophisticated inspection equipments whose strategic significance is such that their failure to operate can require production shutdown. The paper gives some representative examples of improvement of the accuracy of an in-line measurement or controlling of elementary processes or processes interfaces: temperature measurement by infrared pyrometry, thickness profile determination by X-ray array sensor, recrystallization control in continuous by X-ray and ultrasonic methods, automatic detection and indentification of surface defects by optics, cracks detection on

  8. Development of an Inline Dry Power Inhaler That Requires Low Air Volume.

    Science.gov (United States)

    Farkas, Dale; Hindle, Michael; Longest, P Worth

    2017-12-20

    Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 μm; fine particle fraction <5 μm (FPF <5μm ) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 μm; FPF <5μm  = 89.3%) that was marginally higher than the initial deaggregation target. The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow

  9. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  10. Industrial complex in organizing the high-speed in-line construction of reactor compartments at the Balakovo NPP

    International Nuclear Information System (INIS)

    Maksakov, A.I.; Kovrigin, Yu.K.; Zhila, V.P.

    1986-01-01

    Qualitatively new technology of reactor compartment construction presupposing organizing of an industrial-mounting in-line complex is described. Maximum level of construction industrialization and noticeable reduction of construction duration are noted to be ensured by means of this technology

  11. Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter.

    Science.gov (United States)

    Ding, Ruihua; Ung, W Lloyd; Heyman, John A; Weitz, David A

    2017-01-01

    Active manipulation of droplets is crucial in droplet microfluidics. However, droplet polydispersity decreases the accuracy of active manipulation. We develop a microfluidic "droplet filter" that accurately separates droplets by size. The droplet filter has a sharp size cutoff and is capable of distinguishing droplets differing in volume by 20%. A simple model explains the behavior of the droplets as they pass through the filter. We show application of the filter in improving dielectric sorting efficiency.

  12. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    used for every day. We investigated the capability of inline UV-Vis spectroscopy to elucidate the dynamics of CIP of membrane filtration plants as a gateway to control and optimize the process. For this investigation aged membranes that had been used for industrial ultrafiltration of whey were...

  13. Cardiorespiratory demands during an inline speed skating marathon race: a case report.

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-09-01

    This study was designed to investigate the intensity profile during an inline speed skating marathon road race. A highly-trained male athlete (20 y, 73.4 kg, 178 cm, V̇O2 peak: 60.8 mL·kg-1·min-1) participated in a marathon road race. Oxygen uptake (V̇O2), respiratory exchange ratio (RER), heart rate (HR) and speed were measured using a portable gas analysis system with a HR monitor and GPS-Sensor integrated. The athlete´s peak V̇O2, HR and speed at ventilatory thresholds were assessed during an incremental field test (22 km·h-1, increase 2 km·h-1 every 5 min) one week before the race. During the race, the absolute time spent in the "easy intensity zone" (V̇O2 below VT1) was 1 min, 49 min "moderate intensity zone" (V̇O2 between VT1 and VT2), and 26 min in the "hard intensity zone" (V̇O2 above VT2). The average HR was 171±6 bpm, corresponding to 95% of the maximum. This study shows that inline speed skating road races over a marathon are conducted at moderate to high V̇O2 and heart rate levels. The physiological racing pattern is very intermittent, requiring both a high level of aerobic and anaerobic capacity.

  14. High efficiency and flexible working distance digital in-line holographic microscopy based on Fresnel zone plate

    International Nuclear Information System (INIS)

    Tian, Peng; Yang, Fan; Li, Fanxing; Hu, Song; Yan, Wei; Hua, Yilei

    2017-01-01

    Traditional digital in-line holography suffers from twin-image noise problems and extremely short working distances between the object and light source. Here, we propose lensless Fourier transform digital in-line holographic microscopy based on a single optical element. A Fresnel zone plate is used to split the incident light into two parts: one is scattered along the original direction, the other is gathered at a focal point and the sample is put behind the focus. The interference fringe pattern, formed by the two beams, is recorded digitally by a CCD camera. A novel reconstruction algorithm is proposed to present the object image. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem, improving the image contrast with high efficiency, and increasing the flexibility of the working distance. Furthermore, a wide field of view and no contact make it a promising tool for the study of materials science, biology and microelectronics. (paper)

  15. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  16. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  17. Inline state of health estimation of lithium-ion batteries using state of charge calculation

    Science.gov (United States)

    Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann

    2015-12-01

    The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.

  18. Anisotropic membranes for gas separation

    Science.gov (United States)

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  19. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed Satellite Service (FSS) Bands. 25.261 Section 25.261 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  20. Physiological and technical commitment during a 300-m in-line skating trial in athletes of different age categories.

    Science.gov (United States)

    Invernizzi, Pietro L; Scurati, Raffaele; Crotti, Matteo; Bosio, Andrea; Longo, Stefano; Esposito, Fabio

    2018-01-04

    This study investigated the differences in strength, technique and time performance in in-line skaters of three age categories during a 300 m trial. Possible correlations among these variables were also assessed. Thirty-six elite in-line skaters (Cadets, Juniors and Seniors, n=12 each; 14±1, 16±1, and 24±6 years of age, respectively) performed a 300-m trial on an outdoor oval track. Total time (Ttot), 100-m fractions and duration of each skating technique (initial acceleration phase, straight push and cross-over) were recorded. A squat jump (SJ) was performed before and after the trial. Heart rate, blood lactate concentration ([La-]) and rate of perceived exertion (RPE) were collected before, during and at the end of the trial. Ttot was longer and SJ lower in Cadets compared to the other groups. Seniors employed the cross-over technique for a longer period than the straight push technique, compared to Juniors and Cadets. Ttot correlated negatively with SJ in Seniors. The number of significant correlations between skating techniques' duration and both Ttot and SJ increased with age category. No differences among groups were found for heart rate, [La-] and RPE. With increasing age category, leg strength appeared to be the more related aspect to skating performance. To improve 300-m in-line skating performance, trainers should pay particular attention to the enhancement of leg strength and cross-over skating technique.

  1. Separation, fractionation, concentration and drying of food products: Final report, March 4, 1987--March 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, C.A.; Rose, W.W.; Pedersen, L.D.; Brewbaker, P.L.

    1988-03-01

    This project studied energy efficient processes for separation, fractionation, concentration, drying, and recombination of food products, in order to reduce energy requirements for processing, preservation, and transportation. The project had three phases. In the laboratory-scale phase, results of which are summarized in this report, tomato puree was separated by three methods: conventional vacuum filtration, centrifugation, and crossflow microfiltration to produce pulp and serum. Three methods of recombination were examined: homogenizing, stomacher blending, and static (in-line) mixing. Satisfactory recombined purees were obtained. In addition, after centrifugation, the pulp was rinsed producing rinsed-pulp, and the rinse water was added to the serum producing rinse/serum. The rinse/serum was concentrated by evaporation. This was recombined with the rinsed-pulp and water producing satisfactory puree. 11 refs., 18 figs., 18 tabs.

  2. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K.

    2016-01-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key points In addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  3. Composition-dependent phase separation effects of organic solar cells using P3HT:PCBM as active layer and chromium oxide as hole transporting layer

    International Nuclear Information System (INIS)

    Qin Pingli; Fang Guojia; Sun Nanhai; Fan Xi; Zheng Qiao; Chen Fei; Wan Jiawei; Zhao Xingzhong

    2011-01-01

    Phase separation of the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) active layer (ATL) was investigated by varying their relative ratio in the organic solar cells (OSCs). With the help of the UV/visible spectrophotometer, optical microscopy and scanning electron microscope, we found that the cluster of PCBM at the interface or surface was affected by Al cathode, the composition of the blends and thermal annealing. The disc-like shape crystals of PCBM substituted for the needle-like ones at higher PCBM compositions at the ATL/Al interface, which led to stronger contacts and bigger contact area. It could make short circuit current density increase, but may affect the blend morphology and result in parallel resistance and open circuit voltage decreased with the PCBM ratio increasing from 40 to 60%. The microstructure of the P3HT:PCBM ATL, determined by the composition dependent phase separation, supported the optimized performance of the OSCs with the composition of 40-50% PCBM.

  4. Spontaneous layering of porous silicon layers formed at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Parkhutik, Vitali; Curiel-Esparza, Jorge; Millan, Mari-Carmen [R and D Center MTM, Technical University of Valencia, Valencia (Spain); Albella, Jose [Institute of Materials Science (ICMM CSIC) Madrid (Spain)

    2005-06-01

    We report here a curious effect of spontaneous fracturing of the silicon layers formed in galvanostatic conditions at medium and high current densities. Instead of formation of homogeneous p-Si layer as at low currents, a stack of thin layers is formed. Each layer is nearly separated from others and possesses rather flat interfaces. The effects is observed using p{sup +}-Si wafers for the p-Si formation and starts being noticeable at above 100 mA/cm{sup 2}. We interpret these results in terms of the porous silicon growth model where generation of dynamic mechanical stress during the p-Si growth causes sharp changes in Si dissolution mechanism from anisotropic etching of individual needle-like pores in silicon to their branching and isotropic etching. At this moment p-Si layer loses its adhesion to the surface of Si wafer and another p-Si layer starts growing. One of the mechanisms triggering on the separation of p-Si layers from one another is a fluctuation of local anodic current in the pore bottoms associated with gas bubble evolution during the p-Si formation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Yangwei Liu

    2014-11-01

    Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.

  6. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    Science.gov (United States)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  7. Narrow line-width Tm3+ doped double-clad silica fiber laser based on in-line cascade biconical tapers filter

    International Nuclear Information System (INIS)

    Tian, Y; Zhao, J Q; Wang, W; Wang, Y Z; Gao, W

    2010-01-01

    Narrow line-width 793 nm laser diode cladding pumped Tm 3+ doped double cladding silica fiber laser with in-line four concatenated tapers filter was reported for the first time to our knowledge. These cascade tapers located 3.6 cm from the output end of the fiber laser was fabricated by heating and stretching method. The taper's transmitted power response as a function of wavelength was described by using local mode coupling theory and successive tapers filter model. The wavelength filter function of the in-line cascade tapers in a linear cavity fiber laser was demonstrated, and the experimental result agreed with these theories. The maximum output laser power was 736 mW, corresponding to single peak of laser spectrum with narrow line-width of ∼ 60 pm

  8. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    Science.gov (United States)

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    International Nuclear Information System (INIS)

    Zeng Yanwei; Tian Changan; Liu Junliang

    2006-01-01

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut) 4 /alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut) 4 molecules in the films was found to show an incubation period of ∼15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut) 4 /PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut) 4 (∼1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to ∼10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut) 4 since these clusters act as a fast diffusion network due to percolation effect

  10. Miniaturized fiber in-line interferometer fabricated by femtosecond laser micromachining

    International Nuclear Information System (INIS)

    Wang, D.N.; Ying Wang

    2010-01-01

    Complete text of publication follows. An in-line fiber MZI is attractive due to its simplicity and compactness. Various types of in-line fiber MZI structures have been developed, based on interference between the fundamental core mode and the higher order cladding mode, with size of typically in the order of millimeters or centimeters, and have very small effective refractive index (RI) difference between the core mode and the cladding mode ( in1 and I in2 . While I in1 remains traveling along the fiber core, I in2 has to propagate through the micro-cavity, and the interference happens when the two output beams recombine at the fiber core. The essential difference between our MZI and those reported previously lies in the fact that our device is based on the interference of the guided mode in the core and the unguided mode travelling through the micro-cavity. The RI difference between the two arms of the MZI is very large (> 0.10), which allows a dramatic reduction of the cavity length while maintaining a high RI sensitivity. Moreover, the position of the RI change can be precisely located due to the small size of the micro-cavity. The interferometer created in this work exhibits a high RI sensitivity, ∼ -9370 nm/RIU (refractive index unit) within the RI range between 1.31 and 1.335. Moreover, a precise sensing location can be ensured owing to the small size of the interferometer. Such a fiber device has high potential in chemical and biological sensor applications. Acknowledgement. This work was supported by Hong Kong SAR government through a GRF (general research fund) grant PolyU 5306/08E and The Hong Kong Polytechnic University Research Grant A-SA52.

  11. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    Science.gov (United States)

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  12. Performance characteristics of a novel blood bag in-line closure device and subsequent product quality assessment

    Science.gov (United States)

    Serrano, Katherine; Levin, Elena; Culibrk, Brankica; Weiss, Sandra; Scammell, Ken; Boecker, Wolfgang F; Devine, Dana V

    2010-01-01

    BACKGROUND In high-volume processing environments, manual breakage of in-line closures can result in repetitive strain injury (RSI). Furthermore, these closures may be incorrectly opened causing shear-induced hemolysis. To overcome the variability of in-line closure use and minimize RSI, Fresenius Kabi developed a new in-line closure, the CompoFlow, with mechanical openers. STUDY DESIGN AND METHODS The consistency of the performance of the CompoFlow closure device was assessed, as was its effect on component quality. A total of 188 RBC units using CompoFlow blood bag systems and 43 using the standard bag systems were produced using the buffy coat manufacturing method. Twenty-six CompoFlow platelet (PLT) concentrates and 10 control concentrates were prepared from pools of four buffy coats. RBCs were assessed on Days 1, 21, and 42 for cellular variables and hemolysis. PLTs were assessed on Days 1, 3, and 7 for morphology, CD62P expression, glucose, lactate, and pH. A total of 308 closures were excised after processing and the apertures were measured using digital image analysis. RESULTS The use of the CompoFlow device significantly improved the mean extraction time with 0.46 ± 0.11 sec/mL for the CompoFlow units and 0.52 ± 0.13 sec/mL for the control units. The CompoFlow closures showed a highly reproducible aperture after opening (coefficient of variation, 15%) and the device always remained opened. PLT and RBC products showed acceptable storage variables with no differences between CompoFlow and control. CONCLUSIONS The CompoFlow closure devices improved the level of process control and processing time of blood component production with no negative effects on product quality. PMID:20529007

  13. HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.

    2006-01-01

    HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations

  14. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  15. A method for the inline measurement of milk gel firmness using an optical sensor.

    Science.gov (United States)

    Arango, O; Castillo, M

    2018-05-01

    At present, selection of cutting time during cheesemaking is made based on subjective methods, which has effects on product homogeneity and has prevented complete automation of cheesemaking. In this work, a new method for inline monitoring of curd firmness is presented. The method consisted of developing a model that correlates the backscatter ratio of near infrared light during milk coagulation with the rheological storage modulus. The model was developed through a factorial design with 2 factors: protein concentration (3.4 and 5.1%) and coagulation temperature (30 and 40°C). Each treatment was replicated 3 times; the model was calibrated with the first replicate and validated using the remaining 2 replicates. The coagulation process was simultaneously monitored using an optical sensor and small-amplitude oscillatory rheology. The model was calibrated and successfully validated at the different protein concentrations and coagulation temperatures studied, predicting the evolution of storage modulus during milk coagulation with coefficient of determination values >0.998 and standard error of prediction values <3.4 Pa. The results demonstrated that the proposed method allows inline monitoring of curd firming in cheesemaking and cutting the curd at a proper firmness to each type of cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  17. The role seemingly of amorphous silica gel layers in chiral separations by planar chromatography

    International Nuclear Information System (INIS)

    Sajewicz, M.; Kowalska, T.

    2007-01-01

    In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 gl) and relatively simple active sites (silanol groups =Si-OH). The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analytes migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD) and the data thereof confirmed that the chromatographic silica gels are not amorphous but microcrystalline, contributing to the (partial) horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers. (author)

  18. Oxygen sensor equipped engine operation on methanol/gasoline blends and phase separation problems

    Energy Technology Data Exchange (ETDEWEB)

    Last, A J; Lawson, A; Simmons, E W; Mackay, D; Tsang, M; Maund, G B

    1980-01-01

    A study was made to address problems related to Canadian utilization of methanol/gasoline blends. These problems are: (1) cold weather operation; (2) water sensitivity to phase separation in winter; (3) vehicle compatibility: fuel/air ratio control, flexibility for vehicle movement outside of areas where methanol might be available. Specifically, the operation of the HydroShear (an in-line hydraulic emulsifier) on the two separated phases of a methanol/gasoline/water blend was examined. Fuel maps, by engine dynamometer testing, were generated using methanol/gasoline blends containing 15% to 65% methanol. The capability of an oxygen sensor, located in the exhaust system, to control the fuel/air ratio was found to be adequate within the 15% to 65% methanol/gasoline blends. A fuel injected Volvo 244DL with lambda-sond emission control and a carburetted Chevrolet Monza with 3-way catalyst closed loop feedback emission control system were the two engines selected for this study.

  19. pH triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer-natural polymer based nanocomposite.

    Science.gov (United States)

    Sarkar, Amit Kumar; Saha, Arka; Panda, Asit Baran; Pal, Sagar

    2015-11-18

    A fully exfoliated titanate layer-natural polymer amylopectin based nanocomposite, with pH responsive superior selective adsorption, separation of both cationic (MB: 599 mg g(-1) at pH 9) and anionic (MO: 558 mg g(-1) at pH 3) dyes and photodegradation properties, has been realized through simultaneous in situ layered titanate formation, exfoliation and polymerization.

  20. Bale Location Effects on Nutritive Value and Fermentation Characteristics of Annual Ryegrass Bale Stored in In-line Wrapping Silage

    Directory of Open Access Journals (Sweden)

    K. J. Han

    2014-09-01

    Full Text Available In southeastern regions of the US, herbage systems are primarily based on grazing or hay feeding with low nutritive value warm-season perennial grasses. Nutritious herbage such as annual ryegrass (Lolium multiflorum Lam. may be more suitable for preserving as baleage for winter feeding even with more intensive production inputs. Emerging in-line wrapped baleage storage systems featuring rapid wrapping and low polyethylene film requirements need to be tested for consistency of storing nutritive value of a range of annual ryegrass herbage. A ryegrass storage trial was conducted with 24-h wilted ‘Marshall’ annual ryegrass harvested at booting, heading and anthesis stages using three replicated in-line wrapped tubes containing ten round bales per tube. After a six-month storage period, nutritive value changes and fermentation end products differed significantly by harvest stage but not by bale location. Although wilted annual ryegrass exhibited a restricted fermentation across harvest stages characterized by high pH and low fermentation end product concentrations, butyric acid concentrations were less than 1 g/kg dry matter, and lactic acid was the major organic acid in the bales. Mold coverage and bale aroma did not differ substantially with harvest stage or bale location. Booting and heading stage-harvested ryegrass baleage were superior in nutritive value to anthesis stage-harvested herbage. Based on the investigated nutritive value and fermentation characteristics, individual bale location within in-line tubes did not significantly affect preservation quality of ryegrass round bale silages.

  1. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.

    Science.gov (United States)

    Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary

    2016-10-01

    Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.

  3. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    International Nuclear Information System (INIS)

    Yang, Dong Keun; Lee, Kwan Soo

    2003-01-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better

  4. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  5. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  6. Imaging characters of the lung cancer phantoms under the simulative clinical condition performed with hard X-ray in-line holography

    International Nuclear Information System (INIS)

    Zhang, J; Chen, Y; Li, G; Jiang, X

    2013-01-01

    The simulative lung cancer tissues under the approximate clinical condition were imaged using in-line holography method with 35 keV synchrotron radiation hard X-ray. The millimeter scale simulative cancer phantoms showed adequate contrast to lung tissues in our experiment. It demonstrates that in-line holography method with synchrotron radiation hard X-ray promises to be a potential sensitive method for the early detection of lung cancer. The image contrast, standard deviation (SD) and normalized standard deviation (NSD) of different areas were calculated. It shows that the traditional method of contrast calculation does not always give a convincible result in image judgment; a standard deviation map of image taken with a proper distance of sample to detector (DSD) will correspond well to the projecting image and supply effective assistance in diagnostic judgment.

  7. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  8. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  9. Digital in-line X-ray holography with zone plates.

    Science.gov (United States)

    Heine, R; Gorniak, T; Nisius, T; Christophis, C; Pettitt, M E; Staier, F; Wilhein, T; Rehbein, S; Grunze, M; Rosenhahn, A

    2011-07-01

    Single pulse imaging with radiation provided by free-electron laser sources is a promising approach towards X-ray microscopy, which is expected to provide high resolution images of biological samples unaffected by radiation damage. One fully coherent imaging technique for this purpose is digital in-line holography. Key to its successful application is the creation of X-ray point sources with high photon flux. In this study we applied zone plates to create such point sources with synchrotron radiation provided by the storage ring BESSY II. The obtained, divergent light cone is applied to holographic microscopy of biological objects such as critical point dried Navicula perminuta diatoms and human cells using photons with an energy of 250 eV. Compared to conventional experiments employing pinholes, exposure times are reduced by two orders of magnitude. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Three-dimensional Effects of Turburlent Flow in an In-Line Tube Bundle

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    1998-01-01

    Velocities have been measured with laser Doppler anemometry between tubes in cross-flow in a small in-line tube bundle with longitudinal to transverse pitches of 1.5Dx1.8D and a Reynolds number based on mean velocity in minimum flow section of Re=30000. At most locations a single recirculation zone...... is found behind each tube. However, the direction of circulation changes sign along the tube with a period of about 2~tube diameters. Three different patterns of such recirculation zones have been observed. Each pattern is very stable and does not change under undisturbed flow conditions....

  11. Twin-image reduction in inline digital holography using an object segmentation heuristic

    International Nuclear Information System (INIS)

    McElhinney, Conor P; Hennelly, Bryan M; Naughton, Thomas J

    2008-01-01

    We present a digital image processing heuristic for the removal of the twin-image in inline digital holograms. Typically, the unwanted twin manifests itself as visible corruptive noise in the reconstruction plane. We reconstruct the unwanted twin-image at its in-focus plane and suppress it by first finding the boundary of the object, and then removing the optical energy within this boundary. In this plane, the wanted twin-image optical energy is largely dispersed outside this boundary and so it is retained. The heuristic's effectiveness is demonstrated using a digital hologram of a real-world object.

  12. Twin-image reduction in inline digital holography using an object segmentation heuristic

    Energy Technology Data Exchange (ETDEWEB)

    McElhinney, Conor P; Hennelly, Bryan M [Department of Computer Science, National University of Ireland, Maynooth, County Kildare (Ireland); Naughton, Thomas J [University of Oulu, RFMedia Laboratory, Oulu Southern Institute, Vierimaantie 5, 84100 Ylivieska (Finland)], E-mail: conormce@cs.nuim.ie, E-mail: tomn@cs.nuim.ie

    2008-11-01

    We present a digital image processing heuristic for the removal of the twin-image in inline digital holograms. Typically, the unwanted twin manifests itself as visible corruptive noise in the reconstruction plane. We reconstruct the unwanted twin-image at its in-focus plane and suppress it by first finding the boundary of the object, and then removing the optical energy within this boundary. In this plane, the wanted twin-image optical energy is largely dispersed outside this boundary and so it is retained. The heuristic's effectiveness is demonstrated using a digital hologram of a real-world object.

  13. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  14. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process.

    Science.gov (United States)

    Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Cailletaud, J; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2017-08-15

    Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fiber optic adaptation of the interference filter photometer SPECTRAN for in-line measurements in PUREX process control

    International Nuclear Information System (INIS)

    Buerck, J.; Kraemer, K.; Koenig, W.

    1990-02-01

    The multicomponent version of the interference filter photometer SPECTRAN was adapted by radiation resistant quartz glass optical fibers to in-line flow cells in the aqueous and organic bypass stream of an uranium laboratory extraction column. A combined photometric/electrolytical conductivity measurement allows this modified process instrument to be used as uranium/plutonium in-line monitor in radioactive process streams. By applying a high performance 100 W quartz halogen lamp and suitable light focussing optics the light intensity, attenuated by coupling losses, could be increased to the desired level even when 1000 μm-single strand fibers (2x18 m) were used to transmit the light. In a series of calibration experiments the U(VI)- and U(IV)-extinction coefficients were determined as a function of nitric acid molarity (for U(VI) also in TBP/kerosene). Furthermore the validity of Lambert-Beer's law was examined for both oxidation states at different optical path lengths and nitric acid/electrolytical conductivity calibration functions between 0-100 g/l U(VI) and 0-4 mol/l HNO 3 were set up. (orig./EF) [de

  16. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    Science.gov (United States)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  17. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging.

    Science.gov (United States)

    Ibrahim, Mohd Firdaus; Ahmad Sa'ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon

    2016-10-27

    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t -test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.

  18. The Role Seemingly of Amorphous Silica Gel Layers in Chiral Separations by Planar Chromatography

    Directory of Open Access Journals (Sweden)

    Teresa Kowalska

    2007-12-01

    Full Text Available In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 g-1 and relatively simple active sites (silanol groups, Si-OH. The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analyte’s migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD and the data thereof confirmed that the ‘chromatographic’ silica gels are not amorphous but microcrystalline, contributing to the (partial horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers.

  19. A new approach to group separation of coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-Hong Qin; Zhi-Min Zong; Chun Jiang; Hao Sun; Li-Li Zhou; Xian-Yong Wei [China University of Mining and University, Jiangsu (China). School of Chemical Engineering

    2005-07-01

    Three coal samples were extracted with carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent. The extraction solutions were separated to three layers: insoluble fraction (under layer), CS{sub 2} solution (middle layer) and water/NMP solution (upper layer) by water addition. Most of NMP was concentrated to the upper layer. 7 refs., 3 figs., 3 tabs.

  20. Measurement of the through thickness compression of a battery separator

    Science.gov (United States)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  1. Applying ultrasonic in-line inspection technology in a deep water environment: exploring the challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thielager, N.; Nadler, M.; Pieske, M.; Beller, M. [NDT Systems and Services AG, Stutensee (Germany)

    2009-12-19

    The demand for higher inspection accuracies of in-line inspection tools (ILI tools) is permanently growing. As integrity assessment procedures are being refined, detection performances, sizing accuracies and confidence levels regarding detection and sizing play an ever increasing role. ILI tools utilizing conventional ultrasound technology are at the forefront of technology and fulfill the market requirements regarding sizing accuracies and the ability to provide quantitative measurements of wall thickness as well as crack inspection capabilities. Data from ultrasonic tools is ideally suited for advanced integrity assessment applications and run comparisons. Making this technology available for a deep-water environment of heavy wall, high pressures and temperatures comes with a wide range of challenges which have to be addressed. This paper will introduce developments recently made in order to adapt and modify ultrasonic in-line inspection tools for the application in a heavy wall, high pressure and high temperature environment as encountered in deep offshore pipelines. The paper will describe necessary design modifications and new conceptual approaches especially regarding tool electronics, cables, connectors and the sensor carrier. A tool capable of deep-water inspection with a pressure bearing capability of 275 bar will be introduced and data from inspection runs will be presented. As an outlook, the paper will also discuss future inspection requirements for offshore pipelines with maximum pressure values of up to 500 bar. (author)

  2. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  3. Selected plantar pressure characteristics associated with the skating performance of national in-line speed skaters.

    Science.gov (United States)

    Wu, Wen-Lan; Hsu, Hsiu-Tao; Chu, I-Hua; Tsai, Feng-Hua; Liang, Jing-Min

    2017-06-01

    In order to help coaches analyse the techniques of professional in-line speed skaters for making the required fine adjustments and corrections in their push-off work, this study analysed the specific plantar pressure characteristics during a 300-m time-trial test. Fourteen elite in-line speed skaters from the national team were recruited in this study. The total completion time of the 300-m time-trial test, duration of each skating phase, and plantar pressure distribution were measured. The correlation between plantar pressure distribution and skating performance was assessed using Pearson correlation analyses. The results showed that the contact time of the total foot and force-time integral (FTI) in the medial forefoot were significantly correlated with the duration of the start phase, and the FTIs in the medial forefoot of the gliding (left) leg and lateral forefoot of the pushing (right) leg were significantly correlated with the duration of the turning phase. The maximum force in the medial heel, medial forefoot, and median forefoot and the FTI in the medial heel and medial forefoot were significantly correlated with the duration of the linear acceleration phase. The results suggest that a correct plantar loading area and push-off strategy can enhance the skating performance.

  4. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Directory of Open Access Journals (Sweden)

    Jon Mabe

    2017-03-01

    Full Text Available The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  5. Synthesis and characterization of ceramic-supported and metal-supported membrane layers for the separation of CO{sub 2} in fossil-fuel power plants; Herstellung und Charakterisierung von keramik- und metallgestuetzten Membranschichten fuer die CO{sub 2}-Abtrennung in fossilen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Hauler, Felix

    2010-07-01

    The separation of CO{sub 2} in fossil fuel power plants has become a very important issue due to the contribution of this greenhouse gas to global warming. Thin microporous membranes are promising candidates for separating CO{sub 2} from gas flow before being exhausted into the atmosphere. The membrane demands are good permeation and separation properties and high stability under operation conditions. Novel sol-gel derived materials composed of TiO{sub 2}/ZrO{sub 2} and stabilized SiO{sub 2} seem to be promising due to their good chemical stability and microporous character, especially for the separation of H{sub 2} and CO{sub 2}. Metallic substrates should be preferred as membrane support because they exhibit practical advantages combining good mechanical stability and the benefit of facilitated joining. The present thesis deals with the development of sol-gel derived microporous membrane layers on ceramic and metallic supports for the separation of CO{sub 2}. In this context, the optimized preparation of high-quality membranes with TiO{sub 2}/ZrO{sub 2} and Ni, Co, Zr, Ti doped SiO{sub 2} top layers is presented. These multilayered membranes consist of a graded pore structure to provide a smooth transition of the pore size from the support to the functional layer. Due to the good surface properties, the ceramic substrates only need one interlayer, whereas the rough metallic substrates exhibiting larger pores require a total of three interlayers to obtain an enhanced surface quality. On both types of supports, crack-free functional layers with a thickness below 100 nm were deposited by dip-coating. The unsupported and supported sol-gel materials used for the top layers were investigated in terms of structural properties by thermal analysis, sorption measurements, X-ray diffraction and electron microscopy. Gas permeation tests with He, H{sub 2}, CO{sub 2} und N{sub 2} were carried out to determine the membrane performance with regard to permeation rates and

  6. Evaluation of fiber optics for in-line photometry in hostile environments

    International Nuclear Information System (INIS)

    Bauer, M.L.; Bostick, D.A.; Strain, J.E.

    1981-01-01

    Commercial fiber optics cables, both bundled and single-fiber, were evaluated for application in an in-line photometer being developed for monitoring uranium and plutonium concentrations in high radiation environments in nuclear fuel reprocessing plants. The relative attenuation of the optical signals due to both the radiation damage and to the couplings between lengths of optical cable was determined for specimen cables. An ultraviolet-enhanced fiber bundle demonstrated good radiation resistance to a total dose of 10 8 rads, which is the dose estimated to be received during a 1-y lifetime of the in-cell portion of the photometer. The photometer was designed to use a single-fiber optical cable with adequate radiation shielding

  7. Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers

    International Nuclear Information System (INIS)

    Ahadi, Amirhossein; Jawad, H.; Saghir, M.Z.; Giraudet, C.; Croccolo, F.; Bataller, H.

    2014-01-01

    Thermodiffusion in a hydrocarbon binary mixture has been investigated experimentally and numerically in a liquid-porous cavity. The solutal separation of the 50% toluene and 50% n-hexane binary mixture induced by a temperature difference at atmospheric pressure has been performed in a new thermodiffusion cell. A new optimized cell design is used in this study. The inner part of the cell is a cylindrical porous medium sandwiched between two liquid layers of the same binary hydrocarbon mixture. Experimental measurement and theoretical estimation of the molecular diffusion and thermodiffusion coefficients showed a good agreement. In order to understand the different regimes occurring in the different parts of the cell, a full transient numerical simulation of the solutal separation of the binary mixture has been performed. Numerical results showed that the lighter species, which are of n-hexane migrated toward the hot surface, while the denser species, which is toluene migrated towards the cold surface. Also, it was found that a good agreement has been reached between experimental measurements and numerical calculations for the solutal separation between the hot and cold surface for different medium porosity. In addition, we used the numerical results to analyse convection and diffusion regions in the cell precisely. (authors)

  8. Statistical analysis of real ILI (In-Line Inspection) data: implications, inferences and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Timashev, Svyatoslav A.; Bushinskaya, Anna V. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Ural Branch. Sciences and Engineering Center ' Reliability and Safety of Large Systems and Machines'

    2009-07-01

    The paper discusses current possibilities and drawbacks of in-line inspection (ILI) in sizing defects in oil and gas pipelines. A methodology based on analysis of variances (ANOVA) is presented that extracts maximum possible information from the ILI measurements of defects and subsequent verification results. This full statistical analysis (FSA) methodology was extensively tested by using the Monte Carlo simulation method. It was then applied to analyze the content of sections 7, 9 and appendix E of the API 1163 RP Standard. (author)

  9. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    Science.gov (United States)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  10. New concept for in-line OLED manufacturing

    Science.gov (United States)

    Hoffmann, U.; Landgraf, H.; Campo, M.; Keller, S.; Koening, M.

    2011-03-01

    A new concept of a vertical In-Line deposition machine for large area white OLED production has been developed. The concept targets manufacturing on large substrates (>= Gen 4, 750 x 920 mm2) using linear deposition source achieving a total material utilization of >= 50 % and tact time down to 80 seconds. The continuously improved linear evaporation sources for the organic material achieve thickness uniformity on Gen 4 substrate of better than +/- 3 % and stable deposition rates down to less than 0.1 nm m/min and up to more than 100 nm m/min. For Lithium-Fluoride but also for other high evaporation temperature materials like Magnesium or Silver a linear source with uniformity better than +/- 3 % has been developed. For Aluminum we integrated a vertical oriented point source using wire feed to achieve high (> 150 nm m/min) and stable deposition rates. The machine concept includes a new vertical vacuum handling and alignment system for Gen 4 shadow masks. A complete alignment cycle for the mask can be done in less than one minute achieving alignment accuracy in the range of several 10 μm.

  11. Optimal topotactic conversion of layered octosilicate to RWR-type zeolite by separating the formation stages of interlayer condensation and elimination of organic guest molecules.

    Science.gov (United States)

    Asakura, Yusuke; Osada, Shimon; Hosaka, Nami; Terasawa, Taichi; Kuroda, Kazuyuki

    2014-07-21

    We demonstrate that the separation of two stages of interlayer condensation under refluxing and elimination of organic guests provides the optimal conditions for the formation of RWR-type zeolite from layered octosilicate. The obtained RWR-type zeolite has higher quality than any other RWR-type zeolite reported previously.

  12. Morphological analysis of GeTe in inline phase change switches

    Energy Technology Data Exchange (ETDEWEB)

    King, Matthew R., E-mail: matthew.king2@ngc.com [Northrop Grumman Electronic Systems, Advanced Concepts and Technologies Division, 1212 Winterson Rd., Linthicum, Maryland 21090 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); El-Hinnawy, Nabil [Northrop Grumman Electronic Systems, Advanced Concepts and Technologies Division, 1212 Winterson Rd., Linthicum, Maryland 21090 (United States); Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Salmon, Mike; Gu, Jitty [Evans Analytical Group, 628 Hutton St., Raleigh, North Carolina 27606 (United States); Wagner, Brian P.; Jones, Evan B.; Howell, Robert S.; Nichols, Doyle T.; Young, Robert M. [Northrop Grumman Electronic Systems, Advanced Concepts and Technologies Division, 1212 Winterson Rd., Linthicum, Maryland 21090 (United States); Borodulin, Pavel [Northrop Grumman Electronic Systems, Advanced Concepts and Technologies Division, 1212 Winterson Rd., Linthicum, Maryland 21090 (United States); Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-09-07

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined by variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.

  13. Morphological analysis of GeTe in inline phase change switches

    International Nuclear Information System (INIS)

    King, Matthew R.; El-Hinnawy, Nabil; Salmon, Mike; Gu, Jitty; Wagner, Brian P.; Jones, Evan B.; Howell, Robert S.; Nichols, Doyle T.; Young, Robert M.; Borodulin, Pavel

    2015-01-01

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined by variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented

  14. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    Science.gov (United States)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  15. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  16. Use of protective equipment by adolescents in inline skating, skateboarding, and snowboarding.

    Science.gov (United States)

    Kroncke, Erica L; Niedfeldt, Mark W; Young, Craig C

    2008-01-01

    Determine the frequency of personal protective equipment (PPE) use in adolescent inline skaters, skateboarders, and snowboarders; explore factors influencing PPE use; identify factors that would influence use; and examine the association of high-risk behaviors and PPE use. Cross-sectional survey. Central/southeast Wisconsin. Participants 13-18 years-old. None. Independent variables = age, gender, sport. None. Dependent variables = PPE use, factors influencing use, and frequency of other high-risk behaviors. The mean age of 333 participiants was 14.9 years. Adolescents wore considerably less PPE than recommended. Inline skaters wore the most; snowboarders the least. The most common reasons adolescents wore PPE were parents, peers, and rule/requirement. Younger adolescents cited parents more often than older adolescents as a factor for PPE use. Discomfort and lack of perceived need were the most common reasons for nonuse. Sustaining/witnessing an accident was the most common reason that would convince adolescents to wear PPE. Almost half of adolescents reported nothing would convince them to wear PPE. Younger adolescents wore more PPE than older adolescents. An association was seen between PPE use in all sports and bicycle helmets. An inverse relationship was found for tobacco and helmet use among skaters, as well as alcohol and helmet use in skateboarders. Adolescents underuse PPE. PPE reinforcement by parents/peers, encouraging bike helmets, manufacturing more comfortable gear, educating adolescents, and instituting PPE requirements in public areas may increase compliance. This could lead to decreased injuries. Physicians should discuss PPE with their patients/families. There may be an association between PPE use in extreme sports and decreased high-risk health behaviors.

  17. Phase-Separated, Epitaxial, Nanostructured LaMnO3+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa2Cu3O7-x Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  18. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-03-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  19. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-05-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  20. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging

    Science.gov (United States)

    Ibrahim, Mohd Firdaus; Ahmad Sa’ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon

    2016-01-01

    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass. PMID:27801799

  1. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Ibrahim

    2016-10-01

    Full Text Available The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05. The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.

  2. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  3. Peak broadening in paper chromatography and related techniques VI. The efficiency of various kinds of chromatography paper and thin-layer cellulose powder for the separation of amino acids

    NARCIS (Netherlands)

    Ligny, C.L. de; Kok, E.C.M.

    1968-01-01

    The efficiency of several chromatography papers and thin-layer cellulose powders for the separation of amino acids is investigated, using the minimum elution time for a given resolution as the criterion.

  4. Towards a fully printable battery: robocast deposition of separators

    International Nuclear Information System (INIS)

    Atanassov, Plamen Borissov; Fenton, Kyle Ross; Apblett, Christopher Alan

    2010-01-01

    The development of thin batteries has presented several interesting problems which are not seen in traditional battery sizes. As the size of a battery reaches a minimum, the usable capacity of the battery decreases due to the fact that the major constituent of the battery becomes the package and separator. As the size decreases, the volumetric contribution from the package and separator increases. This can result in a reduction of capacity from these types of batteries of nearly all of the available power. The development of a method for directly printing the battery layers, including the package, in place would help to alleviate this problem. The technology used in this paper to directly print battery components is known as robocasting and is capable of direct writing of slurries in complex geometries. This method is also capable of conformally printing on three dimensional surfaces, opening up the possibility of novel batteries based on tailoring battery footprints to conform to the available substrate geometry. Interfacial resistance can also be reduced by using the direct write method. Each layer is printed in place on the battery stack instead of being stacked one at a time. This ensures an intimate contact and seal at every interface within the cell. By limiting the resistance at these interfaces, we effectively help increase the useable capacity of our battery through increase transport capability. We have developed methodology for printing several different separator materials for use in a lithium cell. When combined with a printable cathode comprised of LiFePO 4 (as seen in Figure 1) and a lithium anode, our battery is capable of delivering a theoretical capacity of 170 mAh g -1 . This capacity is diminished by transport phenomena within the cell which limit the transport rate of the lithium ions during the discharge cycle. The material set chosen for the printable separator closely resemble those used in commercially available separators in order to keep

  5. Measurement of the Single Top Quark Production Cross Section and inline'>|Vtb| in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hirschbuehl, D.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2014-12-31

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of <inline-formula>inline">s=1.96 TeVinline-formula> using a data set corresponding to <inline-formula>inline">7.5 fb-1inline-formula> of integrated luminosity collected by the Collider Detector at Fermilab. We select events consistent with the single top quark decay process <inline-formula>inline">tWbνbinline-formula> by requiring the presence of an electron or muon, a large imbalance of transverse momentum indicating the presence of a neutrino, and two or three jets including at least one originating from a bottom quark. An artificial neural network is used to discriminate the signal from backgrounds. We measure a single top quark production cross section of <inline-formula>inline">3.04-0.53+0.57 pbinline-formula> and set a lower limit on the magnitude of the coupling between the top quark and bottom quark <inline-formula>inline">

  6. Full Ka Band Waveguide-to-Microstrip Inline Transition Design

    Science.gov (United States)

    Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue

    2018-05-01

    In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.

  7. Centrifugal Separation Device Based on Two-Layer Laminar Flow in Microchannels for High-Throughput and Continuous Blood Cell/Plasma Separation

    Science.gov (United States)

    Taizo Kobayashi,; Taisuke Funamoto,; Makoto Hosaka,; Satoshi Konishi,

    2010-07-01

    This paper presents a novel type of centrifugation device that is based on the two-layer laminar flow in micro flow channels for continuous blood cell/plasma separation. We propose to rotate the flow channels which are arranged along the circumference around the rotational axis. Downsizing the channel width reduced both the cell sedimentation time and the required centrifugal force, because the channel width corresponds to the centrifugal sedimentation length. First, plasma and cells were continuously extracted from pig blood in each of the branch channels using a milled acrylic prototype device (channel width = 800 μm, volume = 150 μl). Next, the relationship between the channel width (125, 250, and 500 μm) and the sedimentation time taken for various centrifugal forces (2.3, 9, 36, and 145 G) was evaluated using the downsized microchannels fabricated by hot-embossing and thermal bonding technologies. Using downsized microchannels with a width of 125 μm successfully reduced the sedimentation time to 85 s as compared to the sedimentation time of 270 s for a channel of a width of 500 μm, when a centrifugal force of 2.3 G was applied. The use of the proposed device did not result in obvious hemolysis at the centrifugal forces lower than 335 G.

  8. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  9. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture

    Science.gov (United States)

    Yan, Li-Tang; Xie, Xu-Ming

    2007-02-01

    Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.

  10. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  11. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  12. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  13. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography.

    Science.gov (United States)

    Song, Jun; Leon Swisher, Christine; Im, Hyungsoon; Jeong, Sangmoo; Pathania, Divya; Iwamoto, Yoshiko; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2016-04-21

    Lens-free digital in-line holography (LDIH) is a promising technology for portable, wide field-of-view imaging. Its resolution, however, is limited by the inherent pixel size of an imaging device. Here we present a new computational approach to achieve sub-pixel resolution for LDIH. The developed method is a sparsity-based reconstruction with the capability to handle the non-linear nature of LDIH. We systematically characterized the algorithm through simulation and LDIH imaging studies. The method achieved the spatial resolution down to one-third of the pixel size, while requiring only single-frame imaging without any hardware modifications. This new approach can be used as a general framework to enhance the resolution in nonlinear holographic systems.

  14. Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage

    Science.gov (United States)

    Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve

    2017-06-06

    A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.

  15. Magnetic separator having a multilayer matrix, method and apparatus

    Science.gov (United States)

    Kelland, David R.

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  16. Separation techniques: Chromatography

    Science.gov (United States)

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  17. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    Science.gov (United States)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  18. The separation of solid and liquid components of mixtures

    International Nuclear Information System (INIS)

    Hunter, W.M.

    1980-01-01

    An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)

  19. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi; Lee, Jong Suk; Bucknall, David G.; Koros, William J.; Nair, Sankar

    2013-01-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower

  20. Principal State Analysis for a Compact in-Line Fiber Polarization Controller

    International Nuclear Information System (INIS)

    Li Zheng-Yong; Wu Chong-Qing; Wang Zhi-Hao; Qin Tao; Wang Yi-Xu

    2013-01-01

    A compact in-line fiber-based polarization controller (FPC) made of a rotatable fiber squeezer is investigated in detail with the Mueller matrix model established based on the generalized principal state of polarization (PSP). The PSP caused by the fiber squeezing is in the equator plane, which turns around S 3 axis on the Poincaré sphere when rotating the squeezer. Subsequently, a programmable polarization control method is proposed to realize the polarization conversion between arbitrary polarization states, in which only two parameters of phase shift and rotation angle need to be controlled. This type of FPC, which has a highly compact structure, lower insertion loss, and can be directly embedded into any fiber devices without any extra delay, will be an ideal PC for high-speed optical communication and all-optical signal processing

  1. Diameter and axial position measurement of micrometric particles by in-line digital holography using wavelet transform

    International Nuclear Information System (INIS)

    Torres, Y M; Amezquita, R; Monroy, F

    2011-01-01

    In this paper, the size and axial position of micrometric particles is obtained for an in-line Fraunhofer holography setup. The hologram reconstruction was realized using the wavelet transform. By digital image processing tools, the size distribution histogram for the particles in the sample was obtained. The contrast measurement in the amplitude reconstruction presents a peak when the axial coordinate and the register distance are equal. This fact lets the axial position in the sample be determined.

  2. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  3. Wavefront holoscopy: application of digital in-line holography for the inspection of engraved marks in progressive addition lenses.

    Science.gov (United States)

    Perucho, Beatriz; Micó, Vicente

    2014-01-01

    Progressive addition lenses (PALs) are engraved with permanent marks at standardized locations in order to guarantee correct centering and alignment throughout the manufacturing and mounting processes. Out of the production line, engraved marks provide useful information about the PAL as well as act as locator marks to re-ink again the removable marks. Even though those marks should be visible by simple visual inspection with the naked eye, engraving marks are often faint and weak, obscured by scratches, and partially occluded and difficult to recognize on tinted or antireflection-coated lenses. Here, we present an extremely simple optical device (named as wavefront holoscope) for visualization and characterization of permanent marks in PAL based on digital in-line holography. Essentially, a point source of coherent light illuminates the engraved mark placed just before a CCD camera that records a classical Gabor in-line hologram. The recorded hologram is then digitally processed to provide a set of high-contrast images of the engraved marks. Experimental results are presented showing the applicability of the proposed method as a new ophthalmic instrument for visualization and characterization of engraved marks in PALs.

  4. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  5. Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Michael S.H.; Yarusevych, Serhiy [University of Waterloo, Waterloo, ON (Canada)

    2012-06-15

    Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0 to 21 . The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the

  6. Feature of operation of separator with flexible cylinder for grain unmixing

    Directory of Open Access Journals (Sweden)

    V. Yu. Churyumov

    2017-01-01

    Full Text Available For increase in grain production it is necessary to use effectively machines for postharvest grain handling. But their shortcoming is the unsatisfactory work of the separating tools which is not conforming to modern requirements. The research of separator with the flexible cylinder revealed that its efficiency and particles passing through throughs depend on the relative speed of a grain layer and mesh lengths. Values of relative speeds of a layer for the cylinders having throughs of various length in case of which the greatest separation of particles is possible are established. At a cylinder circumferential speed of 5.17 m per second for throughs 16 mm long the relative speed of a layer should not exceed 1.04 m per second; of 56 mm - 2.07 m per second; of 96 mm - 3.43 m per second. Fine particles separation through cylinders throughs (processing capacity corresponds to theoretical prerequisites. The author determined angular coordinates in a material feed zone where relative speeds of a layer were high - 2.2-4.0 m per second. Processing capacity of throughs at the beginning of a zone was equal to zero, then with reduction of speed slowly increased. Throughs of bigger length in this zone (96 mm separated approximately twice more particles, than short one(16 mm. In a zone of the main separation the relative speed of a layer decreased from 1.8 to 0.8 m per second. Processing capacity in all mashes increased. throughs of bigger length had, respectively, the best processing capacity. The greatest allocation of particles through throughs corresponds to the relative speed of a layer of 0.7-0.9 m per second. The completeness of separation equal 0.8 and above, is reached in cylinders with throughs 96 mm long for 2 operation cycles, and with a length of 16 mm - for 3 cycles. Specific throughput was equal 1.05 and 0.7 kg per second per 1 sq. m respectively. Due to operation of a separator with the flexible cylinder and throughs of 56 mm long grain

  7. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    Science.gov (United States)

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  8. Buffer layers grown by replicating the texture of an original template tape

    International Nuclear Information System (INIS)

    Lim, Sunme; Yoo, Jaeun; Park, Chan; Youm, Dojun

    2007-01-01

    We propose a fabrication method of the buffer layers, whose biaxial textures are replicated from an original template tape. The purpose of this method is economical texturing process for coated conductors. At first we prepared a biaxially textured metal tape (TM-tape). Then a sacrifice layer (SA), a buffer layer (BU) and a thick metallic layer (SM) were sequentially deposited on the TM-tape. SA-layer and BU-layer were deposited epitaxially to copy the texture of the TM-tape. SA-layer was dissoluble in water. SM-layer with the textured BU-layer was separated and could be used for a supporting tape for the further growth of a superconducting layer. In this way, it is possible to reuse the original textured TM-tape many times. In this paper, we report the results of our experiments, in which we used a biaxially Ni tape, BaO film, STO film, and a thick Ag film for TM-tape, SA-layer, BU-layer, and SM-layer, respectively. The Ag/STO layers were successfully separated form the Ni tape by dissolving the BaO layer in water. The texture quality of the STO layer was well secured after the separation

  9. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  10. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

  11. Patinação de velocidade in-line: uma revisão sistemática

    OpenAIRE

    Piucco, T.; Santos, S.G. dos; Lucas, R.D. de

    2014-01-01

    A patinação de velocidade in-line é uma modalidade que está crescendo nos últimos anos, contudo, ainda é pouco estudada devido a dificuldade de ser reproduzida em laboratório. Neste artigo, foi realizada uma revisão bibliográfica sobre o conhecimento, com base em investigações prévias desta modalidade esportiva. As consultas foram realizadas nas bases de dados LILACS, SCOPUS, PubMed, SciELO, Science Direct, Ovid e Google. Foram incluídos apenas estudos com humanos, publicados em inglês, portu...

  12. Combining spanwise morphing, inline motion and model based optimization for force magnitude and direction control

    Science.gov (United States)

    Scheller, Johannes; Braza, Marianna; Triantafyllou, Michael

    2016-11-01

    Bats and other animals rapidly change their wingspan in order to control the aerodynamic forces. A NACA0013 type airfoil with dynamically changing span is proposed as a simple model to experimentally study these biomimetic morphing wings. Combining this large-scale morphing with inline motion allows to control both force magnitude and direction. Force measurements are conducted in order to analyze the impact of the 4 degree of freedom flapping motion on the flow. A blade-element theory augmented unsteady aerodynamic model is then used to derive optimal flapping trajectories.

  13. An in-line clean system for the solid-phase extraction of emerging contaminants in natural waters

    OpenAIRE

    Sodré, Fernando F.; Locatelli, Marco Antonio F.; Jardim, Wilson F.

    2010-01-01

    A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus i...

  14. Dipping-interface mapping using mode-separated Rayleigh waves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  15. Correlated lateral phase separations in stacks of lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Takuma, E-mail: hoshino-takuma@ed.tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Komura, Shigeyuki, E-mail: komura@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Andelman, David, E-mail: andelman@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2015-12-28

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, T{sub c}, for larger inter-layer interaction. When the temperature ratio, T/T{sub c}, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  16. Comparison of sport-specific and non-specific exercise testing in inline speed skating.

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Gutmann, Boris; Hollmann, Wildor; Struder, Heiko K

    2016-04-01

    The most effective way to measure exercise performance in inline speed skating (ISS) has yet to be established. Generally most athletes are examined by means of traditional but unspecific cycling (CYC) or running (RUN) testing. The present study investigates whether a sport-specific incremental test in ISS reveals different results. Eight male top level inline speed skaters (age: 30±4 years; 65.4±6.3 mL∙kg-1∙min-1, training: 12-14 h/week) performed three incremental exhaustive tests in a randomized order (ergometer CYC, field RUN, field ISS). During the tests, heart rate (HR), oxygen uptake (V̇O2, energy expenditure (EE) and blood lactate concentration (BLC) were measured. Analysis of variance revealed no significant differences for peak HR (187±9, 191±9, 190±9; P=0.75), BLC (10.9±2.3, 10.8±2.4, 8.5±3.2; P=0.25), V̇O2 (65.4±6.3, 66.8±3.5, 66.4±6.5; P=0.91) and EE (1371±165, 1335±93, 1439±196; P=0.51) between ISS and CYC or RUN test. Similar results appeared for HR and V̇O2 at submaximal intensities (2 and 4 mmol·L-1 BLC; P≥0.05). Small to moderate effect sizes 0.3-0.87 and considerable variability of differences between the exercise modes (mean bias range between 1% and 17% with 95% limits of agreement between 3% and 33%) among submaximal and maximal results limit the comparability of the three tests. Consequently, CYC and RUN tests may be considered as qualified alternatives for a challenging ISS test. However a sport-specific test should be conducted in cases of doubt, or when precision is required (e.g. for elite athletes or scientific studies).

  17. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  18. Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography.

    Science.gov (United States)

    Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Kulkarni, Varun; Sojka, Paul E; Chen, Jun

    2013-06-01

    Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method.

  19. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process.

    Science.gov (United States)

    Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf

    2017-09-15

    The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Science.gov (United States)

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  1. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    Science.gov (United States)

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

  2. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    Science.gov (United States)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  3. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  4. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  5. Functionalized inorganic membranes for gas separation

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  6. A tale of gastric layering and sieving: Gastric emptying of a liquid meal with water blended in or consumed separately.

    Science.gov (United States)

    Camps, Guido; Mars, Monica; de Graaf, Cees; Smeets, Paul A M

    2017-07-01

    The process of gastric emptying determines how fast gastric content is delivered to the small intestine. It has been shown that solids empty slower than liquids and that a blended soup empties slower than the same soup as broth and chunks, due to the liquid fraction emptying more quickly. This process of 'gastric sieving' has not been investigated for liquid foods. To determine whether gastric sieving of water can also occur for liquid foods. Two groups of men participated in a parallel design (n=15, age 22.6±2.4y, BMI 22.6±1.8kg/m 2 , and n=19, age 22.2±2.5y, BMI 21.8±1.5kg/m 2 ) and consumed an isocaloric shake (2093kJ, CARBOHYDRATES: 71g, FAT: 18g, PROTEIN: 34g), either in a 500-mL version (MIXED) or as a 150-mL shake followed by 350mL water (SEPARATE). Participants provided appetite ratings and were scanned using MRI to determine gastric emptying rate and volume at three time-points within 35min post ingestion. Gastric emptying the percentage emptied in 35min was significantly smaller for MIXED (29±19%) than for SEPARATE (57±11%, p<0.001). In the present study we show that gastric sieving can occur for liquid foods; water is able to drain from the stomach while a layer of nutrient rich liquid is retained. In indirect gastric emptying measurements, the behavior of labelling agents may be affected by the layering and confound emptying measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Coulomb oscillations in three-layer graphene nanostructures

    International Nuclear Information System (INIS)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K

    2008-01-01

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.

  8. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  9. Advanced diffusion system for low contamination in-line rapid thermal processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biro, D.; Preu, R.; Schultz, O.; Peters, S.; Huljic, D.M.; Zickermann, D.; Schindler, R.; Luedemann, R.; Willeke, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2002-10-01

    A novel diffusion system for in-line rapid thermal diffusion is presented. The lamp-heated furnace has a low thermal mass and a metal free transport system based on the walking beam principle. The furnace has been used to process first solar cells with lightly and highly doped emitters respectively. Solar cells with shallow lightly doped emitters show that the emitters processed in the new device can be well passivated. Shallow emitters with sheet resistances of up to 40/sq. have been contacted successfully by means of screen printing and firing through a SiN{sub x} antireflection coating. (author)

  10. Method and device for the separation of particles

    NARCIS (Netherlands)

    Rem, P.C.; Van Kooy, L.A.

    2004-01-01

    The invention relates to a method of in a liquid separating a mixture of particles that within chosen limits have different physical property values, wherein the particles to be separated are supplied via a feeder to a screen upon which a layer of facilitating particles is disposed, the size of the

  11. A self-cleaning underwater superoleophobic mesh for oil-water separation

    KAUST Repository

    Zhang, Lianbin

    2013-07-31

    Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

  12. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    Science.gov (United States)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  13. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  14. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    Science.gov (United States)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  16. Separation of nitrogen-krypton by the freeze-dried cellulose acetate membrane

    International Nuclear Information System (INIS)

    Tanioka, Akihiko; Ishikawa, Kinzo; Kakuta, Akio; Ozaki, Osamu; Oono, Masanori.

    1977-01-01

    The utility of freeze-dried cellulose acetate membranes, which consist of a thin skin layer supported upon a more porous matrix substructure, was examined for separation of nitrogen-radioactive krypton 85. The high permeable and separative membranes were prepared by fixed freezed-drying of swollen membrane after evaporation of acetone for 4-6 minutes. The permeation rate of nitrogen was 10 -1 -10 -3 (cc/cm 2 .sec.atm). Knudsen flow was predominant, since the permeation rate was inversely proportional to square root of molecular weight of gases. The influence of viscous flow was also observed by slight dependence on the pressure. The mean pore size was calculated by the equation of gas permeation in porous media. There exist fine pores of 30-40A radii in the skin layer. The separation factor (dilution of Kr) was about 0.7 and the separation efficiency was 60%. The collision between different gas molecules (Present-de Bethunes' effect) and the influence of viscous flow depreciates the efficiency. The separation efficiency which was determined by the experiment coincided with the one predicted according to the Present-de Bethunes' equation, supposing that the pore size in skin layer was 10-25A. (auth.)

  17. Analysis of dimensionality effect on shock wave boundary layer interaction in laminar hypersonic flows

    International Nuclear Information System (INIS)

    John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak

    2016-01-01

    Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.

  18. Inline Electrical Connector Mate/Demate Pliers

    Science.gov (United States)

    Yutko, Brian; Dininny, Michael; Moscoso, Gerand; Dokos, Adam

    2010-01-01

    Military and aerospace industries use Mil-Spec type electrical connections on bulkhead panels that require inline access for mate and demate operations. These connectors are usually in tight proximity to other connectors, or recessed within panels. The pliers described here have been designed to work in such tight spaces, and consist of a mirrored set of parallel handles, two cross links, two return springs, and replaceable polyurethane-coated end effectors. The polyurethane eliminates metal-to-metal contact and provides a high-friction surface between the jaw and the connector. Operationally, the user would slide the pliers over the connector shell until the molded polyurethane lip makes contact with the connector shell edge. Then, by squeezing the handles, the end effector jaws grip the connector shell, allowing the connector to be easily disconnected by rotating the pliers. Mating the connector occurs by reversing the prescribed procedure, except the connector shell is placed into the jaws by hand. The molded lip within the jaw allows the user to apply additional force for difficult-to-mate connectors. Handle design has been carefully examined to maximize comfort, limit weight, incorporate tether locations, and improve ergonomics. They have been designed with an off-axis offset for wiring harness clearance, while placing the connector axis of rotation close to the user s axis of wrist rotation. This was done to eliminate fatigue during multiple connector panel servicing. To limit handle opening width, with user ergonomics in mind, the pliers were designed using a parallel jaw mechanism. A cross-link mechanism was used to complete this task, while ensuring smooth operation.

  19. Human Intestinal Fluid Layer Separation: The Effect On Colloidal Structures & Solubility Of Lipophilic Compounds.

    Science.gov (United States)

    Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns

    2018-05-23

    In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced

  20. Improved pinning by multiple in-line damage

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Sawh, Ravi-Persad [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Gandini, Alberto [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Parks, Drew [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States)

    2005-02-01

    Columnar pinning centres provide the largest pinning potential, U{sub pin}, but not the greatest J{sub c} or pinnable field, B{sub pin}. Characteristics of ion-generated columnar defects which limit J{sub c} and B{sub pin} are discussed, including reduction of the percolation path, and the need for a larger number of columns of damage, for pinning, than are usually estimated. It is concluded that columnar pinning centres limit B{sub pin} to less than 4 T, and also severely reduce J{sub c}. The goal of maximizing U{sub pin}, via columnar centres, appears to have obscured a more rewarding approach and resulted in neglect of a large regime of ion interactions. Evidence is reviewed that multiple in-line damage (MILD), described herein, can provide orders of magnitude higher J{sub c} and B{sub pin}, despite providing lower U{sub pin}. The MILD pinning centre morphology is discussed, and it is estimated that for present-day large grain high T{sub c} superconductors, a J{sub c} value of {approx}10{sup 6}Acm{sup -2} is obtainable at 77 K, even when crystal plane alignment and weak links are not improved. In addition, the pinned field is increased by over an order of magnitude. An experiment is proposed to confirm these calculations, directly compare MILD pinning to continuous columnar pinning, and determine the optimum MILD structure. Applications of MILD pinning are discussed.

  1. Process measuring techniques applying in-line and on-line analyzers. Betriebsmesstechnik unter Einsatz von in-line und on-line Analysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Oehme, F; Jola, M

    1982-01-01

    The measurement and control of classical physical parameters such as pressure, temperature etc, is frequently not sufficient now for optimum process control in chemistry and associated fields. Only the use of inline and online analysers makes it possible to maintain the narrow limits of chemical reaction conditions. This ABC pocket book should help the user to select the best from the large number of available methods of measurement. Using 120 alphabetically arranged key words with many cross-references, it has a well-thought-out treatment of basic measurements and descriptions of apparatus, and on the other hand, it contains selected typical examples of applications. Width rather than depth of information is aimed at. The electrochemical methods discussed are potentiometry (pH value, redox potential, direct potentiometry with ion selective electrodes), conductometry (measurement of conductivity) and voltammetry (polarography, ammetry). Photometry, the measurement of density, the refractive index, surface tension and viscosity are described. From the large number of applications, the examples of textile processing, the cellulose and paper industry, the surface treatment of materials and petrochemicals are discussed. Special attention is paid to the treatment of service water, drinking water and boiler feed water. In connection with questions of work and environmental protection, emission control and the treatment of domestic and industrial waste water are described. With 119 figs.

  2. Towards an inline reconstruction architecture for micro-CT systems

    International Nuclear Information System (INIS)

    Brasse, David; Humbert, Bernard; Mathelin, Carole; Rio, Marie-Christine; Guyonnet, Jean-Louis

    2005-01-01

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 μm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection

  3. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    Science.gov (United States)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  4. Test and evaluation of the in-line plutonium solution K-absorption-edge densitometer at the Savannah River Plant. Phase I. Off-line testing results

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Marks, T.; Johnson, S.S.

    1982-04-01

    An in-line, plutonium-solution, K-edge absorption densitometer has been developed at Los Alamos and is currently undergoing test and evaluation at the Savannah River Plant (SRP). The first phase of the test and evaluation (off-line instrument calibration and solution assays) was completed, and preparations are under way to install the instrument in-line, as soon as process schedules permit. Calibration data in the design concentration range of 25 to 40 g Pu/L demonstrate routine achievement of densitometry assay precisions of 0.5% or better in 40 min. Plutonium assays at concentrations outside the calibration range were investigated in an effort to define better the limitations of the instrument and address other possible assay situations at SRP. Densitometry precisions obtained for 40-min assays range from 3% to 5 g Pu/L down to 0.4% at 70 g Pu/L. At higher plutonium concentrations, the precision deteriorated due to increasing gamma-ray absorption by the solution. In addition, with actinide concentrations above approximately 100 g/L, the assay accuracy also suffered because of enhanced small-angle scattering effects in the large sample cell. Measurements on mixed U/Pu solutions demonstrated the feasibility of accurate plutonium assays with correction for the large uranium matrix contributions being determined from the measurement data. The 239 240 Pu weight fractions and 241 Pu/ 239 Pu and 238 Pu/ 239 Pu isotopic ratios can be determined. In a mockup of the in-line solution plumbing system, all assay sequences, error conditions, and interlock criteria were exercised and verified to be working properly

  5. A micromachined inline type microwave power sensor with working state transfer switches

    International Nuclear Information System (INIS)

    Han Lei

    2011-01-01

    A wideband 8-12 GHz inline type microwave power sensor, which has both working and non-working states, is presented. The power sensor measures the microwave power coupled from a CPW line by a MEMS membrane. In order to reduce microwave losses during the non-working state, a new structure of working state transfer switches is proposed to realize the two working states. The fabrication of the power sensor with two working states is compatible with the GaAs MMIC (monolithic microwave integrated circuit) process. The experimental results show that the power sensor has an insertion loss of 0.18 dB during the non-working state and 0.24 dB during the working state at a frequency of 10 GHz. This means that no microwave power has been coupled from the CPW line during the non-working state. (semiconductor integrated circuits)

  6. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  7. Controlled Topological Transitions in Thin-Film Phase Separation

    KAUST Repository

    Hennessy, Matthew G.; Burlakov, Victor M.; Goriely, Alain; Wagner, Barbara; Mü nch, Andreas

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. In this paper the evolution of a binary mixture in a thin-film geometry with a wall at the top and bottom is considered. By bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls toward each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phase-field model. Using matched asymptotic expansions a corresponding sharp-interface problem for the location of the interface is established. It is then argued that this newly created two-layer system is not at its energetic minimum but destabilizes into a controlled self-replicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a thin-film model for the free interfaces, which is derived asymptotically from the sharp-interface model.

  8. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    Science.gov (United States)

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  9. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  10. Propagation of acoustoelectric waves in a layered cylinder with conducting layers

    International Nuclear Information System (INIS)

    Shul'ga, N.A.; Medvedev, K.V.

    1995-01-01

    In multilayer acoustoelectric waveguides, the piezoelectric layers may be separated by metallic conducting layers. Propagation of shear waves within such structures of a regular type with planar dividing boundaries for the properties was studied. In this paper, we investigate acoustoelectric waves in multilayer piezoelectric structures containing conducting layers, with cylindrical dividing surfaces for the properties. The method for solving the boundary-value problem is a generalization of the approach outlined. We should turn our attention to the fact that the order of the dispersion determinant in these problems depends on the number of piezoelectric-conductor junctions. When the curvature of the cylindrical surface is equal to zero, the constructed solution goes to the solution of the problem for a planar waveguide

  11. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  12. Characteristics of the magnetospheric boundary layer and magnetopause layer as observed by Imp 6

    International Nuclear Information System (INIS)

    Eastman, T.E.; Hones, E.W. Jr.

    1979-01-01

    Imp 6 observations of the low-latitude magnetospheric boundary layer indicate that the plasma within it is supplied primarily by direct entry of magnetosheath plasma across the magnetopause layer. We define the magnetopause layer as the current layer (separating the magnetosheath from the boundary layer) through which the magnetic field shifts in direction. High temporal resolution (3-s average) data reveal that in a majority of Imp 6 magnetopause crossing, no distinct changes in electron density or energry spectra are observed at the magne opause layer. In all Imp 6 crossings, some magnetosheathlike plasma is observed earthward of the magnetopause layer, implying the existence of a boundary layer. Boundary layer electron energy spectra are often virtually indistinguishable from the adjacent magnetosheath spectra. Low-latitude boundary layer bulk plasma flow as observed by Imp 6 almost always has an antisunward component and often has a significant cross-field component. The boundary layer thickness is highly variable and is generally much larger than the magnetopause layer thickness. Energetic electron pitch angle distributions indicate that the low-latitude boundary layers is normally on closed field lines. We conclude that diffusive as well as nondiffusive processes probably contribute to the entry of magnetosheath plasma into the boundary layer

  13. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  14. 73.7 Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA

    NARCIS (Netherlands)

    Sleiffer, V.A.J.M.; Jung, Y.; Veljanovski, V.; Uden, van R.G.H.; Kuschnerov, M.; Kang, Q.; Grüner-Nielsen, L.; Sun, Y.; Richardson, D.J.; Alam, S.U.; Poletti, F.; Sahu, J.K.; Dhar, A.; Chen, H.; Inan, B.; Koonen, A.M.J.; Corbett, B.; Winfield, R.; Ellis, A.D.; Waardt, de H.

    2012-01-01

    We show transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM mode-division- multiplexed signal over 119km of few-mode fiber with inline multi-mode EDFA, using 6x6 MIMO digital signal processing. The total demonstrated net capacity is 57.6 Tb/s (SE 12 bits/s/Hz).

  15. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered....

  16. Layer-by-Layer Assembly for Preparation of High-Performance Forward Osmosis Membrane

    Science.gov (United States)

    Yang, Libin; Zhang, Jinglong; Song, Peng; Wang, Zhan

    2018-01-01

    Forward osmosis (FO) membrane with high separation performance is needed to promote its practical applications. Herein, layer-by-layer (LbL) approach was used to prepare a thin and highly cross-linked polyamide layer on a polyacrylonitrile substrate surface to prepare a thin-film composite forward osmosis (TFC-FO) membrane with enhanced FO performance. The effects of monomer concentrations and assembly cycles on the performance of the TFC-FO membranes were systematically investigated. Under the optimal preparation condition, TFC-FO membrane achieved the best performance, exhibiting the water flux of 14.4/6.9 LMH and reverse salt flux of 7.7/3.8 gMH under the pressure retarded osmosis/forward osmosis (PRO/FO) mode using 1M NaCl as the draw against a DI-water feed, and a rejection of 96.1% for 2000 mg/L NaCl aqueous solution. The result indicated that layer-by-layer method was a potential method to regulate the structure and performance of the TFC-FO membrane.

  17. A self-cleaning underwater superoleophobic mesh for oil-water separation

    KAUST Repository

    Zhang, Lianbin; Zhong, Yujiang; Cha, Dong Kyu; Wang, Peng

    2013-01-01

    and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate

  18. Experimental and numerical studies of turbulent flow in an in-line tube bundles

    Directory of Open Access Journals (Sweden)

    Aounalah Mohamed

    2012-04-01

    Full Text Available In the present paper an experimental and a numerical simulation of the turbulent flow in an in-line tube bundles have been performed. The experiments were carried out using a subsonic wind tunnel. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The Navier-Stokes equations of the turbulent flow are solved using Reynolds Stress and K-ε, turbulence models (RANS provided by Fluent CFD code. An adapted grid using static pressure, pressure coefficient and velocity gradient, furthermore, a second order upwind scheme were used. The obtained results from the experimental and numerical studies show a satisfactory agreement.

  19. Operation of automated NDA instruments for in-line HEU accounting at Y-12

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Jeter, I.W.; McCullough, E.; Bowers, G.L.

    1983-01-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Y-12 Plant for recovery of highly enriched uranium. One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments has been a joint effort of Y-12 and Los Alamos. This has included comparison of the solvent extraction system inventories with direct measurement performed on the dumped solution components of the solvent extraction system, as well as comparisons of concentration assay results with the external assays of samples withdrawn from the process. The function, design, and preliminary results of the operational evaluation are reported

  20. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  1. Experimental Studies of Flow Separation of the NACA 2412 Airfoil at Low Speeds

    Science.gov (United States)

    Seetharam, H. C.; Rodgers, E. J.; Wentz, W. H., Jr.

    1997-01-01

    Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.

  2. Direct analysis of formate in human plasma, serum and whole blood by in-line coupling of microdialysis to capillary electrophoresis for rapid diagnosis of methanol poisoning

    OpenAIRE

    Kubáň, P. (Pavel); Boček, P. (Petr)

    2013-01-01

    A microdialytic device was in-line coupled to capillary electrophoresis for direct injection of blood samples. Its performance was demonstrated on rapid analysis of formic acid in various blood samples including serum samples of a patient diagnosed with acute methanol poisoning.

  3. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  4. Modeling for Friction of Four Stroke Four Cylinder In-Line Petrol Engine

    Directory of Open Access Journals (Sweden)

    P.C. Mishra

    2013-09-01

    Full Text Available A four stroke four cylinder in-line petrol engine is modeled to estimate various performance parameters. The solution is based on tribology and dynamics principle. The detailed parameters relating to engine friction and lubrication are computed numerically for the engine firing order 1-3-4-2. The numerical method is based on finite difference method that solves coupled Reynolds Equation and Energy Equation. Output includes the movie thickness, friction force, friction power loss and temperature rise in the ring liner conjunction in all four cylinders. Transient regime of ring liner lubrication isaddressed while the same changes from hydrodynamic to mixed in an engine cycle. Momentary cessation near the top and bottom dead center that causes boundary interaction is analyzed through asperity contact. The non - Newtonian behavior of lubricant film due to pressure and temperature is addresses using viscosity -pressure- temperature inter relationship.

  5. In-line CD metrology with combined use of scatterometry and CD-SEM

    Science.gov (United States)

    Asano, Masafumi; Ikeda, Takahiro; Koike, Toru; Abe, Hideaki

    2006-03-01

    Measurement characteristics in scatterometry and CD-SEM for lot acceptance sampling of inline critical dimension (CD) metrology were investigated by using a statistical approach with Monte Carlo simulation. By operation characteristics curve analysis, producer's risk and consumer's risk arising from sampling were clarified. Single use of scatterometry involves a higher risk, such risk being particularly acute in the case of large intra-chip CD variation because it is unable to sufficiently monitor intra-chip CD variation including local CD error. Substituting scatterometry for conventional SEM metrology is accompanied with risks, resulting in the increase of unnecessary cost. The combined use of scatterometry and SEM metrology in which the sampling plan for SEM is controlled by scatterometry is a promising metrology from the viewpoint of the suppression of risks and cost. This is due to the effect that CD errors existing in the distribution tails are efficiently caught.

  6. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  7. High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector

    Czech Academy of Sciences Publication Activity Database

    Vagovič, P.; Korytár, D.; Cecilia, A.; Hamann, E.; Švéda, L.; Pelliccia, D.; Hartwig, J.; Zápražný, Z.; Oberta, Peter; Dolbnya, I.; Shawney, K.; Flechsig, U.; Fiederle, M.; Baumbach, T.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 153-159 ISSN 0909-0495. [International Workshop on X-Ray Damage to Biological Crystalline Samples /7./. Oxfordshire, 14.03.2012-16.03.2012] R&D Projects: GA MPO FR-TI1/412 Institutional support: RVO:68378271 Keywords : Bragg magnifie * germanium * holography * high resolution * in-line * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.022, year: 2013 http://onlinelibrary.wiley.com/doi/10.1107/S0909049512044366/pdf

  8. Separation of Berberine Hydrochloride and Tetrahydropalmatine and Their Quantitative Analysis with Thin Layer Chromatography Involved with Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-01-01

    Full Text Available [BMIM]OH was used in mobile and stationary phase of thin layer chromatography (TLC to analyze berberine hydrochloride and tetrahydropalmatine for the first time. Supported imidazole ionic liquid with hydroxide ion on silica gel (SiO2·Im+·OH− was synthesized through simple procedure and characterized by Fourier transform infrared spectroscopy (FT-IR, elemental analysis, and scanning electron microscope (SEM. Moreover, on the plates prepared by SiO2·Im+·OH−, the contents of the above alkaloids in the Chinese patent medicine (CPM of “Stomacheasy” capsule were successfully determined by TLC scanner. The key conditions and chromatographic behaviors were also investigated in detail. According to similar ways, ionic liquids (ILs also can be used in other planar chromatographies in two modes. This study is expected to be helpful in expanding the application of IL and its bonded silica gel in TLC separation field.

  9. In-line photonic microcells based on the elliptical microfibers for refractive index sensors applications

    Science.gov (United States)

    Jin, Wa; Liu, Xuejing; Jin, Wei

    2017-10-01

    We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.

  10. On Poor Separation in Magnetically Driven Shock Tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1973-01-01

    Observations made at steady-state running conditions in a magnetically driven shock tube, with parallel-plate electrodes, showed that for a given discharge voltage, sufficient separation between the shock and the current-sheet occurred only at relatively high discharge pressures. As a comparison......, poor separations were also noted in conventional diaphragm-type shock tubes running at low initial pressures. It is demonstrated that the observed poor separation can be explained by a mass leakage, instead of through the wall boundary layer, but through the current-sheet itself....

  11. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating

    Directory of Open Access Journals (Sweden)

    Carolin Stangier, Thomas Abel, Julia Mierau, Wildor Hollmann, Heiko K. Strüder

    2016-03-01

    Full Text Available The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour for 8 weeks. Training intensity was determined within non-specific (cycling or running and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m and one non-specific (30s cycling or 200m running all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa and glucose (BGL 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak was significantly increased (+17%; p = 0.01 in both groups and highly correlated with the sprint performance (r = -0.71. BLa values decreased significantly (-18%, p = 0.02 after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04 in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group.

  12. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  13. Stacked white OLED having separate red, green and blue sub-elements

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  14. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  15. Twist on protein microarrays: layering wax-patterned nitrocellulose to create customizable and separable arrays of multiplexed affinity columns.

    Science.gov (United States)

    de Lange, Victoria; Vörös, János

    2014-05-06

    We developed the simple and inexpensive FoRe microarray to simultaneously test several 1 μL samples for multiple proteins. By combining forward and reverse phase microarrays into an innovative three-dimensional format, the FoRe array exploits the advantages and eliminates several drawbacks of the traditional approaches (i.e., large sample volumes, protein loss, and cross-reactivity between detection antibodies). Samples are pipetted into an array of separable, multiplexed affinity columns. Several nitrocellulose membranes, each functionalized with a different capture antibody, are stacked to create a customizable affinity column. The nitrocellulose is patterned with wax to form 25 isolated microspots on each layer, allowing us to analyze multiple samples in parallel. After running the immunoassay, the stacks are quickly disassembled, revealing 2D microarrays of different fractions from multiple samples. By combining the stack-and-separate technique with wax patterning, we keep the arrays low cost and easily tailored to a variety of applications. We successfully performed 3D multiplexing using a model system with mouse and rabbit IgG. Binding proved to be independent of the position in the stack, and the limit of detection for a mouse IgG sandwich assay was 7.3 pM in BSA and 15 pM in human plasma. The FoRe microarray makes it possible to identify protein expression patterns across several minute volume samples; for example, it could be used to analyze cell lysate in drug response studies or pricks of blood from small animal studies.

  16. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    Science.gov (United States)

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  19. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.

    Science.gov (United States)

    Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio

    2015-10-27

    In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.

  20. In-line characterization and identification of micro-droplets on-chip

    Directory of Open Access Journals (Sweden)

    Weber Emanuel

    2014-01-01

    Full Text Available We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

  1. Partial interlaminar separation system for composites

    Science.gov (United States)

    Elber, W. (Inventor)

    1980-01-01

    This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics.

  2. Numerical suppression of the twin image in in-line holography of a volume of micro-objects

    International Nuclear Information System (INIS)

    Denis, L; Fournier, C; Fournel, T; Ducottet, C

    2008-01-01

    We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects

  3. Thermally-insulating layer for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The thermally-insulating layer has been designed both for insulating surfaces within the core of a nuclear reactor and transmitting loads such as the core-weight. Said layer comprises a layer of bricks and a layer of tiles with smaller clearance between the tiles than between the bricks, the latter having a reduced cross-section against the tiles so as to be surrounded by relatively large interconnected ducts forming a continuous chamber behind the tile-layer in order to induce a substantial decreases in the transverse flow of the reactor-core coolant. The core preferably comprises hexagonal columns supported by rhomb-shaped plates, with channels distributed so as to mix the coolant of twelve columns. The plates are separated from support-tiles by means of pillars [fr

  4. Removing Boundary Layer by Suction

    Science.gov (United States)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  5. Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection.

    Science.gov (United States)

    Du, Yanying; Qiao, Xueguang; Rong, Qiangzhou; Zhang, Jing; Feng, Dingyi; Wang, Ruohui; Sun, Hao; Hu, Manli; Feng, Zhongyao

    2013-05-20

    An in-line fiber quasi-Michelson interferometer (IFQMI) working on reflection is proposed and experimentally demonstrated. The sensing head is fabricated by splicing a section of polarization-maintaining photonic crystal fiber (PM-PCF) with a lead-in single mode fiber (SMF). Some cladding modes are excited into the PM-PCF via the mismatch-core splicing interface between PM-PCF and SMF. Besides, two orthogonal polarized-modes are formed due to the inherent multiholes cladding structure of the PM-PCF. A well-defined interference pattern is obtained as the result of cladding-orthogonal modes interference. The IFQMI with 20 cm long PM-PCF is proposed for strain and torsion measurements. A strain sensitivity of -1.3 pm/με and a torsion sensitivity of -19.17 pm/deg are obtained, respectively. The proposed device with 10 cm long PM-PCF exhibits a considered temperature sensitivity of 9.9 pm/°C. The IFQMI has a compact structure and small size, making it a good candidate for multiparameter measurements.

  6. Pipeline mapping and strain assessment using ILI (In-line Inspection) tolls

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, Brian [GE PII Pipeline Solutions, Rio de Janeiro, RJ (Brazil); Huewener, Thomas [E.ON Ruhrgas AG, Essen (Germany)

    2009-07-01

    GE PII IMU Mapping inspection system measures pipeline location coordinates (x, y, z) and provides data for determining pipeline curvature and consequential pipeline bending strain. The changes in strain can be used in the application of structural analyses and integrity evaluation of pipeline systems. This paper reviews the Inertia Measuring Unit (IMU) system and field investigation works performed on a high-pressure gas pipeline for E.ON Ruhrgas AG. The Inertial Measuring Unit of the pipeline inspection tool provides continuous measurement of the pipeline centreline coordinates. More than one inspection run was performed which allowed a more accurate strain comparison to be made. Repeatability is important to establish the reasons for increasing strain values detected at specific pipeline sections through in-line inspection surveys conducted in regular intervals over many years. Moreover, the flexibility resulting from a combination of different sensor technologies, makes it possible to provide a more complete picture of the overall situation. This paper reviews the work involved in detecting, locating and determining the magnitude and type of strain corresponding to the pipeline movement in field. (author)

  7. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    Science.gov (United States)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  8. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  9. Electron drag in ferromagnetic structures separated by an insulating interface

    Science.gov (United States)

    Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.

    2018-06-01

    We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.

  10. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  11. Structure of gels layers with cells

    Science.gov (United States)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  12. Three-layer magnetoconvection

    International Nuclear Information System (INIS)

    Lin, M.-K.; Silvers, L.J.; Proctor, M.R.E.

    2008-01-01

    It is believed that some stars have two or more convection zones in close proximity near to the stellar photosphere. These zones are separated by convectively stable regions that are relatively narrow. Due to the close proximity of these regions it is important to construct mathematical models to understand the transport and mixing of passive and dynamic quantities. One key quantity of interest is a magnetic field, a dynamic vector quantity, that can drastically alter the convectively driven flows, and have an important role in coupling the different layers. In this Letter we present the first investigation into the effect of an imposed magnetic field in such a geometry. We focus our attention on the effect of field strength and show that, while there are some similarities with results for magnetic field evolution in a single layer, new and interesting phenomena are also present in a three layer system

  13. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  14. New Method to Identify Field Joint Coating Failures Based on MFL In-Line Inspection Signals

    Directory of Open Access Journals (Sweden)

    Lianshuang Dai

    2018-02-01

    Full Text Available Above ground indirect detections and random excavations that have applied the past years for buried long distance oil and gas pipelines can only identify some damaged coating locations. Hence, large number of field joint coating (FJC failures happen unconsciously until they lead to failures of the pipelines. Based on the analysis of magnetic flux leakage (MFL in-line inspection (ILI signals, combined with the statistical results of 414 excavations from two different pipeline sections, a new method to identify the failed FJC is established. Though it can only identify FJC failures when there are signs of corrosion on pipe body, it is much more efficient and cost-saving. The concluded identification rule still needs more validations and improvements to be more applicable and accuracy.

  15. Thin-layer chromatography of ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone and 2,2'-bipyridyl on cellulose layer

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Saitoh, K; Suzuki, N [Tohoku Univ., Sendai (Japan). Faculty of Science

    1980-11-11

    Normal phase thin-layer chromatographic behaviour of several ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone (TTA) and 2,2'bipyridyl (bpy) has been investigated on cellulose layer. The ternary complexes of lanthanide metals show higher mutual separability than the complexes with TTA alone. Mutual separation of TTA complexes with La(III), Ce(III), Eu(III) or Y(III), Sc(III), Th(IV), and U(VI) has been successfully achieved by two-dimensional TLC, primarily with carbon tetrachloride-benzene (75:25) containing 0.02M TTA, and secondary with carbon tetrachloride-hexane (35:65) containing both 0.02M TTA and 0.02M bpy.

  16. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    Science.gov (United States)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  17. Bioparticle Separation in Microfluidic Devices for in-Line Application

    NARCIS (Netherlands)

    Zhang, L.

    2009-01-01

    There was an explosive growth in the bioprocess industry market during the last decade. The tight control of these processes is often very critical in order to optimize the process efficiency or even achieve the right product. Capillary electrophoresis (CE) system is a good option for process

  18. Contact Problem for an Elastic Layer on an Elastic Half Plane Loaded by Means of Three Rigid Flat Punches

    Directory of Open Access Journals (Sweden)

    T. S. Ozsahin

    2013-01-01

    Full Text Available The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in direction are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, λ, is less than a critical value, . In this case, initial separation loads, and initial separation points, are determined. Also the required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile tractions are not allowed on the interface, for the layer separates from the interface along a certain finite region. Numerical results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along the interface between elastic layer and half plane are given for this discontinuous contact case.

  19. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  20. Numerical twin image suppression by nonlinear segmentation mask in digital holography.

    Science.gov (United States)

    Cho, ChoongSang; Choi, ByeongHo; Kang, HoonJong; Lee, SangKeun

    2012-09-24

    The in-line holography has obvious advantages especially in wider spatial bandwidth over the off-axis holography. However, a direct current(DC)-noise and an unwanted twin image should be separated or eliminated in the in-line holography for a high quality reconstruction. An approach for suppressing the twin image is proposed by separating the real and twin image regions in the digital holography. Specifically, the initial region of real and twin images is obtained by a blind separation matrix, and the segmentation mask to suppress the twin image is calculated by nonlinear quantization from the segmented image. For the performance evaluation, the proposed method is compared with the existing approaches including the overlapping block variance and manual-based schemes. Experimental results showed that the proposed method has a better performance at the overlapped region of the real and twin images. Additionally, the proposed method causes less loss of real image than the overlapping block variance-based scheme. Therefore, we believe that the proposed scheme can be a useful tool for high quality reconstruction in the in-line holography.

  1. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  2. A Sensitive Method Approach for Chromatographic Analysis of Gas Streams in Separation Processes Based on Columns Packed with an Adsorbent Material

    Directory of Open Access Journals (Sweden)

    I. A. A. C. Esteves

    2016-01-01

    Full Text Available A sensitive method was developed and experimentally validated for the in-line analysis and quantification of gaseous feed and product streams of separation processes under research and development based on column chromatography. The analysis uses a specific mass spectrometry method coupled to engineering processes, such as Pressure Swing Adsorption (PSA and Simulated Moving Bed (SMB, which are examples of popular continuous separation technologies that can be used in applications such as natural gas and biogas purifications or carbon dioxide sequestration. These processes employ column adsorption equilibria on adsorbent materials, thus requiring real-time gas stream composition quantification. For this assay, an internal standard is assumed and a single-point calibration is used in a simple mixture-specific algorithm. The accuracy of the method was found to be between 0.01% and 0.25% (-mol for mixtures of CO2, CH4, and N2, tested as case-studies. This makes the method feasible for streams with quality control levels that can be used as a standard monitoring and analyzing procedure.

  3. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  4. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  5. Energy efficient three-layer panels and elastic compliance of their middle layer

    Directory of Open Access Journals (Sweden)

    Petrov Stanislav

    2017-01-01

    Full Text Available Three-layer panels are referred to light weight energy efficient building envelopes. According to current trends, mineral wool from basalt fiber is preferable to be used as panels middle layer. All three-layers of the construction together account for mechanical properties, though these layers taken separately have very different mechanical properties. The work of such a composite design has a number of features that require careful consideration when calculating the panels for strength. Thus, it has not yet been described how squeeze reduction of a relatively soft middle layer affects the load bearing capacity of a panel. When panels are exposed to external loads, their middle layer is squeezed thus changing the characteristics of the panel. This effect is particularly evident in supporting structures. Besides, squeeze reduction of the middle layer changes its elastic-plastic propeties. The purpose of this work is to study the effect of the middle layer of an energy efficient panel squeeze reduction on its load bearing capacity. When solving this task, the authors worked out a methodology which takes into account squeeze reduction of a middle layer and its effect on load bearing capacity of the panel. The researches introduced an algorithm for solving this task and created a tool that allows to easily receive the exact solution. The paper presents this methodology and describes a computer program for calculating three-layer panels with account of changing elastic compliance of a middle layer. The main result of the work is an extended methodology of calculation of the panels and an obtained engineering tool that allows to quickly obtain an extended solution.

  6. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale.

    Science.gov (United States)

    Gutzweiler, Ludwig; Gleichmann, Tobias; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2017-07-01

    Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on-demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary- and chip-based methods offering low consumable costs (<0.1$) circumventing cost-intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2-4 μL in volume, a semi-contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non-contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR-grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi-circular cross section of adaptable width (∼200-600 μm) and height (∼30-80 μm) as well as a typical length of 15-55 mm. Layout of such liquid structures is adaptable on-demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label-free DNA ladder (100-1000 bp) at 100 V/cm via in-line staining and laser induced fluorescent end-point detection using an automated prototype. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Induction heating in in-line strip production process

    International Nuclear Information System (INIS)

    Costa, P.; Santinelli, M.

    1995-05-01

    ISP (In-line Strip Production), a continuous process for steel strip production, has recently been set in an italian innovative plant, where ecological impact and power requirements are lighter than usual. This report describes the studies performed by ENEA (Italian Agency for New Technologies, Energy and the Environment), while a prototype reheating facility was arranged by Acciaieria ISP in Cremona (Italy). The authors, after a study of the prototype electromagnetic field, calculate the heating rate, with the thermal network method. Then they detect, with a 1-D-FEM, the heat diffusion through the strip cross section. Afterward, since the heat distribution depends on the eddy current density one, which is given by the magnetic field distribution, the authors, with a 3-D-FEM, carry out a coupled, electromagnetic and thermal, analysis in time domain. The strip temperature map is established by the balance between skin depth heating and surface cooling: a thermal analysis, performed with a moving 2-D-FEM, take into account the effects of the different heating and cooling situations, originated by the strip moving at a speed of 6m/min through four consecutive reheating facilities. The temperatures of a strip sample heated by the prototype have been monitored, acquired by a computer and related with the simulation results. The little difference between experiment and simulation assessed the qualitative and quantitative validity of this analysis, that has come out to be a tool, useful to evaluate the effects of possible improvements to the ISP process

  8. Conceptual geohydrological model of the separations area

    International Nuclear Information System (INIS)

    Root, R.W.; Marine, I.W.

    1977-01-01

    Subsurface drilling in and around the Separations Areas (F-Area and H-Area of the Savannah River Plant) is providing detailed information for a conceptual model of the geology and hydrology underlying these areas. This conceptual model will provide the framework needed for a mathematical model of groundwater movement beneath these areas. Existing information substantiates the presence of two areally extensive clay layers and several discontinuous clay and sandy-clay layers. These layers occur in and between beds of clayey and silty sand that make up most of the subsurface material. Within these sand beds are geologic units of differing hydraulic conductivity. For the present scale of the model, the subsurface information is considered adequate in H-Area, but additional drilling is planned in F-Area

  9. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    Science.gov (United States)

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  10. Study on a particle separator using ultrasonic wave

    International Nuclear Information System (INIS)

    Lee, Young Seop; Kwon, Jae Hwa; Seo, Dae Chul; Yun, Dong Jin

    2005-01-01

    This paper presents the theory, design and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at the first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation and separation force against 50m diameter particles mixed with water at the separation channel in the device. Experimental results also showed that the device can work at both heavy and light sand particles mixed with water due to the generated standing wave field in the separation channel.

  11. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  12. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies

    Directory of Open Access Journals (Sweden)

    Elodie Bugnicourt

    2016-08-01

    Full Text Available Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties, protective effects against flame propagation, ultra violet (UV radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.

  13. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies

    Science.gov (United States)

    Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus

    2016-01-01

    Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use. PMID:28335278

  14. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  15. A three-layer distributed RC network with two transmission zeros

    Science.gov (United States)

    Huelsman, L. P.

    1974-01-01

    This report describes the properties of a three-layer distributed RC network consisting of two resistive layers separated by a dielectric which may be used to realize two zeros of transmission on the j-omega axis of the complex frequency plane. The relative location of the two zeros is controlled by the location of a contact placed on one of the resistive layers.

  16. Search for inline'>CP Violation and Measurement of the Branching Fraction in the Decay inline'>D0KS0KS0

    Energy Technology Data Exchange (ETDEWEB)

    Dash, N.; Bahinipati, S.; Bhardwaj, V.; Trabelsi, K.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Breibeck, F.; Browder, T. E.; Červenkov, D.; Chang, M. -C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Cinabro, D.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Kahn, J.; Kaliyar, A. B.; Karyan, G.; Katrenko, P.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, C. -S.; Park, H.; Paul, S.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Piilonen, L. E.; Prasanth, K.; Ritter, M.; Rostomyan, A.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Stypula, J.; Sumisawa, K.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Vorobyev, V.; Vossen, A.; Waheed, E.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yelton, J.; Yook, Y.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.

    2017-10-01

    We report a study of the decay inline'>D0KS0KS0 using 921 fb-1 of data collected at or near the Υ(4S) and Υ(5S) resonances with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured time-integrated CP asymmetry is ACP(inline'>D0KS0KS0) = (-0.02 ± 1.53 ± 0.02 ± 0.17)%, and the branching fraction is B(inline'>D0KS0KS0) = (1.321 ± 0.023 ± 0.036 ± 0.044) × 10-4, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (inline'>D0KS0π0). These results are significantly more precise than previous measurements available for this mode. The ACP measurement is consistent with the standard model expectation.

  17. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    Science.gov (United States)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  18. MULTI-LAYER MIRROR FOR RADIATION IN THE XUV WAVELENGHT RANGE AND METHOD FOR MANUFACTURE THEREOF

    NARCIS (Netherlands)

    Bijkerk, Frederik; Louis, Eric; Kessels, M.J.H.; Verhoeven, Jan; Den Hartog, Harmen Markus Johannes

    2002-01-01

    Multi-layer mirror for radiation with a wavelength in the wavelength range between 0.1 nm and 30 nm (the so-called XUV range), comprising a stack of thin films substantially comprising scattering particles which scatter the radiation, which thin films are separated by separating layers with a

  19. Solid phase separation technique for use in radioimmunoassays

    International Nuclear Information System (INIS)

    Tu, J.I.

    1979-01-01

    A radioimmunoassay procedure, and article of manufacture for carrying out that procedure, are disclosed herein. The solid phase separation technique utilized in the radioimmunoassay of this invention utilizes a test tube, the internal surface of which has been coated with two antibody layers

  20. Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile

    Directory of Open Access Journals (Sweden)

    Julia Kurz

    2018-03-01

    Full Text Available A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime.

  1. Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis–catalysis testing tool

    International Nuclear Information System (INIS)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L.; Aich, Payoli; Beaulieu, David R.; Klotzsch, Helmut; Bachman, Stephen; Hock, Adam; Stair, Peter

    2015-01-01

    An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10 −3 to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al 2 O 3 overcoats, and evaluation of catalyst propylene hydrogenation activity

  2. Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis–catalysis testing tool

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Aich, Payoli [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Beaulieu, David R.; Klotzsch, Helmut; Bachman, Stephen [Arradiance Inc., Sudbury, Massachusetts 01776 (United States); Hock, Adam [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Stair, Peter [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-08-15

    An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10{sup −3} to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al{sub 2}O{sub 3} overcoats, and evaluation of catalyst propylene hydrogenation activity.

  3. Reducing the Drag and Damage of a High-Speed Train by Analyzing and Optimizing its Boundary Layer Separation and Roll-up into Wake Vortices

    Science.gov (United States)

    Jiang, Chung-Hsiang; Marcus, Philip

    2012-11-01

    We present numerical calculations of the boundary layers and shed wake vortices behind several aerodynamic bodies and generic models of high-speed trains. Our calculations illustrate new visual diagnostics that we developed that clearly show where the separation of a boundary layer occurs and where, how, and with what angles (with respect to the stream-wise direction) the wake vortices form. The calculations also illustrate novel 3D morphing and mesh ``pushing and pulling'' techniques that allow us to change the shapes of aerodynamic bodies and models in a controlled and automated manner without spurious features appearing. Using these tools we have examined the patterns of the shed vortices behind generic bodies and trains and correlated them with the changes in the drag as well as with the effects of the shed vortices on the environment. In particular, we have applied these techniques to the end car of a next-generation, high-speed train in order to minimize the drag and to minimize the adverse effects of the shed vortices on the track ballast.

  4. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Zhiyong; Lai, Yanqing; Zhang, Zhian; Zhang, Kai; Li, Jie

    2014-01-01

    Graphical abstract: Al2O3-coated separator with developed porous channels is prepared by coating Al2O3 polymer solution on routine separator. The batteries with Al2O3-coated separator exhibited a reversible capacity of as high as 593 mAh g-1 at the rate of 0.2 C after 50th charge/discharge cycle. The enhancement in the electrochemical performance could be attributed to the reduced charge transfer resistance after the introduction of Al2O3 coating layer. Besides, the Al2O3 coating layer, acting as a physical barrier for polysulfides, can effectively prevent polysulfides shuttling between the cathode and the anode. We believe that the Al2O3-coated separator is promising in the lithium sulfur battery applications. - Highlights: • Al 2 O 3 -coated separator is used as the separator of lithium sulfur battery. • The cell with Al 2 O 3 -coated separator exhibits excellent cycling stability and high rate capability. • Al 2 O 3 -coated separator is promising in the lithium sulfur battery applications. - Abstract: In this paper, Al 2 O 3 -coated separator with developed porous channels is prepared to improve the electrochemical performance of lithium sulfur batteries. It is demonstrated that the Al 2 O 3 -coating layer is quite effective in reducing shuttle effect and enhancing the stability of the sulfur electrode. The initial discharge capacity of the cell with Al 2 O 3 -coated separator can reach 967 mAh g −1 at the rate of 0.2 C. After 50th charge/discharge cycle, this cell can also deliver a reversible capacity of as high as 593.4 mAh g −1 . Significantly, the charge-transfer resistance of the electrode tends to be reducing after using Al 2 O 3 -coated separator. The improved cell performance is attributed to the porous architecture of the Al 2 O 3 -coating layer, which serves as an ion-conducting skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X

  5. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  6. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  7. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  8. Influence of velocity gradient on optimisation of the aggregation process and physical properties of formed aggregates. Part 1. Inline high density suspension (IHDS) aggregation process

    Czech Academy of Sciences Publication Activity Database

    Polášek, Pavel

    2011-01-01

    Roč. 59, č. 2 (2011), s. 107-117 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : flocculation optimum * inline high density suspension (IHDS) formation process * properties of aggregates * intensity of agitation * velocity gradient G Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  9. Electrospun Nanofibers for Sandwiched Polyimide/Poly (vinylidene fluoride)/Polyimide Separators with the Thermal Shutdown Function

    International Nuclear Information System (INIS)

    Wu, Dezhi; Shi, Chuan; Huang, Shaohua; Qiu, Xiaochun; Wang, Huan; Zhan, Zhan; Zhang, Peng; Zhao, Jinbao; Sun, Daoheng; Lin, Liwei

    2015-01-01

    Nanofibers fabricated by the electrospinning process have been used to construct sandwich-type Polyimide/Poly (vinylidene fluoride)/Polyimide (PI/PVDF/PI) separators with the thermal shutdown function for lithium ion batteries. This architecture uses the good thermal stability of PI as the top and bottom structure layers. Under high temperature operations, the middle layer made of PVDF nanofibers can melt and form a pore-free film to shut down the battery operation. The electrolyte uptake and ionic conductivity of the PI/PVDF/PI separator are superior to those of commercial polyolefin separators at 476% and 3.46 mS cm −1 , respectively, resulting better battery performances in terms of impedance, discharge capacity and cycle life. Under high temperature treatments above 170 °C, the self-shutdown function of the PI/PVDF/PI has been observed within 10 minutes, which could serve as the safety mechanism to defend the thermal runaway issue of lithium ion batteries. The effects of heating temperature and different time on the morphologies of each layer and electrolyte uptake of the separator are characterized as well

  10. Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance

    DEFF Research Database (Denmark)

    Kumar, Ashish; Dhondt, Jens; De Leersnyder, Fien

    2015-01-01

    system. Off-line sieving was used as reference particle size analysis method. A twin-screw granulator which is part of the Consigma system was used to granulate a placebo formulation composed of lactose and polyvinylpyrrolidone (PVP; 97.5:2.5% w/w). PVP was dissolvedin water, which was used......). The volumetric size distribution obtained from the in-line measurements of the granules leaving the twin-screw granulator using the Eyecon™ camera was compared with the off-line measurements obtainedby sieving of the granule samples collected before and after the drying unit operation. For the intermediate size...... range (diameter 250–1000 μm), the Eyecon™ measurements showed to be promising as they were in agreement with off-line measurement results obtained before the drying unit. However, the image analysis algorithm and data post-processing of the Eyecon™ images for the fines and oversized ranges require...

  11. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  12. formulation of nano-ceramic filters used in separation of heavy metals and nuclear technology

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou El-Nour, F.H.; Abdel-Khalik, M.

    2004-01-01

    the choice of suitable preparation methods and experimental preparation conditions to formulate ceramic filters of stable chemical -and thermal properties and of high mechanical strength and stable structure, which permit their use for separation of heavy metals at high separation conditions and to produce compact matrices suitable for radiation protection are the aim of this study . ceramic filters are characterized by multi- layered body including rigid support and one or more layers with pore size lower than that of the support. the top layer determines.the separation conditions of the whole system. the used ceramic filters include micro-, ultra- and nano-sized materials . alumina and titania substrates were prepared using the wet chemical techniques. optimization of the produced substrates was followed through comparative studies with standard reference commercial substrate. specific surface area measurements and pore size distribution using mercury porosimeter were carried out . the present study led to optimization of the experimental conditions to formulate the suitable substrate used in preparation of filters applied in separation of heavy metals. in addition, their use to produce compact matrices suitable for protection from the hazardous effect of some radioisotopes could applied

  13. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  14. Vermicomposting of source-separated human faeces for nutrient recycling.

    Science.gov (United States)

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2010-01-01

    The present study examined the suitability of vermicomposting technology for processing source-separated human faeces. Since the earthworm species Eisenia fetida could not survive in fresh faeces, modification in the physical characteristics of faeces was necessary before earthworms could be introduced to faeces. A preliminary study with six different combinations of faeces, soil and bulking material (vermicompost) in different layers was conducted to find out the best condition for biomass growth and reproduction of earthworms. The results indicated that SVFV combination (soil, vermicompost, faeces and vermicompost - bottom to top layers) was the best for earthworm biomass growth indicating the positive role of soil layer in earthworm biomass growth. Further studies with SVFV and VFV combinations, however, showed that soil layer did not enhance vermicompost production rate. Year-long study conducted with VFV combination to assess the quality and quantity of vermicompost produced showed an average vermicompost production rate of 0.30kg-cast/kg-worm/day. The vermicompost produced was mature as indicated by low dissolved organic carbon (2.4+/-0.43mg/g) and low oxygen uptake rate (0.15+/-0.09mg O(2)/g VS/h). Complete inactivation of total coliforms was noted during the study, which is one of the important objectives of human faeces processing. Results of the study thus indicated the potential of vermicomposting for processing of source-separated human faeces.

  15. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  16. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries

    International Nuclear Information System (INIS)

    Wang, Jing; Hu, Zhiyu; Yin, Xiunan; Li, Yunchao; Huo, Hong; Zhou, Jianjun; Li, Lin

    2015-01-01

    Highlights: • PEK-C (T g : ∼230 °C) was used as binder to prepare ceramic coated composite PP separator. • The composite PP separator was stable and showed low thermal shrinkage in the electrolyte solvent. • The composite PP separator was helpful for high current density discharge. • The composite PP separator improved the safety performance of the coin cells. - Abstract: One way to obtain the lithium ion power battery with better safety performance was to increase the thermal shrinkage resistance of the separator at higher temperature. Phenolphthalein polyetherketone (PEK-C) is a polymer that can withstand high temperature to about 230 °C. Here, we developed a new Al 2 O 3 coated composite polypropylene (PP) separator with PEK-C as binder. The coating layer was formed on the surface of the PP separator and both ceramic particles and binder did not infiltrated into the separator along the thickness direction. The composite separator with 4 μm coating layer provided balanced permeability and thermal shrinkage properties. The composite separator was stable at the electrochemical window for lithium ion battery. The coin cells with composite separator showed better charge/discharge performance than that of the cells with the PP separator. It seemed that the composite separator was helpful for high current density discharge. Also, the battery safety performance test had verified that the Al 2 O 3 coated composite separator with PEK-C as binder had truly improved the safety performance of the coin cells. So, the newly developed Al 2 O 3 coated composite PP separator was a promising safety product for lithium ion power batteries with high energy density

  17. Development of a low-level, in-line alpha counter (LLILAC)

    International Nuclear Information System (INIS)

    Gritzo, R.E.; Farnham, J.E.; Fowler, M.M.; Wouters, J.

    1996-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). With the increasing awareness of water contamination issues and the rising consequences of any form of contamination, real-time continuous monitoring is rapidly becoming a necessity. In particular, monitoring for the presence of any radioactive material is paramount. The most difficult of such monitoring tasks is that of detecting alpha-emitting radionuclides in water. Our development of the Low Level In-Line Alpha Counter (LLILAC) addresses the need for on-line, near real-time monitoring of alpha-emitting radionuclides in aqueous streams in a wide variety of applications. Although primarily designed as an on-line instrument for real-time applications, the detector can also be used for long-term in situ/post-closure monitoring. This detection system operates by allowing the stream to be monitored to come in contact with a large number of small rods or tubes made of scintillation material. By maximizing the surface to volume ratio of the scintillator, the response to alpha particles is favored over other types of radiation. Several configurations of scintillator and light collection schemes have been investigated to optimize the detection efficiency. We have also written several Monte Carlo codes to help to predict and understand the detector performance

  18. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    Science.gov (United States)

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  20. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Waste conversion into n-caprylate and n-caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction

    Directory of Open Access Journals (Sweden)

    Leo A. Kucek

    2016-11-01

    Full Text Available To convert wastes into sustainable liquid fuels and chemicals, new resource recovery technologies are required. Chain elongation is a carboxylate-platform bioprocess that converts short-chain carboxylates (SCCs (e.g., acetate C2 and n-butyrate C4 into medium-chain carboxylates (MCCs (e.g., n-caprylate C8 and n-caproate C6 with hydrogen gas as a side product. Ethanol or another electron donor (e.g., lactate, carbohydrate is required. Competitive MCC productivities, yields (product vs. substrate fed, and specificities (product vs. all products were only achieved previously from an organic waste material when exogenous ethanol had been added. Here, we converted a real organic waste, which inherently comprised of ethanol, into MCCs with n-caprylate as the target product. We used wine lees, which consisted primarily of settled yeast cells and ethanol from wine fermentation, and produced MCCs with a reactor microbiome. We operated the bioreactor at a pH of 5.2 and with continuous in-line extraction and achieved a MCC productivity of 3.9 g COD/L-d at an organic loading rate of 5.8 g COD/L-d, resulting in a promising MCC yield of 67% and specificities of 36% for each n-caprylate and n-caproate (72% for both. Compared to all other studies that used complex organic substrates, we achieved the highest n-caprylate-to-n-caproate product ratio of 1.0 (COD basis, because we used increased broth-recycle rates through the forward membrane contactor, which improved in-line extraction rates. Increased recycle rates also allowed us to achieve the highest reported MCC production flux per membrane surface area thus far (20.1 g COD/m2-d. Through microbial community analyses, we determined that an operational taxonomic unit (OTU for Bacteroides spp. was dominant and was positively correlated with increased MCC productivities. Our data also suggested that the microbiome may have been shaped for improved MCC production by the high broth-recycle rates. Comparable abiotic

  2. Diamagnetic boundary layers: a kinetic theory

    International Nuclear Information System (INIS)

    Lemaire, J.; Burlaga, L.F.

    1976-01-01

    A kinetic theory for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma such as those observed in the solar wind is presented. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, cases in which the magnetic field intensity and/or direction changed across the layer were considered. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly , although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. The results are consistent with the observations of boundary layers in the solar wind near 1 AU. (Auth.)

  3. Determination of abdominal fat thickness using dual electrode separation in the focused impedance method (FIM)

    International Nuclear Information System (INIS)

    Surovy, Nusrat Jahan; Billah, Md Masum; Haowlader, Salahuddin; Al-Quaderi, Golam Dastegir; Rabbani, K Siddique-e

    2012-01-01

    Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different ‘slopes’ for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above ‘slope’ against fat thickness could be fitted using a straight line with an R 2 of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement. (paper)

  4. Compensation of shear waves in photoacoustic tomography with layered acoustic media.

    Science.gov (United States)

    Schoonover, Robert W; Anastasio, Mark A

    2011-10-01

    An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.

  5. Computational fluid dynamics modeling patterns and force characteristics of flow over in-line four square cylinders

    Directory of Open Access Journals (Sweden)

    Song Yidan

    2017-01-01

    Full Text Available The flow over four square cylinders in an in-line, square arrangement was numerically investigated by using the finite volume method with CFD techniques. The working fluid is an incompressible ideal gas. The length of the sides of the array, L, is equal. The analysis is carried out for a Reynolds number of 300, with center-to-center distance ratios, L/D, ranging from 1.5 to 8.0. To fully understand the flow mechanism, details in terms of lift and drag coefficients and Strouhal numbers of the unsteady wake frequencies are analyzed, and the vortex shedding patterns around the four square cylinders are described. It is concluded that L/D has important effects on the drag and lift coefficients, vortex shedding frequencies, and flow field characteristics.

  6. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  7. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    Science.gov (United States)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  8. Inline-process and quality control of spotwelds of car bodies - ultrasonic sensors integrated in resistance welding electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.; Rieger, D.; Koehler, C. [Vogt Werkstoffpruefsysteme, Burgwedel (Germany)

    2006-07-01

    The self-developed inline ultrasonic testing system SPOTline is used for inspection and process control of resistant spot weldings. SPOTline provides with directly into the welding tong integrated ultrasonic sensors a 100% inspection during the welding process. The through transmission and pulse echo signals will be collected, stored and evaluated by means of fuzzy-logic and neuronal network technic. The results will be transmitted online from the spotline-client in the sql-data-base of the server for processing. World-wide SPOTline is the only ultrasonic inspection system, which is working under real production conditions in a network of welding robots. Test with 2 and 3 plates, high strength steels and all coatings demonstrate the accurately identification of discrepant welds. (orig.)

  9. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  10. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  11. Content layer progressive coding of digital maps

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Jensen, Ole Riis

    2000-01-01

    A new lossless context based method is presented for content progressive coding of limited bits/pixel images, such as maps, company logos, etc., common on the WWW. Progressive encoding is achieved by separating the image into content layers based on other predefined information. Information from...... already coded layers are used when coding subsequent layers. This approach is combined with efficient template based context bi-level coding, context collapsing methods for multi-level images and arithmetic coding. Relative pixel patterns are used to collapse contexts. The number of contexts are analyzed....... The new methods outperform existing coding schemes coding digital maps and in addition provide progressive coding. Compared to the state-of-the-art PWC coder, the compressed size is reduced to 60-70% on our layered test images....

  12. Separation of water from organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, I.G.; Villiers Naylor, T. de.

    1990-04-10

    This invention relates to the separation of water from fluids by the pervaporation process using a membrane. The invention is characterized in that the membrane has an active layer which consists essentially only of polymers of an unsaturated organic acid, the acid having not more than 6 carbon atoms for every acid group (not counting any carbon atoms in the acid groups), and the polymer having at least a substantial proportion of the acid groups in the form of a salt. The preferred fluids for use in the process of the invention are organic fluids, such as a hydrocarbon gas (in particular, methane) or a liquid. The process is especially suitable for separating water from mixtures with alkanols, in particular alkanols having 1 to 5 carbon atoms in the molecule, such as ethanol and isopropanol. The unsaturated organic acid may be a sulfur acid, such as a sulfonate or a sulfate or a phosphorus acid, but is preferably a carboxylic acid. Thus, the active layer may be poly(acrylic acid) or poly(maleic acid). The cation of the salt form of the acid groups is preferably an alkali metal, especially cesium. Experiments are described to illustrate the invention. 13 tabs.

  13. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  14. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  16. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  17. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  18. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil

    Science.gov (United States)

    Istvan, Mark S.; Yarusevych, Serhiy

    2018-03-01

    The laminar-to-turbulent transition process in a laminar separation bubble formed over a NACA 0018 airfoil is investigated experimentally. All experiments are performed for an angle of attack of 4°, chord Reynolds numbers of 80,000 and 125,000, and free-stream turbulence intensities between 0.06 and 1.99%. The results show that increasing the level of free-stream turbulence intensity leads to a decrease in separation bubble length, attributed to a downstream shift in mean separation and an upstream shift in mean reattachment, the later ascribed to an upstream shift in mean transition. Maximum spatial amplification rates of disturbances in the separated shear layer decrease with increasing free-stream turbulence intensity, implying that the larger initial amplitudes of disturbances are solely responsible for the upstream shift in mean transition and as a result mean reattachment. At the baseline level of turbulence intensity, coherent structures forming in the aft portion of the bubble are characterized by strong spanwise coherence at formation, and undergo spanwise deformations leading to localized breakup in the vicinity of mean reattachment. As the level of free-stream turbulence intensity is increased, the spanwise coherence of the shear layer rollers is reduced, and spanwise undulations in the vortex filaments start to take place at the mean location of roll-up. At the highest level of turbulence intensity investigated, streamwise streaks originating in the boundary layer upstream of the separation bubble are observed within the bubble. These streaks signify an onset of bypass transition upstream of the separation bubble, which gives rise to a highly three-dimensional shear layer roll-up. A quantitative analysis of the associated changes in salient characteristics of the coherent structures is presented, connecting the effect of elevated free-stream turbulence intensity on the time-averaged and dynamic characteristics of the separation bubble.

  19. A separable surface-enhanced Raman scattering substrate modified with MIL-101 for detection of overlapping and invisible compounds after thin-layer chromatography development.

    Science.gov (United States)

    Zhang, Bin Bin; Shi, Yi; Chen, Hui; Zhu, Qing Xia; Lu, Feng; Li, Ying Wei

    2018-01-02

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin-layer chromatography (TLC), a powerful method for detecting complex samples was successfully developed. However, in the TLC-SERS method, metal nanoparticles serving as the SERS-active substrate are likely to disturb the detection of target compounds, particularly in overlapping compounds after TLC development. In addition, the SERS detection of compounds that are invisible under both visible light and UV 254/365 after TLC development is still a significant challenge. In this study, we demonstrated a facile strategy to fabricate a TLC plate with metal-organic framework-modified gold nanoparticles as a separable SERS substrate, on which all separated components, including overlapping and invisible compounds, could be detected by a point-by-point SERS scan along the developing direction. Rhodamine 6G (R6G) was used as a probe to evaluate the performance of the substrate. The results indicated that the substrate provided good sensitivity and reproducibility, and optimal SERS signals could be collected in 5 s. Furthermore, this new substrate exhibited a long shelf life. Thus, our method has great potential for the sensitive and rapid detection of overlapping and invisible compounds in complex samples after TLC development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Science.gov (United States)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun; Ihm, Young-Eon; Nho, Young-Chang

    2008-08-01

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.