WorldWideScience

Sample records for layer fluctuating pressure

  1. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  2. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  3. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  4. Wall-pressure fluctuations beneath a spatially evolving turbulent boundary layer

    Science.gov (United States)

    Mahesh, Krishnan; Kumar, Praveen

    2016-11-01

    Wall-pressure fluctuations beneath a turbulent boundary layer are important in applications dealing with structural deformation and acoustics. Simulations are performed for flat plate and axisymmetric, spatially evolving zero-pressure-gradient turbulent boundary layers at inflow Reynolds number of 1400 and 2200 based on momentum thickness. The simulations generate their own inflow using the recycle-rescale method. The results for mean velocity and second-order statistics show excellent agreement with the data available in literature. The spectral characteristics of wall-pressure fluctuations and their relation to flow structure will be discussed. This work is supported by ONR.

  5. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  6. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  7. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in

  8. Relation between the Fluctuating Wall Pressure and the Turbulent Structure of a Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1993-08-12

    Rlain in . power spectral density of the fluctuating wall pressure on the cylinder, boldine . fractional contribution to the total wall pressure energy...or repeated sequences of events are responsible for the production of turbulence in the near- wall region and the desire to extract their...signals over a prespecified window centered about the event detection times to extract the individual events. I 3.) Ensemble average the individual

  9. Origin of Pressure Fluctuations in Fluidized Beds

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Drahoš, Jiří

    2005-01-01

    Roč. 60, č. 5 (2005), s. 1193-1197 ISSN 0009-2509 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization * pressure fluctuations * bubbles Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.735, year: 2005

  10. Pressure fluctuation caused by moderate acceleration

    Science.gov (United States)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  11. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  12. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  13. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  14. Thin pentacene layer under pressure

    International Nuclear Information System (INIS)

    Srnanek, R.; Jakabovic, J.; Kovac, J.; Donoval, D.; Dobrocka, E.

    2011-01-01

    Organic semiconductors have got a lot of interest during the last years, due to their usability for organic thin film transistor. Pentacene, C 22 H 14 , is one of leading candidates for this purpose. While we obtain the published data about pressure-induced phase transition only on single crystal of pentacene we present pressure-induced phase transition in pentacene thin layers for the first time. Changes in the pentacene structure, caused by the pressure, were detected by micro-Raman spectroscopy. Applying the defined pressure to the pentacene layer it can be transformed from thin phase to bulk phase. Micro-Raman spectroscopy was found as useful method for detection of changes and phases identification in the pentacene layer induced by mechanical pressure. Such a pressure-induced transformation of pentacene thin layers was observed and identified for the first time. (authors)

  15. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    Science.gov (United States)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  16. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    Science.gov (United States)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  17. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  18. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    Science.gov (United States)

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  19. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  20. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  1. Physical Characteristics of Fluidized Beds via Pressure Fluctuation Analysis

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2008-01-01

    Roč. 54, č. 7 (2008), s. 1761-1769 ISSN 0001-1541 R&D Projects: GA AV ČR IAA400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas-solid fluidization * pressure fluctuations * fluctuation characteristics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.883, year: 2008

  2. Characterization of Alfvenic fluctuations in the magnetopause boundary layer

    International Nuclear Information System (INIS)

    Rezeau, L.; Morane, A.; Perraut, S.; Roux, A.; Schmidt, R.

    1989-01-01

    The European Space Agency GEOS 2 spacecraft happened to cross the magnetopause several times, at various local times. Intense electric and magnetic fluctuations, in the ultralow-frequency (ULF) range (0-10 Hz) have been detected during each such crossing, with a peak at the magnetopause and still large amplitudes in the adjacent magnetosheath and magnetopause boundary layer. By applying spectral analysis and correlations to the electric and magnetic fluctuations, and a minimum variance analysis to the magnetic fluctuations, the authors investigate the nature of these fluctuations which appear as short-lasting bursts in the spacecraft frame. Having reviewed possible interpretations, they show that the observed electric and magnetic signatures are consistent with small-scale (L ∼ ion Larmor radius) Alfvenic field-aligned structures passing by the spacecraft at high speed. It is suggested that these structures correspond to nonlinear Alfvenic structures

  3. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  4. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  5. Energy harvesting from hydraulic pressure fluctuations

    International Nuclear Information System (INIS)

    Cunefare, K A; Skow, E A; Erturk, A; Savor, J; Verma, N; Cacan, M R

    2013-01-01

    State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester. (paper)

  6. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  7. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    Science.gov (United States)

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  8. Multiscale probability distribution of pressure fluctuations in fluidized beds

    International Nuclear Information System (INIS)

    Ghasemi, Fatemeh; Sahimi, Muhammad; Reza Rahimi Tabar, M; Peinke, Joachim

    2012-01-01

    Analysis of flow in fluidized beds, a common chemical reactor, is of much current interest due to its fundamental as well as industrial importance. Experimental data for the successive increments of the pressure fluctuations time series in a fluidized bed are analyzed by computing a multiscale probability density function (PDF) of the increments. The results demonstrate the evolution of the shape of the PDF from the short to long time scales. The deformation of the PDF across time scales may be modeled by the log-normal cascade model. The results are also in contrast to the previously proposed PDFs for the pressure fluctuations that include a Gaussian distribution and a PDF with a power-law tail. To understand better the properties of the pressure fluctuations, we also construct the shuffled and surrogate time series for the data and analyze them with the same method. It turns out that long-range correlations play an important role in the structure of the time series that represent the pressure fluctuation. (paper)

  9. Prediction of propeller-induced hull-pressure fluctuations

    NARCIS (Netherlands)

    Van Wijngaarden, H.C.J.

    2011-01-01

    The cavitating propeller often forms the primary source of noise and vibration on board ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. The accurate prediction of

  10. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of

  11. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Giannone, L. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); McCormick, K [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Theimer, G [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Tsois, N [NCSR ` Demokritos` , Athens (Greece); ASDEX Team

    1995-04-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H{sub {alpha}} light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ``anomalous`` radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.)).

  12. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; McCormick, K.; Niedermeyer, H.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H α light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ''anomalous'' radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.))

  13. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  14. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  15. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2013-09-19

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  16. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2013-01-01

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  17. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  18. Examination of fluctuations in atmospheric pressure related to migraine.

    Science.gov (United States)

    Okuma, Hirohisa; Okuma, Yumiko; Kitagawa, Yasuhisa

    2015-01-01

    Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure. Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure. Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

  19. Pressure Fluctuations in a Common-Rail Fuel Injection System

    Science.gov (United States)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  20. Limiter effects on scrape-off layer fluctuations and transport

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.; Wootton, A.J.

    1987-01-01

    Edge turbulence experiments indicate that radial particle flux increases as a function of radius up to the scrape-off layer (SOL), and that the Boltzman relation is violated. Resistivity gradient driven turbulence (RGDT) theory has been shown to track the radial dependence of the particle flux in the plasma edge closer than dissipative density gradient driven turbulence (DDGDT) theory. Also, the Boltzman relation is not invoked for RGDT while it is usually assumed for DDGDT. Consequently, RGDT is a more likely candidate for an edge turbulence model. However, Langmuir probe experiments indicate that the particle flux is reduced by as much as 50% in the SOL. Thus, since basic turbulence theories do not account for limiter effects, the primary focus of this study is to include such effects in a RGDT theory of the SOL. We present an analysis of SOL fluctuations using a rippling mode or RGDT calculation which incorporates the essential limiter boundary condition.(orig./GG)

  1. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  2. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  3. Foundamental characteristics of layered pressure vessel

    International Nuclear Information System (INIS)

    Moriwaki, Yoshikazu; Fugino, Masayuki; Shimizu, Yasuhiro; Nakamura, Takeshi

    1978-01-01

    Pressure vessels become larger and the working pressure become higher with the remarkable development of petroleum, chemical, thermal power generation and atomic energy industries. Multi-layered pressure vessels can be manufactured cheaply without large installations, and large wall thickness can be made, therefore they are suitable for large pressure vessels. The stress and deformation behaviors of such vessels are very complex because of the effect of frictional force working between layers. In this study, the phenomena arising in multiple layers and the difference as compared with single wall were studied fundamentally as one step for analyzing multi-layered pressure vessels as a whole. Finite element technique was employed as the analyzing method, and the behavior of multiple layers was analyzed, regarding it as multiple contact problem. The behavior of multiple layers seems to appear conspicuously in case of bending load, therefore the basic characteristics regarding bending were examined. The evaluation of interfacial stiffness was carried out by experiment. The computer program for analyzing multiple contact problem was developed. In order to examine the validity of the program, comparison with the analytical solution heretofore and the result of calculation by finite element technique was carried out. Moreover, the experimental proof with multi-layered models was made. The frictional force between layers hardly contributes to the stiffness. (Kako, I.)

  4. Decoupling Analysis on Pressure Fluctuation and Needle Valve Response for High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In the process of multiple injections, the influence of different injections makes the controlling of cycle fuel injection quantity more difficult. The high pressure common rail (HPCR simulation model is established in AMESim environment. Through the method of combining numerical simulation and experiment test, it is found that the strong coupling of pressure fluctuation and needle valve response is the fundamental reason, which leads to the fluctuation of main injection fuel quantity (MIFQ with dwell time (DT. The result shows that the largest fluctuation quantity is 3.6mm3 when the reference value of main injection is 60.0mm3. Non-damping LC hydraulic system model is also established. Through the analysis of the model, reducing the length-diameter ratio of internal oil duct and the delivery chamber volume are decoupling methods to the strong coupling.

  5. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  6. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  7. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  8. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  9. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  10. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  11. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  12. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  13. Measurement of pressure fluctuation in gas-liquid two-phase vortex street

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Sang Wenhui; Zhang Hongjian

    2009-01-01

    The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.

  14. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  15. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  16. STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ondrej Burian

    2016-12-01

    Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.

  17. LES of the adverse-pressure gradient turbulent boundary layer

    International Nuclear Information System (INIS)

    Inoue, M.; Pullin, D.I.; Harun, Z.; Marusic, I.

    2013-01-01

    Highlights: • The adverse-pressure gradient turbulent boundary layer at high Re is studied. • Wall-model LES works well for nonequilibrium turbulent boundary layer. • Relationship of skin-friction to Re and Clauser pressure parameter is explored. • Self-similarity is observed in the velocity statistics over a wide range of Re. -- Abstract: We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure

  18. Evaluation of the diurnal intraocular pressure fluctuations and blood pressure under dehydration due to fasting

    Directory of Open Access Journals (Sweden)

    Gonen Baser

    2016-12-01

    Full Text Available Introduction: This study aimed to investigate the diurnal intraocular pressure fluctuations under dehydration conditions and the relationship between the intraocular pressure fluctuations and blood pressure. Methods: The intraocular pressures (IOP, body weights, as well as systolic and diastolic blood pressures (SBP, DBP of 36 fasting healthy volunteers were recorded at 8:00 a.m. and 5:00 p.m. in the Ramadan of 2014 and two weeks after it. The data were analyzed using paired Student’s t-test and Pearson correlation analysis. Results: As the results demonstrated, the mean diurnal IOP differences of IOP, SBP, DBP, and weight were 2.67±1.33 mmHg, 9.44±8.02 mmHg, 3.33±5.94 mmHg, and 0.90±0.46 kg during the fasting period, respectively. In addition, the mean diurnal IOP differences of IOP, SBP, DBP, and weight were -0.33±1.4 mmHg (P=0.001, 0.55±7.25mmHg (P=0.003, -3.33±5.94 mmHg (P=0.001, and 0.12±0.45 kg (P=0.001 during the control period, respectively. There was a moderate correlation between the diurnal IOP and SBP differences (r=0.517, P=0.028. Conclusion: Based on the findings of the current study, the total fluid volume might have a more dominant effect on IOP peaks than the sympathetic system activity. Furthermore, the SBP was found to correlate with the IOP.

  19. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  20. Numerical Investigation of Pressure Fluctuation Characteristics in a Centrifugal Pump with Variable Axial Clearance

    Directory of Open Access Journals (Sweden)

    Lei Cao

    2016-01-01

    Full Text Available Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.

  1. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  2. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong...

  3. The study of pressure fluctuations in the pressure line of the pump and of the efficiency of the vibration absorbers

    Directory of Open Access Journals (Sweden)

    O.V. Korolyov

    2016-12-01

    Full Text Available The article presents the results of experimental studies of pressure fluctuations in the pipes of piston pumps. The relevance of these studies is due to the need to reduce the pressure fluctuations that create a positive displacement pumps, due to their negative impact not only on the reliability of the pump, but the accuracy of flow measurement and pressure of the medium supplied to such pumps. Aim: The aim of this study was to investigate the hydraulic characteristics of pulsating flows in pressure lines piston pumps of liquefied gas, as well as the study of the effectiveness of the dampers of pressure pulsations and conformity of their parameters to the calculation. Materials and Methods: As a drive used the piston pumps − single-line and trilinear. In the tests recorded pressure fluctuations in the pressure line. For this purpose the low-inertia pressure sensors 15.0 MPa working complete with strain test station, which allows registering the pressure fluctuations at frequencies up to 10 kHz. Strain test station output signal fed to the input of the oscilloscope operating in memory mode. In all tests the pressure sensor is mounted at three points - after the piston group on the pressure line before the damping device and after it. In the experiment, three different damper was used - two new, designed by the author's method and one regular damper, which are equipped with serial piston pumps. Dampers installed vertically, the flow entering to the lower cap, and an output through the side surface. Results: The experimental results confirmed the general position of the greater efficiency of complex composite filters and the correctness of chosen method of their calculation, proposed earlier by the authors. In particular, the actual level of weakening of pressure fluctuations on developed damper with a high degree coincided with the calculated results.

  4. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  5. Variations of free gas content in water during pressure fluctuations

    International Nuclear Information System (INIS)

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  6. Evidence for pressure-tuned quantum structural fluctuations in KCuF3

    Science.gov (United States)

    Yuan, S.; Kim, M.; Seeley, J.; Lal, S.; Abbamonte, P.; Cooper, S. L.

    2012-02-01

    Frustrated magnetic systems are currently of great interest because of the possibility that these materials exhibit novel ground states such as orbital and spin liquids. We provide evidence in the orbital-ordering material KCuF3 for pressure-tuned quantum melting of a static structural phase to a phase that dynamically fluctuates even near T ˜ 0K.[1] Pressure-dependent Raman scattering measurements show that applied pressure above P* ˜ 7kbar reverses a low temperature structural distortion in KCuF3, resulting in the development of a φ ˜ 0 fluctuational (quasielastic) response near T ˜ 0K. This pressure-induced fluctuational response is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, γ >> KBT, consistent with quantum fluctuations of the CuF6 octahedra. We show that a previous developed model of pseudospin-phonon coupling qualitatively describes both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3. Work supported by the U.S. Department of Energy under Award No. DE-FG02-07ER46453 and by the National Science Foundation under Grant NSF DMR 08-56321. [4pt] [1] S. Yuan et al., arXiv:1107.1433 (2011).

  7. Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode

    Directory of Open Access Journals (Sweden)

    Deyou Li

    2018-06-01

    Full Text Available In pump-turbines, high pressure fluctuation is one of the crucial instabilities, which is harmful to the stable and effective operation of the entire unit. Extensive studies have been carried out to investigate pressure fluctuations (amplitude and frequency at specific locations. However, limited research was conducted on the distribution of pressure fluctuations in turbine mode in a pump-turbine, as well as the influence of the number of runner blades on pressure fluctuations. Hence, in this study, three dimensional numerical simulations were performed to predict the distribution of pressure fluctuations with different numbers of runner blades in a prototype pump-turbine in turbine mode using the shear stress transport (SST k-ω turbulence model. Three operating points with the same hydraulic head and different mass flow rates were simulated. The distribution of pressure fluctuation components of blade passing frequency and its harmonics in the direction along the whole flow path, as well as along the circumferential direction, was presented. The mass flow rate and number of runner blades have great influence on the distribution of pressure fluctuations, especially at blade passing frequency along circumferential direction. The mass flow rate mainly affects the position of peak pressure fluctuations, while the number of runner blades mainly changes the number of peak pressure fluctuations. Additionally, the number of runner blades influences the dominant frequencies of pressure fluctuations especially in the spiral casing and draft tube.

  8. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  9. Visualizing period fluctuations in strained-layer superlattices with scanning tunneling microscopy

    Science.gov (United States)

    Kanedy, K.; Lopez, F.; Wood, M. R.; Gmachl, C. F.; Weimer, M.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.; Kim, J. K.

    2018-01-01

    We show how cross-sectional scanning tunneling microscopy (STM) may be used to accurately map the period fluctuations throughout epitaxial, strained-layer superlattices based on the InAs/InAsSb and InGaAs/InAlAs material systems. The concept, analogous to Bragg's law in high-resolution x-ray diffraction, relies on an analysis of the [001]-convolved reciprocal-space satellite peaks obtained from discrete Fourier transforms of individual STM images. Properly implemented, the technique enables local period measurements that reliably discriminate vertical fluctuations localized to within ˜5 superlattice repeats along the [001] growth direction and orthogonal, lateral fluctuations localized to within ˜40 nm along directions in the growth plane. While not as accurate as x-ray, the inherent, single-image measurement error associated with the method may be made as small as 0.1%, allowing the vertical or lateral period fluctuations contributing to inhomogeneous energy broadening and carrier localization in these structures to be pinpointed and quantified. The direct visualization of unexpectedly large, lateral period fluctuations on nanometer length scales in both strain-balanced systems supports a common understanding in terms of correlated interface roughness.

  10. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  11. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe

    2004-09-01

    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  12. Experimental research on pressure fluctuation and vibration in a mixed flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Houlin; Wang, Wenbo [National Research Center of Pumps and Pumping System Engineering and Technology, Jiangsu University, Zhenjiang (China); Zhou, Xiaohua [Gree Electric Appliance Inc. of Zhuhai, Zhuhai (China)

    2016-01-15

    To study the pressure fluctuation and vibration in mixed flow pumps, we chose a mixed flow pump with specific speed of 436.1 to measure. The time domains and frequency domain at each monitoring point on diffuser and outlet elbow were analyzed, as well as the vibration frequency domain characteristics at the impeller outlet and near the motor. The results show that the peak value of pressure fluctuation peak decreased gradually with the increase of flow rate. The pressure fluctuation of each monitoring point had periodicity, and the frequency domain dominated by blade passing frequency and multiple shaft frequency. The vibration frequency of each monitoring point occurred at shaft frequency and its multiple shaft frequency. The dominant frequency and the second frequency were distributed in shaft frequency and double shaft frequency.

  13. Chaotic dynamic characteristics of pressure fluctuation signals in hydro-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen Tao; An, Shi [School of Management, Harbin Institute of Technology, Harbin (China); Li, Xiao Bin; Lan, Chao Feng; Li, Feng Chen [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China); Wang, Jian Sheng [Ministry of Education of China, Tianjin (China)

    2016-11-15

    The pressure fluctuation characteristics in a Francis hydro-turbine running at partial flow conditions were studied based on the chaotic dynamic methods. Firstly, the experimental data of pressure fluctuations in the draft tube at various flow conditions was de-noised using lifting wavelet transformation, then, for the de-noised signals, their spectrum distribution on the frequency domain, the energy variation and the energy partition accounting for the total energy was calculated. Hereby, for the flow conditions ranging from no cavitation to severe cavitation, the chaos dynamic features of fluctuation signals were analyzed, including the temporal-frequency distribution, phase trajectory, Lyapunov exponent and Poincaré map etc. It is revealed that, the main energy of pressure fluctuations in the draft tube locates at low-frequency region. As the cavitation grows, the amplitude of power spectrum at frequency domain becomes larger. For all the flow conditions, all the maximal Lyapunov exponents are larger than zero, and they increase with the cavitation level. Therefore, it is believed that there indeed exist the chaotic attractors in the pressure fluctuation signals for a hydro-turbine.

  14. Electrostatic and magnetic fluctuations in the proximity of the velocity shear layer in the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Garcia-Cortes, I.; Pedrosa, M.A.; Hidalgo, C.

    1992-01-01

    The structure of the electrostatic and magnetic turbulence changes in the proximity of the naturally velocity shear layer in the TJ-I tokamak. A decorrelation in the broad-band magnetic fluctuations and a decreasing in the density fluctuation levels have been observed in the proximity (scrape-off layer side) of the shear layer. The results are interpreted in terms of turbulence characteristics modified by sheared poloidal flows or/and magnetic configuration. (author) 8 fig. 16 ref

  15. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  16. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  17. Effects of pressure fluctuations on the combustion process in turbulent premixed flames

    Science.gov (United States)

    Beardsell, Guillaume; Lapointe, Simon; Blanquart, Guillaume

    2016-11-01

    The need for a thorough understanding of turbulence-combustion interactions in compressible flows is driven by recent technological developments in propulsion as well as renewed interest in the development of next generation supersonic and hypersonic vehicles. In such flows, pressure fluctuations displaying a wide range of length and timescales are present. These fluctuations are expected to impact the combustion process to varying degrees, depending amongst other things on the amplitude of the pressure variations and the timescales of the chemical reactions taking place in the flame. In this context, numerical simulations of these flows can provide insight into the impact of pressure fluctuations on the combustion process. In the present work, we analyze data from simulations of statistically-flat premixed n-heptane/air flames at high Karlovitz numbers. The compressible Navier-Stokes equations are solved exactly (DNS) and results obtained with both detailed kinetic modeling and one-step chemistry are considered. The effects of pressure fluctuations on the fuel burning rate are investigated. The findings are compared with results obtained from simulations of one-dimensional premixed flames subjected to various pressure waves.

  18. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio; Yoshikawa, Kazuhiro; Takahashi, Shiro

    2009-01-01

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  19. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  20. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  1. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    International Nuclear Information System (INIS)

    Kirschner, O; Ruprecht, A; Göde, E; Riedelbauch, S

    2012-01-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  2. Detection of small-amplitude periodic surface pressure fluctuation by pressure-sensitive paint measurements using frequency-domain methods

    Science.gov (United States)

    Noda, Takahiro; Nakakita, Kazuyki; Wakahara, Masaki; Kameda, Masaharu

    2018-06-01

    Image measurement using pressure-sensitive paint (PSP) is an effective tool for analyzing the unsteady pressure field on the surface of a body in a low-speed air flow, which is associated with wind noise. In this study, the surface pressure fluctuation due to the tonal trailing edge (TE) noise for a two-dimensional NACA 0012 airfoil was quantitatively detected using a porous anodized aluminum PSP (AA-PSP). The emission from the PSP upon illumination by a blue laser diode was captured using a 12-bit high-speed complementary metal-oxide-semiconductor (CMOS) camera. The intensities of the captured images were converted to pressures using a standard intensity-based method. Three image-processing methods based on the fast Fourier transform (FFT) were tested to determine their efficiency in improving the signal-to-noise ratio (SNR) of the unsteady PSP data. In addition to two fundamental FFT techniques (the full data and ensemble averaging FFTs), a technique using the coherent output power (COP), which involves the cross correlation between the PSP data and the signal measured using a pointwise sound-level meter, was tested. Preliminary tests indicated that random photon shot noise dominates the intensity fluctuations in the captured PSP emissions above 200 Hz. Pressure fluctuations associated with the TE noise, whose dominant frequency is approximately 940 Hz, were successfully measured by analyzing 40,960 sequential PSP images recorded at 10 kfps. Quantitative validation using the power spectrum indicates that the COP technique is the most effective method of identification of the pressure fluctuation directly related to TE noise. It is possible to distinguish power differences with a resolution of 10 Pa^2 (4 Pa in amplitude) when the COP was employed without use of another wind-off data. This resolution cannot be achieved by the ensemble averaging FFT because of an insufficient elimination of the background noise.

  3. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1993-01-01

    In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H α diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (orig.)

  4. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  5. Effect of pressure on spin fluctuations and superconductivity in heavy-fermion UPt3

    International Nuclear Information System (INIS)

    Willis, J.O.; Thompson, J.D.; Fisk, Z.; de Visser, A.; Franse, J.J.M.; Menovsky, A.

    1985-01-01

    We have determined the effect of hydrostatic pressure on the susceptibility, on the T 2 temperature dependence of the spin-fluctuation resistivity, and on superconductivity in UPt 3 . The spin-fluctuation temperature T/sub s/, derived from the slope of resistivity versus T 2 , is used within a Fermi-liquid picture to calculate the susceptibility chi at T = 0 K. The depression of this calculated chi with pressure agrees with the directly measured value partial lnchi/partialP = -24 Mbar -1 . Both the superconducting transition temperature T/sub c/ and the initial slope of the upper critical field also decrease under pressure. We find that partial lnT/sub c//partialP = -25 Mbar -1 and speculate upon correlations between chi and T/sub c/

  6. Effects of water compressibility on the pressure fluctuation prediction in pump turbine

    International Nuclear Information System (INIS)

    Yin, J L; Wang, D Z; Wang, L Q; Wu, Y L; Wei, X Z

    2012-01-01

    The compressible effect of water is a key factor in transient flows. However, it is always neglected in the unsteady simulations for hydraulic machinery. In light of this, the governing equation of the flow is deduced to combine the compressibility of water, and then simulations with compressible and incompressible considerations to the typical unsteady flow phenomenon (Rotor stator interaction) in a pump turbine model are carried out and compared with each other. The results show that water compressibility has great effects on the magnitude and frequency of pressure fluctuation. As the operating condition concerned, the compressibility of water will induce larger pressure fluctuation, which agrees better with measured data. Moreover, the lower frequency component of the pressure signal can only be captured with the combination of water compressibility. It can be concluded that water compressibility is a fatal factor, which cannot be neglected in the unsteady simulations for pump turbines.

  7. Time-Series Analysis of Intermittent Velocity Fluctuations in Turbulent Boundary Layers

    Science.gov (United States)

    Zayernouri, Mohsen; Samiee, Mehdi; Meerschaert, Mark M.; Klewicki, Joseph

    2017-11-01

    Classical turbulence theory is modified under the inhomogeneities produced by the presence of a wall. In this regard, we propose a new time series model for the streamwise velocity fluctuations in the inertial sub-layer of turbulent boundary layers. The new model employs tempered fractional calculus and seamlessly extends the classical 5/3 spectral model of Kolmogorov in the inertial subrange to the whole spectrum from large to small scales. Moreover, the proposed time-series model allows the quantification of data uncertainties in the underlying stochastic cascade of turbulent kinetic energy. The model is tested using well-resolved streamwise velocity measurements up to friction Reynolds numbers of about 20,000. The physics of the energy cascade are briefly described within the context of the determined model parameters. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

  8. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Directory of Open Access Journals (Sweden)

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  9. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees, ...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T. On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic ideas initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. On other hand, characteristics of several singularities have been measured: intercorrelation spectra of local pressure fluctuations. Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit. Experimental atmospheric air and water loops have been used. The Reynolds number has been changed between about 10 5 and 10 6 ; the Mach number between about 0,01 and 0,5. Simple laws with dimensionless parameters are formulated and can be used for the estimation of the acoustical and mechanical vibration level of a circuit with given singularities

  10. Anode spot patterns and fluctuations in an atmospheric-pressure glow discharge in helium

    International Nuclear Information System (INIS)

    Arkhipenko, V I; Safronau, Y A; Simonchik, L V; Tsuprik, I M; Callegari, Th

    2013-01-01

    Oscillations of the main parameters (voltage on electrodes, potential, light intensity and discharge current) in a dc atmospheric-pressure glow discharge in helium are investigated in a range of currents from milliamperes to several amperes. It is established that these oscillations are connected with the existence of anode spots. In the case of a single spot, fluctuations of discharge light intensity are observed when the supply voltage exceeds the breakdown voltage for the interelectrode gap. At the same time, voltage fluctuations have the form of relaxation oscillations with a frequency that depends on the electrical parameters of the external circuit. With an increase in discharge gap and current, the number of spots increases. They form a stable structure, and the fluctuations of current and voltage stay harmonic. The brightness of the spots seems to be determined by the frequency of their blinking. The amplitude of current fluctuation increases with the increase in discharge current and can be up to 15% of its average value. The frequency of current oscillations, which is about 0.75 MHz at a current of 0.5 A, depends weakly on the discharge gap (it varies within ±10% for the gap interval from 1 to 10 mm). The oscillation frequency is maximal (about 0.85 MHz) at a current of about 0.4 A. At higher currents (2–4 A, depending on the discharge gap), the fluctuations disappear when a contraction of the anode region into one anode spot occurs. (paper)

  11. Mitigation of pressure fluctuations in the discharge cone of hydraulic turbines using flow-feedback

    International Nuclear Information System (INIS)

    Tanasa, C; Susan-Resiga, R; Bosioc, A; Muntean, S

    2010-01-01

    Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce in this paper a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. We present the technical implementation of this flow-feedback approach, and we investigated experimentally its capability in mitigating the pressure fluctuations generated by the precessing vortex rope. The main advantage of this flow-feedback approach is that is does not require additional energy to supply the jet and it does not decrease the turbine efficiency.

  12. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Science.gov (United States)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo

    2013-12-01

    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  13. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik

    2013-12-01

    Full Text Available Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT. The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  14. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  15. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  16. Numerical simulation of pressure fluctuation of a pump-turbine with MGV at no-load condition

    International Nuclear Information System (INIS)

    Liu, J T; Wang, L Q; Liu, S H; Sun, Y K; Wu, Y L

    2012-01-01

    In order to analyse the pressure fluctuation caused by misaligned guide vanes (MGV) during starting period at no-load condition, 3-D (three dimensional), unsteady flows in a pump-turbine were numerically studied. Pressure fluctuations of different points at no-load condition are obtained. Fast Fourier Transform(FFT) was used to analyse the frequency spectrum of pressure fluctuations. The amplitude and dominant frequency of pressure fluctuation at vaneless space between the runner and guide vane, as well as the inlet of draft tube, was investigated. The amplitude of pressure fluctuation of the pump-turbine with MGV device is twice that of synchronous vanes. This might be caused by the non-uniform flow in the pump-turbine due to the pre-opened guide vanes. The pump-turbine with synchronous vanes has a low frequency which is 0.33f n , while the low frequency changes into 0.63f n when the MGV device is used. The vortex rope in the draft tube is large than that of synchronize vanes. Resultsof pressure fluctuations with synchronous vanes agree with each other between computational and testing results. The numerical study of pressure fluctuations with MGV can provide a basic understanding for the improvement of the instability of a pump-turbine.

  17. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  18. Numerical study of pressure fluctuations in different guide vanes' opening angle in pump mode of a pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T

    2012-01-01

    A numerical model based on a pumped storage power station was built to develop the numerical simulation, to analyze the pressure fluctuations in a pump turbine in different guide vanes' opening angle. The different guide vanes' opening angles were simulated using the SST k-ω turbulence model and SIMPLEC Pressure-Velocity coupling scheme. The pressure sensor were placed in mainly three positions, they are: bottom ring between runner and the wicket gates, downstream and left side in the draft tube cone below the runner. All the peak to peak values of pressure fluctuation meet signal probability of 97%. The frequency is gained by Fast Fourier Transform. The pressure fluctuations in different positions of the model in pump condition were showed when the guide vanes' opening angels were different. The simulation results confirmed the results gained in model tests. The results show that pressure fluctuations in design opening angle were much lower than those in off design opening angle. The main source of pressure fluctuations between runner and guide vanes is rotor stator interaction. While a lower frequency is the main frequency of the pressure fluctuation in draft tube.

  19. On wall pressure fluctuations and their coupling with vortex dynamics in a separated–reattached turbulent flow over a blunt flat plate

    International Nuclear Information System (INIS)

    Tenaud, C.; Podvin, B.; Fraigneau, Y.; Daru, V.

    2016-01-01

    Highlights: • Study devoted to the compressible LES of the separated/reattached turbulent flow over a blunt flat plate with a right-angled leading edge. • Original contribution using a compressible approach to analyze main coherent structure features and their relation to the unsteady pressure field in the separated/reattached turbulent flow. • The present study provides a well resolved LES reference data-basis that is compared to incompressible results for validation. • It contributes to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations, especially in connection with either the vortex shedding or the low frequency shear-layer flapping. - Abstract: This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the

  20. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    Science.gov (United States)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  1. Transverse resonance-radiation pressure on atomic beams and the influence of fluctuations

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Freeman, R.R.; Ashkin, A.; Pearson, D.B.

    1979-01-01

    We have experimentally demonstrated that a beam of neutral sodium atoms can be focused to a spot diameter of approx. 50 μ using the transverse dipole resonance-radiation pressure exerted by a 40 mW laser beam. Simple analysis shows that in some cases the spot sizes are limited by the random fluctuations of the spontaneous radiation pressure; with 1 W of laser power, spot sizes less than 10 μ should be attainable. The effects of heating by spontaneous scattering can have important detrimental effects in other applications of resonance - radiation pressure on atoms, such as the slowing or guiding of atoms. Consideration of heating effects is of paramount importance in the design of optical traps for neutral atoms. (KBE)

  2. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    Science.gov (United States)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the

  3. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  4. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    International Nuclear Information System (INIS)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R.

    2008-01-01

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence

  5. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Balakrishnan, A.R. [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: arbala@iitm.ac.in

    2008-01-15

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence.

  6. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    Science.gov (United States)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  7. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  8. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  9. Determination of Pressure Fluctuations in Rotor Bundle of Centrifugal Compressor at Critical Conditions of Operation

    Science.gov (United States)

    Levashov, V. A.; Lyubchenko, K. Yu

    2017-08-01

    This article describes the physical processes that occur in the stage flow part of the compressor while it is operating and can create conditions for the occurrence of forced vibrations, which in turn can lead to the destruction of the impellers. Critical conditions of compressor operation are determined. To understand that critical condition of operation is cause of the destruction of the impellers, transient CFD analysis was carried for test stage of compressor. The obtained pressure fluctuation amplitudes allow to evaluate the critical conditions of compressor operation.

  10. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  11. Experimental investigation on the hydrodynamics of a gas–liquid–solid fluidized bed using vibration signature and pressure fluctuation analyses

    International Nuclear Information System (INIS)

    Sheikhi, Amir; Sotudeh-Gharebagh, Rahmat; Mostoufi, Navid; Zarghami, Reza

    2013-01-01

    Highlights: • Bed shell vibration fluctuation is introduced as a novel non-invasive monitoring method in three-phase fluidized beds. • Analyses of vibration signatures and pressure fluctuations were performed to characterize gas–liquid–solid fluidized beds. • These enabled further investigation on the dual effect of solid particles on the local and global bed hydrodynamics. -- Abstract: Simultaneous analyses of vibration signatures and pressure fluctuations were performed to investigate the hydrodynamics of a conventional three-phase gas–liquid–solid fluidized bed over a wide range of operating conditions. Non-intrusive vibration signature and pressure fluctuation signals were acquired by means of accelerometers and a piezoresistive pressure transducer, respectively. Comprehensive study on the standard deviation of pressure fluctuations was conducted simultaneously with two new statistical analyses on the pressure fluctuations, namely signal energy and average cycle frequency, which presented a new method of determining minimum liquid-fluidization velocity. This enabled further investigation on the dual effect of solid particles on the local hydrodynamics in the three-phase beds. The vibration analysis of the bed was introduced as a novel and non-invasive tool, which proved to be a robust representative of the global governing regimes suggesting a new approach on the dual effect of solid particles on the bed global hydrodynamics. These methods can pave the way towards the non-invasive hydrodynamic characterization of industrial three-phase reactors

  12. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  13. Pressure fluctuation prediction of a model pump turbine at no load opening by a nonlinear k-ε turbulence model

    International Nuclear Information System (INIS)

    Liu, J T; Zuo, Z G; Liu, S H; Wu, Y L

    2014-01-01

    In this paper, a new nonlinear k-ε turbulence model based on RNG k-ε turbulence model and Wilcox's k-ω turbulence model was proposed to simulate the unsteady flow and to predict the pressure fluctuation through a model pump turbine for engineering application. Calculations on a curved rectangular duct proved that the nonlinear k-ε turbulence model is applicable for high pressure gradient flows and large curvature flows. The numerically predicted relative pressure amplitude (peak to peak) in time domain to the pump turbine head at no load condition is very close to the experimental data. It is indicated that the prediction of the pressure fluctuation is valid by the present nonlinear k-ε method. The high pressure fluctuation in this area is the main issue for pump turbine design, especially at high head condition

  14. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Electrostatic fluctuations (i.e. the magnetic field is assumed constant) are candidates for the explanation of the anomalous transport of particles and energy in both tokamaks and stellarators. While most theoretical effort has been directed to an explanation of the anomalous transport in the bulk plasma, it is now widely being realized that the anomalous radial transport in the scrape-off layer, determining the width of the power flow channel at limiter or divertor plates, may be equally important to a future reactor experiment. In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H{sub {alpha}} diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (author) 3 refs., 4 figs.

  15. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  16. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    International Nuclear Information System (INIS)

    Amiri, K; Cervantes, M J; Mulu, B; Raisee, M

    2014-01-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR

  17. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    Science.gov (United States)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  18. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part III: Stochastic Modelling

    Science.gov (United States)

    Marro, Massimo; Salizzoni, Pietro; Soulhac, Lionel; Cassiani, Massimo

    2018-01-01

    We analyze the reliability of the Lagrangian stochastic micromixing method in predicting higher-order statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent boundary layer. To that purpose we analyze two different modelling approaches by testing their results against the wind-tunnel measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol. 156, 415-446). The first is a probability density function (PDF) micromixing model that simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into account the background particles. The second is a new model, named VPΓ, conceived in order to minimize the computational costs. This is based on the volumetric particle approach providing estimates of the first two concentration moments with no need for the simulation of the background particles. In this second approach, higher-order moments are computed based on the estimates of these two moments and under the assumption that the concentration PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first four moments of the concentration and the evolution of the PDF along the plume centreline. The novelty of this work is twofold: (i) we perform a systematic comparison of the results of micro-mixing Lagrangian models against experiments providing profiles of the first four moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and (ii) we show the reliability of the VPΓ model as an operational tool for the prediction of the PDF of the concentration.

  19. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part III: Stochastic Modelling

    Science.gov (United States)

    Marro, Massimo; Salizzoni, Pietro; Soulhac, Lionel; Cassiani, Massimo

    2018-06-01

    We analyze the reliability of the Lagrangian stochastic micromixing method in predicting higher-order statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent boundary layer. To that purpose we analyze two different modelling approaches by testing their results against the wind-tunnel measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol. 156, 415-446). The first is a probability density function (PDF) micromixing model that simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into account the background particles. The second is a new model, named VPΓ, conceived in order to minimize the computational costs. This is based on the volumetric particle approach providing estimates of the first two concentration moments with no need for the simulation of the background particles. In this second approach, higher-order moments are computed based on the estimates of these two moments and under the assumption that the concentration PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first four moments of the concentration and the evolution of the PDF along the plume centreline. The novelty of this work is twofold: (i) we perform a systematic comparison of the results of micro-mixing Lagrangian models against experiments providing profiles of the first four moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and (ii) we show the reliability of the VPΓ model as an operational tool for the prediction of the PDF of the concentration.

  20. Effects of the layered structure of YBa2Cu3O7-δ on the superconducting fluctuations

    International Nuclear Information System (INIS)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs

  1. Assessment of Fluctuation Patterns Similarity in Temperature and Vapor Pressure Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    A. Araghi

    2014-12-01

    Full Text Available Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010, using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.

  2. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  3. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  4. Stochastic modelling of intermittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings, and moment estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A. [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Pécseli, H. L. [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)

    2016-05-15

    A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process by finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.

  5. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Science.gov (United States)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  6. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    Science.gov (United States)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  7. Study and modeling of fluctuating fluid forces exerted on fuel rods in pressurized water reactors

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi

    2016-01-01

    Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in the fuel rods. Due to friction, wear occurs at the contact locations between the spacer grid and the fuel rod. This could compromise the first safety barrier of the nuclear reactor by damaging the fuel rod cladding. In order to ensure the integrity of the cladding, it is necessary to know the random fluctuating forces acting on the rods. However, the spectra for these fluid forces are not well known. The goal of this PhD thesis was to use simple geometrical elements to check the reproducibility of realistic pressurized water reactor spacer grids. As a first step, large eddy simulations were performed on a concentric annular pipe for different mesh refinements using the CFD code Trio CFD (previously Trio U) developed by CEA. A mesh sensitivity study was performed to obtain an acceptable mesh for reproducing standard literature results. This information on mesh resolution was used when carrying out simulations using various geometric obstacles inside the pipe, namely, mixing vanes, circular spacer grid and a combination of square spacer grid with mixing vanes. The last of the three configurations is the closest to a realistic PWR fuel assembly. Structured mesh was generated for the annular pipe case and circular grid case. An innovative hybrid mesh was used for the two remaining cases of the mixing vanes and the square grid: keeping unstructured mesh around the obstacles and structured mesh in the rest of the domain. The inner wall of the domain was representative of the fuel rod cladding. Both hydraulic and wall pressure characteristics were analyzed for each case. The results for the square grid case were found to be an approximate combination of the mixing vane case and circular grid case. Simulation results were compared with experiments performed at CEA Cadarache. Some preliminary comparisons were also made with classical semi-empirical models. (author) [fr

  8. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    International Nuclear Information System (INIS)

    Liu, Q Z; Yang, K; Li, D Y; Gong, R Z

    2013-01-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow

  9. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Science.gov (United States)

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  10. Use of Pressure Fluctuations to Determine Online the Regime of Gas-Solids Suspensions from Incipient Fluidization to Transport

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Svoboda, Karel

    2009-01-01

    Roč. 48, č. 14 (2009), s. 6830-6835 ISSN 0888-5885 R&D Projects: GA AV ČR IAA400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized beds * fluidization regimes * pressure fluctuations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.758, year: 2009

  11. Fluctuation-Coupling of Cathode Cavity Pressure and Arc Voltage in a dc Plasma Torch with a Long Inter-Electrode Channel at Reduced Pressure

    International Nuclear Information System (INIS)

    Cao Jin-Wen; Huang He-Ji; Pan Wen-Xia

    2014-01-01

    Fluctuations of cathode cavity pressure and arc voltage are observed experimentally in a dc plasma torch with a long inter-electrode channel. The results show that they have the same frequency of around 4 kHz under typical experimental conditions. The observed phase difference between the pressure and the voltage, which is influenced by the path length between the pressure sensor and the cathode cavity, varies with different input powers. Combined with numerical simulation, the position of the pressure perturbation origin is estimated, and the results show that it is located at 0.01–0.05 m upstream of the inter-electrode channel outlet

  12. [Effect of maximum blood pressure fluctuation on prognosis of patients with acute ischemic stroke within 24 hours after hospital admission].

    Science.gov (United States)

    Wang, H; Tang, Y; Zhang, Y; Xu, K; Zhao, J B

    2018-05-10

    Objective: To investigate the relationship between the maximum blood pressure fluctuation within 24 hours after admission and the prognosis at discharge. Methods: The patients with ischemic stroke admitted in Department of Neurology of the First Affiliated Hospital of Harbin Medical University within 24 hours after onset were consecutively selected from April 2016 to March 2017. The patients were grouped according to the diagnostic criteria of hypertension. Ambulatory blood pressure of the patients within 24 hours after admission were measured with bedside monitors and baseline data were collected. The patients were scored by NIHSS at discharge. The relationships between the maximum values of systolic blood pressure (SBP) or diastolic blood pressure (DBP) and the prognosis at discharge were analyzed. Results: A total of 521 patients with acute ischemic stroke were enrolled. They were divided into normal blood pressure group (82 cases) and hypertension group(439 cases). In normal blood pressure group, the maximum values of SBP and DBP were all in normal distribution ( P >0.05). The maximum value of SBP fluctuation was set at 146.6 mmHg. After adjustment for potential confounders, the OR for poor prognosis at discharge in patients with SBP fluctuation ≥146.6 mmHg was 2.669 (95 %CI : 0.594-11.992) compared with those with SBP fluctuation blood pressure at admission, the maximum values of SBP and DBP within 24 hours after admission had no relationship with prognosis at discharge. In acute ischemic stroke patients with hypertension at admission, the maximum values of SBP and DBP within 24 hours after admission were associated with poor prognosis at discharge.

  13. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  14. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    Science.gov (United States)

    Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.

    2013-12-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.

  15. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    International Nuclear Information System (INIS)

    Wang, Y C; Shi, M; Cao, S L; Li, Z H

    2013-01-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided

  16. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  17. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  18. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  19. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  20. Numerical Simulation of Pressure Fluctuations in the Thermo-acoustic Transducer

    Directory of Open Access Journals (Sweden)

    D. A. Uglanov

    2015-01-01

    Full Text Available The article describes the features of numerical simulation of acoustic oscillation excitation in the resonators with a foam insert (regenerator to study the excitation of thermo-acoustic oscillations in the circuit of small-sized engine model on the pulse tube.The aim of this work is the numerical simulation of the emerging oscillations in thermoacoustic engine resonator at the standing wave. As a basis, the work takes a thermo-acoustic resonator model with the open end (without piston developed in DeltaEC software. The precalculated operation frequency of the given resonator model, as a quarter of the wave resonator, is ν = 560 Hz.The paper offers a simplified finite element resonator model and defines the harmonic law of the temperature distribution on regenerator. The time dependences of the speed and pressure amplitude for the open end of the resonator are given; the calculated value of the process operating frequency is approximately equal to the value of the frequency for a given length of the resonator. Key findings, as a result of study, are as follows:1. The paper shows a potential for using this ESI-CFD Advanced software to simulate the processes of thermal excitation of acoustic oscillations.2. Visualization of turbulent flow fluctuations in the regenerator zone extends the analysis capability of gas-dynamic processes.3. Difference between operating frequency of the process simulated by ESI-CFD Advanced and frequency value obtained by analytical methods is about 4%, which is evidence of the model applicability to study the acoustic parameters of thermo-acoustic transducers. Experimental results have proved these data.

  1. Fluctuation characteristics of arc voltage and jet flow in a non-transferred dc plasma generated at reduced pressure

    International Nuclear Information System (INIS)

    Pan, W X; Guo, Z Y; Meng, X; Huang, H J; Wu, C K

    2009-01-01

    A torch with a set of inter-electrode inserts between the cathode and the anode/nozzle with a wide nozzle exit was designed to generate plasma jets at chamber pressures of 500-10 000 Pa. The variation of the arc voltage was examined with the change in working parameters such as gas flow rate and chamber pressure. The fluctuation in the arc voltage was recorded with an oscilloscope, and the plasma jet fluctuation near the torch exit was observed with a high-speed video camera and detected with a double-electrostatic probe. Results show that the 300 Hz wave originated from the tri-phase rectified power supply was always detected under all generating conditions. Helmholtz oscillations over 3000 Hz was detected superposed on the 300 Hz wave at gas flow rates higher than 8.8 slm with a peak to valley amplitude lower than 5% of the average voltage value. No appreciable voltage fluctuation caused by the irregular arc root movement is detected, and mechanisms for the arc voltage and jet flow fluctuations are discussed.

  2. Part 1 - Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    Science.gov (United States)

    Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2012-11-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the

  3. Part 1 – Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    International Nuclear Information System (INIS)

    Houde, S; Fraser, R; Ciocan, G D; Deschênes, C

    2012-01-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the

  4. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  5. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations.

    Science.gov (United States)

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.

  6. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    Science.gov (United States)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  7. Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion.

    Science.gov (United States)

    Padurariu, Simona; de Greef, Daniël; Jacobsen, Henrik; Nlandu Kamavuako, Ernest; Dirckx, Joris J; Gaihede, Michael

    2016-10-01

    The tympanic membrane (TM) represents a pressure buffer, which contributes to the overall pressure regulation of the middle ear (ME). This buffer capacity is based on its viscoelastic properties combined with those of the attached ossicular chain, muscles and ligaments. The current work presents a set of in vivo recordings of the ME pressure variations normally occurring in common life: elevator motion. This is defined as a situation of smooth ambient pressure increase or decrease on a limited range and at a low rate of pressure change. Based on these recordings, the purpose was a quantitative analysis of the TM buffer capacity including the TM compliance. The pressure changes in seven normal adult ME's with intact TM's were continuously recorded directly inside the ME cavity during four different elevator trips using a high precision instrument. The TM buffer capacity was determined by the ratio between the changes in ME and the ambient pressure. Further, the ME volumes were calculated by Boyle's Law from pressure recordings during inflation-deflation tests; subsequently the TM compliance could also be calculated. Finally, the correlation between the ME volume and buffer function was determined. Twenty-one elevator trips could be used for the analysis. The overall mean TM pressure buffering capacity was 23.3% (SEM = 3.4), whereas the mean overall compliance was 28.9 × 10 -3  μL/Pa (SEM = 4.8). A strong negative linear correlation was found between the TM buffer capacity and the ME volumes (R 2  = 0.92). These results were in fair agreement with the literature obtained in clinical as well as temporal bone experiments, and they provide an in vivo reference for the normal ME function as well as for ME modeling. The TM buffer capacity was found more efficient in smaller mastoids. Possible clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Studies of in Situ Pore Pressure Fluctuations At Various Scales Études des fluctuations in situ de la pression de pore à différentes échelles

    Directory of Open Access Journals (Sweden)

    Kümpel H. J.

    2006-12-01

    Full Text Available Pore pressure fluctuations in fluid saturated geological formations, either of natural or anthropogenic origin, can be observed at different scales. Natural fluctuations, e. g. , due to tidal, barometric or seismogenic forcing, or man-made effects as through use of underground fluid reservoirs, or initial filling and cyclic loading of lake reservoirs may have wavelengths from meters to kilometers. In situ monitoring of processes, in which both rock deformation and pore pressure changes are significant, improves our knowledge on the mechanical behaviour and the role of pore pressure in porous rocks and sedimentary layers. Pressure transducers for continuous recording of fluid level variations in wells, reflecting pore pressure changes at depth, or borehole tiltmeters that are sensitive to ground deformation caused by gradients of pore pressure fluctuations are relatively simple means to trace the dynamics of such rock-fluid interactions. The obtained data series are usually interpreted in two ways: by application of analytical solutions-adopting homogeneous poroelastic conditions or single fracture models in a uniform, elastic medium-and by simulation through numerical calculations allowing for some heterogeneity in the model volume. Field cases presented in this article include tilt measurements in the vicinity of pumped wells (1 to 100 m scale, fluid level monitoring in wells (borehole scale, and studies of pore pressure effects induced by seismic events (1 to 100 km scale. Specific rock parameters that can be constrained are the Skempton ratio, the hydraulic diffusivity, and the type of the effective rheology. In cases of tiltmeter studies, anisotropy of pore fluid flow can also be detected. Keywords: fluids in rocks, pore pressure, poroelasticity, hydrology. Les fluctuations de la pression de pore dans les formations géologiques saturées en fluides, d'origine naturelle ou anthropogéniques, peuvent être observées à différentes

  9. Multi-layer casing of a steam turbine for high steam pressures and temperatures

    International Nuclear Information System (INIS)

    Remberg, A.

    1978-01-01

    In previous turbine casings there is no sealing provided between the inner layer and the outer layer, so that the steam pressure acts fully on the casing top and on the shaft seal housing situated there. To reduce the displacement which occurs there due to pressure differences in the various steam spaces, the normal inner casing is made with the shaft sealing housing in an inner layer, which cannot be divided in the axial direction. The inner layer can be inserted from the high pressure side into the unit outer casing. A horizontal section through the turbine in the attached drawing makes the construction and operation of the invention clear. (GL) [de

  10. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    International Nuclear Information System (INIS)

    Laukhin, V; Lebedev, V; Laukhina, E; Rovira, C; Veciana, J

    2016-01-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF) 2 I 3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy. (paper)

  11. Effect of early adrenal vein ligation on blood pressure and catecholeamine fluctuation during laparoscopic adrenalectomy for pheochromocytoma.

    Science.gov (United States)

    Wu, Guojun; Zhang, Bo; Yu, Chuigong; Gao, Lei; Gao, Yang; Huang, Yi; Yu, Lei; Zhang, Geng; Yang, Lijun; Yuan, Jianlin

    2013-09-01

    To define whether previous control of the adrenal vein is a crucial procedure in laparoscopic adrenalectomy for pheochromocytoma. From January 2000 to December 2010, 114 patients with pheochromocytoma who underwent laparoscopic adrenalectomy through transperitoneal or retroperitoneal approach were included. The patients were divided into 2 groups randomly (group 1: dissection after ligation; group 2: dissection before ligation). Blood samples for the measurement of catecholamines levels using high performance liquid chromatography were taken at the following time points: t1, before anesthesia; t2, during manipulation-extraction of pheochromocytoma; t3, after removal of pheochromocytoma. The blood pressure fluctuation was recorded. Laparoscopic adrenalectomy was successfully performed on 113 patients with 1 elective open conversion because of dense peritumor adhesions. The operating time ranged from 80 to 150 minutes (mean 108, 102 in group 1, 110 in group 2). Mean blood loss ranged from 20 to 500 mL (mean 120 mL, 110 in group 1, 125 in group 2). The concentrations of plasma catecholamines between the 2 groups had no statistical differences. The blood pressure fluctuation incidence between the 2 groups had no marked difference. But the incidence increased with high functionary grade, and the difference was significant (P = .043). This study demonstrated that previous control of the adrenal vein was not a determinate factor in dealing with dangerous hypertension during laparoscopic adrenalectomies. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Application of pressure-sensitive paint in shock-boundary layer interaction experiments

    OpenAIRE

    Seivwright, Douglas L.

    1996-01-01

    Approved for public release; distribution is unlimited A new type of pressure transducer, pressure-sensitive paint, was used to obtain pressure distributions associated with shock-boundary layer interaction. Based on the principle of photoluminescence and the process of oxygen quenching, pressure-sensitive paint provides a continous mapping of a pressure field over a surface of interest. The data measurement and acquisition system developed for use with the photoluminescence sensor was eva...

  13. Fluctuation of void fraction and pressure drop during vertical two-phase flow with contraction

    International Nuclear Information System (INIS)

    Morimoto, Yuichiro; Madarame, Haruki; Okamoto, Koji

    2003-01-01

    Flow pattern and fluctuation of void fraction of two-phase flow through a vertical channel with contraction were examined experimentally. The two-phase fluid consisted of water and nitrogen gas. The pipe diameters were 0.1 [m] and 0.05 [m], which were before and after the contraction, respectively. Superficial gas and liquid velocity were changed form 0.42 to 2.55 [m/s] and from 2.26 to 4.53 [m/s]. Time series data of void fraction were measured using a single-needle void probe and flow pattern at downstream from the contraction was visualized using a high-speed video camera. Intermittent flow was observed at downstream of the contraction. The pulsation can be seen to be caused by wave of bubbles thick and thin. Frequency of fluctuation of the void fraction was almost constant when flow pattern before the contraction was bubble flow. In the case where flow pattern before the contraction was churn flow, the frequency increased with superficial liquid velocity. The frequency was also confirmed with the result of image processing using the movies captured by the high speed video camera. (author)

  14. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  15. Sulphate chemistry under pressurized oxidizing, reducing and fluctuating conditions; Sulfatkemi under trycksatta oxiderande, reducerande och fluktuerande foerhaallanden

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Yrjas, P.; Backman, P. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 deg C. Previously, the maximum has been attributed to the sintering of sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this work the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) has been studied. In the pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}. SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results from the experiments showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 deg C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, play a more important role concerning the sulfur capture in fluidized bed combustors. (orig.)

  16. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  17. 8-13 Hz fluctuations in rectal pressure are an objective marker of clitorally-induced orgasm in women.

    Science.gov (United States)

    van Netten, Jaap J; Georgiadis, Janniko R; Nieuwenburg, Arie; Kortekaas, Rudie

    2008-04-01

    Orgasm is a subjective experience accompanied by involuntary muscle contractions. We hypothesized that orgasm in women would be distinguishable by frequency analysis of a perineal muscle-derived signal. Rectal pressure, an index of perineal muscle activity, was measured continuously in 23 healthy women during different sexual tasks: receiving clitoral stimulation, imitation of orgasm, and attempt to reach orgasm, in which case the women were asked to report whether orgasm had been reached ("orgasm") or not ("failed orgasm attempt"). We performed spectral analysis on the rectal pressure data and calculated the spectral power in the frequency bands delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-25 Hz). The most significant and most important difference in spectral power between orgasm and both control motor tasks (imitation of orgasm and failed orgasm attempt) was found in the alpha band. An objective rule based on spectral power in the alpha band recognized 94% (29/31) of orgasms and correctly labeled 69% (44/64) of all orgasm attempts as either successful or failed. Because outbursts of alpha fluctuations in rectal pressure only occurred during orgasm and not during voluntary imitation of orgasm or failed attempts, we propose that they represent involuntary contractions of muscles in the rectal vicinity. This is the first objective and quantitative measure that has a strong correspondence with the subjective experience of orgasm.

  18. Application of the Detrended Fluctuation Analysis method to the trajectory of the centre of pressure of the human body

    International Nuclear Information System (INIS)

    Blazquez, M. T.; Anguiano, M.; Arias de Saavedra, F.; Lallena, A. M.; Carpena, P.

    2009-01-01

    The Detrended Fluctuation Analysis is a signal analyzing method which permits to study the correlation properties of the signal analyzed. This algorithm admits different variants which can be used to eliminate trends of different order existing in the signal. In this work we show the results obtained when two of these different variants, the so-called DFA-1 and DFA-2, are applied to the time series of the position and velocity of the centre of pressure of the human body in static conditions. The results show that the correlation exponents α obtained for each of the four types of analysis performed, depend on the scale studied. For the scales corresponding to large time intervals (above 35 s) the α values found in the four analyses coincide. (Author) 24 refs.

  19. Low frequency geomagnetic field fluctuations at low latitude during the passage of a higher pressure solar wind region

    Directory of Open Access Journals (Sweden)

    U. Villante

    1997-06-01

    Full Text Available The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6 fluctuations in the frequency range (0.8–5.5 mHz for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.

  20. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  1. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  2. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  3. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  4. A comparison of statistically optimized near field acoustic holography using single layer pressure velocity measurements and using double layer pressure measurements

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Chen, Xinyi; Jaud, Virginie

    2008-01-01

    recently been suggested. An alternative method uses a double layer array of pressure transducers. Both methods make it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise and reflections coming from the “wrong” side. This letter compares...

  5. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  6. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...

  7. Force fluctuations of non-adherent cells: effects of osmotic pressure and motor inhibition

    Science.gov (United States)

    Rezvani, Samaneh; Schmidt, Christoph F.; Squires, Todd M.

    Cells sense their micro-environment through biochemical and mechanical interactions. They can respond to stimuli by undergoing shape- and possibly volume changes. Key components in determining the mechanical response of a cell are the viscoelastic properties of the actomyosin cortex, effective surface tension, and the osmotic pressure. We use custom-designed microfluidic chambers with integrated hydrogel micro windows to be able to rapidly change solution conditions for cells without active mixing, stirring or diluting of fluid. We use biochemical inhibitors and different osmolytes and investigate the time-dependent response of individual cells. Using a dual optical trap makes it possible to probe viscoelasticity of suspended cells by active and passive microrheology to quantify the response to the various stimuli. SFB 937, Germany.

  8. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  9. Energetic Interrelationship between Spontaneous Low-Frequency Fluctuations in Regional Cerebral Blood Volume, Arterial Blood Pressure, Heart Rate, and Respiratory Rhythm

    Science.gov (United States)

    Katura, Takusige; Yagyu, Akihiko; Obata, Akiko; Yamazaki, Kyoko; Maki, Atsushi; Abe, Masanori; Tanaka, Naoki

    2007-07-01

    Strong spontaneous fluctuations around 0.1 and 0.3 Hz have been observed in blood-related brain-function measurements such as functional magnetic resonance imaging and optical topography (or functional near-infrared spectroscopy). These fluctuations seem to reflect the interaction between the cerebral circulation system and the systemic circulation system. We took an energetic viewpoint in our analysis of the interrelationships between fluctuations in cerebral blood volume (CBV), mean arterial blood pressure (MAP), heart rate (HR), and respiratory rhythm based on multivariate autoregressive modeling. This approach involves evaluating the contribution of each fluctuation or rhythm to specific ones by performing multivariate spectral analysis. The results we obtained show MAP and HR can account slightly for the fluctuation around 0.1 Hz in CBV, while the fluctuation around 0.3 Hz is derived mainly from the respiratory rhythm. During our presentation, we will report on the effects of posture on the interrelationship between the fluctuations and the respiratory rhythm.

  10. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    Science.gov (United States)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial

  11. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    Science.gov (United States)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in

  12. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...

  13. Assessing fluctuating evolutionary pressure in yeast and mammal evolutionary rate covariation using bioinformatics of meiotic protein genetic sequences

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Holden, T.; Lieberman, D.; Cheung, T.

    2013-09-01

    The evolutionary rate co-variation in meiotic proteins has been reported for yeast and mammal using phylogenic branch lengths which assess retention, duplication and mutation. The bioinformatics of the corresponding DNA sequences could be classified as a diagram of fractal dimension and Shannon entropy. Results from biomedical gene research provide examples on the diagram methodology. The identification of adaptive selection using entropy marker and functional-structural diversity using fractal dimension would support a regression analysis where the coefficient of determination would serve as evolutionary pathway marker for DNA sequences and be an important component in the astrobiology community. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, clinical trial targeted cancer gene CD47, SIRT6 in spermatogenesis, and HLA-C in mosquito bite immunology demonstrate the diagram classification methodology. Comparisons to the SEPT4-XIAP pair in stem cell apoptosis, testesexpressed taste genes TAS1R3-GNAT3 pair, and amyloid beta APLP1-APLP2 pair with the yeast-mammal DNA sequences for meiotic proteins RAD50-MRE11 pair and NCAPD2-ICK pair have accounted for the observed fluctuating evolutionary pressure systematically. Regression with high R-sq values or a triangular-like cluster pattern for concordant pairs in co-variation among the studied species could serve as evidences for the possible location of common ancestors in the entropy-fractal dimension diagram, consistent with an example of the human-chimp common ancestor study using the FOXP2 regulated genes reported in human fetal brain study. The Deinococcus radiodurans R1 Rad-A could be viewed as an outlier in the RAD50 diagram and also in the free energy versus fractal dimension regression Cook's distance, consistent with a non-Earth source for this radiation resistant bacterium. Convergent and divergent fluctuating evolutionary

  14. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers

    Science.gov (United States)

    Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian

    2018-05-01

    The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to

  15. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    Science.gov (United States)

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  16. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    KAUST Repository

    Hong, Seunghyuck

    2013-12-01

    This paper presents an experimental investigation into mode-transitions observed in a 50-kW, atmospheric pressure, backward-facing step combustor burning lean premixed C3H8/H2 fuel mixtures over a range of equivalence ratios, fuel compositions and preheat temperatures. The combustor exhibits distinct acoustic response and dynamic flame shape (collectively referred to as "dynamic modes") depending on the operating conditions. We simultaneously measure the dynamic pressure and flame chemiluminescence to examine the phase between pressure (p\\') and heat release fluctuations (q\\') in the observed dynamic modes. Results show that the heat release is in phase with the pressure oscillations (θqp≈0) at the onset of a dynamic mode, while as the operating conditions change within the mode, the phase grows until it reaches a critical value θqp=θc, at which the combustor switches to another dynamic mode. According to the classical Rayleigh criterion, this critical phase (θc) should be π/2, whereas our data show that the transition occurs well below this value. A linear acoustic energy balance shows that this critical phase marks the point where acoustic losses across the system boundaries equal the energy addition from the combustion process to the acoustic field. Based on the extended Rayleigh criterion in which the acoustic energy fluxes through the system boundaries as well as the typical Rayleigh source term (p\\'q\\') are included, we derive an extended Rayleigh index defined as Re=θqp/θc, which varies between 0 and 1. This index, plotted against a density-weighted strained consumption speed, indicates that the impact of the operating parameters on the dynamic mode selection of the combustor collapses onto a family of curves, which quantify the state of the combustor within a dynamic mode. At Re=0, the combustor enters a mode, and switches to another as Re approaches 1. The results provide a metric for quantifying the instability margins of fuel

  17. Identification of defluidization region in a gas-solid fluidized bed using a method based on pressure fluctuation measurements

    Directory of Open Access Journals (Sweden)

    M. R. Parise

    2009-09-01

    Full Text Available Industrial applications that involve fluidized bed operations must prevent the undesirable phenomenon of partial or complete bed defluidization. Defluidization can be avoided by increasing the gas velocity and/or, in some cases, changing the solid feed conditions in the system, provided that the changes in the hydrodynamics of the flow are detected early enough. The use of a technique that can perform an early detection of the defluidization condition in industrial applications is important, in order to avoid the loss of efficiency or even an undesirable shutting down of the process. The objective of this work is to show the application of a method for early detection of the condition where the bed is tending to the defluidization, in a gas-solid fluidized bed flow. The method is based on pressure fluctuation measurements. Experimental tests are carried out using two solid particles: microcrystalline cellulose and sand. Results show that the proposed method is efficient in detecting the fluidization condition in a conventional bubbling bed regime. The potential of application of the technique is also shown for the control of the defluidization phenomenon in industry.

  18. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    Science.gov (United States)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  19. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  20. Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    2000-01-01

    layer over land, but it is nearly constant over a 24-hour cycle. During summer, the mixed layer is higher than during winter. A second inversion was often observed. A case study of the development of the mixed layer over the sea under near-neutral and unstable atmospheric conditions during six...... consecutive days is presented. A zero-order mixed-layer height model is applied. In addition to momentum and heat fluxes the effect of subsidence was found to be important for the evolution of the mixed layer over the sea. The modelled evolution of z(i) compared successfully with measurements. We have...

  1. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    OpenAIRE

    Ngumah, Chima C.; Ogbulie, Jude N.; Orji, Justina C.; Amadi, Ekperechi S.

    2013-01-01

    This study investigated the effects of initiating anaerobic digestion (AD) of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 ºC and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD...

  2. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    Science.gov (United States)

    2016-06-01

    defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...routine may be required for different input types and formats. meteorological sounding interpolation , integrated mean layer values, US Army Research...or other radiosonde soundings. There are 2 main versions or “methods” that produce output in height- or pressure-based profiles of interpolated level

  3. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6

    Science.gov (United States)

    Lin, Zhisheng; Lohmann, Mark; Ali, Zulfikhar A.; Tang, Chi; Li, Junxue; Xing, Wenyu; Zhong, Jiangnan; Jia, Shuang; Han, Wei; Coh, Sinisa; Beyermann, Ward; Shi, Jing

    2018-05-01

    The anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy-axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of an applied pressure. At zero applied pressure, the easy axis is along the c direction or perpendicular to the layer. Upon application of a hydrostatic pressure > 1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c axis to the a b plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (> 100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.

  4. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  5. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    Science.gov (United States)

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  6. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  7. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin-layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  8. Local characteristics of the nocturnal boundary layer in response to external pressure forcing

    NARCIS (Netherlands)

    van der Linden, S.J.A.; Baas, P.; van Hooft, J.A.; van Hooijdonk, I.G.S.; Bosveld, F.C.; van de Wiel, B.J.H.

    2017-01-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw (The Netherlands). Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be

  9. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  10. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  11. An ultrahigh pressure homogenization technique for easily exfoliating few-layer phosphorene from bulk black phosphorus

    Science.gov (United States)

    Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng

    2018-05-01

    We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.

  12. OES control of a low-pressure DC arc at TiN layer deposition

    International Nuclear Information System (INIS)

    Andreev, M.A.; Maksimenko, V.N.; Ershov-Pavlov, E.A.

    1995-01-01

    Results are presented of a low-pressure DC arc study as applied for a deposition of TiN wear-resistant coatings in a commercial plant. Plasma parameters of the arc have been measured by optical emission spectroscopy. The plasma emission spectra have been recorded using a grating spectrometer equipped with an on line computer. Changes in the resulting layers due to a difference in working conditions have been determined by metallography and X-ray analysis giving composition, microstructure and thickness of the resulting layers. Using the data, a correlation between emission spectra of the arc and the TiN layer characteristics has been found. The results allow monitoring parameters of the deposition process to obtain necessary quality of the layer and to increase the process efficiency

  13. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  14. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  15. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  16. Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Heinemann, Bernd; Murota, Junichi; Tillack, Bernd

    2014-01-01

    Phosphorus (P) atomic layer doping in SiGe is investigated at temperatures between 100 °C to 600 °C using a single wafer reduced pressure chemical vapor deposition system. SiGe(100) surface is exposed to PH 3 at different PH 3 partial pressures by interrupting SiGe growth. The impact of the SiGe buffer/cap growth condition (total pressure/SiGe deposition precursors) on P adsorption, incorporation, and segregation are investigated. In the case of SiH 4 -GeH 4 -H 2 gas system, steeper P spikes due to lower segregation are observed by SiGe cap deposition at atmospheric (ATM) pressure compared with reduced pressure (RP). The steepness of P spike of ∼ 5.7 nm/dec is obtained for ATM pressure without reducing deposition temperature. This result may be due to the shift of equilibrium of P adsorption/desorption to desorption direction by higher H 2 pressure. Using Si 2 H 6 -GeH 4 -H 2 gas system for SiGe cap deposition in RP, lowering the SiGe growth temperature is possible, resulting in higher P incorporation and steeper P profile due to reduced desorption and segregation. In the case of Si 2 H 6 -GeH 4 -H 2 gas system, the P dose could be simulated assuming a Langmuir-type kinetics model. Incorporated P shows high electrical activity, indicating P is adsorbed mostly in lattice position. - Highlights: • Phosphorus (P) atomic layer doping in SiGe (100) is investigated using CVD. • P adsorption is suppressed by the hydrogen termination of Ge surface. • By SiGe cap deposition at atmospheric pressure, P segregation was suppressed. • By using Si 2 H 6 -based SiGe cap, P segregation was also suppressed. • The P adsorption process is self-limited and follows Langmuir-type kinetics model

  17. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  18. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution

    Science.gov (United States)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier

    2018-01-01

    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  19. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.

  20. Comparison of 4-Layer Bandages and an Adaptive Compression Therapy Device on Intended Pressure Delivery.

    Science.gov (United States)

    Mayrovitz, Harvey N; Partsch, Hugo; Vanscheidt, Wolfgang

    2015-01-01

    To characterize and compare interface pressure profiles of an adaptive compression therapy (ACT) device and a traditional 4-layer bandage (4LB) system. A prospective, randomized, open-label, 1-arm, active controlled study. The sample comprised 12 healthy volunteers. Subjects wore both devices for 8 hours on 3 consecutive days. Treatments were randomized to left and right legs. One clinician performed all applications and was experienced in the clinical use of both devices. Pressures were measured in seated and standing positions at the lower, mid, and upper calf immediately post application and after 1, 4, and 8 hours. Pressures achieved with the ACT were closer to targeted 40/30/20 mmHg graduated pressure values and were significantly less than the 4LB for corresponding sites/postures (P pressures (mean ± SD) for the ACT were 36.9 ± 4.9, 30.5 ± 4.5, and 21.0 ± 3.6 mmHg. Corresponding interface pressures for the 4LB were 52.5 ± 8.4, 57.5 ± 10.3, and 53.5 ± 12.9 mmHg. In the standing position, initial interface pressures for the ACT were 40.7 ± 4.8, 35.6 ± 4.5, and 21.1 ± 4.6 compared to 54.6 ± 12.5, 64.4 ± 10.9, and 53.7 ± 14.3 for the 4LB. At 1, 4, and 8 hours after application, the 4LB showed a significant progressive decline in interface pressure in both seated and standing positions (P pressures than the 4LB and the pressures achieved were consistent with contemporary venous ulcer therapy standards.

  1. Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2014-01-01

    Highlights: • Reformulated synthetic turbulence generation method (RSTGM) is applied. • Zonal RANS-LES method is applied to boundary layers at pressure gradients. • Good agreement with the pure LES and other reference data is obtained. • The RSTGM is applicable to pressure gradient flows without modification. • RANS-to-LES boundary should be located where -1·10 6 6 is satisfied. -- Abstract: The reformulated synthetic turbulence generation (RSTG) method is used to compute by a fully coupled zonal RANS-LES approach turbulent non-zero-pressure gradient boundary layers. The quality of the RSTG method, which is based on the same shape functions and length scale distributions as in zero-pressure gradient flow, is discussed by comparing the zonal RANS-LES findings with pure LES, pure RANS, direct numerical simulation (DNS), and experimental data. For the favorable pressure gradient (FPG) simulation the RANS-to-LES transition occurs in the accelerated flow region and for the adverse pressure gradient (APG) case it is located in the decelerated flow region. The results of the time and spanwise averaged skin-friction distributions, velocity profiles, and Reynolds stress distributions of the zonal RANS-LES simulation show a satisfactory to good agreement with the pure LES, reference DNS, and experimental data. The quality of the findings shows that the rigorous formulation of the synthetic turbulence generation makes the RSTG method applicable without a priori knowledge of the flow properties but those determined by the RANS solution and without using additional control planes to regulate the shear stress budget to a wide range of Reynolds numbers and pressure gradients. The method is a promising approach to formulate embedded RANS-to-LES boundaries in flow regions where the Pohlhausen or acceleration parameter satisfies -1·10 -6 ⩽K⩽2·10 -6

  2. Two-dimensional properties of n-inversion layers in InSb grain boundaries under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Kraak, W.; Herrmann, R.; Nachtwei, G.

    1985-01-01

    Magnetotransport properties of n-inversion layers in grain boundaries of p-InSb bicrystals are investigated under high hydrostatic pressure up to 10 3 MPa. A rapid decrease of the carrier concentration in the inversion layer is observed when hydrostatic pressure is applied. A simple model taking into account the pressure dependence of the energy band structure of pure InSb is proposed to describe this behaviour. (author)

  3. Light intensity fluctuations on a layered microsphere irradiated by a monochromatic light wave: Modeling of an inhomogeneous cellular surface with numerical elements

    International Nuclear Information System (INIS)

    Choi, Moon Kyu

    2007-01-01

    The inhomogeneity of crystalline or amorphous unit cells of material is treated by the numerical boundary element method. This paper is especially about the effect of perturbed refractive index (or potential energy) of a material on the light intensity inside a layered microsphere when it is irradiated by monochromatic unpolarized plane light wave. The resultant light intensities on the particle surface show noise-like fluctuations depending on various parameters such as the material refractive indices, the light wavelength, the particle and core size, the numerical surface element size, etc. Both the numerical results and the experiments from a few other groups agree that large light absorption occurs just in a small wavelength range

  4. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  5. Application of the Detrended Fluctuation Analysis method to the trajectory of the centre of pressure of the human body; Aplicacion del metodo Detrended Fluctuation Analysis a la trayectoria del centro de presion del cuerpo humano

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, M. T.; Anguiano, M.; Arias de Saavedra, F.; Lallena, A. M.; Carpena, P.

    2009-07-01

    The Detrended Fluctuation Analysis is a signal analyzing method which permits to study the correlation properties of the signal analyzed. This algorithm admits different variants which can be used to eliminate trends of different order existing in the signal. In this work we show the results obtained when two of these different variants, the so-called DFA-1 and DFA-2, are applied to the time series of the position and velocity of the centre of pressure of the human body in static conditions. The results show that the correlation exponents {alpha} obtained for each of the four types of analysis performed, depend on the scale studied. For the scales corresponding to large time intervals (above 35 s) the {alpha} values found in the four analyses coincide. (Author) 24 refs.

  6. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part I: Velocity and Concentration Measurements

    Science.gov (United States)

    Nironi, Chiara; Salizzoni, Pietro; Marro, Massimo; Mejean, Patrick; Grosjean, Nathalie; Soulhac, Lionel

    2015-09-01

    The prediction of the probability density function (PDF) of a pollutant concentration within atmospheric flows is of primary importance in estimating the hazard related to accidental releases of toxic or flammable substances and their effects on human health. This need motivates studies devoted to the characterization of concentration statistics of pollutants dispersion in the lower atmosphere, and their dependence on the parameters controlling their emissions. As is known from previous experimental results, concentration fluctuations are significantly influenced by the diameter of the source and its elevation. In this study, we aim to further investigate the dependence of the dispersion process on the source configuration, including source size, elevation and emission velocity. To that end we study experimentally the influence of these parameters on the statistics of the concentration of a passive scalar, measured at several distances downwind of the source. We analyze the spatial distribution of the first four moments of the concentration PDFs, with a focus on the variance, its dissipation and production and its spectral density. The information provided by the dataset, completed by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be very well approximated by a Gamma distribution, irrespective of the emission conditions and the distance from the source. Concentration measurements are complemented by a detailed description of the velocity statistics, including direct estimates of the Eulerian integral length scales from two-point correlations, a measurement that has been rarely presented to date.

  7. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  8. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. CHF enhancement through Pressurized Intermediate Layer in IVR-ERVC Strategy

    International Nuclear Information System (INIS)

    Park, Seong Dae; Bang, In Cheol

    2014-01-01

    The molten fuel is sequentially relocated to bottom of reactor vessel. In-vessel retention through the external reactor vessel cooling (IVR-ERVC) strategy has been adapted to some reactors at this situation in order to prevent the progression of an accident. The limitation of IVR-ERVC strategy is CHF phenomenon on the outer wall of reactor vessel. The boiling is main heat transfer mode to remove decay heat between the reactor vessel and the coolant surrounding the reactor vessel. Heated molten radioactive material is leaked. The fuel coolant interaction (FCI) phenomenon could cause the steam explosion in a state of fully flooding condition. Therefore, the CHF should be enhanced in order to be a successful IVR-ERVC strategy. Related studies were performed to confirm the CHF limit with UPLU, SBLB, KAIST and UNIST test facilities The recommendations to increase CHF include coating some materials on the vessel outer surface, increasing the reactor cavity flood level and streamlining the gap between the vessel and the vessel insulation. Recently, flooding the liquid metal is proposed to prevent the boiling itself. In this work, the effects of pressurized liquid layer inserted between the reactor vessel and flooded coolant was studied. Suitable reactor geometry was also presented to apple this concept. Generally, CHF is increased as high pressure was applied until about 1/3 of critical pressure. The limit of IVR-ERVC strategy could overcome by using pressurized intermediate layer. The CFD analysis was performed to confirm the feasibility of pressurized IVR-ERVC system. There are enough thermal margins for due to the enlarged heat transfer area and the convection heat transfer

  10. CHF enhancement through Pressurized Intermediate Layer in IVR-ERVC Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The molten fuel is sequentially relocated to bottom of reactor vessel. In-vessel retention through the external reactor vessel cooling (IVR-ERVC) strategy has been adapted to some reactors at this situation in order to prevent the progression of an accident. The limitation of IVR-ERVC strategy is CHF phenomenon on the outer wall of reactor vessel. The boiling is main heat transfer mode to remove decay heat between the reactor vessel and the coolant surrounding the reactor vessel. Heated molten radioactive material is leaked. The fuel coolant interaction (FCI) phenomenon could cause the steam explosion in a state of fully flooding condition. Therefore, the CHF should be enhanced in order to be a successful IVR-ERVC strategy. Related studies were performed to confirm the CHF limit with UPLU, SBLB, KAIST and UNIST test facilities The recommendations to increase CHF include coating some materials on the vessel outer surface, increasing the reactor cavity flood level and streamlining the gap between the vessel and the vessel insulation. Recently, flooding the liquid metal is proposed to prevent the boiling itself. In this work, the effects of pressurized liquid layer inserted between the reactor vessel and flooded coolant was studied. Suitable reactor geometry was also presented to apple this concept. Generally, CHF is increased as high pressure was applied until about 1/3 of critical pressure. The limit of IVR-ERVC strategy could overcome by using pressurized intermediate layer. The CFD analysis was performed to confirm the feasibility of pressurized IVR-ERVC system. There are enough thermal margins for due to the enlarged heat transfer area and the convection heat transfer.

  11. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  12. Correlations for modeling transitional boundary layers under influences of freestream turbulence and pressure gradient

    International Nuclear Information System (INIS)

    Suluksna, Keerati; Dechaumphai, Pramote; Juntasaro, Ekachai

    2009-01-01

    This paper presents mathematical expressions for two significant parameters which control the onset location and length of transition in the γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. In: ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements]. The expressions are formulated and calibrated by means of numerical experiments for predicting transitional boundary layers under the influences of freestream turbulence and pressure gradient. It was also found that the correlation for transition momentum thickness Reynolds number needs only to be expressed in terms of local turbulence intensity, so that the more complex form that includes pressure gradient effects is unnecessary. Transitional boundary layers on a flat plate both with and without pressure gradients are employed to assess the performance of these two expressions for predicting the transition. The results show that the proposed expressions can work well with the model of Menter et al. (2005)

  13. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Chima C. Ngumah

    2013-12-01

    Full Text Available This study investigated the effects of initiating anaerobic digestion (AD of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD, while the other was not inoculated. The bioreactors initiated at sub-atmospheric pressure, ambient atmospheric pressure without inoculum, and ambient atmospheric pressure with inoculum showed the following for biogas and biomethane yields respectively: 16.8 cm3 g-1 VS and 15.46 cm3 g 1 VS, 25.10 cm3 g-1 VS and 12.85 cm3 g-1 VS, 21.44 cm3 g-1 VS and 14.88 cm3 g 1 VS. In the same order, after AD, the following values were recorded for volatile solids and total viable counts (prokaryotes and fungi in the digestates: 40.33% and 23.22 x 106 cfu mL-1, 43.42% and 22.17 x 106 cfu mL-1, 41.11% and 13.3 x 106 cfu mL-1. The feedstock showed values of 83.93% and 3.98 x 106 cfu mL-1 for volatile solids and total viable count respectively. There was a slight difference in the volatile solids of the digestates of the three bioreactors after AD. The pH recorded for the feedstock slurry before AD was 7.9 at 30oC, while after AD, the digestates from all the three bioreactors showed the same pH of 5.9 at 29 0C. Statistical analysis using ANOVA showed no significant difference in biogas yields of the feedstock for the three bioreactors (A, B, C. ANOVA showed no significant difference for biomethane yields in the bioreactors initiated at sub-atmospheric pressure and for those initiated at ambient atmospheric pressure with inoculums. However, it showed significant difference in the bioreactor initiated at sub-atmospheric pressure and that initiated at ambient atmospheric

  14. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  15. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  16. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  17. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    Science.gov (United States)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  18. Pressure effects on the magnetic behaviour of copper (II) compounds: magnetic ordering of layered organic/inorganic magnets

    International Nuclear Information System (INIS)

    Levchenko, G; Varyukhin, V N; Berezhnaya, L V; Rusakov, V F

    2012-01-01

    The high hydrostatic pressure effect on the magnetic properties of the layered hybrid compounds Cu 2 (OH) 3 (C n H 2n+1 CO 2 )⋅mH 2 O with distance between magnetic layers of up to 40 Å is studied. It is shown that the temperature of the ferromagnetic ordering decreases linearly with pressure increase. From measurements of susceptibility in the paramagnetic region, using both quantum Heisenberg and Ising exchange coupling models in layers and dipole interaction between layers, the in- and interlayer interactions are deduced. The dipole interactions are calculated and are shown to coincide with the model of Ising interactions in the layers. The value and decrease of T c under pressure are mainly driven by the value and decrease of the in-plane interactions. The formation of the long range ordering in the layered sample with dipolar interaction between layers is analysed. As a conclusion it is suggested that for designing high temperature ferromagnetism in layer compounds it is enough to have large in-plane interactions of ions with specific symmetry in layers and weak dipole interactions between layers. (paper)

  19. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    KAUST Repository

    Hong, Seunghyuck; Shanbhogue, Santosh J.; Speth, Raymond L.; Ghoniem, Ahmed F.

    2013-01-01

    and preheat temperatures. The combustor exhibits distinct acoustic response and dynamic flame shape (collectively referred to as "dynamic modes") depending on the operating conditions. We simultaneously measure the dynamic pressure and flame chemiluminescence

  20. Instability waves and transition in adverse-pressure-gradient boundary layers

    Science.gov (United States)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  1. Instantaneous fluctuation velocity and skewness distributions upstream of transition onset

    International Nuclear Information System (INIS)

    Hernon, D.; Walsh, E.J.; McEligot, D.M.

    2007-01-01

    The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ∼ 0.6, whereas the location of the peak positive value was measured at y/δ ∼ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence

  2. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  3. 8-13 hz fluctuations in rectal pressure are an objective marker of clitorally-induced orgasm in women

    NARCIS (Netherlands)

    van Netten, Jaap J.; Georgiadis, Janniko R.; Nieuwenburg, Arie; Kortekaas, Rudie

    Orgasm is a subjective experience accompanied by involuntary muscle contractions. We hypothesized that orgasm in women would be distinguishable by frequency analysis of a perineal muscle-derived signal. Rectal pressure, an index of perineal muscle activity, was measured continuously in 23 healthy

  4. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 2. Observational evidence under snowpacks

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2006-01-01

    Meadow and forest CO2 amounts sampled beneath an approximately meter deep (steady state) snowpack at a subalpine site in southern Rocky Mountains of Wyoming are observed to vary by nearly 200 ppm over periods ranging from 4 to 15 days. This work employs the model of periodic, pressure-induced, advective transport in permeable media developed in...

  5. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  6. Studies on unsteady pressure fields in the region of separating and reattaching flows

    Science.gov (United States)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  7. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    Science.gov (United States)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  8. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2002-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  9. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)

    2002-07-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  10. Effects of the layered structure of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} on the superconducting fluctuations; Influence de la structure lamellaire sur les fluctuations supraconductrices dans YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Baraduc, C.

    1994-06-01

    The study mainly addresses Gaussian fluctuations, with the Lawrence-Doniach model used as a framework for describing the coupled superconducting planes. The fluctuations in zero magnetic field and especially the conductivity fluctuations are studied theoretically and experimentally. It is shown that the conductivity does not follow the same mechanism when current flows along the planes or perpendicularly to them. When fluctuations are confined in each plane, a two-dimensional mechanism is observed for the parallel conductivity whereas a zero-dimensional one controls the perpendicular conductivity, which can be understood as a hopping process. Fluctuations under magnetic field, applied in the perpendicular direction, are also examined. Different scaling laws are proposed and compared for experimental magnetization data. It is shown that the 2D-3D cross-over, characterizing a layered structure, still remains under field. The observation of a crossing point in the magnetic curves raises the problem of vortex fluctuations even in this moderately anisotropic compound. 48 figs., 86 refs.

  11. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    Science.gov (United States)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  12. Calibration of an isotopically enriched carbon-13 layer pressure sensor to 156 GPa in a diamond anvil cell

    International Nuclear Information System (INIS)

    Qiu Wei; Baker, Paul A.; Velisavljevic, Nenad; Vohra, Yogesh K.; Weir, Samuel T.

    2006-01-01

    An isotopically enriched 13 C homoepitaxial diamond layer of 6±1 μm thickness was grown on top of a brilliant cut diamond anvil by a microwave plasma chemical vapor deposition process for application as a pressure sensor. This isotopically enriched diamond tip was then used in conjunction with a natural isotopic abundance diamond anvil to generate high pressure on the sample. We provide a calibration for the 13 C Raman mode of this extremely thin epitaxial layer to 156 GPa using ruby fluorescence and the equation of state of copper as secondary pressure standards. The nonlinear calibration of the 13 C Raman mode pressure sensor is compared with similar calibrations of 12 C Raman edge and a good agreement is obtained. The Raman signal from the 13 C epitaxial layer remained a distinct singlet to 156 GPa, and pressure calibration is independent of sample mechanical strength or the diamond anvil geometry. The use of even thinner layer would allow calibration further into ultrahigh pressure regime where the use of other optical sensors has proven to be difficult

  13. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    Science.gov (United States)

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  14. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    Science.gov (United States)

    Kivisalu, Michael Toomas

    Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies

  15. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  16. High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure

    Science.gov (United States)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.

    2014-01-01

    At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.

  17. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  18. BWR core response to fluctuations in coolant flow and pressure, with implications on noise diagnosis and stability monitoring

    International Nuclear Information System (INIS)

    Blomstrand, J.H.; Andersson, S.A.

    1982-01-01

    Reactor dynamic tests, utilizing sinuosidal oscillations in pressure and recirculation flow, have been conducted in operating BWRs in Sweden and Finland. Test data recorded, as well as recordings of process noise, have been analyzed in terms of dynamic core properties. The results obtained show good qualitative agreement with model predictions of BWR core dynamics. Model studies can often support interpretation of dynamic information obtained from operating plants. Comparisons between model studies, dynamic tests and process noise may also provide improved understanding of test results and noise patterns; in this way it can be demonstrated that some neutron flux noise is caused by noise in coolant flow and steam flow. From reactor test data nd noise recordings, core stability parameters have been evaluated by a number of methods. These have been found to provide essentially the same results. The cores investigated were found to be very stable under normal operating conditions. In special operating points, outside the normal operating range, higher decay ratios may occur. The experience indicates that for BWR cores, operated at decay ratios above quarter damping, the stability parameters may be identified from the oscillatory behavior of the autocorrelation in the time domain of the neutron flux noise

  19. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1980-01-01

    Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.

  20. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    Science.gov (United States)

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of

  1. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells

    Science.gov (United States)

    Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland

    2018-05-01

    The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.

  2. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    Science.gov (United States)

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  3. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  4. High pressure measurement of the uniaxial stress of host layers on intercalants and staging transformation of intercalation compounds

    CERN Document Server

    Park, T R; Kim, H; Min, P

    2002-01-01

    A layered double-hydroxide intercalation compound was synthesized to measure the uniaxial stress the host layers exert on the intercalants. To measure the uniaxial stress, we employed the photoluminescence (PL) from the intercalated species, the Sm ion complex, as it is sensitive to the deformation of the intercalants. Of the many PL peaks the Sm ion complex produces, the one that is independent of the counter-cation environment was chosen for the measurement since the Sm ion complexes are placed under a different electrostatic environment after intercalation. The peak position of the PL was redshifted linearly with increasing hydrostatic pressure on the intercalated sample. Using this pressure-induced redshifting rate and the PL difference at ambient pressure between the pre-intercalation and the intercalated ions, we found that, in the absence of external pressure, the uniaxial stress exerted on the samarium ion complexes by the host layers was about 13.9 GPa at room temperature. Time-resolved PL data also ...

  5. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang; Sun, Shipeng; Zhang, Sui; Chung, Neal Tai-Shung

    2014-01-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  6. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  7. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  8. pressure distribution in a layered reservoir with gas-cap and bottom

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... Finally, only fluid ratios is recommended as adequate to reveal which ... pressure derivatives, interlayer cross flow, heterogeneity, reservoir characterization, pressure ... sure derivatives to thoroughly understand movement.

  9. Use of Dimples to Suppress Boundary Layer Separation on a Low Pressure Turbine Blade

    Science.gov (United States)

    2002-12-01

    thermocouples. A Druck LPM 5481 pressure transducer is connected to an SCXI-1121 signal conditioning card. It has a range of -0.2 to 0.8 in H2O...tapped blades. 71 4.2.1 Pressure Instrumentation The primary interface for all measurements taken during this research is the Druck LPM 5481...tester. Figure 48 shows a schematic of the Pressurements V1600/ 3D dead-weight tester. Force = (m)(g) Regulator Volume Volume Supply Pressure

  10. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ⊕} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  11. [Effects of Acupuncture Stimulation of Different Layers of "Tianshu" (ST 25) Region on Changes of Intra-colonic Pressure in Normal Rats].

    Science.gov (United States)

    Sun, Xue-Yi; Yu, Zhi; Chen, Zhi-Yu; Xu, Bin

    2018-02-25

    To observe the effect of manual acupuncture stimulation of different layers (skin, muscle, peritoneum, sub-peritoneum) of "Tianshu" (ST 25) region on proximal colonic pressure in normal rats. Forty-eight male SD rats were divided into 6 groups: all layer-needling, brushing, cutaneous needling, muscular needling, peritoneum-needling and sub-peritoneum-needling groups ( n =8 in each group). Manual needling or brushing was applied to "Tianshu" (ST 25) region. The colonic internal pressure was measured by using an amplifier and a pressure transducer-connected balloon which was implanted into the colonic cavity about 6 cm from the ileocecal valve. For rats of the all-layer needling group, an acupuncture needle was inserted into ST 25 about 1 cm deep and rotated for a while, for rats of the brushing group, a Chinese calligraphy brush pen was used to brush the skin hair for 1 min. For rats of the rest 4 groups, an acupuncture needle was inserted into the skin, muscle layer after cutting open the skin (about 0.1 cm), the peritoneum layer after cutting open the skin and muscle layers, and the sub-peritoneum layer after cutting open the skin, muscle and peritoneum layers, respectively, and rotated using the uniform reinforcing-reducing technique for about 1 min at a frequency of 120 twirlings per minute every time. During manual needling stimulation of the full layers, cutaneous layer, muscle layer, peritoneum layer and the sub-peritoneum layer of bilateral "Tianshu" (ST 25), the internal pressure of proximal colon was significantly decreased relevant to pre-stimulation in each group ( P 0.05). During hair brushing of ST 25 region, the colonic pressure was observably increased relevant to pre-needling stimulation ( P ST 25 on both sides may lower internal pressure of proximal colon in normal rats, suggesting their involvement of acupuncture effect in relaxing proximal colonic contraction.

  12. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  13. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  14. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Smolders, C.A.

    1984-01-01

    The characteristic permeate flux behaviour in ultrafiltration, i.e., the existence of a limiting flux which is independent of applied pressure and membrane resistance and a linear plot of the limiting flux versus the logarithm of the feed concentration, is explained by the osmotic pressure model. In

  15. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    Science.gov (United States)

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  16. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Directory of Open Access Journals (Sweden)

    Möhlenkamp Stefan

    2006-06-01

    Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal

  17. Inferences about pressures and vertical extension of cloud layers from POLDER3/PARASOL measurements in the oxygen A-band

    Science.gov (United States)

    Desmons, Marine; Ferlay, Nicolas; Parol, Frédéric; Vanbauce, Claudine; Mcharek, Linda

    2013-05-01

    We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2 of PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed.

  18. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan-Jae [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Jun, Sungwoo [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Ju, Byeong-Kwon [Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Jong-Woong, E-mail: wyjd@keti.re.kr [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of)

    2017-06-01

    This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent (~93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 µm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm. - Highlights: • A thin, transparent pressure sensor was fabricated from AgNWs and cPI. • An AgNW network was patterned with a simple circuit, and then embedded into cPI. • The resulting film-type sensor was highly transparent and mechanically stable. • The sensor sensitivity was 4x higher than that of an elastomeric pressure sensor.

  19. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  20. The multi-layered ring under parabolic distribution of radial stresses combined with uniform internal and external pressure

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-04-01

    Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.

  1. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  2. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    mesoscale fluctuations in a mesoscale model is then examined using the weather research and forecasting (WRF) model. A set of case studies demonstrate that realistic hour-scale wind fluctuations and open cellular convection patterns develop in WRF simulations with 2 km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplified version of the model that has no large scale weather forcing, topography or surface inhomogeneties. Using the simplified model, the sensitivity of the modelled open cellular convection to choices in model setup and to aspects of the environmental forcing are tested. Finally, the cell-scale kinetic energy budget of the modelled cells is calculated, and it is shown that the buoyancy and pressure balance terms are important for cell maintenance. It is explained that the representation of mesoscale convection in a mesoscale model is not only important to end users such as wind farm operators, but to the treatment of energy transport within the boundary layer. (Author)

  3. Reflection and transmission characteristics of a layer obeying the two-pressure field poroelastic phenomenological model of Berryman and Wang.

    Science.gov (United States)

    Kachkouch, F; Franklin, H; Tinel, A

    2018-07-01

    The characteristics of the reflection and transmission by a fluid-loaded double porosity layer are studied. The medium obeys the two-pressure field poroelastic phenomenological model of Berryman and Wang. The open pore hydraulic conditions applied at the interfaces yield factorized expressions for the coefficients exhibiting on the one hand a separation allowing to distinguish between symmetrical and antisymmetrical motions and on the other hand the way each of the three dilatational waves associate with the shear wave. The numerical study done for a layer of Berea sandstone saturated by water shows clearly the role of each of the dilatational waves. There are peculiarities such as the absence of the fundamental antisymmetrical mode (zero order) and a singular behaviour of the symmetrical fundamental mode. The low frequency approximation for this latter is derived from the proposed formulas and compared with the numerical results. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  5. Evaluation of the thin agar layer method for the recovery of pressure-injured and heat-injured Listeria monocytogenes.

    Science.gov (United States)

    Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Jung, Stephanie; Manu, David K; Mendonça, Aubrey F; Brehm-Stecher, Byron F; Stock, Joseph; Stalder, Kenneth J

    2014-05-01

    A sublethally injured bacterial cell has been defined as a cell that survives a stress such as heating, freezing, acid treatment, or other antimicrobial intervention but can repair the cellular damage exerted by the stressor and later regain its original ability to grow. Consequently, sublethally injured cells are not likely to be included in conventional enumeration procedures, which could result in unrealistically low counts unless efforts are made to encourage recovery of the injured cells before enumeration. The objective of this study was to evaluate the use of the thin agar layer (TAL) method for the recovery of pressure-injured and heat-injured Listeria monocytogenes in a tryptic soy broth with 0.6% yeast extract system. Pressure injury consisted of treatment of a culture of mixed L. monocytogenes strains with high hydrostatic pressure at 400 or 600 MPa for 1 s, 2 min, 4 min, or 6 min at a process temperature of 12±2 °C. Heat injury consisted of treatment of a culture of mixed L. monocytogenes strains at 60±1 °C for 3, 6, or 9 min. Growth media were tryptic soy agar (TSA) with 0.6% yeast extract, modified Oxford medium (MOX), and TAL, which consisted of a 7-ml layer of TSA overlaid onto solidified MOX. Counts of viable L. monocytogenes on TAL were higher than those on MOX in the heat-injury experiment but not in the pressure-injury experiment. Therefore, the effectiveness of the TAL method may be specific to the type of injury applied to the microorganism and should be investigated in a variety of cellular injury scenarios.

  6. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  7. Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)

    International Nuclear Information System (INIS)

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-01-01

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn 2 Ge 2 , substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn 2 Ge 2−x Si x , Pr 1−x Y x Mn 2 Ge 2 , and PrMn 2−x Fe x Ge 2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr 0.5 Y 0.5 Mn 2 Ge 2 and PrMn 2 Ge 0.8 Si 1.2 ) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound

  8. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    Science.gov (United States)

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-11-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.

  9. X-ray study of strain relaxation in heteroepitaxial AlGaAs layers annealed under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Bak-Misiuk, J.; Adamczewska, J.; Kozanecki, A.; Kuritsyn, D.; Glukhanyuk, W.; Trela, J.; Misiuk, A.; Reginski, K.; Wierzchowski, W.; Wieteska, K.

    2002-01-01

    The effect of treatment at up to 1270 K under hydrostatic argon pressure, up to 1.2 GPa, on strain relaxation of AlGaAs layers was investigated by X-ray diffraction and related methods. The 1.5 μm thick AlGaAs layers were grown by molecular beam epitaxy method on 001 oriented semi-insulating GaAs substrate at 950 K. An increase of intensity of X-ray diffuse scattering, originating from hydrostatic pressure-induced misfit dislocations, was observed for all treated samples. For the samples treated at 920 K during 1 h under 0.6 GPa, the diffuse scattering was confined to the [110] crystallographic direction, perpendicular to the direction of dislocations. For the samples treated at 1.2 GPa, a different behaviour is observed, namely the diffuse scattering extends along all azimuthal directions, indicating that dislocations are created in both [110] and [1 - 10] directions. The change of strain after the treatment was most pronounced for the samples treated at 1.2 GPa for 1 h at 920 K. (author)

  10. Fluctuation analysis

    International Nuclear Information System (INIS)

    Clarke, J.

    1980-01-01

    This paper briefly reviews sources of noise in Josephson junctions, and the limits they impose on the sensitivity of dc and rf SQUIDS. The results are strictly valid only for a resistively shunted junction (RSJ) with zero capacitance, but should be applicable to point contact junctions and microbridges in so far as these devices can be approximated by the RSJ model. Fluctuations arising from Nyquist noise in the resistive shunt of a single junction are discussed in the limit eI/sub o/R/k/sub B/T << 1 in which a classical treatment is appropriate, and then extend the treatment to the limit eI/sub o/R/k/sub B/T greater than or equal to 1 in which quantum effects become important. The Nyquist limit theory is used to calculate the noise in a dc SQUID, and the results are compared with a number of practical devices. The quantum limit is briefly considered. Results for the predicted sensitivity of rf SQUIDS are presented, and also compared with a number of practical devices. Finally, the importance of l/f noise (f is the frequency) in limiting the low frequency performance of SQUIDS is discussed

  11. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    Science.gov (United States)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a

  12. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  13. Deposition of silica protected luminescent layers of Eu:GdVO_4 nanoparticles assisted by atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Moretti, Elisa; Pizzol, Giorgia; Fantin, Marina; Enrichi, Francesco; Scopece, Paolo; Nuñez, Nuria O.; Ocaña, Manuel; Benedetti, Alvise; Polizzi, Stefano

    2016-01-01

    Eu:GdVO_4 nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO_4 nanophosphors. • Plasma jet deposition of SiO_2 fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  14. Deposition of silica protected luminescent layers of Eu:GdVO{sub 4} nanoparticles assisted by atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Pizzol, Giorgia [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Fantin, Marina; Enrichi, Francesco; Scopece, Paolo [Nanofab-Veneto Nanotech, Via delle Industrie 5, 30175 Marghera, Venezia (Italy); Nuñez, Nuria O.; Ocaña, Manuel [Instituto de Ciencia de Materiales de Sevilla, CSIC-US, Americo Vespucio 49, 41092, Isla de la Cartuja, Sevilla (Spain); Benedetti, Alvise [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Polizzi, Stefano [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Centro di Microscopia Elettronica “Giovanni Stevanato”, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre, Venezia (Italy)

    2016-01-01

    Eu:GdVO{sub 4} nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO{sub 4} nanophosphors. • Plasma jet deposition of SiO{sub 2} fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  15. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  16. Effect of the boundary layer thickness on the hydrodynamic instabilities of coaxial atomization under harmonic flow rate and swirl ratio fluctuations

    Science.gov (United States)

    Jorajuria, Corentin; Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto

    2017-11-01

    Break-up of a liquid jet by a high speed coaxial gas jet is a frequently-used configuration to generate a high quality spray. Despite its extended use in engineering and natural processes, the instabilities that control the liquid droplet size and their spatio-temporal distribution in the spray are not completely understood. We present an experimental measurements of the near field in a canonical coaxial gas-liquid atomizer. The liquid Reynolds number is constant at 103, while the gas jet Reynolds number is varied from 104-106. The liquid injection rate and the swirl ratio are harmonically modulated to understand the effect of unsteadiness on the interfacial instability that triggers primary break-up. The gas velocity is measured using a combination of hot-wire anemometry and 3D PIV, resolving the gas boundary layer and the three-dimensionality of the flow, particularly in the cases with swirl. The development of the hydrodynamic instabilities on the liquid-gas interface is quantified using high speed visualizations at the exit of the nozzle and related to the frequency and growth rates predicted by stability analysis of this boundary layer flow. The resulting droplet size distribution is measured at the end of the break-up process via Particle Phase Doppler Anemometry and compared to stability analysis predictions statistics.

  17. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  18. Formation of electrostatic double-layers and electron-holes in a low pressure mercury plasma column

    International Nuclear Information System (INIS)

    Petraconi, G; Maciel, Homero S

    2003-01-01

    Experimental studies of the formation of electrostatic double layers (DLs) and electron-holes (e-holes) are reported. The measurements were performed in the positive column of a mercury arc discharge operating in the low-pressure range of (2.0-14.0) x 10 -2 Pa with current density in the range of (3.0-8.0) x 10 3 A m -2 . Stable and unstable modes of the discharge were identified as the current was gradually increased, keeping constant the vapour pressure. The discharge remains stable until a critical current from which a slight increase of the current leads to an unstable regime characterized by high discharge impedance and strong oscillations. This mode ceased after a DL was formed in the plasma column. To induce the DL formation and to transport it smoothly along the discharge column, a low intensity B-field (7-10) x 10 -3 T produced by a movable single coil was used. The B-field locally increases the electron current density and makes the DL form at the centre of the magnetic constriction where it remained at rest. Electrostatic potential structures compatible with ordinary DLs and multiple-layers could be formed in the plasma column by dealing with the combined effects of the operational parameters of the discharge. It is noticeable that a pure e-hole, which is a symmetric triple-layer having a bell shape potential profile, could easily be formed by means of this experimental technique. A partial kinetic description, based on the space charge structure derived from an experimental e-hole, is presented in order to infer the charged particle populations that could contribute to the space charge of the e-hole. Evidence is shown that strong e-hole formation might be driven by an ion beam, therefore it could not be formed in isolation since its formation requires a nearby ion accelerating potential structure. Probe measurements of the plasma properties, at various radial positions of the stable positive column, are also presented. In the stable mode, prior to

  19. Effect of pressure on photo-induced expansion of As0.2Se0.8 layer

    International Nuclear Information System (INIS)

    Charnovych, S.; Kokenyesi, S.; Erdelyi, G.; Csik, A.

    2011-01-01

    Complete text of publication follows. Amorphous chalcogenide glasses are well known as materials where different kinds of structure-related transformations, like amorphysation-crystallization, volume and chemical stability changes take place under certain external influences (heat-, light-, and electric field). In spite of a rather long history of investigations and even some important applications in memory devices the mechanism of these effects is not completely clear, since besides the necessary condition of light interaction with glass and charge generation of the mass transport, shift or diffusion of atoms must occur. Unfortunately, we have only very little information about the light induced atomic transport processes in amorphous chalcogenides. Recent investigations on light-induced expansion, and holographic recording in chalcogenide glasses show that As 0.2 Se 0.8 composition reveals giant photo-expansion and photoplasticity effects. We selected this material for more detailed investigations of the direct relief formation process. In this work we investigate the influence of hydrostatic pressure on photo-stimulated surface relief formation in As 0.2 Se 0.8 thin films. 1 μm tick layers were evaporated from bulk glassy materials. Silica glass plates were used as substrate for films. The thickness of the layers were measured with profilometer type Ambios XP-I. The samples were illuminated with red laser beam (633 nm, output power P=7.5mW) through a copper grid, which resulted to an imprint picture on the surface of the film with interference fringes at the edges. In this way surface relief with different heights were formed after the given exposure according to the distribution of light intensity. The measurements were carried out at room temperature in a large-volume (1 cm 3 ) optical cell having sapphire windows. The hydrostatic pressure was generated by means of a 3-stage gas compressor. We used profilometer as well as scanning electron- and atomic force

  20. High-Pressure Raman Scattering in the Layered Antiferromagnet NiPS_3

    Science.gov (United States)

    Rosenblum, S.; Merlin, R.; Francis, A. H.

    1996-03-01

    We report on two-magnon and vibrational Raman scattering from NiPS3 for pressures up to 30 GPa and temperatures between 110 and 300 K. NiPS3 is an S=1, two-dimensional antiferromagnet with TN = 150 K. It is the only known S=1 compound with a relative two-magnon linewidth comparable in magnitude to that of the parent compounds of the high temperature superconductors.(Rosenblum et al., Phys. Rev. B 49), 4352 (1994) In the cuprates, this anomalous linewidth is well described by phonon-magnon coupling.(Knoll et al.), Phys. Rev.B 42, 4842 (1990).^,(Nori et al., Phys. Rev. Lett. 75), 553 (1995). Here, we will look at the measured Grüneisen parameters of the vibrational and magnetic excitations and relate them to the magnetostrictive model.

  1. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  2. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  3. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  4. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  5. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  6. Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC).

    Science.gov (United States)

    Pazos, Manuel; Otten, Christian; Vollmer, Waldemar

    2018-03-20

    Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.

  7. The choice of rational parameters of beet pulp drying process in a pulsed low-pressure vibro-boiling layer

    Directory of Open Access Journals (Sweden)

    A. V. Drannikov

    2017-01-01

    Full Text Available Beet pulp is the main sugar industry by-product obtained with traditional production technology. It has high nutritional qualities, but in its raw form it turns sour quickly so it must be preserved. One of the most common methods is drying. Drying of the beet pulp with superheated vapor of reduced pressure in the pulsating vibro-boiling layer allows to improve the quality of the finished product by lowering of the drying agent temperature, thereby retaining a significant amount of nutrients in the initial product. To study the kinetic and hydrodynamic dependencies of the drying process, an experimental apparatus was developed that makes it possible to obtain the most accurate and reproducible results. In the course of the work, a lot of experiments were carried out. Drying curves, drying rate curves and heating curves were made based on these experiments results. According to the nature of the changes the corresponding conclusions were drawn. To study the interaction of various factors affecting the beet pulp drying process, the mathematical methods of experiment planning are applied. A mathematical description of this process can be obtained empirically. At the same time, its mathematical model has the form of a regression equation, determined by statistical methods on the basis of experiments. As a result of statistical processing of experimental data, regression equations were obtained that adequately describe the beet pulp drying process in a pulsed low-pressure vibro-boiling layer in the experimental apparatus. With reference to this drying apparatus, such technological modes of its operation were determined that ensure a minimum specific energy consumption of the drying process per kilogram of evaporated moisture and the maximum drying chamber moisture stress.

  8. Velocity-pressure correlation measurements in complex free shear flows

    International Nuclear Information System (INIS)

    Naka, Yoshitsugu; Obi, Shinnosuke

    2009-01-01

    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  9. Formation of carbonaceous nano-layers under high interfacial pressures during lubrication with mineral and bio-based oils

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, John P. [U.S. DOE

    2014-01-01

    In order to better protect steel surfaces against wear under high loads, understanding of chemical reactions between lubricants and metal at high interfacial pressures and elevated temperatures needs to be improved. Solutions at 5 to 20 wt. % of zinc di-2-ethylhexyl dithio phosphate (ZDDP) and chlorinated paraffins (CP) in inhibited paraffinic mineral oil (IPMO) and inhibited soy bean oil (ISBO) were compared on a Twist Compression Tribotester (TCT) at 200 MPa. Microscopy of wear tracks after 10 seconds tribotesting showed much smoother surface profiles than those of unworn areas. X-ray photoelectron spectroscopy (XPS) coupled with Ar-ion sputtering demonstrated that additive solutions in ISBO formed 2–3 times thicker carbon-containing nano-layers compared to IPMO. The amounts of Cl, S or P were unexpectedly low and detectable only on the top surface with less than 5 nm penetration. CP blends in IPMO formed more inorganic chlorides than those in ISBO. It can be concluded that base oils are primarily responsible for the thickness of carbonaceous nano-layers during early stages of severe boundary lubrication, while CP or ZDDP additive contributions are important, but less significant.

  10. Synthesis and characterization of graphene layers prepared by low-pressure chemical vapor deposition using triphenylphosphine as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mastrapa, G.C.; Maia da Costa, M.E.H. Maia [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Larrude, D.G., E-mail: dunigl@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ (Brazil)

    2015-09-15

    The synthesis of a single-layer graphene using a low-pressure Chemical Vapor Deposition (CVD) system with triphenylphosphine as precursor is reported. The amount of triphenylphosphine used as precursor was in the range of 10–40 mg. Raman spectroscopy was employed to analyze samples prepared with 10 mg of the precursor, and these spectra were found typical of graphene. The Raman measurements indicate that the progressive degradation of graphene occurs as the amount of triphenylphosphine increases. X-ray photoelectron spectroscopy measurements were performed to investigate the different chemical environments involving carbon and phosphorous atoms. Scanning electron microscopy and transmission electron microscopy were also employed and the results reveal the formation of dispersed nanostructures on top of the graphene layer, In addition, the number of these nanostructures is directly related to the amount of precursor used for sample growth. - Highlights: • We grow graphene using the solid precursor triphenylphosphine. • Raman analysis confirms the presence of monolayer graphene. • SEM images show the presence of small dark areas dispersed on the graphene surface. • Raman I{sub D}/I{sub G} ratio increases in the dark region of the graphene surface.

  11. Hydrostatic-pressure studies of confined transitions in cubic Zn1-xCdxSe/ZnSe strained-layer quantum wells

    International Nuclear Information System (INIS)

    Thomas, R.J.; Chandrasekhar, H.R.; Chandrasekhar, M.; Samarth, N.; Luo, H.; Furdyna, J.

    1992-01-01

    Photoluminescence spectra of cubic Zn 0.82 Cd 0.18 Se quantum wells of widths 30, 60, and 200 A are studied as a function of hydrostatic pressure (0--60 kbar) at 80 K. The pressure coefficients of heavy-hole excitons are found to decrease with increasing well width. The photoluminescence energies of the ZnSe barrier and cap layers are also observed to shift as a function of hydrostatic pressure, providing a measure of the pressure coefficient of the direct gap in this material

  12. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  13. Entropic Repulsion Between Fluctuating Surfaces

    Science.gov (United States)

    Janke, W.

    The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.

  14. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  15. Temperature and pressure dependence of the order parameter fluctuations, conformational compressibility, and the phase diagram of the PEP-PDMS diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Frielinghaus, H.; Mortensen, K.

    1996-01-01

    The structure factor of a poly(ethylene-propylene)-poly(dimethylsiloxane) diblock copolymer has been measured by small-angle neutron scattering as a function of temperature and pressure. The conformational compressibility exhibits a pronounced maximum at the order-disorder phase transition. The p...

  16. Low temperature magnetoresistance in La1.32Sr1.68Mn2O7 layered manganite under hydrostatic pressure

    International Nuclear Information System (INIS)

    Kumaresavanji, M.; Fontes, M.B.

    2010-01-01

    The La 1.32 Sr 1.68 Mn 2 O 7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (T C ) and a metal-insulator transition (T MI ) at 118 K in the ambient pressure. The applied pressure shifts the T MI to higher temperature values and induces a second metal-insulator transition (T 2 MI ) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at T C . When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.

  17. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    Science.gov (United States)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  18. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp

    2006-05-15

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.

  19. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2006-01-01

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail

  20. MATHEMATICAL MODEL FOR CALCULATION OF MINIMUM PRESSURE PERTAINING TO DESTRUCTION OF SURFACE CORROSION LAYER DUE TO IMPACT OF WORKING LIQUID REVERSIVE STREAM

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2014-01-01

    Full Text Available Due to balance of external and internal force capacities a variation quasistatic problem has been solved in the paper. The problem allows to determine optimum values of α and β angles in the accepted field of sliding lines when destruction pressure takes on a minimum value pmin. It has been ascertained that the minimum pressure pmin which is necessary for destruction of a corrosion layer is registered at stream compression coefficient λ = 0,063 and the pressure is equal to 8-17 MPa for the investigated speed range v = 80-140 m/s.

  1. Relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstacle such as a spacer is set in a boiling two-phase flow within an annular channel, where the inner tube is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. The burnout mechanism near the spacer, however, is not still clear. In the present paper we focus our attention on the occurrence of the burnout near a spacer, and discuss the occurrence location of dryout and burnout and the relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a spacer. (author)

  2. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films.

    Science.gov (United States)

    Wagner, Stefan; Yim, Chanyoung; McEvoy, Niall; Kataria, Satender; Yokaribas, Volkan; Kuc, Agnieszka; Pindl, Stephan; Fritzen, Claus-Peter; Heine, Thomas; Duesberg, Georg S; Lemme, Max C

    2018-05-23

    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe 2 ), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe 2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe 2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe 2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe 2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe 2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.

  3. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    Science.gov (United States)

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  4. High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the β-MgCl2 layered structure.

    Science.gov (United States)

    Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin

    2016-08-12

    Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.

  5. Effect of unstable layer depth on the pore pressure distribution, case study of the Slano Blato landslide (Slovenia)

    Science.gov (United States)

    Askarinejad, Amin; Secchi, Bandar; Macek, Matej; Petkovsek, Ana; Springman, Sarah

    2013-04-01

    The Slano Blato landslide is one of the largest landslides in Slovenia with a volume of more than 1 mio m3 of moving debris. The landslide is located at the border of Triassic limestone and Eocene flysch formations. Flysch is composed of layers of marls and sandstones. The sliding mass consists mainly of clay and clayey gravel of highly weathered and deteriorated flysch, while a minor part represents grains and blocks of limestones. (Petkovšek et al., 2009). The first documentation of an instability event dates back to 1789 and the landslide was reactivated during a heavy rain period in November 2000. Since then, the ground surface level above the unstable material on the upper zones of the landslide is significantly decreasing so that the current slope surface is now more than 10 m below the terrain surveyed in 1998. The new landslide topography results in different pore pressure distributions in the slope, which were anticipated to have a detrimental effect on the stability and movement regime of the slope. The main goal of this work is to investigate the effect of the overlying debris depth on the pore water pressure distribution during a predefined precipitation scenario. The behaviour of the unsaturated soil and the effects of fissures in the bedrock are also considered in the analysis. Hydro-mechanical simulations were performed using 2D finite element software (PLAXIS) and numerical results are compared with results from analytical models, which use a 1D steady state formulation for the hydraulic part and a 2D limit equilibrium approach to calculate the safety factors. The numerical studies show significant change in the pore water pressure distribution in the landslide body with variation of the debris depth. An increase in the debris depth leads to higher suction due to the deeper location of the water table. Higher suction increases landslide stability due to: i) increase of the effective stress and hence the shear strength of the material and ii

  6. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  7. Effectiveness and Value of Prophylactic 5-Layer Foam Sacral Dressings to Prevent Hospital-Acquired Pressure Injuries in Acute Care Hospitals: An Observational Cohort Study.

    Science.gov (United States)

    Padula, William V

    The purpose of this study was to examine the effectiveness and value of prophylactic 5-layer foam sacral dressings to prevent hospital-acquired pressure injury rates in acute care settings. Retrospective observational cohort. We reviewed records of adult patients 18 years or older who were hospitalized at least 5 days across 38 acute care hospitals of the University Health System Consortium (UHC) and had a pressure injury as identified by Patient Safety Indicator #3 (PSI-03). All facilities are located in the United States. We collected longitudinal data pertaining to prophylactic 5-layer foam sacral dressings purchased by hospital-quarter for 38 academic medical centers between 2010 and 2015. Longitudinal data on acute care, hospital-level patient outcomes (eg, admissions and PSI-03 and pressure injury rate) were queried through the UHC clinical database/resource manager from the Johns Hopkins Medicine portal. Data on volumes of dressings purchased per UHC hospital were merged with UHC data. Mixed-effects negative binomial regression was used to test the longitudinal association of prophylactic foam sacral dressings on pressure injury rates, adjusted for hospital case-mix and Medicare payments rules. Significant pressure injury rate reductions in US acute care hospitals between 2010 and 2015 were associated with the adoption of prophylactic 5-layer foam sacral dressings within a prevention protocol (-1.0 cases/quarter; P = .002) and changes to Medicare payment rules in 2014 (-1.13 cases/quarter; P = .035). Prophylactic 5-layer foam sacral dressings are an effective component of a pressure injury prevention protocol. Hospitals adopting these technologies should expect good value for use of these products.

  8. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  9. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    Energy Technology Data Exchange (ETDEWEB)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S. [Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075 (United States)

    2016-06-07

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  10. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  11. Effect of oxygen pressure of SiOx buffer layer on the electrical properties of GZO film deposited on PET substrate

    International Nuclear Information System (INIS)

    Ahn, Byung Du; Ko, Young Gun; Oh, Sang Hoon; Song, Jean-Ho; Kim, Hyun Jae

    2009-01-01

    The present work was made to investigate the effect of oxygen pressure of SiO x layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiO x buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiO x layer as a buffer, the electrical resistivity of GZO/SiO x /PET films gradually decreased from 7.6 x 10 -3 to 6.8 x 10 -4 Ω.cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiO x buffer layers. In addition, the average optical transmittance of GZO/SiO x /PET films in a visible regime was estimated to be ∼ 90% comparable to that of GZO deposited onto a glass substrate.

  12. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  13. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    Energy Technology Data Exchange (ETDEWEB)

    Profili, J. [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Levasseur, O.; Stafford, L. [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Naudé, N.; Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Chaneac, C. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris (France)

    2016-08-07

    This work examines the growth dynamics of TiO{sub 2}-SiO{sub 2} nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO{sub 2} colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO{sub 2} nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO{sub 2} NPs deposited strongly decreases due to their “trapping” in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO{sub 2} NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO{sub 2} NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO{sub 2} NPs and for nanocomposite TiO{sub 2}-SiO{sub 2} coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO{sub 2} NPs injected into the discharge.

  14. Characteristics of wall pressure over wall with permeable coating

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Shin, Seungyeol; Lee, Seungbae [Inha Univ., Incheon (Korea, Republic of)

    2012-11-15

    Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open cell, urethane type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low frequency wall pressure spectral levels compared to a smooth wall.

  15. Comparison of positive-pressure, passive ultrasonic, and laser-activated irrigations on smear-layer removal from the root canal surface.

    Science.gov (United States)

    Sahar-Helft, Sharonit; Sarp, Ayşe Sena Kabaş; Stabholtz, Adam; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron

    2015-03-01

    The purpose of this study was to compare the efficacy of three irrigation techniques for smear-layer removal with 17% EDTA. Cleaning and shaping the root canal system during endodontic treatment produces a smear layer and hard tissue debris. Three irrigation techniques were tested for solution infiltration of this layer: positive-pressure irrigation, passive ultrasonic irrigation, and laser-activated irrigation. Sixty extracted teeth were divided into six equal groups; 17% EDTA was used for 60 sec irrigation of five of the groups. The groups were as follows: Group 1, treated only with ProTaper™ F3 Ni-Ti files; Group 2, positive-pressure irrigation, with a syringe; Group 3, passive ultrasonic irrigation, inserted 1 mm short of the working length; Group 4, passive ultrasonic irrigation, inserted in the upper coronal third of the root; Group 5, Er:YAG laser-activated irrigation, inserted 1 mm short of the working length; and Group 6, Er:YAG laser-activated irrigation, inserted in the upper coronal third of the root. Scanning electron microscopy showed that the smear layer is removed most efficiently using laser-activated irrigation at low energy with 17% EDTA, inserted either at the working length or only in the coronal upper third of the root. Amounts of Ca, P, and O were not significantly different on all treated dentin surfaces. Smear-layer removal was most effective when the root canals were irrigated using Er:YAG laser at low energy with 17% EDTA solution. Interestingly, removal of the smear layer along the entire canal was similar when the laser was inserted in the upper coronal third and at 1 mm short of the working length of the root canal. This effect was not observed with the ultrasonic and positive-pressure techniques.

  16. Evaluation of the flow of a liquid during the processing of the curves of the reduction of pressure of unfinished wells in cracked layers

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V.V.; Makarenko, A.M.; Saakov, S.A.

    1979-01-01

    The difference in the behavior of face pressures after the abandonement of real and hypothetical wells is explained by the process of the entrance of the liquid into the shaft. The value of these differences affects the accuracy of the processing of the curves of the reduction of pressure. For the study of this phenomenon, industrial investigations were carried out in gusher wells in the El'darovo platform, found in the territory of the Chechen Ingush ASSR. It was established, that after closing the wells, the layer liquid continues to enter into the shaft of the well and the greatest effect on the growth of the face pressure of that inflow proves to happen immediately after the closing of the well. A method is suggested for the processing of the curves of the reduction of pressure, taking into consideration the inflow of the liquid into the shaft after the abandonement of the well.

  17. Variation of the Jahn-Teller distortion with pressure in the layered perovskite Rb{sub 2}CuCl{sub 4}: local and crystal compressibilities

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, F [DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, Santander 39005 (Spain); RodrIguez, F [DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, Santander 39005 (Spain); Valiente, R [Departamento de Fisica Aplicada, Universidad de Cantabria, Santander 39005 (Spain); Hanfland, M [ESRF, BP220, 156 rue des Martires, 38043 Grenoble Cedex (France); Itie, J P [Universite Pierre et Marie Curie, B77 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2007-08-29

    This work investigates the effect of pressure on the Jahn-Teller distortion (JTD) associated with the axially elongated CuCl{sub 6} octahedra in the A{sub 2}CuCl{sub 4} perovskite layer (A: Rb, CH{sub 3}NH{sub 3}, C{sub 2}H{sub 5}NH{sub 3}, C{sub 3}H{sub 7}NH{sub 3}). The aim is to elucidate whether pressure favours disappearance of the JTD in the antiferrodistortive (AFD) structure exhibited by Cu{sup 2+} within the layers or whether it induces tilts of the CuCl{sub 6} octahedra preserving the molecular distortion associated with the JT effect. We have carried out x-ray absorption (XAS) and x-ray diffraction (XRD) experiments under pressure along the compound series, whose interlayer distances at ambient pressure vary from 7.77 to 12.33 A. The use of both XAS and XRD techniques allows us a complete local- and crystal-structure characterization in Rb{sub 2}CuCl{sub 4} as a function of pressure in the 0-16 GPa range. We show that pressure reduces the axial (long) and equatorial (short) Cu-Cl distances, R{sub ax} and R{sub eq}, as well as the intralayer and interlayer Cu-Cu distances, d{sub Cu-Cu} and d{sub inter}. Interestingly, the variation of R{sub ax} is an order of magnitude bigger than that of the corresponding R{sub eq}, yielding a reduction of the JTD. However, no evidence of JTD suppression has been observed below 16 GPa. Pressure-induced CuCl{sub 6} tilting preserves the JTD in a wide pressure range. Estimates based on structural data suggest that JT suppression would occur at about 40 GPa.

  18. Variation of the Jahn-Teller distortion with pressure in the layered perovskite Rb2CuCl4: local and crystal compressibilities

    International Nuclear Information System (INIS)

    Aguado, F; RodrIguez, F; Valiente, R; Hanfland, M; Itie, J P

    2007-01-01

    This work investigates the effect of pressure on the Jahn-Teller distortion (JTD) associated with the axially elongated CuCl 6 octahedra in the A 2 CuCl 4 perovskite layer (A: Rb, CH 3 NH 3 , C 2 H 5 NH 3 , C 3 H 7 NH 3 ). The aim is to elucidate whether pressure favours disappearance of the JTD in the antiferrodistortive (AFD) structure exhibited by Cu 2+ within the layers or whether it induces tilts of the CuCl 6 octahedra preserving the molecular distortion associated with the JT effect. We have carried out x-ray absorption (XAS) and x-ray diffraction (XRD) experiments under pressure along the compound series, whose interlayer distances at ambient pressure vary from 7.77 to 12.33 A. The use of both XAS and XRD techniques allows us a complete local- and crystal-structure characterization in Rb 2 CuCl 4 as a function of pressure in the 0-16 GPa range. We show that pressure reduces the axial (long) and equatorial (short) Cu-Cl distances, R ax and R eq , as well as the intralayer and interlayer Cu-Cu distances, d Cu-Cu and d inter . Interestingly, the variation of R ax is an order of magnitude bigger than that of the corresponding R eq , yielding a reduction of the JTD. However, no evidence of JTD suppression has been observed below 16 GPa. Pressure-induced CuCl 6 tilting preserves the JTD in a wide pressure range. Estimates based on structural data suggest that JT suppression would occur at about 40 GPa

  19. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  20. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  1. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  2. Combined effect of smear layer characteristics and hydrostatic pulpal pressure on dentine bond strength of HEMA-free and HEMA-containing adhesives.

    Science.gov (United States)

    Mahdan, Mohd Haidil Akmal; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2013-10-01

    This study evaluated the combined effect of smear layer characteristics with hydrostatic pulpal pressure (PP) on bond strength and nanoleakage expression of HEMA-free and -containing self-etch adhesives. Flat dentine surfaces were obtained from extracted human molars. Smear layers were created by grinding with #180- or #600-SiC paper. Three HEMA-free adhesives (Xeno V, G Bond Plus, Beautibond Multi) and two HEMA-containing adhesives (Bond Force, Tri-S Bond) were applied to the dentine surfaces under hydrostatic PP or none. Dentine bond strengths were determined using the microtensile bond test (μTBS). Data were statistically analyzed using three- and two-way ANOVA with Tukey post hoc comparison test. Nanoleakage evaluation was carried out under a scanning electron microscope (SEM). Coarse smear layer preparation and hydrostatic PP negatively affected the μTBS of HEMA-free and -containing adhesives, but there were no significant differences. The combined experimental condition significantly reduced μTBS of the HEMA-free adhesives, while the HEMA-containing adhesives exhibited no significant differences. Two-way ANOVA indicated that for HEMA-free adhesives, there were significant interactions in μTBS between smear layer characteristics and pulpal pressure, while for HEMA-containing adhesives, there were no significant interactions between them. Nanoleakage formation within the adhesive layers of both adhesive systems distinctly increased in the combined experimental group. The combined effect of coarse smear layer preparation with hydrostatic PP significantly reduced the μTBS of HEMA-free adhesives, while in HEMA-containing adhesives, these effects were not obvious. Smear layer characteristics and hydrostatic PP would additively compromise dentine bonding of self-etch adhesives, especially HEMA-free adhesives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  4. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  5. Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.

    Science.gov (United States)

    Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung

    2018-01-10

    Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.

  6. Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Kumar, Pradip; Tiwari, Radhey Shyam; Oh, Il-Kwon

    2013-01-01

    In this article, a simple and cost-effective method to produce high-quality few-layer graphene (FLG) sheets (∼4 layers) have been achieved by the direct current arc discharge under argon atmosphere, using pure graphite rods as the electrodes. Ar was used as a buffer gas with pure graphite rods as anode and cathode electrodes. We explored the suitable conditions for producing FLG by changing the Ar gas pressure inside the arcing chamber. This method has several advantages over the previous methods to produce graphene for research applications. No toxic and hazardous intercalant was used for producing FLG in this process. The optimum Ar pressure was 500 Torr, for producing minimum number of FLG and this also shows the good thermal stability. The FLG product so obtained has been characterized by X-ray diffraction, scanning and electron microscopy, Raman and Fourier transform infrared spectroscopy. Thermal stabilities of FLG were determined by thermal gravimetric analysis

  7. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  8. Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly.

    Science.gov (United States)

    Sun, Yugang; Wang, Lin; Liu, Yuzi; Ren, Yang

    2015-01-21

    Squeezing out crystalline stacking faults: Birnessite-type δ-phase MnO2 microflowers containing interconnected ultrathin nanosheets are synthesized through a microwave-assisted hydrothermal process and exhibit a layered crystalline structure with significant stacking faults. Compressing these MnO2 nanosheets in a diamond anvil cell with high pressure up to tens of GPa effectively eliminates the crystalline stacking faults. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of multiple intravitreal anti-VEGF injections on retinal nerve fiber layer and intraocular pressure: a comparative clinical study.

    Science.gov (United States)

    Sobacı, Güngör; Güngör, Rıza; Ozge, Gökhan

    2013-01-01

    To determine the effect of multiple injections of ranibizumab or bevacizumab on retinal nerve fiber layer (RNFL) and intraocular pressure (IOP) in patients with age-related macular degeneration (AMD). This retrospective study includes 35 eyes of 35 patients treated with intravitreal bevacizumab (IVB, 1.25mg/0.05mL) and 30 eyes of 30 patients with intravitreal ranibizumab (IVR, 0.5mg/0.05mL) who had Fast RNFL analysis (Stratus™); IOP measurements were taken 30 minutes and 24 hours after each injection. The mean ages were 68.0±7.5 and 69.1±7.7 years in the IVR and IVB groups, respectively (P=0.55). They underwent (6.3±1.9) and (5.1±1.3) injections (P=0.07) over (13.6±2.1) and (14.05±2.6) months (P=0.45) in the IVR and IVB groups, respectively. Changes in overall and temporal RNFL thickness in IVR-treated eyes (105.3±6.9µm and 74.4±11.2µm) were not different from those in untreated eyes in the IVR group (104.6± 8.4µm and 75.1±12.6µm) (P=0.57 and P=0.41, respectively). Similarly, overall and temporal RNFL thickness in IVB-treated eyes (105.8±8.1µm and 74.5±11.8µm) were not different from those in untreated eyes in the IVB group (104.6±8µm and 74.8±12.9µm) (P=0.42 and P=0.80, respectively). The frequencies of IOP rise (P=0.60) and changes in RNFL thickness from baseline (P=0.16) were comparable between groups. Repeated intravitreal injection of ranibizumab or bevacizumab does not seem have adverse effects on RNFL thickness or IOP in wet AMD patients.

  10. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  11. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  12. The effect of ammonium partial pressure on residual stresses in surface layer of SW7M HSS steel after vacuum nitriding 'NITROVAC'79'

    International Nuclear Information System (INIS)

    Gawronski, Z.

    1997-01-01

    The effect of the nitriding atmosphere on the residual stresses in the surface layer of the SW7M HSS steel has been investigated in the work. It has been proved that the pressure influences the distribution of those stresses to a great extent. At lower pressures (20 hPa and 40 hPa) at which only one zone is being created - the one of internal nitriding, without that of ε type nitrides on the surface - the highest residual stresses are operating on the HSS steel surface itself or eventually in the subsurface region very close to the surface. In the difference, in case of higher pressure (120 hPa and 240 hPa), the highest stresses are operating at great depth 8-12 μm from the steel surface - depending on the thickness of the ε type nitride layer created on the steel surface at those pressure. All the relevant stresses are compressive one. (author). 6 refs, 4 figs, 1 tab

  13. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2

    Science.gov (United States)

    Abdel-Hafiez, M.; Zhao, Y.; Huang, Z.; Cho, C.-w.; Wong, C. H.; Hassen, A.; Ohkuma, M.; Fang, Y.-W.; Pan, B.-J.; Ren, Z.-A.; Sadakov, A.; Usoltsev, A.; Pudalov, V.; Mito, M.; Lortz, R.; Krellner, C.; Yang, W.

    2018-04-01

    While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2 . Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40 (6 ) GPa below 12 GPa and B0=142 (3 ) GPa below 27.2 GPa.

  14. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    Science.gov (United States)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  15. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  16. Application of high-pressure techniques: stabilization and oxidation-state control of novel superconductive and related multi-layered copper oxides

    International Nuclear Information System (INIS)

    Yamauchi, H.; Karppinen, M.

    2000-01-01

    Copper oxide superconductors possess multi-layered structures with a layer sequence of -CuO 2 -(Q-CuO 2 ) n-1 -AO-(MO 1±δ ) m -AO- or -CuO 2 -B-(O 2 -B) s-1 -CuO 2 -AO-(MO 1±δ ) m -AO- along the elongated c axis. Based on this layer sequence, the known copper oxide structures are categorized as members of the homologous series, M m A r Q n-1 Cu n O m+r+2 +n ±δ (M-mr(n-1)n ; category A) or M m A 2k B s Cu 1+k O m +4k +2s±δ (M-m(2k)s (1+k ); category B). Stabilization of such structures especially in the case of high values of the n /s parameter, i.e. the higher members of the homologous series, has been demonstrated to be apparently promoted under high pressures and/or strongly oxidizing conditions. Consequently, techniques for applying both high oxygen gas pressures (10-2000 atm) and ultra-high solid-medium pressures (2-8 GPa) have been advantageously utilized in synthesizing various superconductive copper oxide phases. Especially the ultra-high solid-medium pressure synthesis carried out in the so-called cubic-anvil/belt-type apparatus has proven to be extremely successful in synthesizing novel superconductive phases. In order to achieve high partial pressures of oxygen in the solid-medium environment, 'external' oxygen-generating oxides such as KClO 4 , KClO 3 and Ag 2 O 2 are commonly added to the precursor mixtures. It is emphasized that in some cases it is possible to utilize 'internal' oxidizing agents alone, i.e. highly oxidized precursors such as BaCuO 2+δ and Ba 2 Cu 3 O 5+δ containing metal constituents common with the desired copper oxide phase only. In the present paper, the potential and applications of high-pressure techniques in synthesizing multi-layered copper oxides and related structures are reviewed and discussed with emphasis on the important 'historical' discoveries of novel phases and the present status of controlled production of high-quality samples of such phases. (author)

  17. THE EFFECT OF PRESSURE, BIAS VOLTAGE AND ANNEALING TEMPERATURE ON N₂ AND N₂+SiH₄ DOPED WC/C DC MAGNETRON SPUTTERED LAYERS

    Directory of Open Access Journals (Sweden)

    Peter Hornak

    2017-12-01

    Full Text Available Tungsten carbide (WC/C layers are often researched due to their outstanding mechanical and tribological properties. Here, optimized indented hardness (HIT, indentation modulus (EIT and coefficient of friction (COF values were measured to study the effect of pressure and bias voltage on WC/C layers, deposited on Si by DC magnetron spluttering. Maximal values of HIT=37.2±4.8 GPa, EIT=447±28 GPa and COF=0.64±0.09 were obtained. Additionally, the effect of temperature on optimized layers deposited with and without N₂ and N₂+SiH₄ annealed at 200 °C, 500 °C and 800 °C, were also investigated. The values of HIT, EIT and COF and, observed morphology and structural composition of these contaminated and non-contaminated WC/C layers were evaluated. It was found that layer degradation occurred at different rates depending on the temperature and gas mixture used during the annealing and deposition process, respectively.

  18. Influence of the polarity of the applied voltage on the reignition of a discharge below a dielectric layer in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Pechereau, François; Bourdon, Anne

    2014-01-01

    The dynamics of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer obstacle on the discharge path is investigated numerically for different applied voltages. Whatever the polarity of the voltage applied, first, a streamer discharge of the same polarity ignites at the point and propagates towards the dielectric layer. After the impact on the dielectric surface, the streamer discharge spreads along the upper dielectric surface and charges it positively or negatively depending on its polarity. On the bottom surface of the dielectric layer, charges with an opposite polarity are deposited. Surface charges on both faces of the dielectric layer are shown to have a significant influence on the discharge reignition for a negative applied voltage, but not for a positive one. Furthermore, it is shown that the dynamics of the discharge reignition below the dielectric layer depends on the polarity of the applied voltage at the point electrode. For a positive applied voltage, the reignited discharge is a positive ionization wave propagating towards the grounded plane. For a negative applied voltage, a double headed discharge is observed with positive and negative fronts propagating in opposite directions. Finally, the minimal value of the ionization integral to have a discharge reignition below the dielectric obstacle is found to be less for a negative applied voltage than for a positive one. (paper)

  19. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  20. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  1. Continuous containment monitoring with containment pressure fluctuation

    International Nuclear Information System (INIS)

    Dick, J.E.

    1996-01-01

    The monitoring of the integrity of containments particularly but not exclusively for nuclear plants is dealt with in this invention. While this application is primarily concerned with containment monitoring in the context of the single unit design, it is expected that the concepts presented will be universally applicable to any containment design, including containments for non-nuclear applications such as biological laboratories. The nuclear industry has long been interested in a means of monitoring containment integrity on a continuous basis, that is, while the reactor is operating normally. 12 refs., 2 figs

  2. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  3. The effect of moving waves on neutral marine atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2014-01-01

    Full Text Available Large eddy simulations are performed to study the effects of wind-wave direction misalignment of the neutral marine atmospheric boundary layer over a wavy wall. The results show that the wind-wave misalignment has a significant effect on the velocity profiles and the pressure fluctuation over the wave surface. These effects are not confined to the near wave surface region but extend over the whole atmospheric surface layer.

  4. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  5. A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers

    OpenAIRE

    O'Halloran, S.M.; Shipway, P.H.; Connaire, A.D.; Leen, Sean B.; Harte, A.M.

    2017-01-01

    This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface dama...

  6. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  7. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  8. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  9. Effects of unconsciousness during spinal immobilization on tissue-interface pressures: A randomized controlled trial comparing a standard rigid spineboard with a newly developed soft-layered long spineboard.

    Science.gov (United States)

    Hemmes, Baukje; Brink, Peter R G; Poeze, Martijn

    2014-11-01

    Immobilization of the spine of patients with trauma at risk of spinal damage is usually performed using a rigid long spineboard or vacuum mattress, both during prehospital and in-hospital care. However, disadvantages of these immobilization devices in terms of discomfort and tissue-interface pressures have guided the development of soft-layered long spineboards. We compared tissue-interface pressures between awake and anaesthetized (unconscious) patients during immobilization on a rigid spineboard and a soft-layered long spineboard. In this comparative study, 30 anaesthetized patients were randomized to immobilization on either the rigid spineboard or the soft-layered spineboard for the duration of their elective surgery. Tissue-interface pressures measured using an Xsensor pressure-mapping device were compared with those of 30 healthy volunteers who were immobilized sequentially on the rigid spineboard and the soft-layered spineboard. Redness of the sacrum was also recorded for the anaesthetized patients immediately after the surgery. For both anaesthetized patients and awake volunteers, tissue-interface pressures were significantly lower on the soft-layered spineboard than on the rigid spineboard, both at start and after 15min. On the soft-layered spineboard, tissue interface pressure and peak pressure index (PPI) for the sacrum were significantly lower for anaesthetized patients than for awake volunteers. Peak pressures and PPI on the rigid spineboard were equal for both groups. Tissue-interface pressures did not change significantly over time. Redness of the sacrum was significantly more pronounced on the rigid spineboard than on the soft-layered spineboard. This prospective randomized controlled trial shows that using a soft-layered spineboard compared to a rigid spineboard for spinal immobilization resulted in lower tissue-interface pressures in both awake volunteers and anaesthetized patients. Moreover, tissue-interface pressures on the soft-layered

  10. Natural convection of high-temperature, high-pressure gas in a horizontal annular layer of thermal insulator, (1)

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Takizuka, Takakazu; Sanokawa, Konomo

    1979-02-01

    Numerical calculations are described of the natural convection in a horizontal annular layer of thermal insulator. The purpose is to compare the numerical results for variable physical properties with those for constant properties. The numerical procedure and typical results are presented. (author)

  11. Structure and microstructure of the high pressure synthesised misfit layer compound [Sr2O2][CrO2]1.85

    International Nuclear Information System (INIS)

    Castillo-Martinez, E.; Schoenleber, A.; Smaalen, S. van; Arevalo-Lopez, A.M.; Alario-Franco, M.A.

    2008-01-01

    The strontium chromium oxide [Sr 2 O 2 ][CrO 2 ] 1.85 misfit layer compound has been synthesised at high-pressure and high-temperature conditions. Electron diffraction patterns and high-resolution transmission electron microscopy images along [001] show the misfit character of the different layers composing the structure with a supercell along the incommensurate parameter b∼7b 1 ∼13b 2 . The modulated crystal structure has been refined within the superspace formalism against single-crystal X-ray diffraction data, employing the (3+1)-dimensional superspace group C'nmb(0σ 2 0)0 0 s. The compound has a composite structure with lattice parameters a 1 =5.182(1) A, b 1 =5.411(1) A, c 1 =18.194(3) A for the first, SrO, subsystem and the same a and c, but with b 2 =2.925(1) A for the second, CrO 2 , subsystem. The layer stacking is similar to that of orthorhombic PbS(TiS 2 ) 1.18 , but with a much stronger intersubsytem bonding in the case of the oxide. The intersubsystem lattice mismatch is mainly handled by displacement modulations of the Sr atoms, correlated with modulations of the valence, the coordination and the anisotropic displacement parameters. - Graphical abstract: A strontium chromium oxide, [Sr 2 O 2 ][CrO 2 ] 1.85 , with an orthorhombic misfit layer structure has been synthesised under high pressure. Mainly modulations on the Sr position, ADPs and coordination save the subsystems lattice mismatch

  12. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  13. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  14. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  15. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, D. L.; Feng, J. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Kurt, H. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Department of Engineering Physics, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Chen, J. Y.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  16. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  17. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Science.gov (United States)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  18. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  19. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  20. A reformulated synthetic turbulence generation method for a zonal RANS–LES method and its application to zero-pressure gradient boundary layers

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2013-01-01

    Highlights: • A synthetic turbulence generation method (STGM) is presented. • STGM is applied to sub and supersonic flows at low and moderate Reynolds numbers. • STGM shows a convincing quality in zonal RANS–LES for flat-plate boundary layers (BLs). • A good agreement with the pure LES and reference DNS findings is obtained. • RANS-to-LES transition length is reduced to less than four boundary-layer thicknesses. -- Abstract: A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses

  1. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  2. Study of the influence of temperature and time on the electroplating nickel layer in Inconel 718 strips used in spacer grid of Pressurized Water Cooled nuclear reactors (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Renato; Abati, Amanda; Verne, Júlio; Panossian, Zehbour, E-mail: amanda.abati@marinha.mil.br, E-mail: jvernegropp@gmail.com, E-mail: renato.rezende@marinha.mil.br, E-mail: zep@ipt.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil). Laboratório de Desenvolvimento e Instrumentação de Combustível Nuclear; Instituto de Pesquisas Tecnológicas (IPT), São Paulo, SP (Brazil)

    2017-07-01

    The Inconel 718 (UNS N07718: Ni-{sup 19}Cr-{sup 18}Fe-{sup 5}Nb-3 Mo) is a precipitation hardenable nickel alloy that has good corrosion resistance and high mechanical strength. These strips are used for assembling the spacer grid of fuel element of pressurized water cooled nuclear reactors (PWR). The spacer grid is a structural component of fundamental importance in fuel elements of PWR reactors, maintaining the position and necessary spacing of the fuel rods within the arrangement of the fuel element. The spacer grid is formed by joining the points of intersection of the strips, by a joint process called brazing. For this process, these strips are stamped and plated with a thin layer of nickel by means of electroplating in order to protect against oxidation and allow a better flowability and wettability of the addition metal in the strips during brazing. Oxidation at the surface of the base material harms wettability and inhibits spreading of the liquid addition metal on the substrate surface during the brazing process. The use of coatings such as nickel plating is used to ensure such conditions. The results showed that there is a process of diffusion de some chemical elements such as chromium, iron, titanium and aluminum from the substrate to the nickel layer and nickel from the layer to the substrate. These chemical elements are responsible for the oxidation at the surface of the strip. (author)

  3. The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs

    International Nuclear Information System (INIS)

    Huang Xiao-Ming; Zhu Hong-Bo; Wang Yong-Jin; Wu Chen-Fei; Lu Hai; Ren Fang-Fang

    2015-01-01

    The effect of oxygen partial pressure (P_O_2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As P_O_2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (O_V) within the a-IGZO layer is suppressed by increasing P_O_2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing P_O_2. Therefore, the improved interface quality with increasing P_O_2 during the channel layer deposition can be attributed to the reduction of interface O_V-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs. (paper)

  4. Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-12-01

    In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.

  5. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    Science.gov (United States)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  6. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    Directory of Open Access Journals (Sweden)

    U. Marschner

    2014-09-01

    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  7. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution

    Science.gov (United States)

    Messiter, A. F.

    1979-01-01

    Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.

  8. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  9. Instability of the layered orthorhombic post-perovskite phase of SrTiO3 and other candidate orthorhombic phases under pressure

    Science.gov (United States)

    Bhandari, Churna; Lambrecht, Walter R. L.

    2018-06-01

    While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.

  10. Resistivity studies on the layered semi-metallic CaAl2Si2: evaluating its temperature-, field- and pressure-dependence

    International Nuclear Information System (INIS)

    ElMassalami, M; Soares de Oliveira Paixao, L; Chaves, F A B

    2011-01-01

    We studied the layered, hexagonal, semi-metal CaAl 2 Si 2 by magnetization, specific heat and resistivity measurements over a wide range of temperature, pressure and magnetic field. Both the Sommerfeld coefficient (γ = 1 mJ mol -1 K -2 ) and the Debye temperature (θ D = 288 K) are in agreement with the values obtained from the band structure calculation. The resistivity shows a metallic character up to 200 K, followed by saturation and, afterwards, a weak decrease up to 840 K, at which it sharply rises reaching a local maximum at 847 ± 5 K. While the low-temperature thermal evolution was accounted for in terms of intrinsic and extrinsic effects, the additional high-temperature scattering was attributed, based on differential thermal analysis, to a first-order thermal event. No appreciable magnetoresistivity was observed at liquid helium temperatures even for fields up to 90 kOe, indicating an absence of coupling between the electronic and magnetic degrees of freedom. Finally, an externally applied pressure was found to induce a strong reduction in the resistivity following a second-order polynomial: this effect will be discussed in terms of the influence of pressure on the effective mobility and concentration of charge carriers.

  11. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    Science.gov (United States)

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-08

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  12. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  13. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  14. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  15. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  16. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  17. Extracellular matrix fluctuations during early embryogenesis

    International Nuclear Information System (INIS)

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node)

  18. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  19. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  20. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  1. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  2. Fluctuating Asymmetry and Intelligence

    Science.gov (United States)

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  3. Fluctuation characteristics in detached recombining plasmas

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Tanaka, Naoyuki; Takamura, Shuichi; Budaev, Viatcheslav

    2002-01-01

    Fluctuation in detached recombining plasmas has been investigated experimentally in the linear divertor plasma simulator, NAGDIS-II. As increasing neutral gas pressure, floating potential fluctuation of the target plate installed at the end of the NADIS-II device becomes larger and bursty negative spikes are observed in the signal associated with a transition from attached to detached a plasmas. The fluctuation property has been analyzed by using Fast Fourier Transform (FFT), probability distribution function (PDF) and wavelet transform. The PDF of the floating potential fluctuation in the attached plasma condition obeys the Gaussian distribution function, on the other hand, the PDF in detached plasma shows a strong deviation from the Gaussian distribution function, which can be characterized by flatness and skewness. Comparison of the fluctuation properties between the floating potential and the optical emission from the detached plasma has been done based on the wavelet transform to show that a strong correlation between them, which could indicate bursty transport of energetic electrons from upstream to downstream region along the magnetic field. (author)

  4. Investigation of electron parallel pressure balance in the scrape-off layer of deuterium-based radiative divertor discharges IN DIII-D

    International Nuclear Information System (INIS)

    Petrie, T.W.; Carlstrom, T.N.; Allen, S.L.

    1996-10-01

    Electron density, temperature, and parallel pressure measurements at several locations along field lines connecting the midplane scrapeoff layer (SOL) with the outer divertor are presented for both attached and partially-detached divertor cases: I p = 1.4 MA, q 95 = 4.2, and P input ∼ 6.7 MW under ELMing H-mode conditions. At the onset of the Partially Detached Divertor (PDD), a high density, low temperature plasma forms in the divertor SOL (divertor MARFE). The electron pressure drops by a factor of ∼ 2 between the midplane separatrix and the X-point, and then an additional ∼3--5 times between the X-point and the outboard separatrix strike point. These results are in contrast to the attached (non-PDD) case, where electron pressure in the SOL is reduced by, at most, a factor of two between the midplane and the divertor target. Divertor MARFEs generally have only marginal adverse impact on important H-mode characteristics, such as confinement time. In fact, PDD discharges at low input power maintains good H-mode characteristics until a high density, low temperature plasma abruptly forms inside the separatrix near the X-point (X-point MARFE). Concurrent with the appearance of this X-point MARFE is a degradation in both energy confinement and the plasma fueling rate, and an increase in the carbon impurity concentration inside the core plasma. The formation of the X-point MARFE is consistent with a thermal instability resulting from the temperature dependence of the carbon radiative cooling rate in the range ∼ 7--30 eV

  5. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  6. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  7. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, É lisabeth; Hinch, John

    2011-01-01

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations

  8. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  9. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  10. Torque fluctuations caused by upstream mean flow and turbulence

    Science.gov (United States)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  11. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  12. CFD Simulations for the Effect of Unsteady Wakes on the Boundary Layer of a Highly Loaded Low-Pressure Turbine Airfoil (L1A)

    Science.gov (United States)

    Vinci, Samuel, J.

    2012-01-01

    This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.

  13. Experimental study of boundary-layer transition on an airfoil induced by periodically passing wake

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, W.P. [Center for Turbulence and Flow Control Research Institute of Advanced Machinery and Design, Seoul National University (Korea); Park, T.C.; Kang, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University (Korea)

    2002-02-01

    Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. (orig.)

  14. FLUCTUATING SELECTION AND THE MAINTENANCE OF INDIVIDUAL AND SEX-SPECIFIC DIET SPECIALIZATION IN FREE-LIVING OYSTERCATCHERS

    NARCIS (Netherlands)

    van de Pol, Martijn; Brouwer, Lyanne; Ens, B; Oosterbeek, Kees; Tinbergen, Joost M.; Candolin, U.

    Fluctuating and disruptive selection are important mechanisms for maintaining intrapopulation trait variation. Nonetheless, few field studies quantify selection pressures over long periods and identify what causes them to fluctuate. Diet specialists in oystercatchers differ in short-term payoffs

  15. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  16. Fluctuations in the hadronization

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajaczak, M.

    1992-01-01

    The multiscaling in the fluctuations of the multiparticle distributions at small scales is studied. Similarly to the multiscaling effect, recently found in multifractal models, the dependence of the intermittency patterns on the low density cut-off in the cascade is analyzed. The effect changes the scaling behaviour and leads to stronger dependence of the scaled factorial moments on the resolution than the power law. This could be an explanation of the behaviour observed recently in the experimental 3-dimensional data. The multiscaling analysis allows to restore the universality in the processes with different cut-offs and could be used in the analysis of the experimental data. (author) 17 refs., 5 figs

  17. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Science.gov (United States)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  18. Experimental characterization of airfoil boundary layers for improvement of aeroacoustic and aerodynamic modeling

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2011-01-01

    for aerodynamic wind tunnels with a hard wall test section. Acoustic far field sound measurements are not possible in this tunnel due to the high background noise. The second wind tunnel is owned by Virginia Tech University. The test section has Kevlar walls which are acoustically transparent and it is surrounded...... sound measurements with a microphone array and measured surface pressure statistics as input up to a frequency of about 2000-3000Hz. The fluctuating surface pressure field can be measured in a wind tunnel with high background noise due to the high level of the fluctuating surface pressure field. Hence......The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...

  19. Fluctuations of wormlike micelle fluids in capillary flow

    Science.gov (United States)

    Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team

    2017-11-01

    We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.

  20. Fluctuation Relations for Currents

    Science.gov (United States)

    Sinitsyn, Nikolai; Akimov, Alexei; Chernyak, Vladimir; Chertkov, Michael

    2011-03-01

    We consider a non-equilibrium statistical system on a graph or a network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly strongly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that the system demonstrates a profound statistical symmetry, leading to new Fluctuation Relations that originate from the supersymmetry and the principle of the geometric universality of currents rather than from the relations between probabilities of forward and reverse trajectories. NSF/ECCS-0925618, NSF/CHE-0808910 and DOE at LANL under Contract No. DE-AC52-06NA25396.

  1. Fluctuations in email size

    Science.gov (United States)

    Matsubara, Yoshitsugu; Musashi, Yasuo

    2017-12-01

    The purpose of this study is to explain fluctuations in email size. We have previously investigated the long-term correlations between email send requests and data flow in the system log of the primary staff email server at a university campus, finding that email size frequency follows a power-law distribution with two inflection points, and that the power-law property weakens the correlation of the data flow. However, the mechanism underlying this fluctuation is not completely understood. We collected new log data from both staff and students over six academic years and analyzed the frequency distribution thereof, focusing on the type of content contained in the emails. Furthermore, we obtained permission to collect "Content-Type" log data from the email headers. We therefore collected the staff log data from May 1, 2015 to July 31, 2015, creating two subdistributions. In this paper, we propose a model to explain these subdistributions, which follow log-normal-like distributions. In the log-normal-like model, email senders -consciously or unconsciously- regulate the size of new email sentences according to a normal distribution. The fitting of the model is acceptable for these subdistributions, and the model demonstrates power-law properties for large email sizes. An analysis of the length of new email sentences would be required for further discussion of our model; however, to protect user privacy at the participating organization, we left this analysis for future work. This study provides new knowledge on the properties of email sizes, and our model is expected to contribute to the decision on whether to establish upper size limits in the design of email services.

  2. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  3. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  4. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  5. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University (IAU), PO Box 14665-678, Tehran (Iran, Islamic Republic of); Emami, M, E-mail: rezashariatzadeh@gmail.com [Laser and Optics Research School, NSTRI, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-01-15

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  6. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    International Nuclear Information System (INIS)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K; Emami, M

    2011-01-01

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  7. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  8. Transitional and turbulent boundary layer with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800spots are tightly packed with numerous hairpin vortices. With the advection and merging of turbulent spots, these young isolated hairpin forests develop into the downstream turbulent region. Isosurfaces of temperature up to Reθ=1900 are found to display well-resolved signatures of hairpin vortices, which indicates the persistence of the hairpin forests.

  9. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  10. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  11. Concentration fluctuations in gas releases by industrial accidents

    DEFF Research Database (Denmark)

    Nielsen, M.; Chatwin, P.C.; Ejsing Jørgensen, Hans

    2002-01-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statisticalanalyses and surface-layer scaling. The statistical...... and the probability distribution for the plume centreline. The distance-neighbour function generalizedfor higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools...... moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of thesemoments is universal with a gaussian core and exponential tails. The instantaneous plume width...

  12. Charge Fluctuations in Nanoscale Capacitors

    NARCIS (Netherlands)

    Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with

  13. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...

  14. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  15. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  16. On the estimation of wall pressure coherence using time-resolved tomographic PIV

    Science.gov (United States)

    Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio

    2013-07-01

    Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.

  17. Lyapunov spectra of density fluctuations in TBR-1

    International Nuclear Information System (INIS)

    Oiwa, N.N.; Fidler-Ferrara, N.

    1993-01-01

    The results for the Lyapunov exponents associated with density fluctuations measured by Langmuir probes placed in the scrape-off layer of the Tokamak TBR-1 are reported. By a judicious use of the Sano-Sawada and Eckmann-Ruelle algorithms conclusive values for the positive Lyapunov exponents for most of the analysed signals are used showing evidences of chaotic behavior. (author)

  18. Modification of boundary fluctuations by LHCD in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Song Mei; Wan Baonian; Xu Guosheng; Ling Bili

    2003-01-01

    Measurements of boundary fluctuations and fluctuation driven electron fluxes have been performed in ohmic and lower hybrid current drive enhanced confinement plasma using a graphite Langmuir probe array on HT-7 tokamak. The fluctuations are significantly suppressed and the turbulent fluxes are remarkably depressed in the enhanced plasma. We characterized the statistical properties of fluctuations and the particle flux and found a non-Gaussian character in the whole scrape-off layer with minimum deviations from Gaussian in the proximity of the velocity shear layer in ohmic plasma. In the enhanced plasma the deviations in the boundary region are all reduces obviously. The fluctuations and induced electron fluxes show sporadic bursts asymmetric in time and the asymmetry is remarkably weakened in the lower hybrid current driving (LHCD) phase. The results suggest a coupling between the statistical behaviour of fluctuations and the turbulent flow

  19. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  20. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    Science.gov (United States)

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  1. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  2. Electrostatic fluctuation in Low-{beta} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-{beta} plasma. The author also assume low frequency electrostatic fluctuations with {omega}<<{omega}{sub c}i where {omega}{sub c}i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding.

  3. Electrostatic fluctuation in Low-β plasmas

    International Nuclear Information System (INIS)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-β plasma. The author also assume low frequency electrostatic fluctuations with ω c i where ω c i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding

  4. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  5. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  6. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  7. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  8. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  9. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  10. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  11. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  12. Temperature, density and potential fluctuations by a swept Langmuir probe in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Niedermeyer, H; Endler, M; Theimer, G; Rudyj, A; Verplancke, Ph [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    1994-12-31

    Numerous experiments using a Langmuir probe to investigate the magnitude of temperature fluctuations and their contribution to heat transport in the edge region of tokamak plasmas have been carried out. Sweeping the voltage applied to a tip fast enough to ensure that the ion saturation current, floating potential and electron temperature may be assumed to be constant during the sweep is experimentally more difficult than alternative schemes but this disadvantage is compensated by the ability to measure all three of these quantities at one spatial location. Sweep frequencies up to 600 kHz have been employed to obtain the current-voltage characteristic. A radial scan in the vicinity of the velocity shear layer on W7-AS stellarator was performed. Inside and outside the shear layer the normalised magnitude of the temperature fluctuations was found to be approximately 30% larger than the magnitude of the electron density fluctuations, approaching a value of 0.12 and 0.09 respectively at a radial position 1 cm inside the shear layer. An increase in the coherency of the temperature, floating potential and density fluctuations between tips with a poloidal separation of 2 mm was also measured as the shear layer was crossed. Heat conduction produced by correlated temperature and poloidal electric field fluctuations is therefore possible. An increasing coherence of temperature and floating potential fluctuations leads to an increase in the coherence of temperature and plasma potential fluctuations as the shear layer was crossed. (author) 7 refs., 3 figs.

  13. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  14. Concentration fluctuations in gas releases by industrial accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Chatwin, P.C.; Joergensen, H.E.; Mole, N.; Munro, R.J.; Ott, S.

    2002-05-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statistical analyses and surface-layer scaling. The statistical moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of these moments is universal with a gaussian core and exponential tails. The instantaneous plume width is fluctuating with a log-normal distribution. The position of the instantaneous plume centre-line is modelled by a normal distribution and a Langevin equation, by which the meander effect on the time-averaged plume width is predicted. Fixed-frame statistics are modelled by convolution of moving-frame statistics and the probability distribution for the plume centreline. The distance-neighbour function generalized for higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools are based on Karhunen-Loeve expansion and Fourier transformations using iterative or correlation-distortion techniques. The input to the simulation is the probability distribution of the individual processes, assumed stationary, and the cross-correlations of all signal combinations. The use in practical risk assessment is illustrated by implementation of a typical heavy-gas dispersion model, enhanced for prediction and simulation of concentration fluctuations. (au)

  15. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  16. The effect of pressurizer-water-level on the low frequency component of the pressure spectrum in a PWR

    International Nuclear Information System (INIS)

    Por, G.; Izsak, E.; Valko, J.

    1984-09-01

    The pressure fluctuations were measured in the cooling system of the Paks-1 reactor. A shift of the peak was detected in low frequency component of the pressure fluctuation spectrum which is due to the fluctuations of water level in the pressurizer. Using the model of Katona and Nagy (1983), the eigenfrequencies, the magnitude of the shift and the sensitivity to the pressurizer water level were reproduced in good accordance with the experimental data. (D.Gy.)

  17. Quantum fluctuations of vortices in Josephson-coupled superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L.N.; Maley, M.P.

    1994-01-01

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2), is explained. In the mean, field approach this slope should be almost B independent. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T

  18. Pressure-induced structural changes and insulator-metal transition in layered bismuth triiodide, BiI3: a combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Devidas, T R; Chandra Shekar, N V; Sundar, C S; Chithaiah, P; Rao, C N R; Sorb, Y A; Bhadram, V S; Chandrabhas, N; Pal, K; Waghmare, U V

    2014-01-01

    Noting that BiI 3 and the well-known topological insulator (TI) Bi 2 Se 3 have the same high symmetry parent structures, and that it is desirable to find a wide-band gap TI, we determine here the effects of pressure on the structure, phonons and electronic properties of rhombohedral BiI 3 . We report a pressure-induced insulator-metal transition near 1.5 GPa, using high pressure electrical resistivity and Raman measurements. X-ray diffraction studies, as a function of pressure, reveal a structural peculiarity of the BiI 3 crystal, with a drastic drop in c/a ratio at 1.5 GPa, and a structural phase transition from rhombohedral to monoclinic structure at 8.8 GPa. Interestingly, the metallic phase, at relatively low pressures, exhibits minimal resistivity at low temperatures, similar to that in Bi 2 Se 3 . We corroborate these findings with first-principles calculations and suggest that the drop in the resistivity of BiI 3 in the 1–3 GPa range of pressure arises possibly from the appearance of an intermediate crystal phase with a lower band-gap and hexagonal crystal structure. Calculated Born effective charges reveal the presence of metallic states in the structural vicinity of rhombohedral BiI 3 . Changes in the topology of the electronic bands of BiI 3 with pressure, and a sharp decrease in the c/a ratio below 2 GPa, are shown to give rise to changes in the slope of phonon frequencies near that pressure. (paper)

  19. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  20. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  1. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  2. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  3. Thermodynamic fluctuations within the Gibbs and Einstein approaches

    International Nuclear Information System (INIS)

    Rudoi, Yurii G; Sukhanov, Alexander D

    2000-01-01

    A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov - Zubarev and Hellmann - Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the 'genetic' relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed. (reviews of topical problems)

  4. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    Science.gov (United States)

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vacuum fluctuations of the supersymmetric field in curved background

    International Nuclear Information System (INIS)

    Bilić, Neven; Domazet, Silvije; Guberina, Branko

    2012-01-01

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  6. Vacuum fluctuations of the supersymmetric field in curved background

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)

    2012-01-16

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  7. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    Hennion, F.

    1987-10-01

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr

  8. In situ TEM observation of the Boudouard reaction: Multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure

    NARCIS (Netherlands)

    Bremmer, G.M.; Zacharaki, E.; Sjåstad, A.O.; Navarro, V.; Frenken, J.W.M.; Kooyman, P.J.

    2017-01-01

    Using a MEMS nanoreactor in combination with a specially designed in situ Transmission Electron Microscope (TEM) holder and gas supply system, we imaged the formation of multiple layers of graphene encapsulating a cobalt nanoparticle, at 1 bar CO:N2 (1:1) and 500 °C. The cobalt nanoparticle was

  9. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  10. Multiscale fluctuations in nuclear response

    International Nuclear Information System (INIS)

    Lacroix, D.; Chomaz, Ph.

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author)

  11. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  12. Fluctuations in the multiparticle dynamics

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1993-01-01

    The appearance and properties of intermittent fluctuations in physical systems, in particular the formation of rare structures in transport phenomena are discussed. The distribution of fluctuations approaches a limiting log-normal statistical distribution. The log-normal distribution is introduced as a simple parametrization of the energy fluctuations leading to the subthreshold production of particles in nuclear collisions, and it is shown that it fits all available data both for total π 0 production cross section as well as the π 0 kinetic energy spectra for E/A < 90 MeV. It is suggested that the same universal distribution should also describe the subthreshold production of other hadrons like η and K. (author) 36 refs., 11 figs

  13. Multiscale fluctuations in nuclear response

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Chomaz, Ph

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author) 25 refs.

  14. Phase space fluctuations and dynamics of fluctuations of collective variables

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. (Lab. de Physique Nucleaire, IN2P3/CNRS, 44 - Nantes (France) Nantes Univ., 44 (France)); Hernandez, E.S. (Dept. de Fisica, Ciudad Universitaria, Buenos Aires (Argentina))

    1992-08-03

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.).

  15. Phase space fluctuations and dynamics of fluctuations of collective variables

    International Nuclear Information System (INIS)

    Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Hernandez, E.S.

    1992-01-01

    Within the framework of theoretical approaches based on stochastic transport equation of one-body distribution function, a numerical treatment of the fluctuations of collective observables is studied and checked in comparison with analytical results either at equilibrium or close to it. (orig.)

  16. Origin of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references

  17. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  18. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  19. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  20. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  1. Why fishing magnifies fluctuations in fish abundance.

    Science.gov (United States)

    Anderson, Christian N K; Hsieh, Chih-hao; Sandin, Stuart A; Hewitt, Roger; Hollowed, Anne; Beddington, John; May, Robert M; Sugihara, George

    2008-04-17

    It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.

  2. Redistribution of phase fluctuations in a periodically driven cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, Robert; Zhu, Beilei; Rexin, Tobias [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); Mathey, Ludwig [Zentrum fuer Optische Quantentechnologien und Institut fuer Laserphysik, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Hamburg (Germany); Cavalleri, Andrea [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford (United Kingdom)

    2015-07-01

    We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBCO, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. We demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales and we discuss the behavior of vortices in the ab-planes and across the weakly coupled junctions.

  3. Physical and numerical modelling of natural convection in a fluid layer of small aspect ratio, in the frame of severe accidents of nuclear pressurized water reactors

    International Nuclear Information System (INIS)

    Villermaux, Clotilde

    1999-01-01

    In the framework of PWR reactor accidents studies, the possibility of cooling the corium by the vessel flooding, is analysed. A particular attention is given to the liquid materials of the upper part of this pool. The confinement and the physical properties of this melt pool, may threat the vessel integrity by a heat flux concentration on the vessel lateral wall. A bibliographic study on the thermal transfers in natural convection, enhances the influence of the thermal extreme conditions and the layer geometry on the flow structure and the heat distribution. The lower part of the corium is constituted of an oxides layer. A stability study shows its perenniality: the metallic layer can be slipped of the oxides pool. The results analysis of the experimental program, BALI-metal, is completed by a direct numerical simulation with the TRIOU code. A model of the flow structure allows the find in bulk the experimental results. Finally a numerical simulation of the experimental tests is realized with the thermo-hydraulic code TOLBIAC. (A.L.B.)

  4. Mean flow structure of non-equilibrium boundary layers with adverse ...

    Indian Academy of Sciences (India)

    According to them, an equilibrium boundary layer might exist if the pressure ... of adverse pressure gradient on the turbulent boundary layer at the flat plate for ..... of a constant-pressure turbulent layer to the sudden application of an sudden.

  5. Interaction of charged reaction products with opalescent fluctuations

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    In a D-T plasma close to ignition, if the contribution of the 3.5 MeV fusion-produced α-particles to the total plasma pressure is neglected, the interaction of these particles with the magnetic fluctuations which are supported by the bulk of the plasma can be described by retaining the contribution arising from the wave-particle resonant interaction only. Then, following a perturbation approach, we can start by examining the time evolution, in the absence of α-particles, of magnetic fluctuations of the shear-Alfven type in a sheared magnetic configuration where the presence of magnetic curvature causes a mixing between these waves and interchange instabilities. In the description of these fluctuations, we shall adopt an equation, derived from the theory of ballooning modes that can be proved to be valid in the neighborhood of the magnetic axis

  6. Fluctuations in Overlapping Generations Economies

    DEFF Research Database (Denmark)

    Tvede, Mich

    . The approach to existence of endogenous fluctuations is basic in the sense that the prime ingredients are the implicit function theorem and linear algebra. Moreover the approach is applied to show that for an open and dense set of utility functions there exist endowment vectors such that sunspot equilibria...

  7. Magnetic fluctuations in turbulent flow

    International Nuclear Information System (INIS)

    Ruzmaikin, A.A.

    1990-01-01

    For dynamo excitation of the magnetic fluctuations in infinite fluid only a sufficient large magnetic Reynolds number is needed. In a infinite region an additional condition appears. Due to the diffusion of the magnetic field through the boundaries a size of the region must be large enough compare with a correlation length of the turbulence. Author)

  8. Firm default and aggregate fluctuations

    NARCIS (Netherlands)

    Jacobson, Tor; Linde, Jesper; Roszbach, Kasper

    This paper studies the relationship between macroeconomic fluctuations and corporate defaults while conditioning on industry affiliation and an extensive set of firm-specific factors. By using a panel data set for virtually all incorporated Swedish businesses over 1990-2009, a period which includes

  9. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  10. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  11. Pressure fluctuations on the bed of surge tank at the H.P. Zimapan, Hgo., with different arrangements studied on hydraulic model, with the lowest operation conditions; Fluctuaciones de presion en la base del pozo de oscilacion del P.H. Zimapan Hgo., con diferentes arreglos estudiados en modelo hidraulico ante las condiciones minimas de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Marengo Mogollon, H. [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico (Mexico)]. E-mail: humberto.marengo@cfe.gob.mx; Ochoa Alvarez, F.J.; Cortes Cortes, C. [Comision Federal de Electricidad (Mexico)]. E-mail: federico.ochoa@cfe.gob.mx; carlos.cortes01@cfe.gob.mx

    2009-10-15

    In this paper, the pressure fluctuations of the surge tank in the Zimapan Hydroelectric Project are compared in a hydraulic model. The shaft is located lateral, over the conduction tunnel and in the simple form (permitting the tunnel entering the shaft); with and without orifice plates taking into account the demand and supply condition of energy with the minimum level of water of the conduction. It was determined the hydraulic efficiency and it was found that it was the best constructive option. [Spanish] En este articulo se comparan las fluctuaciones de presion en el pozo de oscilacion del P.H. Zimapan, Hgo., Mexico las cuales fueron estudiadas en modelo hidraulico al considerar dicho pozo ubicado en diferentes posiciones; lateralmente y sobre el eje de la conduccion; pozo simple y con tuberia de conexion; con y sin placa de orificio, para maniobras de rechazo y demanda de carga de las turbinas de generacion con el nivel del agua correspondiente al NAMINO. Se determino la eficiencia hidraulica comparandola con las otras opciones encontrandose que la mejor opcion para el funcionamiento hidraulico es el pozo lateral, que ademas permite optimizar el procedimiento constructivo.

  12. Comment on 'Pressure-induced changes in transport properties of layered La1.2Ca1.8Mn2O7'

    International Nuclear Information System (INIS)

    Ganguly, R.; Siruguri, V.; Gopalakrishnan, I.K.; Yakhmi, J.V.

    2000-01-01

    We show that the compound La 1.2 Ca 1.8 Mn 2 O 7 does not form with layered Sr 3 Ti 2 O 7 -type structure as reported by Kamenev et al. [Phys. Rev. B 56, R12 688 (1997)]. Detailed analysis of the powder x-ray diffraction pattern of this compound (synthesized by using the solid-state method) by Rietveld method shows that it forms a multiphase mixture comprising hole-doped perovskite manganates (La 1-x Ca x MnO 3 ) as the majority phases and CaO as the minority phase

  13. Nematic fluctuations and resonance in iron-based superconductors

    Science.gov (United States)

    Gallais, Yann

    The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is ubiquitous in many iron based superconductors (Fe SC), and has relevance for the cuprates as well. Here I will review recent electronic Raman scattering experiments which report the presence of critical nematic fluctuations in the charge channel in the tetragonal phase of several Fe SC systems. In electron doped Co-BaFe2As2 (Co-Ba122), these fluctuations extend over most of the superconducting dome. Their associated nematic susceptibility shows Curie-Weiss behavior, and its doping dependence suggests the presence of a nematic quantum critical point near optimal TC Similar nematic fluctuations are also observed in FeSe despite the absence of magnetic order, raising the question of the link between nematicity and magnetism in Fe SC. In FeSe I will further contrast the evolution of nematic fluctuations under isoelectronic S substitution and hydrostatic pressures up to 8 GPa, with only the former showing evidence for a nematic quantum critical point. In the superconducting state of Co-Ba122, I will show that a resonance emerges in the Raman spectra near the nematic quantum critical point. This nematic resonance is a clear fingerprint of the coupling between nematic fluctuations and Bogoliubov quasiparticles, and can be thought as the nematic counterpart of the spin resonance observed in neutron scattering experiments. Support from Agence Nationale de la Recherche via ANR Grant ''Pnictides'' is acknowledged.

  14. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  15. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.; Bouzidi, M.; Chine, Z.; Toure, A.; Halidou, I.; El Jani, B.; Shakfa, M. K.

    2017-01-01

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  16. Cycle-to-cycle fluctuation of combustion in a spark-ignition engine; Hibana tenka engine no nensho hendo

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Y; Yoshiyama, S; Tomita, E; Hamagami, T [Okayama University, Okayama (Japan); Otsubo, H [Yammer Diesel Engine Co. Ltd. Tokyo (Japan)

    1997-10-01

    In a homogeneous charge spark-ignition engine, the duration of early stage of combustion is a dominant factor for determining the fluctuation of mean effective pressure. And the early stage of combustion varies with the equivalence ratio and turbulence characteristics of the mixture. In this study, the fluctuations of 1% combustion duration and indicated mean effective pressure Pmi were computed as the function of fluctuations both in the equivalence ratio {phi} of the mixture and in the turbulence characteristics of the cylinder charge. And effects of the spark timing {theta}ig and {phi} on the cycle-to-cycle fluctuation in Pmi were investigated. 16 refs., 6 figs.

  17. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    Science.gov (United States)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  18. Boundary layer on a flat plate with suction

    International Nuclear Information System (INIS)

    Favre, A.; Dumas, R.; Verollet, E.

    1961-01-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [fr

  19. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  20. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    Science.gov (United States)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  1. Pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 thin film on cobalt ferrite nano-seed layered Pt(111)/Si substrate: effect of oxygen pressure

    Science.gov (United States)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Park, Yong Jun; Song, Seungwoo; Jang, Hyun Myung; Son, Junwoo; Baik, Sunggi

    2014-07-01

    The effect of oxygen pressure during pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 (PZT) thin films on CoFe2O4 nano-seed layered Pt(111)/Si substrate was investigated. The PZT film deposited at oxygen pressure lower than 25 mTorr is identified as both perovskite and pyrochlore phases and the films deposited at high oxygen pressure (50-100 mTorr) show the single-phase perovskite PZT that has a perfect (111)-orientation. In addition, the film deposited at PO2 of 50 mTorr has a uniform surface morphology, whereas the film deposited at PO2 of 100 mTorr has a non-uniform surface morphology and more incompacted columnar cross-section microstructure. The polarization of film deposited at 100 mTorr is higher than that deposited at 50 mTorr, but shift of the hysteresis loop along the electrical field axis in the film deposited at PO2 of 100 mTorr is larger than that of the film deposited at PO2 of 50 mTorr.

  2. Pressure-induced americium valence fluctuations revealed by electrical resistivity

    Czech Academy of Sciences Publication Activity Database

    Kolomiets, A. V.; Griveau, J.C.; Heathman, S.; Shick, Alexander; Wastin, F.; Faure, P.; Klosek, V.; Genestier, C.; Baclet, N.; Havela, L.

    2008-01-01

    Roč. 82, č. 5 (2008), 57007/1-57007/5 ISSN 0295-5075 R&D Projects: GA MŠk OC 144; GA ČR GA202/07/0644 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : electrical conductivity * strong electron interactions * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.203, year: 2008

  3. Atmospheric Pressure and Velocity Fluctuations Near the Auroral Electrojet.

    Science.gov (United States)

    1982-01-15

    various aspects of the atmosphere’s dynamical response to auroral activity have been carried out by Blumen and Hendl (1969), Testud (1970), Francis...Geophys. Res. 80, 2839, 1975. Testud , 3., Gravity waves generated during magnetic substorms, 3. Atmos. Terr. Phys. 32, 1793, 1970. Waco, D. E., A

  4. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  5. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  6. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  7. Charge Fluctuations in Nanoscale Capacitors

    Science.gov (United States)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  8. Charge fluctuations in nanoscale capacitors.

    Science.gov (United States)

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  9. Fluctuation theorems and atypical trajectories

    International Nuclear Information System (INIS)

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  10. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  11. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  12. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  13. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  14. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  15. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  16. Fate of a mutation in a fluctuating environment

    Science.gov (United States)

    Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.

    2015-01-01

    Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937

  17. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  18. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  19. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  20. Receptivity to Kinetic Fluctuations: A Multiple Scales Approach

    Science.gov (United States)

    Edwards, Luke; Tumin, Anatoli

    2017-11-01

    The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the generation point of the second Mack mode. Here we take a slightly more general approach based on a multiple scales WKB ansatz which requires fewer assumptions about the behavior of the stability spectrum. The approach is modeled after the one taken by Luchini to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-enthalpy, flat plate boundary layers whose spectra exhibit nuanced behavior near the generation point, such as first mode instabilities and near-neutral evolution over moderate length scales. The configurations considered exhibit supersonic unstable second Mack modes despite the temperature ratio Tw /Te > 1 , contrary to prior expectations. Supported by AFOSR and ONR.