WorldWideScience

Sample records for lauryl sulfate enhances

  1. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M

    2011-12-01

    Full Text Available Abstract Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100 or anionic (sodium lauryl ether sulfate surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.

  2. Effect of sodium lauryl sulfate on the deposition of alkali-soluble fluoride on enamel in vitro.

    Science.gov (United States)

    Barkvoll, P; Rølla, G; Lagerlöf, F

    1988-01-01

    There are indications that sodium lauryl sulfate may reduce the cariostatic effect of fluoride when present together with sodium monofluorophosphate during topical application. The aim of the present study was to examine the in vitro deposition of alkali soluble fluoride on enamel during topical application with sodium fluoride in combination with sodium lauryl sulfate. It was found that increasing amounts of lauryl sulfate decreased the amount of alkali soluble fluoride deposited on the enamel. The amount of fluoride deposited from toothpaste supernatants was less than that from aqueous solutions of NaF with the same concentration of fluoride. Enamel pieces, pretreated with sodium lauryl sulfate showed a reduced deposition of alkali-soluble fluoride after incubation in a fluoride solution. It was also observed that the presence of lauryl sulfate increased the solubility of CaF2 in water.

  3. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria

    NARCIS (Netherlands)

    Silva Paulo, da Ana; Aydin, Rozelin; Dimitrov, Mauricio R.; Vreeling, Harm; Cavaleiro, Ana J.; García-Encina, Pedro A.; Stams, Fons; Plugge, Caroline M.

    2017-01-01

    The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrifica

  4. 75 FR 37790 - Lauryl Sulfate Salts; Antimicrobial Registration Review Final Work Plan and Proposed Registration...

    Science.gov (United States)

    2010-06-30

    ... AGENCY Lauryl Sulfate Salts; Antimicrobial Registration Review Final Work Plan and Proposed Registration.... SUMMARY: This notice announces the availability of EPA's final work plan and proposed registration review... with the posting of a summary document, containing a preliminary work plan, for public comment....

  5. Polycation-Sodium Lauryl Ether Sulfate-Type Surfactant Complexes : Influence of Ethylene Oxide Length

    NARCIS (Netherlands)

    Vleugels, Leo F. W.; Pollet, Jennifer; Tuinier, Remco

    2015-01-01

    Poiyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether Sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES wit

  6. DETERMINATION OF SURFACTANT SODIUM LAURYL ETHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION

    Science.gov (United States)

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES)....

  7. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion : a randomized clinical trial

    NARCIS (Netherlands)

    Sälzer, S.; Rosema, N.A.M.; Martin, E.C.J.; Slot, D.E.; Timmer, C.J.; Dörfer, C.E.; van der Weijden, G.A.

    2016-01-01

    Objectives The aim of this study was to compare the efficacy of a dentifrice without sodium lauryl sulfate (SLS) to a dentifrice with SLS in young adults aged 18–34 years on gingivitis. Material and methods One hundred twenty participants (non-dental students) with a moderate gingival inflammation (

  8. Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report

    Science.gov (United States)

    2016-01-01

    This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician’s diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC). A patch test using the toothpaste containing sodium lauryl sulfate (SLS) was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case. PMID:27789914

  9. Modulating effects of oatmeal extracts in the sodium lauryl sulfate skin irritancy model.

    Science.gov (United States)

    Vié, K; Cours-Darne, S; Vienne, M P; Boyer, F; Fabre, B; Dupuy, P

    2002-01-01

    The aim of the present study was to assess the anti-inflammatory activity of two topically applied oatmeal extracts, i.e. Avena sativa and Avena Rhealba, using the sodium lauryl sulfate (SLS) irritation model. At baseline, test areas on the volar surface of the upper arms of 12 healthy individuals were pretreated with the two extracts and their vehicle (petrolatum ointment) under occlusion for 2 h, and one site was left untreated. Then a patch with a 1% SLS solution was applied to the test sites for 24 h. Irritation was determined at each period by measuring by chromametry and laser-Doppler. In a dose-ranging study with the Avena Rhealba extract alone, the 20 and 30% concentrations exerted a slight inhibition of the a* parameter increase and a marked reduction of the blood flow increase (p oatmeal extracts on skin irritation in the SLS model.

  10. The Immune Enhancement of Sodium Lauryl Sulfoacetate in Chickens

    Directory of Open Access Journals (Sweden)

    DaRong Cheng

    2010-01-01

    Full Text Available The purpose of this study is to investigate feasibility of sodium lauryl sulfoacetate (SLS as an immunoadjuvant in chickens. After treating with 62.5, 125, 250, or 500 μg/mL SLS in vitro, lymphocyte proliferation assay of chicken peripheral blood mononuclear cells showed that the OD570 values of all experimental groups, as well as Con A-stimulated group, were significantly higher than that of the untreated control group. After injection with 1.0, 2.0, or 4.0 mg/kg of SLS for 3 consecutive days, chickens were vaccinated with an attenuated vaccine against Newcastle disease virus (NDV, and the immunoadjuvant effects of SLS were evaluated on the basis of immune organ index, antibody response, and CD4+/CD8+ T-cell ratio. The results confirmed that SLS could enhance NDV-specific antibody response and increase CD4+/CD8+ T-cell ratio in vivo. Furthermore, SLS could improve NDV-specific antibody response in thiamphenicol-treated chickens. These data indicate that SLS not only can improve humoral immune response but also reverse the immunosuppressive effect of thiamphenicol in chickens.

  11. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Leidi C.; Silva, Volnir O.; Quina, Frank H., E-mail: quina@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Quimica; Moreira Junior, Paulo F. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Quimica; Tcacenco, Celize M. [Fundacao Instituto de Ensino para Osasco (FIEO/UNIFIEO), SP (Brazil). Centro Universitario FIEO. Centro de Estudos Quimicos

    2013-02-15

    Aggregation numbers (N{sub Ag}) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40 deg C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles ({gamma} = 0.11-0.15, where {gamma} is the slope of a plot of log aggregation number vs. log [Y{sub aq}] and [Y{sub aq}] is the sodium counterion concentration free in the intermicellar aqueous phase) is found to be significantly lower than that of sodium alkyl sulfate micelles ({gamma} ca. 0.25), a difference attributed to the larger headgroup size of SLES. The I{sub 1}/I{sub 3} vibronic intensity ratio and the rate constant for intramicellar quenching of pyrene show that the pyrene solubilization microenvironment and the intramicellar microviscosity are insensitive to micelle size or the presence of added salt. (author)

  12. Time-resolved fluorescence quenching studies of sodium lauryl ether sulfate micelles

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Leidi C.; Silva, Volnir O.; Quina, Frank H., E-mail: quina@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Quimica; Moreira Junior, Paulo F. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Quimica; Tcacenco, Celize M. [Fundacao Instituto de Ensino para Osasco (FIEO/UNIFIEO), SP (Brazil). Centro Universitario FIEO. Centro de Estudos Quimicos

    2013-02-15

    Aggregation numbers (N{sub Ag}) of micelles of the commercial anionic detergent sodium lauryl ether sulfate (SLES), with an average of two ethylene oxide subunits, were determined at 30 and 40 deg C by the time-resolved fluorescence quenching method with pyrene as the fluorescent probe and the N-hexadecylpyridinium ion as the quencher. The added-salt dependent growth of SLES micelles ({gamma} = 0.11-0.15, where {gamma} is the slope of a plot of log aggregation number vs. log [Y{sub aq}] and [Y{sub aq}] is the sodium counterion concentration free in the intermicellar aqueous phase) is found to be significantly lower than that of sodium alkyl sulfate micelles ({gamma} ca. 0.25), a difference attributed to the larger headgroup size of SLES. The I{sub 1}/I{sub 3} vibronic intensity ratio and the rate constant for intramicellar quenching of pyrene show that the pyrene solubilization microenvironment and the intramicellar microviscosity are insensitive to micelle size or the presence of added salt. (author)

  13. Influence of Sodium Lauryl Sulfate and Tween 80 on Carbamazepine–Nicotinamide Cocrystal Solubility and Dissolution Behaviour

    OpenAIRE

    Ke Wang; Ning Qiao; Mingzhong Li

    2013-01-01

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated...

  14. INFLUENCE OF GLYCEROL, PROPYLENE GLYCOL, POLYSORBATE-80 AND SODIUM LAURYL SULFATE ON THE PARTITION COEFFICIENT OF QUETIAPINE FUMARATE

    OpenAIRE

    Mbah, C. J.; C. E. Chigozie

    2012-01-01

    The objective of the present study was to investigate the effects of glycerol, propylene glycol, polysorbate-80 and sodium lauryl sulfate on the lipophilic character of quetiapine fumarate by studying their effects on the partition coefficient of the drug. The partition coefficient was evaluated in n-hexane-water system at room temperature. Of the vehicles investigated, it was found that glycerol, propylene glycol, polysorbate-80 decreased the partition coefficient of quetiapine fumarate, whi...

  15. Positive control for cytotoxicity evaluation of dental vinyl polysiloxane impression materials using sodium lauryl sulfate.

    Science.gov (United States)

    Kwon, Jae-Sung; Lee, Sang-Bae; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-11-01

    Vinyl polysiloxane (VPS) is elastomeric dental impression material which, despite having very few reports of adverse reactions, has shown high levels of cytotoxicity that is difficult to be interpreted without referencing to the positive control material. Therefore, in this study, positive control VPS was developed using sodium lauryl sulfate (SLS) for the reference of cytotoxicity test. The positive control VPS with SLS was formed with a different proportion of SLS (0, 1, 2, 4, 8 and 16 wt%) added to the base. The cytotoxicity test was then carried out using the extractions or dilutions of the extractions from each of the test samples using murine fibroblast cells (L929). The final product of positive control VPS behaved similar to commercially available VPS; being initially liquid-like and then becoming rubber-like. Ion chromatography showed that the level of SLS released from the product increased as the proportion of added SLS increased, consequently resulting in an increased level of cytotoxicity. Also, the commercially available VPS was less cytotoxic than the positive control VPS with more or equal to 2 wt% of SLS. However, even the VPS with the highest SLS (16 wt%) did not cause oral mucosa irritation during the animal study. The positive control VPS was successfully produced using SLS, which will be useful in terms of providing references during in vitro cytotoxicity testing.

  16. Genome-Wide Expression Analysis of Human In Vivo Irritated Epidermis: Differential Profiles Induced by Sodium Lauryl Sulfate and Nonanoic Acid

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole

    2010-01-01

    the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression...

  17. Influence of sodium lauryl sulfate and tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour.

    Science.gov (United States)

    Li, Mingzhong; Qiao, Ning; Wang, Ke

    2013-10-11

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine-nicotinamide (CBZ-NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ-NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ-NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ-NIC cocrystal but they had totally opposite effects on the IDR of the CBZ-NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ-NIC cocrystal while Tween 80 decreased its IDR.

  18. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    Science.gov (United States)

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  19. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate

    Science.gov (United States)

    Qiao, Hongzhi; Chen, Lihua; Rui, Tianqi; Wang, Jingxian; Chen, Ting; Fu, Tingming; Li, Junsong; Di, Liuqing

    2017-01-01

    Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box–Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (Pnanosuspensions could act as an effective delivery device for ADG to enhance its oral bioavailability and biological efficacy. PMID:28223797

  20. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers

    DEFF Research Database (Denmark)

    Döge, Nadine; Hönzke, Stefan; Schumacher, Fabian

    2016-01-01

    ) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers...... applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug...... release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced...

  1. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    Science.gov (United States)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  2. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    Directory of Open Access Journals (Sweden)

    M. A. Abdl-Rahman

    2010-01-01

    Full Text Available The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives, sodium lauryl sulfate (SLS treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N, total short chain volatile fatty acids (SCVFAs concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP. Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency.

  3. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  4. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate

    Directory of Open Access Journals (Sweden)

    Qiao H

    2017-02-01

    Full Text Available Hongzhi Qiao,1,2,* Lihua Chen,3,* Tianqi Rui,1,2 Jingxian Wang,1,2 Ting Chen,1,2 Tingming Fu,1,2 Junsong Li,1,2 Liuqing Di1,2 1College of Pharmacy, Nanjing University of Chinese Medicine, 2Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, 3Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China *These authors contributed equally to this work Abstract: Andrographolide (ADG is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS were prepared using a wet media milling technique followed by freeze drying. D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS, a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box–Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3, respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01. Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax

  5. Effect of the Wetting Agent Sodium Lauryl Sulfate on the Pharmacokinetics of Alectinib: Results From a Bioequivalence Study in Healthy Subjects.

    Science.gov (United States)

    Morcos, Peter N; Parrott, Neil; Banken, Ludger; Timpe, Carsten; Lindenberg, Marc; Guerini, Elena; Dall, Georgina; Bogman, Katrijn; Sturm, Carolina; Zeaiter, Ali; Martin-Facklam, Meret; Phipps, Alex

    2016-08-22

    The anaplastic lymphoma kinase (ALK) inhibitor alectinib is an effective treatment for ALK-positive non-small-cell lung cancer. This bioequivalence study evaluated the in vivo performance of test 3 formulations with the reduced wetting agent sodium lauryl sulfate (SLS) content. This randomized, 4-period, 4-sequence, crossover study compared alectinib (600 mg) as 25%, 12.5%, and 3% SLS hard capsule formulations with the reference 50% SLS clinical formulation in healthy subjects under fasted conditions (n = 49), and following a high-fat meal (n = 48). Geometric mean ratios and 90% confidence intervals (CIs) for Cmax , AUC0-last , and AUC0-∞ of alectinib, its major active metabolite, M4, and alectinib plus M4 were determined for the test formulations versus the reference formulation. Bioequivalence was concluded if the 90%CIs were within the 80% to 125% boundaries. The 25% SLS formulation demonstrated bioequivalence to the reference 50% SLS formulation for Cmax , AUC0-last , and AUC0-∞ of alectinib, M4, and alectinib plus M4 under both fasted and fed conditions. Further reductions in SLS content (12.5% and 3% SLS) did not meet the bioequivalence criteria. Cross-group comparisons showed an approximately 3-fold positive food effect. Reducing SLS to 25% resulted in a formulation that is bioequivalent to the current 50% SLS formulation used in alectinib pivotal trials.

  6. Comparative evaluation of antibacterial property and substantivity of chlorhexidine containing dentifrices with sodium lauryl sulfate and Tween as surfactants: An in vivo study

    Directory of Open Access Journals (Sweden)

    V Venu

    2013-01-01

    Full Text Available Aim: The aim of the study was to determine the antibacterial property and substantivity of chlorhexidine containing dentifrices with sodium lauryl sulfate (SLS and Tween as surfactants. Materials and Methods: It is a double-blind cross over the study, a total of 20 children within their mixed dentition period (7-13 year having Streptococci mutans count more than 10 6 were selected for the main study. Three types of chlorhexidine containing dentifrices were used with a washout period of 1 week. Out of the three toothpastes, one was without surfactant and other two toothpastes contained SLS and Tween as surfactants respectively. 20 volunteers brushed for 1 min during the study day with their assigned toothpaste. Saliva samples were collected before brushing, immediately after brushing and 1, 3, 5, and 7 hand sent for microbial analysis. The culture carried out by inoculating saliva sample onto Mitis salivarius agar for selective isolation of S. mutans followed by counting of colony forming unit. Results: Group I and III (Chlorhexidine and CHX + Tween had shown statistically significant reduction in bacterial count until 7 h when compared to their baseline values ( P < 0.001. Group II toothpaste (CHX + SLS had shown significant reduction in bacterial count until 3 h only. On inter group comparison, Group III had shown good amount of percentage reduction in bacterial count when compared to other groups. Conclusion: CHX + Tween toothpaste had shown statistically significant reduction in antibacterial activity and substantivity than other groups. These findings show chlorhexidine containing toothpaste with non-ionic surfactant will be able to maintain the antibacterial property and substantivity of chlorhexidine.

  7. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion--a randomized clinical trial.

    Science.gov (United States)

    Sälzer, S; Rosema, N A M; Martin, E C J; Slot, D E; Timmer, C J; Dörfer, C E; van der Weijden, G A

    2016-04-01

    The aim of this study was to compare the efficacy of a dentifrice without sodium lauryl sulfate (SLS) to a dentifrice with SLS in young adults aged 18-34 years on gingivitis. One hundred twenty participants (non-dental students) with a moderate gingival inflammation (bleeding on probing at 40-70 % of test sites) were included in this randomized controlled double blind clinical trial. According to randomization, participants had to brush their teeth either with dentifrice without SLS or with SLS for 8 weeks. The primary outcome was bleeding on marginal probing (BOMP). The secondary outcomes were plaque scores and gingival abrasion scores (GA) as well as a visual analogue scale (VAS) score at exit survey. Baseline and end differences were analysed by univariate analysis of covariance (ANCOVA) test, between group differences by independent t test and within groups by paired sample t test. BOMP improved within groups from on average 0.80 at baseline to 0.60 in the group without SLS and to 0.56 in the group with SLS. No statistical difference for BOMP, plaque and gingival abrasion was found between both groups. VAS scores for taste, freshness and foaming effect were significantly in favour of the SLS-containing dentifrice. The test dentifrice without SLS was as effective as a regular SLS dentifrice on gingival bleeding scores and plaque scores. There was no significant difference in the incidence of gingival abrasion. In patients diagnosed with gingivitis, a dentifrice without SLS seems to be equally effective compared to a dentifrice with SLS and did not demonstrate any significant difference in gingival abrasion. In patient with recurrent aphthous ulcers, the absence of SLS may even be beneficial. However, participants indicate that they appreciate the foaming effect of a dentifrice with SLS more.

  8. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated......Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect...... in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  9. Lead recovery by flotation with sodium lauryl sulfate Recuperação de chumbo por flotação com sulfato lauril de sódio

    Directory of Open Access Journals (Sweden)

    Alessandra Gorette de Morais

    2013-03-01

    Full Text Available Lead recoverable slag is of economic and environmental importance. The aim of this study was to assess the possibilities of its recovery by flotation with sodium lauryl sulfate (SLS. The similar nature of the lead and iron particles formed by solidification of the melted slag impairs selectivity during the flotation process. In order to verify the most favorable conditions for selectivity, SLS adsorption mechanisms for lead and iron particles were studied. The adsorption was monitored by means of zeta potential and surface tension determinations. Flotation tests were conducted under the most promising conditions identified for selectivity. The results suggest that SLS adsorption in lead particles is of a chemical nature. It was observed that the formation of lead lauryl sulfate is easier in alkaline medium. A 79% lead recovery was obtained at pH 10 using only 10-3 M collector concentration. Nevertheless, the best selectivity conditions were obtained in an acid medium.O processo metalúrgico para reciclagem de chumbo, a partir de baterias automotivas usadas, gera uma escória constituída, basicamente, por ferro e chumbo. A recuperação do chumbo contido nesse material descartado é de grande interesse econômico e ambiental. O trabalho teve, como objetivo, estudar a possibilidade de recuperar o chumbo através de flotação com sulfato lauril de sódio (SLS. A fim de se verificarem as condições mais favoráveis para a seletividade, procurou-se identificar o mecanismo de adsorção do SLS, nas partículas de chumbo e de ferro. A adsorção foi monitorada por meio de determinações de potencial zeta e tensão superficial. Foram realizados testes de flotação nas condições identificadas como mais promissoras para a seletividade. Os resultados sugerem que o SLS adsorve-se, quimicamente, à superfície das partículas de chumbo. O aumento do pH favorece a adsorção, possibilitando uma recuperação de 79% do chumbo contido com apenas 10-3M do

  10. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?

    Directory of Open Access Journals (Sweden)

    Filipović Mila

    2016-01-01

    Full Text Available Background/Aim. Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. Methods. With the employment of noninvasive skin biophysical measurements, skin hydration (EC, transepi-dermal water loss (TEWL, erythema index (EI and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. Results. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Conclusion. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  11. Formulation design and evaluation of Cefuroxime axetil 125 mg immediate release tablets using different concentration of sodium lauryl sulphate as solubility enhancer

    Directory of Open Access Journals (Sweden)

    Fozia Israr

    2014-12-01

    Full Text Available Cefuroxime axetil immediate release tablets were formulated by direct compression method with different percentages of sodium lauryl sulphate (SLS such as 0.5, 1.0, 1.5 and also without SLS. Resulting batches of tablets were evaluated by both pharmacopeial and non-pharmacopeial methods to ascertain the physico-mechanical properties. Dissolution test were carried out in different medium like 0.07 M HCl, distilled water, 0.1M HCl of pH 1.2 and phosphate buffers at pH 4.5 and 6.8 to observe the drug release against the respective concentration of SLS used. Later, test formulations were compared by f1(dissimilarity and f2(similarity factors using a reference brand of cefuroxime axetil. Significant differences (p<0.05 in dissolution rate were recorded with the change in concentration of SLS in different media. Test formulation T3 containing 1% SLS was found to be best optimized formulation based on assay, disintegration, dissolution and similarity and dissimilarity factors.

  12. Stratospheric sulfate geoengineering enhances terrestrial gross primary productivity

    Science.gov (United States)

    Xia, L.; Robock, A.; Tilmes, S.; Neely, R. R., III

    2015-09-01

    Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr-1 injection of SO2 to balance a Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model, with the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible diffuse radiation increased 3.2 W m-2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 2.4 %, which could contribute to an additional 3.8 ± 1.1 Gt C yr-1 global gross primary productivity without nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.

  13. Stratospheric sulfate geoengineering enhances terrestrial gross primary productivity

    Directory of Open Access Journals (Sweden)

    L. Xia

    2015-09-01

    Full Text Available Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr−1 injection of SO2 to balance a Representative Concentration Pathway 6.0 (RCP6.0 scenario, we conducted climate model simulations with the Community Earth System Model, with the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem. During the geoengineering period, as compared to RCP6.0, land-averaged downward visible diffuse radiation increased 3.2 W m−2 (11 %. The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 2.4 %, which could contribute to an additional 3.8 ± 1.1 Gt C yr−1 global gross primary productivity without nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.

  14. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate

    Science.gov (United States)

    Xia, L.; Robock, A.; Tilmes, S.; Neely, R. R., III

    2016-02-01

    Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr-1 injection of SO2 to produce a stratospheric aerosol cloud to balance anthropogenic radiative forcing from the Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model - the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible (300-700 nm) diffuse radiation increased 3.2 W m-2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 0.07 ± 0.02 µmol C m-2 s-1, which could contribute to an additional 3.8 ± 1.1 Gt C yr-1 global gross primary productivity without explicit nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This potentially beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about the implementation of geoengineering.

  15. Use of MgO to Promote the Oxyethylation Reaction of Lauryl Alcohol

    Directory of Open Access Journals (Sweden)

    Pilarska Agnieszka

    2014-06-01

    Full Text Available Synthesis of magnesium hydroxide was performed by the precipitation method with the use of magnesium sulfate and sodium hydroxide. The infiuence of temperature and ratio of reagents was studied. Magnesium hydroxides, and the magnesium oxides obtained from them by thermal decomposition, were analyzed to determine their bulk density, polydispersity and particle size. The magnesium oxide with the largest surface area was tested as a catalyst in the oxyethylation of lauryl alcohol, and shown to be selective but poorly reactive in comparison with commercially available catalysts. Further studies are needed to improve its reactivity.

  16. Enhanced Sulfate Management in HLW Glass Formulations VSL12R2540-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    The Low Activity Waste (LAW) tanks that are scheduled to provide the Hanford Tank Waste Treatment and Immobilization Plant (WTP) with waste feeds contain significant amounts of sulfate. The sulfate content in the LAW feeds is sufficiently high that a separate molten sulfate salt phase may form on top of the glass melt during the vitrification process unless suitable glass formulations are employed and sulfate levels are controlled. Since the formation of the salt phase is undesirable from many perspectives, mitigation approaches had to be developed. Considerable progress has been made and reported by the Vitreous State Laboratory (VSL) in enhancing sulfate incorporation into LAW glass melts and developing strategies to manage and mitigate the risks associated with high-sulfate feeds.

  17. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  18. Enhanced transdermal delivery of salbutamol sulfate via ethosomes.

    Science.gov (United States)

    Bendas, Ehab R; Tadros, Mina I

    2007-12-14

    The main objective of the present work was to compare the transdermal delivery of salbutamol sulfate (SS), a hydrophilic drug used as a bronchodilator, from ethosomes and classic liposomes containing different cholesterol and dicetylphosphate concentrations. All the systems were characterized for shape, particle size, and entrapment efficiency percentage, by image analysis optical microscopy or transmission electron microscopy, laser diffraction, and ultracentrifugation, respectively. In vitro drug permeation via a synthetic semipermeable membrane or skin from newborn mice was studied in Franz diffusion cells. The selected systems were incorporated into Pluronic F 127 gels and evaluated for both drug permeation and mice skin deposition. In all systems, the presence of spherical-shaped vesicles was predominant. The vesicle size was significantly decreased (P ethosomal systems were much more efficient at delivering SS into mice skin (in terms of quantity and depth) than were liposomes or aqueous or hydroalcoholic solutions.

  19. [Glucosamine and chondroitin sulfate do not enhance anticoagulation activity of warfarin in mice in vivo].

    Science.gov (United States)

    Yokotani, Kaori; Nakanishi, Tomoko; Chiba, Tsuyoshi; Sato, Yoko; Umegaki, Keizo

    2014-01-01

    As an adverse event, it has been reported that anticoagulation activity of warfarin was enhanced by simultaneous intakes of glucosamine and chondroitin sulfate. However, it is unclear whether these is a causative relation. Therefore, in the present study, we evaluated whether glucosamine and chondroitin sulfate enhanced the anticoagulant action of warfarin in mice in vivo, focusing on hepatic cytochrome P450 (CYPs)-mediated mechanisms. Mice were fed a diet containing various doses of glucosamine or chondroitin sulfate (0, 0.3, 1% (w/w)) for 2 weeks, and given warfarin by gavage on the last 2 days of the treatment regimen. Doses of glucosamine and chondroitin sulfate were 443 mg/kg and 464 mg/kg in the 0.3% diet groups, and 1523 mg/kg and 1546 mg/kg in the 1% diet groups. We found that 1% glucosamine significantly shortened prothrombin time and thrombotest Owen in animals given warfarin. However, the two ingredients did not induce or inhibit hepatic CYPs, including (S)-warfarin hydroxylase. These findings suggest that glucosamine and chondroitin sulfate do not affect the anticoagulation activity of warfarin through hepatic CYP mediated-mechanisms.

  20. 21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-lauryl vinyl ether copolymers. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1970 Vinyl chloride-lauryl vinyl ether copolymers. The vinyl chloride-lauryl vinyl ether copolymers identified in...

  1. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station

    Science.gov (United States)

    Xie, Yuning; Ding, Aijun; Nie, Wei; Mao, Huiting; Qi, Ximeng; Huang, Xin; Xu, Zheng; Kerminen, Veli-Matti; Petäjä, Tuukka; Chi, Xuguang; Virkkula, Aki; Boy, Michael; Xue, Likun; Guo, Jia; Sun, Jianning; Yang, Xiuqun; Kulmala, Markku; Fu, Congbin

    2015-12-01

    Investigating sulfate formation processes is important not only for air pollution control but also for understanding the climate system. Although the mechanisms of secondary sulfate production have been widely studied, in situ observational evidence implicating an important role of NO2 in SO2 oxidation in the real atmosphere has been rare. In this study, we report two unique cases, from an intensive campaign conducted at the Station for Observing Regional Processes of the Earth System (SORPES) in East China, showing distinctly different mechanisms of sulfate formation by NO2 and related nitrogen chemistry. The first case occurred in an episode of mineral dust mixed with anthropogenic pollutants and especially high concentrations of NOx. It reveals that NO2 played an important role, not only in surface catalytic reactions of SO2 but also in dust-induced photochemical heterogeneous reactions of NO2, which produced additional sources of OH radicals to promote new particle formation and growth. The second case was caused by aqueous oxidation of S(IV) by NO2 under foggy/cloudy conditions with high NH3 concentration. As a by-product, the formed nitrite enhanced HONO formation and further promoted the gas-phase formation of sulfate in the downwind area. This study highlights the effect of NOx in enhancing the atmospheric oxidizing capacity and indicates a potentially very important impact of increasing NOx on particulate pollution formation and regional climate change in East Asia.

  2. Synthesis of surface sulfated BiWO with enhanced photocatalytic performance

    Institute of Scientific and Technical Information of China (English)

    Yongming Ju; Jianming Hong; Xiuyu Zhang; Zhencheng Xu; Dongyang Wei; Yanhong Sang; Xiaohang Fang; Jiande Fang; Zhenxing Wang

    2012-01-01

    Sulfated BiWO (SBiWO) was synthesized by an impregnation method to enhance the visible-light-driven photoactivities of BiWO (BiWO).The characterization results verified that sulfate anion mainly anchored on the catalyst surface greatly extended the visible-light-responsive range without destroying the crystal lattice.Moreover,the SBiWO-based photoactivities were evaluated with the removal of Malachite Green (MG) under UV-Vis irradiation emitted from two microwave-powered electrodeless discharge lamps (MPEDL-2) and under visible light (λ > 420 nm).The results demonstrated that the kinetic constant was increased 2.25 times,varying from 0.1478 (BiWO) to 0.3328 min-1 (SBiWO-1).Similar results were also obtained for the visible light-driven reaction.Furthermore,radical scavengers such as t-butanol restricted the visible-light induced degradation of MG over BiWO and SBiWO-1.This indicated that the sulfating process increased the generation of reactive oxygen species,which was further verified by molecular probe with salicylic acid.Thus,more blue-shifting at λ =618 nm was observed over SBiWO.On the basis of the above results,the photocatalytic mechanism over the sulfated catalyst was also discussed.

  3. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    Science.gov (United States)

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. In Situ Photochemical Activation of Sulfate for Enhanced Degradation of Organic Pollutants in Water.

    Science.gov (United States)

    Liu, Guoshuai; You, Shijie; Tan, Yang; Ren, Nanqi

    2017-02-21

    The advanced oxidation process (AOP) based on SO4(•-) radicals has been receiving growing attention in water and wastewater treatment. Producing SO4(•-) radicals by activation of peroxymonosulfate or persulfate faces the challenges of high operational cost and potential secondary pollution. In this study, we report the in situ photochemical activation of sulfate (i-PCAS) to produce SO4(•-) radicals with bismuth phosphate (BPO) serving as photocatalyst. The prepared BPO rod-like material could achieve remarkably enhanced degradation of 2,4-dichlorophenol (2,4-DCP) in the presence of sulfate, indicated by the first-order kinetic constant (k = 0.0402 min(-1)) being approximately 2.1 times that in the absence (k = 0.019 min(-1)) at pH-neutral condition. This presented a marked contrast with commercial TiO2 (P25), the performance of which was always inhibited by sulfate. The impact of radical scavenger and electrolyte, combined with electron spin resonance (ESR) measurement, verified the formation of •OH and SO4(•-) radicals during i-PCAS process. According to theoretical calculations, BPO has a sufficiently high valence band potential making it thermodynamically favorable for sulfate oxidation, and weaker interaction with SO4(•-) radicals resulting in higher reactivity toward target organic pollutant. The concept of i-PCAS appears to be attractive for creating new photochemical systems where in situ production of SO4(•-) radicals can be realized by using sulfate originally existing in aqueous environment. This eliminates the need for extrinsic chemicals and pH adjustment, which makes water treatment much easier, more economical, and more sustainable.

  5. Biodegradation of BTEX and Other Petroleum Hydrocarbons by Enhanced and Controlled Sulfate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-07-01

    High concentrations of sulfide in the groundwater at a field site near South Lovedale, OK, were inhibiting sulfate reducing bacteria (SRB) that are known to degrade contaminants including benzene, toluene, ethylbenzene, and m+p-xylenes (BTEX). Microcosms were established in the laboratory using groundwater and sediment collected from the field site and amended with various nutrient, substrate, and inhibitor treatments. All microcosms were initially amended with FeCl{sub 2} to induce FeS precipitation and, thereby, reduce sulfide concentrations. Complete removal of BTEX was observed within 39 days in treatments with various combinations of nutrient and substrate amendments. Results indicate that elevated concentration of sulfide is a limiting factor to BTEX biodegradation at this site, and that treating the groundwater with FeCl{sub 2} is an effective remedy to facilitate and enhance BTEX degradation by the indigenous SRB population. On another site in Moore, OK, studies were conducted to investigate barium in the groundwater. BTEX biodegradation by SRB is suspected to mobilize barium from its precipitants in groundwater. Data from microcosms demonstrated instantaneous precipitation of barium when sulfate was added; however, barium was detected redissolving for a short period and precipitating eventually, when active sulfate reduction was occurring and BTEX was degraded through the process. SEM elemental spectra of the evolved show that sulfur was not present, which may exclude BaSO{sub 4} and BaS as a possible precipitates. The XRD analysis suggests that barium probably ended in BaS complexing with other amorphous species. Results from this study suggest that SRB may be able to use the sulfate from barite (BaSO{sub 4}) as an electron acceptor, resulting in the release of free barium ions (Ba{sup 2+}), and re-precipitate it in BaS, which exposes more toxicity to human and ecological health.

  6. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  7. The comparison of immune-enhancing activity of sulfated polysaccharidses from Tremella and Condonpsis pilosula.

    Science.gov (United States)

    Zhao, Xiaona; Hu, Yuanliang; Wang, Deyun; Liu, Jianzhu; Guo, Liwei

    2013-10-15

    Based on our previous research, four sulfated polysaccharide (sPSs) from Tremella and Condonpsis pilosula, sTPStp, sTPS70c, sCPPStp and sCPPS50c, were prepared and their effects on splenic lymphocytes proliferation in vitro and the immune response of ND vaccine in chicken were compared taking the unmodified polysaccharide (uPS) TPStp as control. The results showed that four sPSs could significantly or numerically stimulate splenic lymphocyte proliferation singly or synergistically with LPS in vitro, sTPS70c and sCPPStp demonstrated better effect; promote peripheral lymphocytes proliferation and enhance serum HI antibody titer in chickens vaccinated with ND vaccine, the actions of sPSs were stronger than that of uPS, and sTPS70c at medium dosage presented the best efficacy. These indicated that sulfation modification could improve the immune-enhancing activity of TPS and CPPS, sTPS70c possessed the strongest activity and would be expected as a component of new-type immunopotentiator.

  8. Magnesium sulfate enhances non-depolarizing muscle relaxant vecuronium action at adult muscle-type nicotinic acetylcholine receptor in vitro

    Institute of Scientific and Technical Information of China (English)

    Hong WANG; Qi-sheng LIANG; Lan-ren CHENG; Xiao-hong LI; Wei FU; Wen-tao DAI; Shi-tong LI

    2011-01-01

    To investigate the effect of magnesium sulfate and its interaction with the non-depolarizing muscle relaxant vecuronium at adult muscle-type acetylcholine receptors in vitro.Methods:Adult muscle-type acetylcholine receptors were expressed in HEK293 cells.Drug-containing solution was applied via a gravity-driven perfusion system.The inward currents were activated by brief application of acetylcholine (ACh),and recorded using whole-cell voltage-clamp technique.Results:Magnesium sulfate (1-100 mmol/L) inhibited the inward currents induced ACh (10 μmol/L) in a concentration-dependent manner (IC5o=29.2 mmol/L).The inhibition of magnesium sulfate was non-competitive.In contrast,vecuronium produced a potent inhibition on the adult muscle-type acetylcholine receptor (IC50=8.7 nmol/L) by competitive antagonism.Magnesium sulfate at the concentrations of 1,3,and 6 mmol/L markedly enhanced the inhibition of vecuronium (10 nmol/L) on adult muscle-type acetylcholine receptors.Conclusion:Clinical enhancement of vecuronium-induced muscle relaxation by magnesium sulfate can be attributed partly to synergism between magnesium sulfate and non-depolarizing muscle relaxants at adult muscle-type acetylcholine receptors.

  9. Lauryl-poly-L-lysine: A New Antimicrobial Agent?

    Directory of Open Access Journals (Sweden)

    Laetitia Vidal

    2014-01-01

    Full Text Available The development of multiple antibiotic resistance is a global problem. It is necessary to find new tools whose mechanisms of action differ from those of currently used antibiotics. It is known that fatty acids and cationic polypeptides are able to fight bacteria. Here, we describe the synthesis of fatty acids linked to a polypeptide with antibacterial activity. The linkage of fatty acids to a polypeptide is reported to increase the antibacterial effect of the linked fatty acid in comparison with free fatty acids (FA or free poly-L-lysine (PLL or a mixture of both (FA free + PLL free. A number of C6–C18 fatty acids were linked to PLL to obtain new synthetic products. These compounds were assessed in vitro to evaluate their antibacterial activity. Some fatty acid-PLLs showed a good ability to fight bacteria. Their bactericidal activity was evaluated, and, lauryl linked to PLL was found to be the most active product against both Gram-positive and Gram-negative bacteria. This new active component showed a good degree of specificity and reproducibility and its minimum inhibitory concentration (MIC was comparatively good. The antibacterial activity of the lauryl-PLL compound suggests that it is a new and promising antimicrobial agent.

  10. Lauryl-poly-L-lysine: A New Antimicrobial Agent?

    Science.gov (United States)

    Vidal, Laetitia; Thuault, Véronique; Mangas, Arturo; Coveñas, Rafael; Thienpont, Anne; Geffard, Michel

    2014-01-01

    The development of multiple antibiotic resistance is a global problem. It is necessary to find new tools whose mechanisms of action differ from those of currently used antibiotics. It is known that fatty acids and cationic polypeptides are able to fight bacteria. Here, we describe the synthesis of fatty acids linked to a polypeptide with antibacterial activity. The linkage of fatty acids to a polypeptide is reported to increase the antibacterial effect of the linked fatty acid in comparison with free fatty acids (FA) or free poly-L-lysine (PLL) or a mixture of both (FA free + PLL free). A number of C6-C18 fatty acids were linked to PLL to obtain new synthetic products. These compounds were assessed in vitro to evaluate their antibacterial activity. Some fatty acid-PLLs showed a good ability to fight bacteria. Their bactericidal activity was evaluated, and, lauryl linked to PLL was found to be the most active product against both Gram-positive and Gram-negative bacteria. This new active component showed a good degree of specificity and reproducibility and its minimum inhibitory concentration (MIC) was comparatively good. The antibacterial activity of the lauryl-PLL compound suggests that it is a new and promising antimicrobial agent.

  11. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-17

    Anaerobic reactors with ferric iron addition have been experimentally demonstrated to be able to simultaneously improve sulfate reduction and organic matter degradation during sulfate-containing wastewater treatment. In this work, a mathematical model is developed to evaluate the impact of ferric iron addition on sulfate reduction and organic carbon removal as well as the volatile fatty acids (VFA) composition in anaerobic reactor. The model is successfully calibrated and validated using independent long-term experimental data sets from the anaerobic reactor with Fe (III) addition under different operational conditions. The model satisfactorily describes the sulfate reduction, organic carbon removal and VFA production. Results show Fe (III) addition induces the microbial reduction of Fe (III) by iron reducing bacteria (IRB), which significantly enhances sulfate reduction by sulfate reducing bacteria (SRB) and subsequently changes the VFA composition to acetate-dominating effluent. Simultaneously, the produced Fe (II) from IRB can alleviate the inhibition of undissociated H2S on microorganisms through iron sulfide precipitation, resulting in further improvement of the performance. In addition, the enhancement on reactor performance by Fe (III) is found to be more significantly favored at relatively low organic carbon/SO4(2-) ratio (e.g., 1.0) than at high organic carbon/SO4(2-) ratio (e.g., 4.5). The Fe (III)-based process of this work can be easily integrated with a commonly used strategy for phosphorus recovery, with the produced sulfide being recovered and then deposited into conventional chemical phosphorus removal sludge (FePO4) to achieve FeS precipitation for phosphorus recovery while the required Fe (III) being acquired from the waste ferric sludge of drinking water treatment process, to enable maximum resource recovery/reuse while achieving high-rate sulfate removal.

  12. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela S., E-mail: angela.sanches.rocha@gmail.com [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Costa, Gustavo C. [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B. [Universidade Federal do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil)

    2017-01-15

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N{sub 2} adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH{sup −} surface group was replaced by a HSO{sub 4}{sup −}. The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO{sub 4}{sup −} species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb{sub 2}O{sub 5}) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  13. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response

    Science.gov (United States)

    Király, Lóránt; Künstler, András; Höller, Kerstin; Fattinger, Maria; Juhász, Csilla; Müller, Maria; Gullner, Gábor; Zechmann, Bernd

    2012-01-01

    Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (−S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and −S plants revealed that +S plants contained 55–132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than −S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in −S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation. PMID:22122784

  14. Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Mukaiyama, Hiroyuki; Giga-Hama, Yuko; Tohda, Hideki; Takegawa, Kaoru

    2009-11-01

    The effect of medium supplementation on heterologous production of human serum transferrin (hTF) in the fission yeast Schizosaccharomyces pombe has been investigated. The productivity of recombinant hTF was low in wild-type S. pombe cells. To overcome this impediment, culture media supplements were screened for their ability to improve secretion of hTF. Casamino acids (CAA), which have been reported to increase heterologous protein productivity in Pichia pastoris, improved the secretion hTF by more than fourfold. An anion surfactant deoxycholate or polyethylene glycol also improved the secretion hTF. Interestingly, dextran sodium sulfate (DSS), a poly-anion surfactant, was found to enhance production of secreted hTF better than any other supplement tested. Addition of DSS in the presence of 2% CAA exhibited a synergistic effect on increasing hTF secretion, resulting in an increase of about sevenfold relative to conventional conditions. Cell growth was not found to be affected by the addition of DSS or CAA. DSS may act as a surfactant and may also facilitate the anchoring of liposomes, and these properties may contribute to efficient secretion or exocytosis through the plasma membrane.

  15. Hyperbranched exopolysaccharide-enhanced foam properties of sodium fatty alcohol polyoxyethylene ether sulfate.

    Science.gov (United States)

    Deng, Quanhua; Li, Haiping; Sun, Haoyang; Sun, Yange; Li, Ying

    2016-05-01

    The foam properties, such as the foamability, foam stability, drainage, coalescence and bulk rheology, of aqueous solutions containing an eco-friendly exopolysaccharide (EPS) secreted by a deep-sea mesophilic bacterium, Wangia profunda SM-A87, and an anionic surfactant, sodium fatty alcohol polyoxyethylene ether sulfate (AES), were studied. Both the foamability and foam stability of the EPS/AES solutions are considerably higher than those of single AES solutions, even at very low AES concentrations, although pure EPS solutions cannot foam. The improved foamability and foam stability arise from the formation of the EPS/AES complex via hydrogen bonds at the interfaces. The synergism between the EPS and AES decreases the surface tension, increases the interfacial elasticity and water-carrying capacity, and suppresses the coalescence and collapse of the foams. The EPS/AES foams are more salt-resistant than the AES foams. This work provides not only a new eco-friendly foam with great potential for use in enhanced oil recovery and health-care products but also useful guidance for designing other environmentally friendly foam systems that exhibit high performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Joint enhancement of lead accumulation in Brassica plants by EDTA and ammonium sulfate in sand culture

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    When EDTA was added alone in the Pb-contaminated sand, the plant biomass and the total Pb amount in plant decreased in both species, Brassica pekinensis and B. juncea var. multiceps, though the shoot Pb amount increased. In contrast, when (NH4)2 SO4 was added alone in the Pb-contaminated sand, little effect was observed on the shoot Pb amount, though the root Pb amount was significantly increased in B. juncea var. multiceps. When amending EDTA and (NH4)2SO4 in combination, however, the shoot Pb amount in both species substantially increased, being, on an average, 2 times and 9 times higher than that in EDTA alone or (NH4)2 SO4 alone amended treatment, respectively.The two amendments showed antagonism for plant growth, but synergism for Pb bioaccumulation. B. pekinensis showed its highest level of shoot and total Pb amount in the treatment amended with EDTA and (NH4)2 SO4 only a half as much as in the other treatments. It is inferred that the mechanisms responsible for the joint-enhanced Pb accumulation might be concerned with the acidification of the growth medium, cation exchange reaction and relieving EDTA induced toxicity as results by amending ammonium sulfate.

  17. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2015-11-01

    Full Text Available Calcium sulfate (CaSO4, as a promising tissue repair material, has been applied widely due to its outstanding bioabsorbability and osteoconduction. However, fast disintegration, insufficient mechanical strength and poor bioactivity have limited its further application. In the study, CaSO4 scaffolds fabricated by using selective laser sintering were improved by adding 45S5 bioglass. The 45S5 bioglass enhanced stability significantly due to the bond effect of glassy phase between the CaSO4 grains. After immersing for four days in simulated body fluid (SBF, the specimens with 45S5 bioglass could still retain its original shape compared as opposed to specimens without 45S5 bioglass who experienced disintegration. Meanwhile, its compressive strength and fracture toughness increased by 80% and 37%, respectively. Furthermore, the apatite layer was formed on the CaSO4 scaffolds with 45S5 bioglass in SBF, indicating good bioactivity of the scaffolds. In addition, the scaffolds showed good ability to support the osteoblast-like cell adhesion and proliferation.

  18. Enhancement of pectinase production by ultraviolet irradiation and diethyl sulfate mutagenesis of a Fusarium oxysporum isolate.

    Science.gov (United States)

    Yin, L B; Zhang, C F; Xia, Q L; Yang, Y; Xiao, K; Zhao, L Z

    2016-09-23

    Fusarium oxysporum strain BM-201 was treated with ultraviolet (UV) radiation to obtain a high pectinase-producing strain. Mutant UV-10-41 was obtained and then treated by diethyl sulfate. Next, the mutant UV-diethyl sulfate-43 derived from UV-10-41 was selected as high pectinase-producing strain. Mutant UV-diethyl sulfate-43 was incubated on slant for 10 generations, demonstrating that the pectinase-producing genes were stable. Pectinase activity reached 391.2 U/mL, which is 73.6% higher than that of the original strain.

  19. Sulfation and Enhanced Antioxidant Capacity of an Exopolysaccharide Produced by the Medicinal Fungus Cordyceps sinensis

    OpenAIRE

    Jing-Kun Yan; Wen-Qiang Wang; Hai-Le Ma; Jian-Yong Wu

    2012-01-01

    EPS-1 was an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis (Cs-HK1). In the present study, EPS-1 was sulfated with chlorosulfonic acid (CSA)-pyridine (Pyr) at different volume ratios, yielding four sulfated derivatives, SEPS-1A, B, C and D, with different degrees of substitution (DS: 0.25–1.38) and molecular weights (17.1–4.1 kDa). The sulfation of EPS-1 occurred most frequently at the C-6 hydroxyl groups due to their higher reactivity. In aqueous s...

  20. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  1. Sulfation and Enhanced Antioxidant Capacity of an Exopolysaccharide Produced by the Medicinal Fungus Cordyceps sinensis

    Directory of Open Access Journals (Sweden)

    Jing-Kun Yan

    2012-12-01

    Full Text Available EPS-1 was an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis (Cs-HK1. In the present study, EPS-1 was sulfated with chlorosulfonic acid (CSA-pyridine (Pyr at different volume ratios, yielding four sulfated derivatives, SEPS-1A, B, C and D, with different degrees of substitution (DS: 0.25–1.38 and molecular weights (17.1–4.1 kDa. The sulfation of EPS-1 occurred most frequently at the C-6 hydroxyl groups due to their higher reactivity. In aqueous solution, the native EPS-1 formed random coils or aggregated networks, but the sulfated derivatives formed single helices. The antioxidant activities of the sulfated EPS-1 derivatives for scavenging hydroxyl radicals (•OH and 2,2-azinobis-3-ehtylbenzothiazolin-6-sulfonic acid radicals (ABTS•+ were significantly increased with increasing DS and decreasing molecular weight (MW. Sulfation has thus been shown to be an effective and favorable strategy for improving the physico-chemical properties and bioactivities of fungal polysaccharides.

  2. Sulfation and enhanced antioxidant capacity of an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis.

    Science.gov (United States)

    Yan, Jing-Kun; Wang, Wen-Qiang; Ma, Hai-Le; Wu, Jian-Yong

    2012-12-24

    EPS-1 was an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis (Cs-HK1). In the present study, EPS-1 was sulfated with chlorosulfonic acid (CSA)-pyridine (Pyr) at different volume ratios, yielding four sulfated derivatives, SEPS-1A, B, C and D, with different degrees of substitution (DS: 0.25-1.38) and molecular weights (17.1-4.1 kDa). The sulfation of EPS-1 occurred most frequently at the C-6 hydroxyl groups due to their higher reactivity. In aqueous solution, the native EPS-1 formed random coils or aggregated networks, but the sulfated derivatives formed single helices. The antioxidant activities of the sulfated EPS-1 derivatives for scavenging hydroxyl radicals (•OH) and 2,2-azinobis-3-ehtylbenzothiazolin-6-sulfonic acid radicals (ABTS•+) were significantly increased with increasing DS and decreasing molecular weight (MW). Sulfation has thus been shown to be an effective and favorable strategy for improving the physico-chemical properties and bioactivities of fungal polysaccharides.

  3. A stronger patch test elicitation reaction to the allergen hydroxycitronellal plus the irritant sodium lauryl sulfate

    DEFF Research Database (Denmark)

    Heydorn, S; Andersen, Klaus Ejner; Johansen, Jeanne Duus;

    2003-01-01

    elicitation reaction than patch testing with the allergen (hydroxycitronellal) alone, in patients previously patch tested positive to hydroxycitronellal. A stronger patch test elicitation reaction was defined as at least 1 day of patch test reading showing more positive patch tests...

  4. Effect of sodium lauryl sulfate (SLS) on in vitro percutaneous penetration of water, hydrocortisone and nickel

    DEFF Research Database (Denmark)

    Frankild, S; Andersen, Klaus Ejner; Nielsen, Gunnar

    1995-01-01

    as membrane in static in vitro penetration cells. Simultaneous application of SLS together with 1 of the tracer compounds showed, after 48 h, a significant dose-effect relationship between SLS concentration (0.25%, 2% and 10%) and penetration of tritiated water or nickel (p ... or hydrocortisone. Pretreatment of the skin with SLS for 2 h using 3 concentrations (0.25%, 4% and 10%) showed, after 48 h, a significant dose-effect relationship between SLS treatment and penetration of tritiated water or nickel (p .../damaging effect on the skin barrier. It should be kept in mind that the model uses a dead skin membrane without the barrier repair mechanisms of live skin....

  5. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application.

    Directory of Open Access Journals (Sweden)

    Koji Ichiyama

    Full Text Available Curdlan sulfate (CRDS, a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV. CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion. The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered.

  6. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application.

    Science.gov (United States)

    Ichiyama, Koji; Gopala Reddy, Sindhoora Bhargavi; Zhang, Li Feng; Chin, Wei Xin; Muschin, Tegshi; Heinig, Lars; Suzuki, Youichi; Nanjundappa, Haraprasad; Yoshinaka, Yoshiyuki; Ryo, Akihide; Nomura, Nobuo; Ooi, Eng Eong; Vasudevan, Subhash G; Yoshida, Takashi; Yamamoto, Naoki

    2013-01-01

    Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered.

  7. Glioma Cell Invasion is Significantly Enhanced in Composite Hydrogel Matrices Composed of Chondroitin 4- and 4,6-Sulfated Glycosaminoglycans.

    Science.gov (United States)

    Logun, Meghan T; Bisel, Nicole S; Tanasse, Emily A; Zhao, Wujun; Gunasekera, Bhagya; Mao, Leidong; Karumbaiah, Lohitash

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of astrocytoma accounting for a majority of primary malignant brain tumors in the United States. Chondroitin sulfate proteoglycans (CSPGs) and their glycosaminoglycan (GAG) side chains are key constituents of the brain extracellular matrix (ECM) implicated in promoting tumor invasion. However, the mechanisms by which sulfated CS-GAGs promote brain tumor invasion are currently unknown. We hypothesize that glioma cell invasion is triggered by the altered sulfation of CS-GAGs in the tumor extracellular environment, and that this is potentially mediated by independent mechanisms involving CXCL12/CXCR4 and LAR signaling respectively. This was tested in vitro by encapsulating the human glioma cell line U87MG-EGFP into monosulfated (4-sulfated; CS-A), composite (4 and 4,6-sulfated; CS-A/E), unsulfated hyaluronic acid (HA), and unsulfated agarose (AG; polysaccharide) hydrogels within microfluidics-based choice assays. Our results demonstrated the enhanced preferential cell invasion into composite hydrogels, when compared to other hydrogel matrices (p<0.05). Haptotaxis assays demonstrated the significantly (p<0.05) faster migration of U87MG-EGFP cells in CXCL12 containing CS-GAG hydrogels when compared to other hydrogel matrices containing the same chemokine concentration. This is likely due to the significantly (p<0.05) greater affinity of composite CS-GAGs to CXCL12 over other hydrogel matrices. Results from qRT-PCR assays further demonstrated the significant (p<0.05) upregulation of the chemokine receptor CXCR4, and the CSPG receptor LAR in glioma cells within CS-GAG hydrogels compared to control hydrogels. Western blot analysis of cell lysates derived from glioma cells encapsulated in different hydrogel matrices further corroborate qRT-PCR results, and indicate the presence of a potential variant of LAR that is selectively expressed only in glioma cells encapsulated in CS-GAG hydrogels. These results suggest that

  8. Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production

    OpenAIRE

    Kantachote,Duangporn; Charernjiratrakul,Wilawan; Noparatnaraporn, Napavarn; Oda, Kohei

    2008-01-01

    Sulfur oxidizing bacteria (SOB) were isolated and tested in order to remove sulfide from high sulfate wastewater to reduce the amount of hydrogen sulfide (H2S) in the produced biogas. A promising SOB isolate, designated as isolate T307, was selected due to its best sulfide removal (86.7%) in the effluent of a sulfate reduction reactor (SRR) over a 24 hrs incubation. The bacterium was able to grow better as a mixotroph (yeast extract as a carbon source) than as a chemolithoautotroph. In additi...

  9. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-04-01

    Full Text Available Ying Liu,1,* Man He,1,* Mengmeng Niu,1 Yiqing Zhao,1 Yuanzhang Zhu,1 Zhenhua Li,2 Nianping Feng1 1Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2Cedars-Sinai Medical Center, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate

  10. Effects of glycerol on human skin damaged by acute sodium lauryl sulphate treatment.

    Science.gov (United States)

    Atrux-Tallau, Nicolas; Romagny, Céline; Padois, Karine; Denis, Alain; Haftek, Marek; Falson, Françoise; Pirot, Fabrice; Maibach, Howard I

    2010-08-01

    Glycerol, widely used as humectant, is known to protect against irritants and to accelerate recovery of irritated skin. However, most studies were done with topical formulations (i.e. emulsions) containing glycerol in relatively high amounts, preventing drawing conclusions from direct effects. In this study, acute chemical irritations were performed on the forearm with application of a 10% sodium lauryl sulphate (SLS) aqueous solution under occlusion for 3 h. Then, glycerol aqueous solutions from 1 to 10% were applied under occlusion for 3 h. After elimination of moist excess consecutive to occlusive condition, in ambient air for 15 and 30 min, skin barrier function was investigated by dual measurement of skin hydration and transepidermal water loss (TEWL). Treatments with SLS solution under occlusion significantly increased TEWL and decreased skin hydration as assessed by capacitance measurements. The SLS irritant property was raised by the occlusion and the water barrier function as well as water content appeared impaired. Recovery with glycerol at low doses was remarkable through a mechanism that implies its hygroscopic properties and which is saturable. This precocious effect acts through skin rehydration by enhancing water-holding capacity of stratum corneum that would facilitate the late physiological repair of impaired skin barrier. Thus, glycerol appears to substitute for natural moisturizing factors that have been washed out by the detergent action of SLS, enhancing skin hydration but without restoring skin barrier function as depicted by TEWL values that remained high. Thus, irritant contact dermatitis treated with glycerol application compensate for skin dehydration, favouring physiological process to restore water barrier function of the impaired skin. Empirical use of glycerol added topical formulations onto detergent altered skin was substantiated in the present physicochemical approach.

  11. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.

    Science.gov (United States)

    Castillo, Julio; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José M

    2012-11-15

    Several experiments were conducted to evaluate the activity and growth of sulfate-reducing bacteria (SRB) in a metal-rich culture medium (approx. 250 mg/L Fe, 75 mg/L Zn and Cu, 10mg/L Cd) with phosphogypsum as bacterial inoculum. Phosphogypsum was collected from the stack covering the salt-marshes of the Tinto river (SW Spain). Three organic amendments were used as carbon sources, two low-cost wastes (horse manure and legume compost) and one sample of natural soil (vegetal cover). In the experiments, sulfate was reduced to sulfide during the growth of SRB populations, and concentrations were decreased in the solution. Metal concentrations also decreased to values below the detection limit. Metal removal took place by precipitation of newly-formed sulfides. Pyrite-S was the main sulfide component (approx. 200 μmol/g and 80% of pyritization) and occurred mainly as framboidal grains and rarely as isolated polyhedral crystals. Horse manure was the most successful organic substrate to promote SRB activity (sulfate removal of 61%), followed by vegetal cover (49%) and legume compost (31%). These findings propose the possibility of using naturally-occurring SRB in the phosphogypsum for bioremediation strategies based on natural soil covers with organic amendments.

  12. Sulfated modification can enhance antiglycation abilities of polysaccharides from Dendrobium huoshanense.

    Science.gov (United States)

    Qian, Xing-Ping; Zha, Xue-Qiang; Xiao, Jing-Jing; Zhang, Hai-Ling; Pan, Li-Hua; Luo, Jian-Ping

    2014-01-30

    Dendrobium huoshanense is an important edible-medicinal plant with high nutritional values and health functions. A homogenous polysaccharide (DHPD1) with molecular weight of 3.2 × 10(3)Da was extracted from D. huoshanense, which was mainly composed of glucose, arabinose, galactose, mannose and xylose. Chlorosulfonic acid-pyridine (CSA-Pyr) method was performed to modify the structure of DHPD1. In order to get a high degree of substitution (DS), sulfated modification conditions were optimized by response surface methodology. The maximum DS of 1.473 was obtained when the reaction condition was fixed at reaction temperature 60°C, reaction time 160 min and volume ratio of Pyr to CSA 2:1. NMR spectra revealed that this sulfation occurred to C-2 and C-6 of glycosyl residues in DHPD1. After 28 days of incubation, the sulfated DHPD1 at 1.0mg/mL showed the inhibitory ability of 58.5%, which increased by 16.2% and 52.5% than that of aminoguanidine and DHPD1 at the same dosage.

  13. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent.

    Science.gov (United States)

    El-Kosasy, Amira M; Hussein, Lobna A; Sedki, Nehal G; Salama, Nahla N

    2016-01-15

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at λ(ex) 257 nm and λ(em) 335 nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance.

  14. Chlorhexidine mouthwash and sodium lauryl sulphate dentifrice: do they mix effectively or interfere?

    NARCIS (Netherlands)

    Elkerbout, T.A.; Slot, D.E.; Bakker, E.W.P.; Van der Weijden, G.A.

    2016-01-01

    Focused question: What is the effectiveness of a chlorhexidine (CHX) mouthwash used in combination with a sodium lauryl sulphate (SLS) dentifrice on the parameters of plaque and gingivitis? Material and methods: MEDLINE-PubMed, Cochrane-CENTRAL, EMBASE and other electronic databases were searched up

  15. Chlorhexidine mouthwash and sodium lauryl sulphate dentifrice: do they mix effectively or interfere?

    NARCIS (Netherlands)

    Elkerbout, T.A.; Slot, D.E.; Bakker, E.W.P.; Van der Weijden, G.A.

    2016-01-01

    Focused question: What is the effectiveness of a chlorhexidine (CHX) mouthwash used in combination with a sodium lauryl sulphate (SLS) dentifrice on the parameters of plaque and gingivitis? Material and methods: MEDLINE-PubMed, Cochrane-CENTRAL, EMBASE and other electronic databases were searched up

  16. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.

    Science.gov (United States)

    Sharma, Mohita; Jain, Pratiksha; Varanasi, Jhansi L; Lal, Banwari; Rodríguez, Jorge; Lema, Juan M; Sarma, Priyangshu M

    2013-12-01

    An anoxic biocathode was developed using sulfate-reducing bacteria (SRB) consortium on activated carbon fabric (ACF) and the effect of stainless steel (SS) mesh as additional current collector was investigated. Improved performance of biocathode was observed with SS mesh leading to nearly five folds increase in power density (from 4.79 to 23.11 mW/m(2)) and threefolds increase in current density (from 75 to 250 mA/m(2)). Enhanced redox currents and lower Tafel slopes observed from cyclic voltammograms of ACF with SS mesh indicated the positive role of uniform electron collecting points. Differential pulse voltammetry technique was employed as an additional tool to assess the redox carriers involved in bioelectrochemical reactions. SRB biocathode was also tested for reduction of volatile fatty acids (VFA) present in the fermentation effluent stream and the results indicated the possibility of integration of this system with anaerobic fermentation for efficient product recovery.

  17. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J. [ARCADIS G& amp; M, Highlands Ranch, CO (United States)

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  18. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity.

    Science.gov (United States)

    Manuja, Anju; Kumar, Sandeep; Dilbaghi, Neeraj; Bhanjana, Gaurav; Chopra, Meenu; Kaur, Harmanmeet; Kumar, Rajender; Manuja, Balvinder K; Singh, Shailendra K; Yadav, Suresh C

    2014-08-01

    To reduce the dose, toxic effects and to ensure sustained release of quinapyramine sulfate (QS), a highly effective drug against Trypanosoma evansi. QS-loaded sodium alginate nanoparticles (QS-NPs) were formed by emulsion-crosslinking technology using dioctyl-sodium-sulfosuccinate and sodium alginate. The formulation was characterized for size, stability, morphology and functional groups by a zetasizer, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. In vitro safety and toxicity studies were performed by metabolic assay in Vero cell lines, and in vivo efficacy was evaluated in mice. QS-NPs were <60 nm with 96.48% entrapment efficiency and 3.70% drug loading. The formulation showed an initial burst effect followed by slow drug release in accordance with quasi-Fickian Higuchi diffusion mechanism. QS-NPs were much less toxic and able to clear the parasite at a much lower concentration than QS. The QS-NPs synthesized are safe, less toxic and highly effective compared with QS.

  19. Hormonal modulation of novelty processing in women: Enhanced under working memory load with high dehydroepiandrosterone-sulfate-to-dehydroepiandrosterone ratios.

    Science.gov (United States)

    do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles

    2016-11-10

    Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren

    2014-01-01

    in loading after 12 h of polymerization. The modified nanomaterials were melt mixed into polypropylene composites with very low filler loading (0.3 wt%), whereafter both the thermal and electrical properties were investigated by DSC and dielectric resonance spectroscopy. The electrical properties were found...... to be substantially improved, where poly(lauryl acrylate) was found to be the superior surface modification, resulting in a conductive composite....

  1. A sulfated galactans supplemented diet enhances the expression of immune genes and protects against Vibrio parahaemolyticus infection in shrimp.

    Science.gov (United States)

    Rudtanatip, Tawut; Boonsri, Nantavadee; Asuvapongpatana, Somluk; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2017-06-01

    A sulfated galactans (SG) supplemented diet was evaluated for the potential to stimulate immune activity in shrimp Penaeus vannamei (P. vannamei). Shrimp given the SG supplemented diet (0.5, 1 and 2% w/w) for 7 days showed enhanced expression of the downstream signaling mediator of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and immune related genes including p-NF-κB, IMD, IKKβ and IKKε, antimicrobial peptide PEN-4, proPO-I and II. Following immersion with Vibrio parahaemolyticus (V. parahaemolyticus) for 14 days, the shrimp given the SG supplemented diet (1 and 2% w/w) showed a decrease in bacterial colonies and bacterial toxin gene expression, compared to shrimp given a normal diet, and they reached 50% mortality at day 14. However, shrimp given the normal diet and challenged with the bacteria reached 100% mortality at day 6. SG-fed shrimp increased expression of immune genes related to LGBP signaling at day 1 after the bacterial immersion compared to control (no immersion), which later decreased to control levels. Shrimp on the normal diet also increased expression of immune related genes at day 1 after immersion which however decreased below control levels by day 3. Taken together, the results indicate the efficacy of the SG supplemented diet to enhance the immune activity in shrimp which could offer protection from V. parahaemolyticus infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation.

    Science.gov (United States)

    Shukla, Pradeep K; Chaudhry, Kamaljit K; Mir, Hina; Gangwar, Ruchika; Yadav, Nikki; Manda, Bhargavi; Meena, Avtar S; Rao, RadhaKrishna

    2016-03-07

    Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines.

  3. Effect of enhancers on permeation kinetics of captopril for transdermal system

    Directory of Open Access Journals (Sweden)

    Desai B

    2008-01-01

    Full Text Available Transdermal drug delivery system has seen a veritable explosion in the past decades. In the present scenario, very few transdermal patches are commercially available. The captopril being an antihypertensive drug requires chronic administration. Since the drug has an extensive first-pass metabolism, an attempt was made to develop transdermal drug delivery system for better patient compliance. In this study, flux and permeation enhancement trials of captopril were carried out using modified Franz diffusion cells through siloxane membrane for 8 h. Citral and dimethyl formamide as permeation enhancers showed the best permeability as compared to sodium tauroglycholate, sodium lauryl sulfate, etc. One longstanding approach for improving transdermal drug delivery uses penetration enhancers (also called sorption promoters or accelerants, which penetrate into skin to reversibly decrease the barrier resistance.

  4. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  5. Viscosity measurements of CO2-in-water foam with dodecyl polypropoxy sulfate surfactants for enhanced oil recovery application

    Science.gov (United States)

    Pramudita, Ria Ayu; Ryoo, Won Sun

    2016-08-01

    Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.

  6. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  7. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2016-01-01

    Full Text Available The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6-carboxyfluorescein (CF across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate , and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers.

  8. Enhancement of zidovudine uptake by dehydroepiandrosterone sulfate in rat syncytiotrophoblast cell line TR-TBT 18d-1.

    Science.gov (United States)

    Nishimura, Tomohiro; Seki, Yoshiaki; Sato, Kazuko; Chishu, Takuya; Kose, Noriko; Terasaki, Tetsuya; Kang, Young-Sook; Sai, Yoshimichi; Nakashima, Emi

    2008-10-01

    AZT (3'-azido-3'-deoxythymidine; zidovudine), which is used for the prevention of mother-to-child transmission of HIV-1, is transplacentally transferred to the fetus across the blood-placenta barrier, which is composed of syncytiotrophoblasts. We recently showed that apical uptake of AZT by syncytiotrophoblasts is mediated by saturable transport system(s) in the TR-TBT 18d-1 cell line, and the cellular accumulation of AZT was increased in the presence of dehydroepiandrosterone sulfate (DHEAS). Here, we aimed to clarify the mechanism of this effect of DHEAS. Inhibitors of efflux transporters, including breast cancer resistance protein, P-glycoprotein, and multidrug resistance proteins, had little effect on the cellular accumulation of AZT in TR-TBT 18d-1. Kinetic study revealed that the rate constant for AZT uptake was greatly increased in the presence of 1 mM DHEAS. These results suggested that the effect of DHEAS was because of enhancement of the uptake process(es), rather than inhibition of efflux. When AZT uptake was analyzed according to the Michaelis-Menten equation, the estimated Michaelis constant, Km, for AZT uptake in the presence of 1 mM DHEAS was lower than that in its absence, whereas maximum uptake velocity, Vmax, and nonsaturable uptake clearance, kns, were similar in the presence and absence of DHEAS, indicating that DHEAS may change the recognition characteristics of the transporter for AZT in TR-TBT 18d-1. Thus, the increase of AZT uptake in TR-TBT 18d-1 cells in the presence of DHEAS was concluded to be because of a DHEAS-induced change in the affinity of AZT uptake system, although the transporter responsible for AZT uptake has not been identified.

  9. Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater.

    Science.gov (United States)

    Müller, Juliana B; Ramos, Débora T; Larose, Catherine; Fernandes, Marilda; Lazzarin, Helen S C; Vogel, Timothy M; Corseuil, Henry X

    2017-03-15

    The use of biodiesel as a transportation fuel and its growing mandatory blending percentage in diesel increase the likelihood of contaminating groundwater with diesel/biodiesel blends. A 100L-field experiment with B20 (20% biodiesel and 80% diesel, v/v) was conducted to assess the potential for the combined biostimulation of iron and sulfate reducing bacteria to enhance BTEX and PAH biodegradation in a diesel/biodiesel blend-contaminated groundwater. A B20 field experiment under monitored natural attenuation (MNA) was used as a baseline control. Ammonium acetate and a low-cost and sustainable product recovered from acid mine drainage treatment were used to stimulate iron and sulfate-reducing conditions. As a result, benzene and naphthalene concentrations (maximum concentrations were 28.1μgL(-1) and 10.0μgL(-1), respectively) remained lower than the MNA experiment (maximum concentrations were 974.7μgL(-1) and 121.3μgL(-1), respectively) over the whole experiment. Geochemical changes were chronologically consistent with the temporal change of the predominance of Geobacter and GOUTA19 which might be the key players responsible for the rapid attenuation of benzene and naphthalene. To the best of our knowledge, this is the first field experiment to demonstrate the potential for the combined iron and sulfate biostimulation to enhance B20 source-zone biodegradation.

  10. Combined effects of irritants and allergens. Synergistic effects of nickel and sodium lauryl sulfate in nickel- sensitized individuals

    DEFF Research Database (Denmark)

    Agner, Tove; Johansen, Jeanne Duus; Overgaard, Lene

    2002-01-01

    Knowledge of the combined effects of irritants and allergens is of interest with respect to accurate risk assessment. The threshold for elicitation of allergic contact dermatitis in previously sensitized individuals may theoretically be markedly influenced by the simultaneous presence of irritants...... exposure to NiCl2 and SLS, as compared to each of the substances applied separately, as evaluated by colorimetry and clinical scoring. This means that the effect produced by the combined exposure was substantially greater than the effect produced by either of the substances alone. A synergistic effect...

  11. Skin reaction and regeneration after single sodium lauryl sulfate exposure stratified by filaggrin genotype and atopic dermatitis phenotype

    DEFF Research Database (Denmark)

    Bandier, Josefine; Carlsen, B.C.; Rasmussen, Morten Arendt

    2015-01-01

    BACKGROUND: Filaggrin is key for the integrity of the stratum corneum. Mutations in the filaggrin gene (FLGnull) play a prominent role in atopic dermatitis (AD) pathogenesis. People with AD have increased susceptibility to irritants. However, little is known about the effect of filaggrin genotype...

  12. Characterization of a Marine Microbial Community Used for Enhanced Sulfate Reduction and Copper Precipitation in a Two-Step Process.

    Science.gov (United States)

    García-Depraect, Octavio; Guerrero-Barajas, Claudia; Jan-Roblero, Janet; Ordaz, Alberto

    2017-06-01

    Marine microorganisms that are obtained from hydrothermal vent sediments present a great metabolic potential for applications in environmental biotechnology. However, the work done regarding their applications in engineered systems is still scarce. Hence, in this work, the sulfate reduction process carried out by a marine microbial community in an upflow anaerobic sludge blanket (UASB) reactor was investigated for 190 days under sequential batch mode. The effects of 1000 to 5500 mg L(-1) of SO4(-2) and the chemical oxygen demand (COD)/SO4(-2) ratio were studied along with a kinetic characterization with lactate as the electron donor. Also, the feasibility of using the sulfide produced in the UASB for copper precipitation in a second column was studied under continuous mode. The system presented here is an alternative to sulfidogenesis, particularly when it is necessary to avoid toxicity to sulfide and competition with methanogens. The bioreactor performed better with relatively low concentrations of sulfate (up to 1100 mg L(-1)) and COD/SO4(-2) ratios between 1.4 and 3.6. Under the continuous regime, the biogenic sulfide was sufficient to precipitate copper at a removal rate of 234 mg L(-1) day(-1). Finally, the identification of the microorganisms in the sludge was carried out; some genera of microorganisms identified were Desulfitobacterium and Clostridium.

  13. Effects of nonionic surfactant lauryl alcohol ethoxylated on stratum corneum alternative model biomembranes evaluated by biophysical techniques

    OpenAIRE

    Baby, André R.; Lacerda, Áurea C. L.; Prestes, Paula S.; Velasco, María Valéria R.; Kawano, Yoshio; Kaneko,Telma Mary

    2011-01-01

    The influence of the nonionic surfactant lauryl alcohol ethoxylate with 12 moles ethylene oxide (LAE-12OE) was evaluated on the Stratum corneum model biomembrane (SCMM) of shed snake skin (Bothrops jararaca and Spilotes pullatus) through the biophysical techniques Fourier transform Raman spectroscopy (FT-Raman) and Fourier transform infrared photoacoustic spectroscopy (PAS-FTIR). The surfactant was used in aqueous solutions above and below the critical micelle concentration (cmc), 50.0 and 0....

  14. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    Science.gov (United States)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  15. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates.

    Science.gov (United States)

    Xiao, Yuliang; Li, Pingli; Cheng, Yanna; Zhang, Xinke; Sheng, Juzheng; Wang, Decai; Li, Juan; Zhang, Qian; Zhong, Chuanqing; Cao, Rui; Wang, Fengshan

    2014-04-25

    The purpose of this report was to demonstrate the effect of amphiphilic polysaccharides-based self-assembling micelles on enhancing the oral absorption of low molecular weight chondroitin sulfate (LMCS) in vitro and in vivo, and identify the transepithelial transport mechanism of LMCS micelles across the intestinal barrier. α-Linolenic acid-low molecular weight chondroitin sulfate polymers(α-LNA-LMCS) were successfully synthesized, and characterized by FTIR, (1)HNMR, TGA/DSC, TEM, laser light scattering and zeta potential. The significant oral absorption enhancement and elimination half-life (t₁/₂) extension of LNA-LMCS2 in rats were evidenced by intragastric administration in comparison with CS and LMCS. Caco-2 transport studies demonstrated that the apparent permeability coefficient (Papp) of LNA-LMCS2 was significantly higher than that of CS and LMCS (p<0.001), and no significant effects on the overall integrity of the monolayer were observed during the transport process. In addition, α-LNA-LMCS micelles accumulated around the cell membrane and intercellular space observed by confocal laser scanning microscope (CLSM). Furthermore, evident alterations in the F-actin cytoskeleton were detected by CLSM observation following the treatment of the cell monolayers with α-LNA-LMCS micelles, which further certified the capacity of α-LNA-LMCS micelles to open the intercellular tight junctions rather than disrupt the overall integrity of the monolayer. Therefore, LNA-LMCS2 with low cytotoxicity and high bioavailability might be a promising substitute for CS in clinical use, such as treating osteoarthritis, atherosclerosis, etc.

  16. Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaoyan; Zhang, Han; Liu, Tongqiang; Zhang, Hui; Teng, Jie; Ji, Jun; Ding, Xiaoqiang

    2016-01-01

    Chronic kidney disease (CKD) is a state of Klotho deficiency. The Klotho expression may be suppressed due to DNA hypermethylation in cancer cells so we have investigated the effects and possible mechanisms by which Klotho expression is regulated in human aortic smooth muscle cells (HASMCs). The vascular Klotho hypermethylation in radial arteries of patients with end-stage renal disease was described. Cultured HASMCs and 5/6-nephrectomized Sprague Dawley (SD) rats treated with indoxyl sulfate (IS) were used as in vitro and in vivo models, respectively. IS increased CpG hypermethylation of the Klotho gene and decreased Klotho expression in HASMCs, and potentiated HASMCs calcification. The expression of DNA methyltransferase (DNMT) 1 and 3a in HASMCs treated with IS was significantly increased and specific inhibition of DNA methyltransferase 1 by 5-aza-2'-deoxycytidine(5Aza-2dc) caused demethylation of the Klotho gene and increased Klotho expression. In rats, injection of IS potentiated vascular calcification, increased CpG hypermethylation of the Klotho gene and decreased Klotho expression in the aortic medial layer and all of these changes could be reverted by 5Aza-2dc treatment. Transcriptional suppression of vascular Klotho gene expression by IS and epigenetic modification of Klotho by IS may be an important pathological mechanism of vascular calcification in CKD. PMID:27766038

  17. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  18. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  19. Growth, structure, crystalline perfection and characterization of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate crystals: Enhanced second harmonic generation (SHG) efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, K. [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India); Bhagavannarayana, G. [Crystal Growth and X-ray Analysis Activity, Council of Scientific and Industrial Research, National Physical Laboratory, New Delhi-110 012 (India); Meenakshisundaram, S.P., E-mail: aumats2009@gmail.com [Department of Chemistry, Annamalai University, Annamalainagar-608 002 (India)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A small quantity incorporation of Mg(II)- enhances the SHG efficiency of ZTS. Black-Right-Pointing-Pointer Crystal stress is observed. Black-Right-Pointing-Pointer Structure of Mg(II)-incorporated ZTS is elucidated. Black-Right-Pointing-Pointer Crystalline perfection is evaluated by HRXRD. - Abstract: Single crystals of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate (MZTS) have been grown from aqueous solution at room temperature by slow evaporation solution growth technique. The incorporation of Mg(II)- into the crystalline lattice was well confirmed by energy dispersive X-ray spectroscopy (EDS) and by single crystal X-ray diffraction technique. The reduction in the intensities observed in powder X-ray diffraction patterns of doped specimen and slight shifts in vibrational frequencies in FT-IR indicate the lattice stress as a result of doping. Thermal studies reveal the purity of the material and no decomposition is observed up to the melting point. High transmittance is observed in the visible region and the band gap energy is estimated by Kubelka-Munk algorithm. Surface morphology of doped material was observed by scanning electron microscopy (SEM). Decreased crystalline perfection by doping observed by high-resolution X-ray diffraction (HRXRD) analysis is justified by the crystal stress. Even a small quantity incorporation of Mg(II)- enhances the SHG efficiency significantly. The as-grown crystal is further characterized by microhardness and dielectric studies.

  20. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  2. Kinetic investigation of the oxidation of N-alkyl anilines by peroxomonophosphoric acid in anionic surfactant sodium lauryl sulphate

    Indian Academy of Sciences (India)

    G P Panigrahi; Jagannath Panda

    2000-12-01

    Kinetics of oxidation of N-methyl and N-ethyl aniline by peroxomono-phosphoric acid (PMPA) in aqueous and 5% (v/v) acetonitrile medium respectively have been studied in presence of anionic micelles of sodium lauryl sulphate (SLS) at different H. Oxidation rate of both the substrates increases up to a certain [SLS] much below the critical micellar concentration (cmc) after which the rate is retarded. Kinetic data have been used to compute the binding constants of both substrate and oxidant with the micelle. A scheme explaining the kinetic data has been proposed.

  3. Renal Toxicity of Nickel,Sodium Lauryl Sulphate and Their Combination after Dermal Application in Guinea Pigs

    Institute of Scientific and Technical Information of China (English)

    A.K.MATHUR; B.N.GUPTA; 等

    1993-01-01

    The guinea pigs were dermally exposed to nickel(Ni).sodium lauryl sulphate(SLS)and in their combination for 7 and 14 days.The exposure to Ni and SLS produced changes in enzymes and lipid peroxidation in kidney.The exposure to Ni or SLS epicted slight changes while combined exposure to Ni plus SLS exhibited more degenerative changes in kidney.The result of the study suggests that industrial workers and/or populations exposed simultaneously to Ni and SLS produces more damage to kidney.

  4. Porous sulfated metal oxide SO4 2-/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance

    Science.gov (United States)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin

    2017-01-01

    Sulfated metal oxide SO4 2-/Fe2O3 was prepared by a novel facile sol-gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe2O3, the agglomeration of particles has been alleviated after the incorporation of SO4 2-. Interestingly, the primary particle size of the SO4 2-/Fe2O3 (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO4 2-/Fe2O3 exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO4 2-/Fe2O3 delivered a higher reversible discharge capacity (992 mAh g-1), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe2O3. We believed that the presence of SO4 2- and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li+ and electrons.

  5. Effects of topical corticosteroid and tacrolimus on ceramides and irritancy to sodium lauryl sulphate in healthy skin.

    Science.gov (United States)

    Jungersted, Jakob Mutanu; Høgh, Julie K; Hellegren, Lars I; Jemec, Gregor B E; Agner, Tove

    2011-05-01

    The skin barrier, located in the stratum corneum, is influenced mainly by the lipid and protein composition of this layer. In eczematous diseases impairment of the skin barrier is thought to be of prime importance. Topical anti-inflammatory drugs and emollients are the most widely used eczema treatments. The aim of this study was to examine the effects of topically applied corticosteroid, tacrolimus and emollient on stratum corneum lipids and barrier parameters. Nineteen healthy volunteers participated in the study. Both forearms of the subjects were divided into four areas, which were treated twice daily for one week with betamethasone, tacrolimus, emollient, or left untreated, respectively. After one week each area was challenged with a 24 h sodium lauryl sulphate patch test. The lipids were collected using the cyanoacrylate method and evaluated by high performance thin layer chromatography. For evaluation of the skin barrier, transepidermal water loss, erythema and electrical capacitance were measured. The ceramide/cholesterol ratio was increased in betamethasone- (p = 0.008) and tacrolimus-treated (p = 0.025) skin compared with emollient-treated skin. No differences in ceramide subgroups were found between treatment regimes. Pretreatment with betamethasone (p = 0.01) or with tacrolimus (p = 0.001) causes a decreased inflammatory response to sodium lauryl sulphate compared with emollient. In conclusion, treatment with betamethasone and tacrolimus has a positive effect on the ceramide/cholesterol ratio and susceptibility to irritant reaction compared with an emollient.

  6. The neurosteroid dehydroepiandrosterone sulfate, but not androsterone, enhances the antidepressant effect of cocaine examined in the forced swim test--Possible role of serotonergic neurotransmission.

    Science.gov (United States)

    Krzascik, Pawel; Zajda, Malgorzata Elzbieta; Majewska, Maria Dorota

    2015-04-01

    One of the mechanisms of cocaine's actions in the central nervous system is its antidepressant action. This effect might be responsible for increased usage of the drug by individuals with mood disorders. Higher endogenous levels of the excitatory neurosteroid dehydroepiandrosterone sulfate (DHEAS) were reported to correlate with successful abstinence from cocaine use in addicts, but a clinical trial showed that supplementation with a high dose of DHEA increased cocaine usage instead. Such ambiguous effects of DHEA(S) could potentially be linked to its influence on the antidepressant effect of cocaine. In this study we tested DHEAS and its metabolite, androsterone, for interactions with cocaine in animal model of depression (forced swim test) and examined the effects of both steroids and cocaine on serotoninergic neurotransmission. All substances were also tested for influence on locomotor activity. A cocaine dose of 5mg/kg, which had no significant effect on locomotor activity, was chosen for the forced swim test. Neither DHEAS nor androsterone showed any antidepressant action in this test, while cocaine manifested a clear antidepressant effect. Androsterone slightly reduced the antidepressant influence of cocaine while DHEAS markedly, dose-dependently enhanced it. Such an effect might be caused by the influence of DHEAS on serotonin neurotransmission, as this steroid decreased serotonin concentration and turnover in the striatum. When DHEAS and cocaine were administered together, the levels of serotonin in the striatum and hippocampus remained unchanged. This phenomenon may explain the additive antidepressant action of DHEAS and cocaine and why co-administration of DHEAS and cocaine increases drug use.

  7. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus; Truex, Michael J.; Shen, Xin; Li, Xiqing

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D column and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.

  8. Sulfated polysaccharides and immune response: promoter or inhibitor?

    Science.gov (United States)

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  9. Molybdate transport through the plant sulfate transporter SHST1.

    Science.gov (United States)

    Fitzpatrick, Kate L; Tyerman, Stephen D; Kaiser, Brent N

    2008-04-30

    Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein.

  10. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    Science.gov (United States)

    Quirino, Joselito P; Kato, Masaru

    2014-09-01

    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  11. Oyster mushroom’s lipase enzyme entrapment on calcium alginate as biocatalyst in the synthesis of lauryl diethanolamide

    Science.gov (United States)

    Wijayati, N.; Masubah, K.; Supartono

    2017-02-01

    Lipase is an enzyme with large biotechnology applications, such as hydrolysis in the food industry, applications in chemical industry, synthesis of polymers and surfactants. Lipase was isolated from oyster mushroom with activity 0,93 U/mg and protein content 1,1234 mg/mL. Lipase was immobilized by entrapment method in a matrix of Ca-alginate. This report describes that we have developed for the synthesis of lauryl diethanolamide The result showed that the optimum condition of lipase immobilization was achieved on 3% Na-alginate solution with protein content 0,84 mg/mL and the activity 3,33 U/mg. An amide (22.911%) formed from the amidation of lauric acid and diethanolamine.

  12. Nanocrystalline cellulose with various contents of sulfate groups.

    Science.gov (United States)

    Voronova, M I; Surov, O V; Zakharov, A G

    2013-10-15

    Properties of films derived from aqueous nanocrystalline cellulose dispersions by water evaporation depend on concentration of sulfate groups. Namely type of thermodestruction and surface morphology change as a function of contents of sulfate groups. Surface roughness increases and water adsorption enhances with increasing sulfate groups content particularly at high relative pressure.

  13. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    Science.gov (United States)

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ferrous Sulfate (Iron)

    Science.gov (United States)

    Ferrous sulfate provides the iron needed by the body to produce red blood cells. It is used ... Ferrous sulfate comes as regular, coated, and extended-release (long-acting) tablets; regular and extended-release capsules; ...

  15. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    Science.gov (United States)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  16. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  17. Effects of polyethoxylate lauryl ether (Brij 35) addition on phenanthrene biodegradation in a soil/water system.

    Science.gov (United States)

    Chang, Yi-T; Hung, Chun-H; Chou, Hsi-L

    2014-01-01

    Non-ionic surfactants usually are often selected for use in surfactant flushing technology, which is a process that can be used as part of PAH-contaminated soil bioremediation. Phenanthrene (PHE) biodegradation in the presence of polyethoxylate lauryl ether (Brij 35) was studied in two soil/water systems. The natural soil organic matter content (SOM) and the present of Brij 35, both above the critical micelle concentration (CMC) and below the CMC, changed the rate of PHE biodegradation in the presence of Brij 35. PHE biodegradation is different in the two different soil/water systems: PHE > PHE-Brij 35-Micelle > PHE-Brij 35-Monomer in the clay/water system; PHE-Brij 35-Micelle > PHE-Brij 35-Monomer > PHE in the natural soil/water system. Among the free-living species associated with PHE-Brij 35 biodegradation, Brevundimonas diminuta, Caulobacter spp., Mycoplana bullata, Acidovorax spp. and Pseudomonas aeruginosa accounted for 90.72% to 99.90% of the bacteria present. Specific hydrolytic enzymes, including esterases, glycosol-hydrolases and phosphatases, are expressed during PHE biodegradation. The information presented here will help the engineering design of more effective PAH bioremediation systems that use Brij 35 series flushing technology. In particular, micelles of Brij 35 can be used to accelerate the rate of remediation of PAH-contaminated soil in natural soil/water systems.

  18. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans?

    Science.gov (United States)

    Pereira, Mariana S; Melo, Fábio R; Mourão, Paulo A S

    2002-10-01

    We attempted to identify the specific structural features in sulfated galactans and sulfated fucans that confer anticoagulant activity. For this study we employed a variety of invertebrate polysaccharides with simple structures composed of well-defined units of oligosaccharides. Our results indicate that a 2-O-sulfated, 3-linked alpha-L-galactan, but not a alpha-L-fucan with a similar molecular size, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaced thrombin. The occurrence of 2,4-di-O-sulfated units is an amplifying motif for 3-linked alpha-fucan-enhanced thrombin inhibition by antithrombin. If we replace antithrombin by heparin cofactor II, then the major structural requirement for the activity becomes single 4-O-sulfated fucose units. The presence of 2-O-sulfated fucose residues always had a deleterious effect on anticoagulant activity. Overall, our results indicate that the structural requirements for interaction of sulfated galactans and sulfated fucans with coagulation cofactors and their target proteases are stereospecific and not merely a consequence of their charge density and sulfate content.

  19. Tyrosine Sulfation of Statherin

    Directory of Open Access Journals (Sweden)

    C. Kasinathan, N. Gandhi, P. Ramaprasad, P. Sundaram, N. Ramasubbu

    2007-01-01

    Full Text Available Tyrosylprotein sulfotransferase (TPST, responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96. In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl2. Increase in the level of total sulfation was observed with increasing statherin concentration. The Km value of tyrosylprotein sulfotransferase for statherin was 40 μM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed 35S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.

  20. Roles of heparan sulfate sulfation in dentinogenesis.

    Science.gov (United States)

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-04-06

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.

  1. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  2. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  3. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  4. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    Science.gov (United States)

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  5. One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange

    Institute of Scientific and Technical Information of China (English)

    Radha Devi Chekuri; Siva Rao Tirukkovalluri

    2016-01-01

    This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%–10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized by employing various techniques like X-ray Diffraction (XRD), Ultraviolet–Visible Diffuse Reflection Spectroscopy (UV–Vis DRS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared Spectroscopic Studies (FT-IR), and Transmission Electron Microscopy (TEM). From the XRD and TEM results, al the samples were reported in anatase phase with reduction in particle size in the range of 7 to 12 nm. SEM indicated the change in morphology of the particles. The presence of copper in titania lattice was evidenced by XPS. From UV–Vis DRS and FT-IR studies indicated that prominent absorption shift is observed towards visible region (red shift), the entry of Cu2+into TiO2 lattice as a substitution-al dopant and SO42− ions were covalently bonded with Ti4+ on the surface of the copper doped titania respectively. The photocatalytic activity studies were investigated by considering methyl orange (MO) as dye pol utant in the presence of the visible light. The effect of various parameters like effect of dosage of the catalyst, dopant concentration, pH of the solution, and concentration of the dye was studied in detail.

  6. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  7. Sulfated dextrans enhance in vitro amplification of bovine spongiform encephalopathy PrP(Sc and enable ultrasensitive detection of bovine PrP(Sc.

    Directory of Open Access Journals (Sweden)

    Yuichi Murayama

    Full Text Available BACKGROUND: Prions, infectious agents associated with prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE in cattle, and scrapie in sheep and goats, are primarily comprised of PrP(Sc, a protease-resistant misfolded isoform of the cellular prion protein PrP(C. Protein misfolding cyclic amplification (PMCA is a highly sensitive technique used to detect minute amounts of scrapie PrP(Sc. However, the current PMCA technique has been unsuccessful in achieving good amplification in cattle. The detailed distribution of PrP(Sc in BSE-affected cattle therefore remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We report here that PrP(Sc derived from BSE-affected cattle can be amplified ultra-efficiently by PMCA in the presence of sulfated dextran compounds. This method is capable of amplifying very small amounts of PrP(Sc from the saliva, palatine tonsils, lymph nodes, ileocecal region, and muscular tissues of BSE-affected cattle. Individual differences in the distribution of PrP(Sc in spleen and cerebrospinal fluid samples were observed in terminal-stage animals. However, the presence of PrP(Sc in blood was not substantiated in the BSE-affected cattle examined. CONCLUSIONS/SIGNIFICANCE: The distribution of PrP(Sc is not restricted to the nervous system and can spread to peripheral tissues in the terminal disease stage. The finding that PrP(Sc could be amplified in the saliva of an asymptomatic animal suggests a potential usefulness of this technique for BSE diagnosis. This highly sensitive method also has other practical applications, including safety evaluation or safety assurance of products and byproducts manufactured from bovine source materials.

  8. Proteolysis, NaOH and Ultrasound-Enhanced Extraction of Anticoagulant and Antioxidant Sulfated Polysaccharides from the Edible Seaweed, Gracilaria birdiae

    Directory of Open Access Journals (Sweden)

    Gabriel Pereira Fidelis

    2014-11-01

    Full Text Available The sulfated polysaccharides (SP from the edible red seaweed, Gracilaria birdiae, were obtained using five different extraction conditions: Gracilaria birdiae 1 (GB1-water; GB1s-water/sonication; GB1sp-water/sonication/proteolysis; GB2s-NaOH/sonication; and GB2sp-NaOH/sonication/proteolysis. The yield (g increased in the following order: GB2sp > GB1sp > GB2s > GB1s > GB1. However, the amount of SP extracted increased in a different way: GB2sp > GB1 > GB1sp > GB1s > GB2s. Infrared and electrophoresis analysis showed that all conditions extracted the same SP. In addition, monosaccharide composition showed that ultrasound promotes the extraction of polysaccharides other than SP. In the prothrombin time (PT test, which evaluates the extrinsic coagulation pathway, none of the samples showed anticoagulant activity. While in the activated partial thromboplastin time (aPTT test, which evaluates the intrinsic coagulation pathway, all samples showed anticoagulant activity, except GB2s. The aPTT activity decreased in the order of GB1sp > GB2sp > GB1 > GB1s > GB2s. The total capacity antioxidant (TCA of the SP was also affected by extraction condition, since GB2s and GB1 showed lower activity in comparison to the other conditions. In conclusion, the conditions of SP extraction influence their biological activities and chemical composition. The data revealed that NaOH/sonication/proteolysis was the best condition to extract anticoagulant and antioxidant SPs from Gracilaria birdiae.

  9. Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae.

    Science.gov (United States)

    Fidelis, Gabriel Pereira; Camara, Rafael Barros Gomes; Queiroz, Moacir Fernandes; Santos Pereira Costa, Mariana Santana; Santos, Pablo Castro; Rocha, Hugo Alexandre Oliveira; Costa, Leandro Silva

    2014-11-13

    The sulfated polysaccharides (SP) from the edible red seaweed, Gracilaria birdiae, were obtained using five different extraction conditions: Gracilaria birdiae 1 (GB1)-water; GB1s-water/sonication; GB1sp-water/sonication/proteolysis; GB2s-NaOH/sonication; and GB2sp-NaOH/sonication/proteolysis. The yield (g) increased in the following order: GB2sp>GB1sp>GB2s>GB1s>GB1. However, the amount of SP extracted increased in a different way: GB2sp>GB1>GB1sp>GB1s>GB2s. Infrared and electrophoresis analysis showed that all conditions extracted the same SP. In addition, monosaccharide composition showed that ultrasound promotes the extraction of polysaccharides other than SP. In the prothrombin time (PT) test, which evaluates the extrinsic coagulation pathway, none of the samples showed anticoagulant activity. While in the activated partial thromboplastin time (aPTT) test, which evaluates the intrinsic coagulation pathway, all samples showed anticoagulant activity, except GB2s. The aPTT activity decreased in the order of GB1sp>GB2sp>GB1>GB1s>GB2s. The total capacity antioxidant (TCA) of the SP was also affected by extraction condition, since GB2s and GB1 showed lower activity in comparison to the other conditions. In conclusion, the conditions of SP extraction influence their biological activities and chemical composition. The data revealed that NaOH/sonication/proteolysis was the best condition to extract anticoagulant and antioxidant SPs from Gracilaria birdiae.

  10. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    Science.gov (United States)

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  11. 气升式反应器超声破碎海带提取硫酸酯多糖%Extraction of Sulfate Radical Polysaccharide from Laminaria Japonica Enhanced by Ultrasonic Wave in an Air-lift Reactor

    Institute of Scientific and Technical Information of China (English)

    王谦; 黄猛; 赵兵; 王玉春; 欧阳藩; 伍志春

    2001-01-01

    在内径8 cm、有效容积为1 L的气升式循环超声破碎浸提装置中, 进行了超声波强化海带硫酸酯多糖浸提实验. 在pH 5.0、提取温度40oC、液固比45、提取时间25 min、通气量75 L/h 、超声功率120 W、超声作用时间百分比为100%的工艺条件下,硫酸酯多糖的提取率可达1.86%, 比传统水提法高,且极大地缩短了提取时间,比相同条件下不用超声时的提取率(1.11%)高得多. 此法所得多糖的SO42- 含量(26.5%)比水法浸提(20.8%)和相同条件下不用超声时(21.3%)都要高,显示出超声波在强化海带硫酸酯多糖浸提方面的良好应用前景.%The extraction of sulfate radical polysaccharide from Laminaria Japonica enhanced by ultrasonic wave in an air-lift reactor was reported. The optimal experimental conditions in this reactor (diameter 8 cm, working volume 1 liter) were pH 5.0, operation temperature 40oC, mass ratio of liquid to solid 45, extraction time 25 min, air flow rate 75 L/h, ultrasonic power 120 W, ultrasonic duty cycle 100%. Under the above conditions, the extraction ratio of sulfate radical polysaccharide reached 1.86%, higher than that by treatment for 3 h in water at 100oC and that under the same conditions without ultrasonic wave applied. The content of SO42- in sulfate radical polysaccharide of the former was 5.7% higher due to application of ultrasonic wave. The experimental results showed that this novel extraction process is prospective in the extraction of polysaccharide from seaweed.

  12. Enhancement of visual scoring of skin irritant reactions using cross-polarized light and parallel-polarized light.

    Science.gov (United States)

    Farage, Miranda A

    2008-03-01

    Polarized light has been used as an aid in visualizing various skin conditions, including acne vulgaris, rosacea, photoageing, lentigo simplex, and basal cell carcinoma. The use of parallel-polarized and cross-polarized light was evaluated in mild irritant reactions to determine, if this increases the ability to detect very early stages or low levels of irritation. Low concentrations of sodium lauryl sulfate (0.01% and 0.1%) were patched on human volunteers for 2, 6, and 24 hr, daily for 2-3 days in a modification of the standard patch test. Feminine protection products were evaluated in the behind-the-knee (BTK) test. Erythema reactions were scored by unaided visual assessment and using a polarized light visualization system. In the 24-hr patch test, mean erythema assessed with polarized light was consistent with results of unaided visual scoring. Under milder conditions (2- and 6-hr patches), and in the BTK, significant differences from pretreatment levels of erythema were apparent earlier in the series of treatments compared with unaided scoring. In addition, subsurface scoring demonstrated that changes were still present under the skin surface even after unaided visual scoring indicated recovery. Low (subclinical) levels of irritation can be detected using enhanced visual scoring, indicating this non-invasive method has the potential to increase the sensitivity of our clinical studies.

  13. Syndecan heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Gomes, Angélica Maciel; Sinkeviciute, Dovile; Multhaupt, Hinke A.B.

    2016-01-01

    Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell. Their hep......Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell....... Their heparan sulfate chains, due to their vast structural diversity, interact with a wide array of ligands including potent regulators of adhesion, migration, growth and survival. Frequently, ligands interact with cell surface heparan sulfate in conjunction with high affinity receptors. The consequent...... signaling can therefore be complex, but it is now known that syndecans are capable of independent signaling. This review is divided in two sections, and will first discuss how the assembly of heparan sulfate, the anabolic process, encodes information related to ligand binding and signaling. Second, we...

  14. 月桂酰醇胺的合成及性能研究%Study on Synthesis and Property of Lauryl Diethanolamine

    Institute of Scientific and Technical Information of China (English)

    陈蔚燕

    2013-01-01

      以月桂酸和二乙醇胺为原料,合成非离子表面活性剂月桂酰二乙醇胺,并对合成的产品进行了性能测定。结果表明,月桂酸与二乙醇胺之比为1∶2,反应温度为160℃,反应时间为4h,催化剂为0.5%时,产品的性能最优。%In this paper, non-ionic surfactant lauryl diethanolamine was synthesized using lauric acid and diethanolamine as raw materials. When the molar ratio of diethanolamine to lauric acid was 1∶2.2, the temperature was 160℃, the reaction time was 3 h, the performance of the product was the best.

  15. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    Science.gov (United States)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  16. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway.

    Science.gov (United States)

    Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien

    2016-11-01

    Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.

  17. Demonstration of the Enhanced Disinfection of E. coli Water Con¬tamination by Associated Solar Irradiation with Potassium Per¬sulfate

    Directory of Open Access Journals (Sweden)

    Ghader GHANIZADEH

    2015-10-01

    Full Text Available  Background: Tremendous amount of researches have investigated the issue of water photodisnfection. The aim of this research is to illustrate the influences of bacterial density, turbidity, exposure time and potassium persulfate (KPS dosage on the efficacy of associated solar disinfection (SODIS with KPS for E. coli (ATCC: 25922 eradication as an efficient and inexpensive process.Methods: Desired bacterial density and turbidity was achieved by spiking of 0.5 Mc Farland (1.5×108 cell/ml and sterile soil slurry in 1 liter of the commercially bottled water.Results: The highest value of UVA solar irradiation measured at 13.30 p.m was 5510 µW/Cm2. Increase of bacterial density from 1000 to 1500 cell/ml led to an increase in disinfection lapse time, except in 2 mMol/l KPS. Spiking of 0.1 mMol/l of KPS was not effective; however, increase of KPS dosage from 0.1 mMol/l to 0.7, 1.5 and 2 mMol/l led to the enhancement of disinfection time from 4 h to 3 h and 1 h, respectively. For bacterial density of 1000 cell/ml, increasing KPS dosage up to 0.7 mMol/l had no improved effect; however, beyond this dosage the disinfection time decreased to 1 h. Without KPS and up to 150 NTU within 4 h exposure time, E. coli disinfection was completed. In 2 mMol/l KPS and 1000 and 1500 cell/ml, the 2 h contact time was sufficient up to 150 and 100 NTU, respectively; moreover, complete disinfection was not achieved at higher turbidity.Conclusion: Association of KPS with SODIS can lead to decreasing of water disinfection time. Keywords: Disinfection, Solar irradiation, Potassium persulfate, Water, E. coli

  18. Controlling barium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, R.

    Even though for several years success has been realized in controlling barium sulfate scale deposition in relatively shallow, low pressure oil wells--by squeezing an organic phosphonate scale inhibitor into the producing zone--barium sulfate scale depositon in deep, high pressure/high temperature wells usually meant an expensive workover operation. A case history of a deep (16,000 ft) well in St. Mary Parish, Louisiana, and the scale inhibitor squeeze operation are described. Based on the successful results obtained in treating this well, a generalized treating procedure for combating downhole scale deposition in high pressure/high temperature gas wells is presented. Formation squeezing with such an inhibitor represents a significant breakthrough for the oil and gas industry.

  19. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates

    Science.gov (United States)

    Pomin, Vitor H.; Mourão, Paulo A. S.

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs. PMID:24639954

  20. Specific sulfation and glycosylation - a structural combination for the anticoagulation of marine carbohydrates

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2014-03-01

    Full Text Available Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs, sulfated galactans (SGs and glycosaminoglycans (GAGs. The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  1. Specific sulfation and glycosylation-a structural combination for the anticoagulation of marine carbohydrates.

    Science.gov (United States)

    Pomin, Vitor H; Mourão, Paulo A S

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  2. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugumaran, G.; Silbert, J.E.

    1988-04-05

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  3. Off limits: sulfate below the sulfate-methane transition

    Science.gov (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  4. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  5. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  6. Maternal magnesium sulfate fetal neuroprotective effects to the fetus: inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model.

    Science.gov (United States)

    Beloosesky, Ron; Khatib, Nizar; Ginsberg, Yuval; Anabosy, Saja; Shalom-Paz, Einat; Dahis, Masha; Ross, Michael G; Weiner, Zeev

    2016-09-01

    Maternal magnesium administration has been shown to protect the preterm fetus from white- and gray-matter injury, although the mechanism is unknown. The purpose of the study is to test the following hypotheses: (1) maternal infections/inflammation activate fetal neuronal N-methyl-D-aspartate receptors that up-regulate neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells pathways; and (2) maternal magnesium sulfate attenuates fetal brain neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation through N-methyl-D-aspartate receptors. Pregnant rats at embryonic day 16 and embryonic day 18 (n = 6, 48 total) received injections of intraperitoneal lipopolysaccharide 500 μg/kg or saline at time 0. Dams were randomized for treatment with subcutaneous magnesium sulfate (270 mg/kg) or saline for 2 hours prior to and following lipopolysaccharide/saline injections. At 4 hours after lipopolysaccharide administration, fetal brains were collected from the 4 treatment groups (lipopolysaccharide/saline, lipopolysaccharide/magnesium sulfate, saline/magnesium sulfate, saline/saline), and phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels were determined by Western blot. An additional group of pregnant rats (n = 5) received N-methyl-D-aspartate-receptor antagonist following the lipopolysaccharide injection to study magnesium sulfate protective mechanism. Lipopolysaccharide (lipopolysaccharide/saline) significantly increased fetal brain phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels compared to the saline/saline group at both embryonic day 16 (phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; nuclear factor kappa-light-chain-enhancer of activated B cells

  7. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates.

    Science.gov (United States)

    Farias, W R; Valente, A P; Pereira, M S; Mourão, P A

    2000-09-22

    We have characterized the structure of a sulfated d-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-alpha-d-Galp-1-->3-beta-d-Galp-1-->) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total alpha-units are 2,3-di-O-sulfated and another one-third are 2-O-sulfated. The algal sulfated d-galactan has a potent anticoagulant activity (similar potency as unfractionated heparin) due to enhanced inhibition of thrombin and factor Xa by antithrombin and/or heparin cofactor II. We also extended the experiments to several sulfated polysaccharides from marine invertebrates with simple structures, composed of a single repeating structure. A 2-O- or 3-O-sulfated l-galactan (as well as a 2-O-sulfated l-fucan) has a weak anticoagulant action when compared with the potent action of the algal sulfated d-galactan. Possibly, the addition of two sulfate esters to a single alpha-galactose residue has an "amplifying effect" on the anticoagulant action, which cannot be totally ascribed to the increased charge density of the polymer. These results indicate that the wide diversity of polysaccharides from marine alga and invertebrates is a useful tool to elucidate structure/anticoagulant activity relationships.

  8. 21 CFR 184.1315 - Ferrous sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous sulfate. 184.1315 Section 184.1315 Food and... Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate... as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate...

  9. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus.

    Science.gov (United States)

    Bao, HongHui; Choi, Won-Seok; You, SangGuan

    2010-01-01

    The effect of sulfated modification on polysaccharides from Hypsizigus marmoreus was examined by determining their molecular structures and bioactivities. The sulfation, which was implemented by using an orthogonal array design, produced polysaccharides with varying degrees of substitution (DS) ranging from 0.11 to 1.06. The sulfated polysaccharides exhibited a lower average molecular weight (M(w)) and considerably higher radius of gyration (R(g)) than those of native polysaccharide, suggesting that the conformation of the sulfated polysaccharides had been changed towards a more extended type. The inhibitory activity toward cancer cell growth was enhanced by treating with the sulfated polysaccharides by up to 34%, as compared to the native polysaccharide. In addition, treating with the sulfated polysaccharides increased the nitric oxide (NO) and cytokine (IL-1beta and TNF-alpha) release to levels comparable to those detected in the positive control, lipopolysaccharide (LPS), suggesting that the sulfated polysaccharides might have strong immunomodulatory activity.

  10. Specificities of Ricinus communis agglutinin 120 interaction with sulfated galactose.

    Science.gov (United States)

    Wang, Yufeng; Yu, Guangli; Han, Zhangrun; Yang, Bo; Hu, Yannan; Zhao, Xia; Wu, Jiandong; Lv, Youjing; Chai, Wengang

    2011-12-15

    Lectins are used extensively as research tools to detect and target specific oligosaccharide sequences. Ricinus communis agglutinin I (RCA(120)) recognizes non-reducing terminal β-D-galactose (Galβ) and its specificities of interactions with neutral and sialylated oligosaccharides have been well documented. Here we use carbohydrate arrays of sulfated Galβ-containing oligosaccharide probes, prepared from marine-derived galactans, to investigate their interactions with RCA(120). Our results showed that RCA(120) binding to Galβ1-4 was enhanced by 2-O- or 6-O-sulfation but abolished by 4-O-sulfation. The results were corroborated with competition experiments. Erythrina cristagalli lectin is also a Galβ-binding protein but it cannot accommodate any sulfation on Galβ.

  11. Electrochemical removal of sulfate from petroleum produced water.

    Science.gov (United States)

    Jain, Pratiksha; Sharma, Mohita; Kumar, Manoj; Dureja, Prem; Singh, M P; Lal, Banwari; Sarma, Priyangshu M

    2015-01-01

    Petroleum produced water (PPW) is a waste-stream that entails huge cost on the petroleum industry. Along with other suspended and dissolved solids, it contains sulfate, which is a major hurdle for its alternative use intended toward enhanced oil recovery. This study proposes a two-step process for sulfate removal from PPW. A synthetic PPW was designed for the study using response surface methodology. During the first step, sulfate present in PPW was reduced to sulfide by anaerobic fermentation with 80% efficiency. In the second step, more than 70% of the accumulated sulfide was electrochemically oxidized. This integrated approach successfully removed sulfate from the synthetic wastewater indicating its applicability in the treatment of PPW and its subsequent applications in other oil field operations.

  12. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting ...

  13. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  14. Interaction of PACls with sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Yi; WANG Dong-Sheng; TANG Hong-Xiao

    2004-01-01

    This article discusses the influential factors on Al13 separation considering the interaction of sulfate with various polyaluminum chloride(PACl). The experimental results showed that the basicity(B=[OH]/[Al]), the concentration of PACl and Al/SO4 ratio exhibited significant roles in the PACl-sulfate reaction. It indicated that different species in various PACl underwent different reaction pathway with sulfate. The Alc, colloidal species, formed precipitation quickly with sulfate, while Alb, oligomers and polymers, undergoes slow crystallization. And Ala, monomers, reacts with sulfate to form soluble complexes. The kinetic difference of reaction made it possible to realize the separation of Alb and further purification. The decrease of Ala resulted in the limit of ferron method was also mentioned.

  15. Aceclofenac nanocrystals with enhanced in vitro, in vivo performance: formulation optimization, characterization, analgesic and acute toxicity studies.

    Science.gov (United States)

    Rahim, Haroon; Sadiq, Abdul; Khan, Shahzeb; Khan, Mir Azam; Shah, Syed Muhammad Hassan; Hussain, Zahid; Ullah, Riaz; Shahat, Abdelaaty Abdelaziz; Ibrahim, Khalid

    2017-01-01

    This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.

  16. Influence of sulfate on the transport of bacteria in quartz sand.

    Science.gov (United States)

    Shen, Xiufang; Han, Peng; Yang, Haiyan; Kim, Hyunjung; Tong, Meiping

    2013-10-01

    The influence of sulfate on the transport of bacteria in packed quartz sand was examined at a constant 25mM ionic strength with the sulfate concentration progressively increased from 0 to 20mM at pH 6.0. Two representative cell types, Escherichia coli BL21 (Gram-negative) and Bacillus subtilis (Gram-positive), were used to determine the effect of sulfate on cell transport behavior. For both examined cell types, the breakthrough plateaus in the presence of sulfate in suspensions were higher and the corresponding retained profiles were lower than those without sulfate ions, indicating that the presence of sulfate in suspensions increased cell transport in packed quartz sand regardless of the examined cell types (Gram-positive or Gram-negative). Moreover, the enhancement of bacteria transport induced by the presence of sulfate was more pronounced with increasing sulfate concentration from 5 to 20mM. In contrast with the results for EPS-present bacteria, the presence of sulfate in solutions did not change the transport behavior for EPS-removed cells. The zeta potentials of EPS-present cells with sulfate were found to be more negative relative to those without sulfate in suspensions, whereas, the zeta potentials for EPS-removed cells in the presence of sulfate were similar as those without sulfate. We proposed that sulfate could interact with EPS on cell surfaces and thus negatively increased the zeta potentials of bacteria, contributing to the increased transport in the presence of sulfate in suspensions.

  17. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  18. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  19. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  20. p-Cresyl Sulfate

    Directory of Open Access Journals (Sweden)

    Tessa Gryp

    2017-01-01

    Full Text Available If chronic kidney disease (CKD is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.

  1. p-Cresyl Sulfate

    Science.gov (United States)

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet

    2017-01-01

    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  2. 21 CFR 184.1307 - Ferric sulfate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  3. 21 CFR 558.364 - Neomycin sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  4. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor

    Institute of Scientific and Technical Information of China (English)

    Jin Li; Jun Wang; Zhaokun Luan; Zhongguang Ji; Lian Yu

    2012-01-01

    A two-stage UASB reactor was employed to remove sulfate from acrylic fiber manufacturing wastewater.Mesophilic operation (35±0.5℃) was performed with hydraulic retention time (HRT) varied between 28 and 40 hr.Mixed liquor suspended solids (MLSS)in the reactor was maintained about 8000 mg/L.The results indicated that sulfate removal was enhanced with increasing the ratio of COD/SO42-.At low COD/SO42-,the growth of the sulfate-reducing bacteria (SRB) was carbon-limited.The optimal sulfate removal efficiencies were 75% when the HRT was no less than 38 hr.Sulfidogenesis mainly happened in the sulfate-reducing stage,while methanogenesis in the methane-producing stage.Microbes in sulfate-reducing stage performed granulation better than that in methaneproducing stage.Higher extracellular polymeric substances (EPS) content in sulfate-reducing stage helped to adhere and connect the flocculent sludge particles together.SRB accounted for about 31% both in sulfate-reducing stage and methane-producing stage at COD/SO42- ratio of 0.5,while it dropped dramatically from 34% in sulfate-reducing stage to 10% in methane-producing stage corresponding to the COD/SO42- ratio of 4.7.SRB and MPA were predominant in sulfate-reducing stage and methane-producing stage respectively.

  5. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Gerbst, Alexey G; Ushakova, Natalia A; Tsvetkova, Eugenia A; Dmitrenok, Andrey S; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-01-20

    Selectively and totally sulfated (1 → 3)-linked linear homofucans bearing ∼ 20 monosaccharide residues on average have been prepared from the branched xylofucan sulfate isolated from the brown alga Punctaria plantaginea. Anticoagulant and antithrombotic properties of the parent biopolymer and its derivatives were assessed in vitro. Highly sulfated linear fucan derivatives were shown to inhibit clot formation in APTT assay and ristocetin induced platelets aggregation, while the partially sulfated analogs were inactive. In the experiments with purified proteins, fucan derivatives with degree of sulfation of ∼ 2.0 were found to enhance thrombin and factor Xa inhibition by antithrombin III. The effect of sulfated fucans on thrombin inhibition, which was similar to those of heparinoid Clexane(®) (enoxaparin) and of a fucoidan from the brown alga Saccharina latissima studied previously, can be explained by the multicenter interaction and formation of a ternary complex thrombin-antithrombin III-polysaccharide. The possibility of such complexation was confirmed by computer docking study.

  6. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin - Hydrothermal Vent Area - Influence of Temperature and Substrates

    DEFF Research Database (Denmark)

    ELSGAARD, L.; ISAKSEN, MF; JØRGENSEN, BB

    1994-01-01

    . Addition of short-chain fatty acids and yeast extract to the sediment slurries stimulated sulfate reduction rates at all incubation temperatures. No sulfate reduction was detected in the temperature range from 102-120-degrees-C. Microbial rather than thermochemical sulfate reduction could be a possible...... was 0.85 mmol m-2 d-1 at the in situ temperature of about 3-degrees-C. The high subsurface rates of sulfate reduction in the hydrothermal vent area was attributed to an enhanced local substrate availability. In slurries of hydrothermal sediment, incubated at 10-120-degrees-C, microbial sulfate reduction...

  7. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability.

    Science.gov (United States)

    Shelar, Dnyanesh B; Pawar, Smita K; Vavia, Pradeep R

    2013-10-01

    The aim of this study was to develop a nanosuspension of a highly hydrophobic drug, isradipine (ISR) by combination of anti-solvent microprecipitation and high-pressure homogenization to achieve the superior in vitro dissolution and in vivo pharmacokinetic profile. The nanosuspension was formulated using combination of stabilizers as vitamin E TPGS and sodium lauryl sulfate. The developed nanosuspension was characterized for particle size, shape, and zeta potential. The particle size of the developed ISR nanosuspension was observed to be approximately 538 nm (by laser diffraction) and 469 nm (by photon correlation spectroscopy) with -33.3 mV zeta potential. Scanning electron microscopy study revealed the good correlation with particle size measured by photon correlation spectroscopy and laser diffraction. The X-ray diffraction and differential scanning calorimetry showed that ISR was present as an amorphous state in the lyophilized form of nanosuspension. In vitro dissolution and saturation solubility study showed the dissolution rate of nanosuspensions (98.60 %) and saturation solubility (98.76 μg/ml) compared with the coarse drug (11.53 % and 14.1 μg/ml, respectively) had been significantly enhanced. The pharmacokinetic study showed that the nanosuspension exhibits increased in AUC0-48 by 2.0-fold compared to coarse suspension. Further, there was increased in C max and decreased in t max of ISR nanosuspension compared to coarse suspension of ISR. These studies proved that particle size reduction can influence ISR absorption in gastrointestinal tract and thus nanosuspension technology is responsible for enhancing oral bioavailability in rats.

  8. Experimental Design: Application to the Development of a Treatment to Inhibit the Deposition of Barium Sulfate Liable to Be Formed in Enhanced Oil Recovery by Waterflooding Planification d'expériences : application à la mise au point d'un traitement inhibiteur du depôt de sulfate de baryum susceptible de se former en récupération assistée du pétrole par injection d'eau

    Directory of Open Access Journals (Sweden)

    Roque C.

    2006-11-01

    Full Text Available For technical and economic reasons, waterflooding is the most widely-used method in enhanced oil recovery [1]. In many situations, unfortunately, the formation water is incompatible with the injection water. The deposits and corrosion induced by the various reactions of this incompatibility cause irreversible damage, which is especially dangerous for the reservoir rock and the downhole and surface production facilities. This study is concerned exclusively with barium sulfate deposits liable to occur in surface production facilities by the mixing of injection water loaded with sulfate (1300 mg. 1 to the power of (-1 with a formation water with a high barium concentration (1200 mg. 1 to the power of (-1 [2]. Pour des raisons techniques et économiques, l'injection d'eau dans les réservoirs est la méthode la plus employée dans la récupération du pétrole. Malheureusement, dans bien des cas, l'eau en place dans le gisement est incompatible avec l'eau injectée. Les dépôts et les corrosions causés par les diverses réactions physico-chimiques de cette incompatibilité provoquent des dégradations irréversibles particulièrement dangereuses pour les installations de production de fond comme de surface et quelquefois pour la roche réservoir elle-même. Dans le cadre des travaux de recherche relatifs à l'inhibition des dépôts de sulfate sur le champ algérien de Tin Fouyé Tabankort, cette étude a eu pour objectif de sélectionner et d'adapter aux conditions spécifiques de la production un traitement de prévention des dépôts par injection d'un agent inhibiteur. Elle concerne exclusivement les dépôts de sulfate de baryum pouvant apparaître dans les installations de production par mélange d'eau d'injection très chargée en ion sulfate (1300 mg. 1 puissance(-1 avec une eau de gisement très concentrée en élément baryum (1200 mg. 1 puissance(-1. Une méthode expérimentale au laboratoire, faisant appel à des mesures de type

  9. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  10. Bioengineered heparins and heparan sulfates.

    Science.gov (United States)

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 十二烷基苄醇聚氧乙烯醚的合成及性能%Synthesis and physicochemical properties of ethoxylated lauryl benzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    陆颖; 刘雪锋; 方云

    2012-01-01

    Ethoxylated lauryl benzyl alcohol (LBAEOn) ,was synthesized starting from n - dodecylbenzene by a three - step process including chloromethylation, hydrolysis and ethoxylation. Structure of the LBAEOn was characterized by FTIR and 1HNMR, and number of EO moles adducted n =9.5. Distribution of EO mole number in the LBAEO, was characterized by ESI - MS. Critical micelle concentration ( cmc) and surface tension at cmc (γcmc) of the product is 1. 83 × 10-6 mol · L-1 and 39. 0 mN ? m-1 respectively, which were measured by surface tension method at 25 ℃. In comparison with common nonionic surfactants such as ethoxylated fatty alcohol ( AEO9) and ethoxylated nonyl phenol ( NPEO10) , surface activity of the LBAEOn is higher while the foaming power is lower and lime soap dispersing power is similar. Solubilization capacity to octanol of the LBAEOn is higher,and wetting power is lower.%以十二烷基苯为原料,经氯甲基化、水解及环氧乙基化等步骤得到平均乙氧基(EO)数为9.5的十二烷基苄醇聚氧乙烯醚(LBAEOn).分别用FTlR和1HNMR表征了产物LBAEOn的结构特征,并用ESI - MS确定了LBAEOn中的EO分布.以表面张力法测得在25℃时LBAEOn的cmc和γcmc分别为1.83×10-6mol·L-1和39.0 mN·m-1;与脂肪醇聚氧乙烯醚(AEO9)和壬基酚聚氧乙烯醚(NPEO10)相比较,除钙皂分散性能大致相当以外,LBAEOn的表面活性较好、发泡力较低、对正辛醇的增溶能力较强和对帆布的润湿性能较差.

  12. Heparan sulfate structure: methods to study N-sulfation and NDST action.

    Science.gov (United States)

    Dagälv, Anders; Lundequist, Anders; Filipek-Górniok, Beata; Dierker, Tabea; Eriksson, Inger; Kjellén, Lena

    2015-01-01

    Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine the proteins that will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [(35)S]sulfate or [(3)H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.

  13. Anticoagulantly active heparan sulfate and proteoheparan sulfate from cloned bovine aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, J.A.; Atha, D.H.; Fritze, L.M.S.; Rosenberg, R.D.

    1986-05-01

    Heparan sulfate chains and intact proteoheparans were isolated from cloned endothelial cells of bovine aortic intima. The cells were grown in vitro and metabolically labeled using Na/sub 2/(/sup 35/S)SO/sub 4/ and/or tritiated amino acids. The radiolabeled heparan chains (M/sub r/ approx. = 30,000) and the proteoglycans were affinity fractionated on immobilized antithrombin and assayed for anticoagulant activity by radioimmunoassay for thrombin-antithrombin complex. About 1% of the heparan chains and proteoheparan bound antithrombin and accounted for >99% and >85% of the anticoagulant activity, respectively. Comparison of the bound and unbound fractions demonstrated a 6000-fold increase in specific activity for the heparan chains and a >1000-fold increase in specific activity for the proteoglycan. The disaccharide compositions of nitrous acid-cleaved heparan sulfate chains were analyzed by ion-exchange HPLC and found to have about a 4-fold enhancement in the bound fraction of GlcA ..-->.. GlcN-3-0-SO/sub 3/. This disaccharide has been shown previously to be a marker for the antithrombin binding domain in commercial heparin. These results demonstrate that bovine aortic endothelial cells synthesize heparan sulfate and proteoheparan which exhibit anticoagulant activity indistinguishable from heparin, and that the active species contains disaccharides which constitute the unique antithrombin binding domain of heparin.

  14. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang

    2004-01-01

    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  15. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  16. Enhancement of in-vitro drug dissolution of ketoconazole for its optimal in-vivo absorption using Nanoparticles and Solid Dispersion forms of the drug

    Science.gov (United States)

    Syed, Mohammed Irfan

    Ketoconazole is one of the most widely prescribed oral antifungal drugs for the systemic treatment of various fungal infections. However, due its hydrophobic nature and poor solubility profiles in the gastro-intestinal fluids, variations in its bioavailability have been documented. Therefore, to enhance its dissolution in the biological fluids, this study was initiated to develop and evaluate Nanoparticles and Solid Dispersion forms of the drug. Nanoparticles of ketoconazole were developed by Wet Bead Milling technique using PVP-10k as the stabilizing material at a weight ratio of (2:1). Solid dispersion powder was prepared by Hot Melt method using PEG-8000 at a weight ratio of (1:2). A commercial product containing 200mg of ketoconazole tablet and pure drug powder were used as the control for comparison purposes. The dissolution studies were carried out in SGF, SIF, USP; and SIF with 0.2% sodium lauryl sulfate using the USP-II method for a 2 hours period. Physical characterizations were carried out using SEM, DSC, XRD and FTIR studies. Wet Bead Milling method yielded nanoparticles in the particles size range of (100-300nm.). First all samples were evaluated for their in-vitro dissolution in SGF at pH=1.2. After 15 minutes, the amounts of drug dissolved were observed to be 27% from both the pure powder and commercial tablet (control), 29% from solid dispersion and 100% from the Nanoparticles dosage form. This supports the fact that Nanoparticles had a strong influence on the dissolution rate of the drug and exhibited much faster dissolution of ketoconazole. When the same formulations were studied in the SIF, USP medium, the control formulation gave 3%, solid dispersion 8% and Nanoparticles 8% drug dissolution after 2 hours period. This could be because the weakly basic ketoconazole drug remained un-dissociated in the alkaline medium. Since this medium was unable to clearly distinguish the dissolution profiles from different formulation of the drug, the SIF solution

  17. Synergistic Extraction of Gallium for Sulfate Solution

    Institute of Scientific and Technical Information of China (English)

    DENGTong; HUANGLijuan; 等

    2002-01-01

    A novel extractant mixture, di-2-ethylhexyl phosphate (DEHPA) plus HX, was propose and tested for recovering gallium from sulfate solution.It was found that the extraction capacity of DEPHA for gallium from sulfate solution could be enhanced significantly due to the synergistic effect of acidix extractant HX. Gallium extraction is negligible below pH 0 and highly sensitive to pH of aqueous phase in the range from 0 to 1, and satisfactory extraction can be gained at pH>1. More than 96% Ga extraction was obtained using 15% DEHPA plus 2% HX. Although Fe(Ⅲ) was found to be extracted preferentially to Ga (Ⅲ), effective extraction of Ga (Ⅲ) was possible by reducing ferric to the ferrous state prior to extraction. A loaded organic phase containing 0.48g·L-1 Ga could be produced from solution of 0.12g·L-1 Ga at A/O ratio of 4:1 via three mixer-settler operation stages. Gallium was stripped quantitatively from the loaded organic phase with 1.5mol·L-1 of sulfuric acid.

  18. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    Science.gov (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  19. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  20. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  1. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  2. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen

  3. Sulfate-rich Archean Oceans

    Science.gov (United States)

    Brainard, J. L.; Choney, A. P.; Ohmoto, H.

    2012-12-01

    There is a widely held belief that prior to 2.4 Ga, the Archean oceans and atmosphere were reducing, and therefore sulfate poor (concentrations 100 m), widely distributed (> km2), and contain only minor amounts of sulfides. These barite beds may have developed from reactions between Ba-rich hydrothermal fluids and evaporate bodies. Simple mass balance calculations suggest that the sulfate contents of the pre-evaporitic seawater must have been greater than ~1 mM. Some researchers have suggested that the SO4 for these beds was derived from the hydrolysis of SO2-rich magmatic fluids. However, this was unlikely as the reaction, 4SO2 + 4H2O → 3H2SO4 + H2S would have produced large amounts of sulfide, as well as sulfate minerals. Many Archean-aged volcanogenic massive sulfide (VMS) deposits, much like those of the younger ages, record evidence for abundant seawater sulfate. As VMS deposits are most likely formed by submarine hydrothermal fluids that developed from seawater circulating through the seafloor rock, much of the seawater sulfate is reduced to from sulfides at depths. However, some residual sulfate in the hydrothermal fluids, with or without the addition of sulfate from the local seawater, can form sulfate minerals such as barite at near the seafloor. The d34S relationships between barites and pyrites in the Archean VMS deposits are similar to those of the younger VMS deposits, except for the lower d34S values for the seawater SO4. The abundance of pyrite in Archean black shales is also evidence of sulfate rich seawater. Pyrites in Archean-aged black shales were most likely the products of either bacterial or thermochemical sulfate reduction during diagenesis of the sediments. Their abundance in sedimentary rocks is determined by: (a) the availability of reactive carbon; (b) the availability of reactive Fe (Fe3+ hydroxides and Fe2+-rich pore fluid); (c) the sedimentation rate; and (d) the flux of SO42- in the sediments, which depends on the seawater SO42

  4. Simultaneous determination of sulfation and glucuronidation of flavones in FVB mouse intestine in vitro and in vivo.

    Science.gov (United States)

    Fan, Yanfang; Tang, Lan; Zhou, Juan; Feng, Qian; Xia, Bijun; Liu, Zhongqiu

    2013-04-01

    Glucuronidation and sulfation are the two major phase II metabolic pathways for flavones, natural compounds that hold great potential for improving human health. We investigated the positional preference for sulfation and glucuronidation of seven structurally similar flavones in vitro and in situ. An FVB mouse intestinal perfusion model was used in addition to three small intestine S9 fractions catalyzing sulfation only (Sult enzymes), glucuronidation only (Ugt enzymes) or both (Sult and Ugt enzymes). In both the single and co-reaction S9 systems, flavones containing 7-OH groups were conjugated only at 7-OH despite the presence of other hydroxyl groups, and 7-OH glucuronidation was faster than sulfation (P intestinal perfusate, sulfation patterns were the same in the small intestine and colon, and the excretion rate of 7-O-sulfate was the fastest or second fastest. The excretion of 7-O-glucuronidates was faster in small intestine (P excretion rates of the same flavones from perfused intestine. In conclusion, flavone glucuronidation and sulfation rates were sensitive to minor changes in molecular structure. In intestinal S9 fractions, both Ugts and Sults preferentially catalyzed reactions at 7-OH. The sulfation rate was significantly enhanced by simultaneous glucuronidation, but glucuronidation was unaltered by sulfation. Sulfation rates in mouse S9 fractions correlated with sulfation rates in perfused intestine.

  5. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution....

  6. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  7. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  8. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  9. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  10. Sulfate transport in Penicillium chrysogenum plasma membranes.

    OpenAIRE

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

  11. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation

  12. 21 CFR 582.5315 - Ferrous sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  14. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  15. 月桂基咪唑啉对银的缓蚀性能研究%Performance of lauryl imidazoline in the corrosion inhibition of silver

    Institute of Scientific and Technical Information of China (English)

    王菊琳; 栾莉; 李沫; 张治国; 马清林

    2012-01-01

    A lauryl imidazoline ( LM) has been synthesized and the structure was characterized by Fourier transform in frared (FT-IR) spectroscopy. The corrosion inhibition ability of LM was studied in Na2S corrosion medium for silver samples which based on composition of the Emperor Asoka Pagoda substrate by pre-filming, gravimetric method, potentiodynamic method and electrochemical impedance spectroscopy. In addition, the corrosion inhibition ability of LM was compared with those of benzotriazole ( BTA ) and l-phenyl-5-mercaptotetrazole( PMTA) , which were commonly used corrosion inhibitors in the field of silver heritage conservation. Compared with bare silver samples, the inhibition ratio of prefilmed silver samples by 1% LM was 59. 1% in 5 mg/L Na2S corrosion medium; the corrosion current density ic decreased by 0. 111 μA/cm and the electrical double-layer capacitance Cd decreased by 51. 39 μF/cm2 ; Meanwhile, the electrochemical impedance Rt increased by 73. 5 kΩ·cm2 ; Comparison of the corrosion inhibition effect for LM with those for BTA and PMTA, showed that the inhibition rate 77 for silver decreased in the order ηPMTA > ηLM > ηBTA, as confirmed by the results of gravimetric method, potentiodynamic method and electrochemical impedance spectroscopy.%合成了月桂基咪唑啉(LM),并采用FT-IR对LM进行结构表征.以南京长干寺遗址地宫出土的阿育王塔的银基体模拟样品为试样,通过预膜法、重量法、动电位扫描法、电化学交流阻抗法研究了LM对银试样在Na2S腐蚀介质中的缓蚀性能,并与银质文物上常用的含氮类缓蚀剂苯骈三氮唑(BTA)、含硫类缓蚀剂1-苯基-5-巯基四氮唑(PMTA)在Na2S腐蚀介质中的缓蚀效果进行了比较.结果表明,与裸银试样相比,经质量分数为1% LM预膜处理后的银试样在5mg/L Na2S溶液中的缓蚀率为59.1%;自腐蚀电流密度ic减小了0.111 μA/cm2,电化学体系的双电层电容Cd降低了51.39 μF/cm2,

  16. Tris(ethylenediaminecobalt(II sulfate

    Directory of Open Access Journals (Sweden)

    Bunlawee Yotnoi

    2010-06-01

    Full Text Available The structure of the title compound, [CoII(C2H8N23]SO4, the cobalt example of [M(C2H8N23]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32, respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3 has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H...O hydrogen-bonding interactions.

  17. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  18. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations

  19. Sulfation and biological activities of konjac glucomannan.

    Science.gov (United States)

    Bo, Surina; Muschin, Tegshi; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2013-05-15

    The sulfation of konjac glucomannan and its anti-HIV and blood anticoagulant activities were investigated. Konjac glucomannan is a polysaccharide occurring naturally in konjac plant tubers and has high molecular weights. Solubility in water is very low, and the aqueous solutions at low concentrations have high viscosity. Before sulfation, hydrolysis by diluted sulfuric acid was carried out to decrease the molecular weights of M¯n=19.2 × 10(4)-0.2 × 10(4). Sulfation with piperidine-N-sulfonic acid or SO3-pyridine complex gave sulfated konjac glucomannans with molecular weights of M¯n=1.0 × 10(4)-0.4 × 10(4) and degrees of sulfation (DS) of 1.3-1.4. It was found that the sulfated konjac glucomannans had potent anti-HIV activity at a 50% effective concentration, (EC50) of 1.2-1.3 μg/ml, which was almost as high as that of an AIDS drug, ddC, whose EC50=3.2 μg/ml, and moderate blood anticoagulant activity, AA=0.8-22.7 units/mg, compared to those of standard sulfated polysaccharides, curdlan (10 units/mg) and dextran (22.7 units/mg) sulfates. Structural analysis of sulfated konjac glucomannans with negatively charged sulfated groups was performed by high resolution NMR, and the interaction between poly-l-lysine with positively charged amino groups as a model compound of proteins and peptides was measured by surface plasmon resonance measurement, suggesting that the sulfated konjac glucomannans had a high binding stability on immobilized poly-l-lysine. The binding of sulfated konjac glucomannan was concentration-dependent, and the biological activity of the sulfated konjac glucomannans may be due to electrostatic interaction between the sulfate and amino groups.

  20. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.

    Science.gov (United States)

    Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

    2013-11-15

    In order to treat copper-containing wastewater effectively using sulfate reducing bacteria (SRB), iron (Fe(0)) was added to enhance the activity of SRB. The SRB system and the SRB + Fe(0) system were operated under continuous operation. The sulfate reduction efficiency of the SRB + Fe(0) system was twice as much as that of the SRB system with the sulfate loading rate at 125  mg L(-1) h(-1). The effect of COD/SO4(2-) on sulfate reduction indicates an enhanced activity of SRB by adding Fe(0). 99% of total sulfate was deducted in both systems at pH 4.0-7.0, and temperature slightly influenced the removal of sulfate in the SRB + Fe(0) system. In the copper-containing wastewater treatment, the SRB + Fe(0) system shows a better performance since sulfate removal in this system was higher than the SRB system, and the removal ratio of Cu(2+) was held above 95% in SRB + Fe(0) system at all influent Cu(2+) concentrations.

  1. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater

    Science.gov (United States)

    Van Stempvoort, Dale R.; Armstrong, James; Mayer, Bernhard

    2007-07-01

    Despite a rapid expansion over the past decade in the reliance on intrinsic bioremediation to remediate petroleum hydrocarbon plumes in groundwater, significant research gaps remain. Although it has been demonstrated that bacterial sulfate reduction can be a key electron accepting process in many petroleum plumes, little is known about the rate of this reduction process in plumes derived from crude oil and gas condensates at cold-climate sites (mean temperature study, sulfate was injected into groundwater contaminated by gas condensate plumes at two petroleum sites in Alberta, Canada to enhance in-situ bioremediation. In both cases the groundwater near the water table had low temperature (6-9 °C). Monitoring data had provided strong evidence that bacterial sulfate reduction was a key terminal electron accepting process (TEAP) in the natural attenuation of dissolved hydrocarbons at these sites. At each site, water with approximately 2000 mg/L sulfate and a bromide tracer was injected into a low-sulfate zone within a condensate-contaminant plume. Monitoring data collected over several months yielded conservative estimates for sulfate reduction rates based on zero-order kinetics (4-6 mg/L per day) or first-order kinetics (0.003 and 0.01 day - 1 ). These results favor the applicability of in-situ bioremediation techniques in this region, under natural conditions or with enhancement via sulfate injection.

  2. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L.

    Science.gov (United States)

    Liu, Xin; Chen, Tong; Hu, Yan; Li, Kexin; Yan, Liushui

    2014-03-01

    Sulfated derivatives of polysaccharide from Momordica charantia L. (MCPS) with different degree of sulfation (DS) were synthesized by chlorosulfonic acid method with ionic liquids as solvent. Fourier transform infrared spectra and 13C nuclear magnetic resonance spectra indicated that C-6 substitution was predominant in MCPS compared with the C-2 position. Compared with the native polysaccharide from Momordica charantia L. (MCP), MCPS exhibited more excellent antioxidant activities in vitro, which indicated that sulfated modification could enhance antioxidant activities of MCP. Furthermore, high DS and moderate molecular weight could improve the antioxidant activities of polysaccharide. Copyright © 2013 Wiley Periodicals, Inc.

  3. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  4. N-月桂酰基乙二胺二乙酸钠的合成及性能研究%Synthesis and properties of N-lauryl-ethylenediamine-diacetate

    Institute of Scientific and Technical Information of China (English)

    徐冰; 贾丽华; 郭祥峰

    2012-01-01

    The intermediate N-lauryl acyl ethylenediamine (LED) was synthesized with ethylenediamine and lauric acid as raw materials, and further reaction with sodium chloroacetate, then the final product N-lauryl -ethylenediamine-diacetate (LEDC) was synthesized.The product structure was characterized by IR and 'HNMR spectroscopy. The surface properties of LEDC were measured. The results show that At 25℃, the critical micelle concentration (CMC) of LEDC is 1.9 mmol·L-1 and the surface tension at CMC (γCMC) is 25.0 mN·m-1. As the temperature increases, the CMC of LEDC first decreases and then increases, and the γCMC decreases. The foam property of LEDC is between LAS and OP-10, and emulsifying ability is the highest among of them, and the stability in hard water is better than LAS.%以月桂酸和乙二胺为原料,合成了中间体N-月桂酰基乙二胺(LED),进一步与氯乙酸钠反应,得到目标产物N-月桂酰基乙二胺二乙酸钠(LEDC).通过IR和1HNMR对产物进行结构表征.测定了LEDC在水溶液中的表面活性,其临界胶束浓度(CMC)约为2.0mmol·L-1,临界胶束浓度时的表面张力(γCMC)为25mN·m-1;随着温度变化,其CMC及γCMC变化不大.LEDC的泡沫性能介于LAS和OP-10之间,乳化能力强于两者,在硬水中的稳定性优于LAS.

  5. Pressure effect on dissimilatory sulfate reduction

    Science.gov (United States)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  6. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.P.; Nader, H.B. (Paulist School of Medicine, Sao Paulo (Brazil)); Buonassisi, V.; Colburn, P. (W. Alton Jones Cell Science Center, Lake Placid, NY (USA))

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  7. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  8. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    Science.gov (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  9. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  10. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    Science.gov (United States)

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  11. Sulfate threshold target to control methylmercury levels in wetland ecosystems.

    Science.gov (United States)

    Corrales, Juliana; Naja, Ghinwa M; Dziuba, Catherine; Rivero, Rosanna G; Orem, William

    2011-05-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear(-1), respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear(-1), respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear(-1), and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear(-1). Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL(-1) was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2μgL(-1) criterion for surface water already established by the U.S. Environmental Protection Agency (EPA).

  12. Effect of injectable composites of calcium sulfate and hyaluronate in enhancing osteogenesis%复合透明质酸钠的硫酸钙可注射材料促进骨再生的实验研究

    Institute of Scientific and Technical Information of China (English)

    黄志峰; 李波; 李强; 黄振飞; 尹博; 马培; 许德荣; 吴志宏; 邱贵兴

    2017-01-01

    Objective To fabricate an injectable composite bone substitute with hyaluronic acid (HA) and calcium sulfate and to evaluate the biocompatibility and effect of the composite on cell proliferation,osteogenic differentiation in vitro and osteogenic capability in vivo.Methods Calcium sulfate powder was mixed with HA solution,cross-linked HA solution,and phosphate buffer solution (PBS) in a ratio of 2 ∶ 1 (W/V) to get composites of CA+HA,CA+HAC,and CA.The standard extracts from above 3 materials were prepared according to ISO 10993-5,and were used to culture mouse MC3T3-E1 cells.The composite biocompatibility and cell proliferation in different concentrations of extract were tested with cell counting kit-8 (CCK-8).The cells were cultured with standard medium as a control.The optimal concentration was selected for osteogenic differentiation test,and ELISA Kit was used to determine the alkaline phosphatase (ALP),collagen type Ⅰ (COL-I),and osteocalcin (OCN).The femoral condylar bone defect was made on New Zealand white rabbits and repaired with CA+HA,CA+HAC,and CA.Micro-CT was done to evaluate new bone formation with bone volume/tissue volume (BV/TV) ratio at 6 and 12 weeks.HE staining was used to observe bone formation.Results CA+HA and CA+HAC were better in injectability and stability in PBS than CA.The biocompatibility test showed that absorbance (A) value of CA group was significantly lower than that of control group (P<0.05) at 6,12,and 24 hours after culture,but no significant difference was found in A values between CA+HA group or CA+HAC group and control group (P>0.05).The proliferation test showed 25% and 50% extract of all 3 materials had significantly higher A value than control group (P<0.05).For 75% and 100% extract,only CA+HA group had significantly higher A value than control group (P<0.05).And 50% extract was selected for osteogenic differentiation test.At 14 and 21 days,ALP,COL-I and OCN concentrations of CA+HA group and CA

  13. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  14. Reactive Crystallization of Calcium Sulfate Dihydrate from Acidic Wastewater and Lime

    Institute of Scientific and Technical Information of China (English)

    邓立聪; 张亦飞; 陈芳芳; 曹绍涛; 游韶玮; 刘艳; 张懿

    2013-01-01

    The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis-charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from platelet-like and nee-dle-like shape to rod-like shape when the temperature was increased from 25 to 70 °C. An increase in the agglom-eration of calcium sulfate was found with increasing lime concentration. Metal ions markedly retard the rate of crystallization of calcium sulfate dihydrate. The crystallization of gypsum was slowed with the existence of Mg2+in the solution, and the morphology of gypsum was transformed from platelet-like shape to rod-like shape when Mg2+concentration reached 0.08 mol·L-1. The amorphous ferric hydroxide was coated on the calcium sulfate after the co-precipitation process while Zn2+and Al3+ions in the solution enhanced the agglomeration of the calcium sulfate by absorbing on the surface of the crystals. Comprehensive acidic wastewater containing heavy metals was effi-ciently purified by the two stage lime neutralization technology, and highly agglomerated gypsum precipitates with needle-like shape were obtained. The precipitates could be purified by sulfuric acid washing, and the metal ions were effectively separated from the calcium sulfate by-products.

  15. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases ment

  16. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells.

    NARCIS (Netherlands)

    Li, F.; Dam, G.B. ten; Murugan, S.; Yamada, S.; Hashiguchi, T.; Mizumoto, S.; Oguri, K.; Okayama, M.; Kuppevelt, A.H.M.S.M. van; Sugahara, K.

    2008-01-01

    The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process

  17. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    Science.gov (United States)

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  18. THERMODYNAMICS OF NEPTUNIUM(V) FLOURIDE AND SULFATE AT ELEVATED TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    L. Rao; G. Tian; Y. Xia; J.I. Friese

    2006-03-06

    Complexation of neptunium(V) with fluoride and sulfate at elevated, temperatures was studied by microcalorimetry. Thermodynamic parameters, including the equilibrium constants and enthalpy of protonation of fluoride and sulfate, and the enthalpy of complexation between Np(V) and fluoride and sulfate at 25-70 C were determined. Results show that the complexation of Np(V) with fluoride and sulfate is endothermic and that the complexation is enhanced by the increase in temperature--a threefold increase in the stability constants of NpO{sub 2}F(aq) and NpO{sub 2}SO{sub 4}{sup -} as the temperature is increased from 25 to 70 C.

  19. Fucoidans - sulfated polysaccharides of brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Anatolii I; Bilan, M I [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-08-31

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  20. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  1. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan.

    Science.gov (United States)

    Lane, M C; Solursh, M

    1991-02-01

    Primary mesenchyme cell migration in the sea urchin embryo is inhibited by sulfate deprivation and exposure to exogenous beta-D-xylosides, two treatments known to disrupt proteoglycan synthesis. We show that in the developing sea urchin, exogenous xyloside affects the synthesis by the primary mesenchyme cells of a very large, cell surface chondroitin sulfate/dermatan sulfate proteoglycan. This proteoglycan is present in a partially purified fraction that restores migratory ability to defective cells in vitro. The integrity of this chondroitin sulfate/dermatan sulfate proteoglycan appears essential for primary mesenchyme cell migration since treatment of actively migrating cells with chondroitinase ABC reversibly inhibited their migration in vitro.

  2. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  3. Sulfur Isotope Systematics and the Link Between Fluctuating Sulfate Levels and P Recycling in a Low Sulfate, Permanently Anoxic Lake (Lake McCarrons, MN): Implications for the Precambrian Rise of Oxygen

    Science.gov (United States)

    Gomes, M. L.; Hurtgen, M. T.

    2009-12-01

    Seawater sulfate concentrations have been used to track the rise of oxygen in the Precambrian ocean-atmosphere system because the primary mode of sulfate delivery to the ocean is the oxidative weathering of sulfides on land. Ancient seawater sulfate concentrations have been inferred from the extent of sulfur (S) isotope fractionation incurred during bacterial sulfate reduction (BSR) where organisms preferentially utilize 32S (over 34S) in the process of reducing of sulfate to sulfide. Within this context, increased variability in δ34Spyrite values in Proterozoic (~2.3 Ga) sediments—along with a corresponding increase in the isotopic difference between sulfate and pyrite (Δ34S)—has been attributed to an increase in seawater sulfate concentrations (from 1 mM) and inferentially Earth-surface oxygen levels. However, most S isotope studies have been calibrated using modern marine sediments that contain sulfate-reducing bacteria that are adapted to the high concentration of sulfate in the modern ocean (~28mM). In order to better understand S isotope systematics within a low sulfate system and to improve our interpretive construct for S isotope results generated from ancient strata, we explore the magnitude of S isotope fractionations associated with microbial activity in the water column and sediments of a low sulfate (isotope difference between surface water sulfate and bottom water sulfide is ~5‰ (Δ34S) while in situ S isotope fractionations associated with BSR at the sediment-water interface approach 35‰; (3) sulfate reduction rates in the upper 3 cm of organic carbon rich sediment are ~0.1 µM cm-3 d-1, an order of magnitude lower than those recorded under higher (modern marine) sulfate concentrations; and (4) sulfate concentrations influence the efficiency of P recycling (as determined via bag incubation experiments). Here, we suggest that an increase in sulfate levels at ~2.3 Ga, as indicated by larger Δ34S values recorded in strata of this age

  4. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  5. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  6. Optimization of a biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A.

    1985-01-01

    A biological sulfate reduction process is presented. It is intended to treat sulfate wastes by converting them to hydrogen sulfide which can be further oxidized to elemental sulfur. An optimization study of a completely-mixed reactor system was performed. Major operating parameters were determined at the bench-scale level. The study was conducted in batch-culture experiments, using a mixed Desulfovibrio culture from sewage. Kinetic values were extrapolated using the Michaelis-Menten model, which best fitted the experimental data. The iron loading and the sulfate loading significantly affected the growth and metabolism of sulfate reducing bacteria (SRB). A model to determine V/sub m/ from the iron and sulfate loading values was explored. The model is limited by sulfate loading greater than 4.3 g/l, where bacterial growth is inhibited. Iron loading is not anticipated to suppress the bacterial metabolism efficiency since it remained in the linear pattern even at inhibition levels. Studies of the metabolic behavior of SRB, using lactic acid as the carbon source, showed a requirement of 2.7 moles of lactate for each mole of sulfate. This technique and its application to the sulfur recovery process are discussed.

  7. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB.

    Science.gov (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao

    2015-01-01

    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  8. The investigation on sulfation of modified Ca-based sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hongwei Chen; Chunbo Wang; Yonghua Li; Zijie Wang [North China Electric Power University, Baoding (China). Department of Power Engineering

    2003-07-01

    The sulfation of a limestone modified by Na{sub 2}CO{sub 3} was investigated in this paper, which aimed to find the causes of its enhanced sulfation capacity. It was shown in the experiment that although the sulfur capture capability of M-CaO (the CaO calcined from modified limestone) is in excess of that of N-CaO (the CaO calcined from original sample), the specific surface area and porosity of the former are much less than that of the latter and also the average pore radius of the former become bigger. Based on the solid-state ion diffusion theory, a new mechanism to explain M-CaO sulfation is suggested. More lattice defects are formed in M-CaO, which reduce the resistance of ion diffusion in the CaSO{sub 4} product layer, and increase the Ca-conversion. To verify this, XRD was applied to measure the crystal structures of CaO samples. It was found M-CaO has bigger lattice distortion than N-CaO. It means that M-CaO has more lattice defects. In the sulfation the lattice defects in M-CaO will go into the CaSO{sub 4} product layer and it is that accelerates the ion diffusivity and leads to the higher Ca-conversion than that of N-CaO. By scanning the element distribution in reacted M-CaO using SEM, how the lattice defects formed in the product layers was verified.

  9. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... the presence of radioactively labeled tyrosine. These techniques have been described in detail previously. The aim of this chapter is to present alternative analytical methods of Tyr sulfation than radioisotope incorporation before analysis Udgivelsesdato: 2008...

  10. Chlorate: a reversible inhibitor of proteoglycan sulfation

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, D.E.; Silbert, J.E.

    1988-07-15

    Bovine aorta endothelial cells were cultured in medium containing (/sup 3/H)glucosamine, (/sup 35/S)sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but (/sup 3/H)glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.

  11. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  12. Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: Measurements of acid dissociation constant and organic carbon-water sorption coefficient.

    Science.gov (United States)

    Wang, Fang; Chen, Yi; Hermens, Joop L M; Droge, Steven T J

    2013-11-08

    A passive sampler tool (solid-phase microextraction, SPME) was optimized to measure freely dissolved concentrations (Cw,free) of lauryl diethanolamine (C12-DEA). C12-DEA can be protonated and act as a cationic surfactant. From the pH-dependent sorption to neutral SPME coatings (polyacrylate and PDMS), a pKa of 8.7 was calculated, which differs more than two units from the value of 6.4 reported elsewhere. Polyacrylate coated SPME could not adequately sample largely protonated C12-DEA in humic acid solutions of pH 6. A new hydrophobic SPME coating with cation-exchange properties (C18/SCX) sorbed C12-DEA 100 fold stronger than polyacrylate, because it specifically sorbs protonated C12-DEA species. The C18/SCX-SPME fiber showed linear calibration isotherms in a concentration range of <1 nM-1 μM (well below the CMC). Using the C18/SCX-SPME fibers, linear sorption isotherms to Aldrich humic acid at pH 6 (ionic strength 0.015 M) were measured over a broad concentration range with a sorption coefficient of 10(5.3).

  13. Rapid and selective inner ring deiodination of thyroxine sulfate by rat liver deiodinase

    Energy Technology Data Exchange (ETDEWEB)

    Mol, J.A.; Visser, T.J.

    1985-07-01

    Previous studies have shown that the inner ring deiodination (IRD) of T3 and the outer ring deiodination (ORD) of 3,3'-diiodothyronine are greatly enhanced by sulfate conjugation. This study was undertaken to evaluate the effect of sulfation on T4 and rT3 deiodination. Iodothyronine sulfate conjugates were chemically synthetized. Deiodination was studied by reaction of rat liver microsomes with unlabeled or outer ring /sup 125/I-labeled sulfate conjugate at 37 C and pH 7.2 in the presence of 5 mM dithiothreitol. Products were analyzed by HPLC or after hydrolysis by specific RIAs. T4 sulfate (T4S) was rapidly degraded by IRD to rT3S, with an apparent Km of 0.3 microM and a maximum velocity (Vmax) of 530 pmol/min X mg protein. The Vmax to Km ratio of T4S IRD was increased 200-fold compared with that of T4 IRD. However, formation of T3S by ORD of T4S could not be observed. The rT3S formed was rapidly converted by ORD to 3,3'-T2 sulfate, with an apparent Km of 0.06 microM and a Vmax of 516 pmol/min X mg protein. The enzymic mechanism of the IRD of T4S was the same as that of the deiodination of nonsulfated iodothyronines, as shown by the kinetics of stimulation by dithiothreitol or inhibition by propylthiouracil. The IRD of T4S and the ORD of rT3 were equally affected by a number of competitive inhibitors, suggesting a single enzyme for the deiodination of native and sulfated iodothyronines. In conjunction with previous findings on the deiodination of T3S, these results suggest that sulfation leads to a rapid and irreversible inactivation of thyroid hormone.

  14. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  15. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  16. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  17. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  18. Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal.

    Science.gov (United States)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L; Mikkelsen, Kurt V; Kampf, Christopher J; Waxman, Eleanor M; Volkamer, Rainer

    2015-05-14

    We have used quantum chemical methods to investigate the molecular mechanism behind the recently reported ( Kampf , C. J. ; Environ. Sci. Technol . 2013 , 47 , 4236 - 4244 ) strong dependence of the Henry's law coefficient of glyoxal (C2O2H2) on the sulfate concentration of the aqueous phase. Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate-containing aerosol particles. This promotes the participation of glyoxal in reactions leading to secondary organic aerosol formation, especially in regions with high sulfate concentrations. We used our computed equilibrium constants for the complexation reactions to assess the magnitude of the Henry's law coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement.

  19. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    Science.gov (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  20. Sulfate Resistance of Alkali Activated Pozzolans

    OpenAIRE

    Bondar, Dali

    2015-01-01

    The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the l...

  1. Spectrophotometric and Calorimetric Studies of Np(V) Complexation with Sulfate at 10-70oC

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2008-06-16

    Sulfate, one of the inorganic constituents in the groundwater of nuclear waste repository, could affect the migration of radioactive materials by forming complexes. Spectrophotometric and microcalorimetric titrations were performed to identify the Np(V)/sulfate complex and determine the equilibrium constants and enthalpy of complexation at 10-70 C. Results show that the complexation of Np(V) with sulfate is weak but slightly enhanced by the increase in temperature. The complexation is endothermic and becomes more endothermic with the increase in temperature. The enhanced complexation at elevated temperatures is due to the increasingly larger entropy of complexation that exceeds the increase in enthalpy, suggesting that the complexation of Np(V) with sulfate is entropy-driven.

  2. Hormonal control of sulfate uptake and assimilation.

    Science.gov (United States)

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.

  3. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  4. Preparation of Agarose Sulfate and Its Antithrombogenicity

    Institute of Scientific and Technical Information of China (English)

    JIE Youping; ZHANG Lingmin; CHEN Peng; MAO Xuan; TANG Shunqing

    2012-01-01

    As one of the seaweed polysaccharide,agarose has received much attention because of its biocompatibility.However,its application in biomedical field was limited with its biological inertia.Modification with some functional groups is needed to obtain agarose derivatives with biological activity and expand its applications.Consequently,agarose was sulfated with chlorosulfonic acid-pyridine with formamide as dispersing agent.The orthogonal test result showed that the optimal reaction condition was the reaction time being 4 h,the reaction temperature 65 ℃,and the ratio of chlorosulfonic acid to agarose 1-4(mL/g).Two kinds of the insoluble agarose sulfate (below 37 ℃) were synthesized with degree of substitution (DS) being 0.17 and 0.43 respectively.Infrared spectroscopy (IR) and 13C nuclear magnetic resonance (13C-NMR) spectroscopy results proved that C3-6 in agarose was sulfated.Their hydrophobic property and BSA adsorption capacity rose with increasing DS,while the adsorption of Hb was reduced.The anti-clotting properties of agarose sulfate were significantly improved,and agarose sulfate could protect red blood cells from deformation after adsorption of BSA.These findings demonstrate that the cold-water insoluble agarose sulfate has a promise for applications as heparin-like material in anticoagulation or endothelial regeneration scaffold.

  5. Structure of a rat hepatoma heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Fedarko, N.S.; Ishihara, M.; Conrad, H.E.

    1986-05-01

    Previous studies showed that as monolayer cultures of a rat hepatocyte cell line passed from log growth to confluency there was an increase in sulfation of heparan sulfate (HS) and the accumulation of a unique species of HS with a high content of sulfated GlcA residues in the nucleus. The present study compares the HS metabolism of a rat (Morris) hepatoma line. Cells were labeled with /sup 35/SO/sub 4//sup 2 -/ and the structure and distribution of (/sup 35/SO/sub 4/)HS from the culture medium (CM), the pericellular matrix (Ma), the nucleus (NUC), the outer nuclear membrane (NM), and the remaining cytoplasmic (CP) pool was measured as nitrous acid-susceptible material. The amount of label incorporated into each pool was 1/10 that observed in the hepatocyte line. The HS proteglycan and the free HS chains from the hepatoma showed size distributions similar to those found for the hepatocytes, but a lower average charge density. In the HS from the CM, Ma, and CP pools 56% of glucosamine residues were sulfated; in that from the NM and NUC pools 46% were sulfated. HONO treatment gave mono- and disulfated disaccharides in a ratio of 1.5:1 for all five cellular pools, but showed that the HS from the NUC pool did not contain high levels of sulfated GlcA residues.

  6. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation.

  7. Offsetting features of climate responses to anthropogenic sulfate and black carbon direct radiative forcings

    Science.gov (United States)

    Ocko, I.; Ramaswamy, V.

    2012-12-01

    The two most prominent anthropogenic aerosols—sulfate and black carbon—affect Earth's radiation budget in opposing ways. Here we examine how these aerosols independently impact the climate, by simulating climate responses from pre-industrial times (1860) to present-day (2000) for isolated sulfate and black carbon direct radiative forcings. The NOAA Geophysical Fluid Dynamics Laboratory CM2.1 global climate model is employed with prescribed distributions of externally mixed aerosols. We find that sulfate and black carbon induce opposite effects for a myriad of climate variables. Sulfate (black carbon) is generally cooling (warming), shifts the ITCZ southward (northward), reduces (enhances) the SH Hadley Cell, enhances (reduces) the NH Hadley Cell, and increases (decreases) total sea ice volume. Individually, sulfate and black carbon affect Hadley Cell circulation more than long-lived greenhouse gases, but the net aerosol effect is a weakened response due to opposite behaviors somewhat canceling out the individual effects. Because anthropogenic aerosols are a critical contributor to Earth's climate conditions, this study has implications for future climate changes as well.

  8. Sulfated polysaccharides and cell differentiation in the sea urchin embryo.

    Science.gov (United States)

    Løvtrup-Rein, H; Løvtrup, S

    1984-01-01

    The synthesis of sulfated polysaccharides during the embryonic development of Paracentrotus lividus has been investigated by incorporation of radioactive sulfate, glucose, glucosamine and fucose. The following substances become labelled: fucan sulfate (approximately 60%), heparan sulfate (approximately 20%) and dermatan sulfate (approximately 20%), and possibly a very slight amount of chondroitin sulfate. In animalized and vegetalized embryos, the rate of incorporation is significantly reduced, and furthermore dermatan sulfate is almost absent in animalized embryos. It is concluded that this substance is associated with the differentiation of vegetative cells, possibly the mesenchyme cells.

  9. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    OpenAIRE

    G. P. Schill; Tolbert, M. A.

    2013-01-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescen...

  10. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

    Institute of Scientific and Technical Information of China (English)

    Biwu CHU; Jiming HAO; Junhua LI; Hideto TAKEKAWA; Kun WANG; Jingkun JIANG

    2013-01-01

    Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

  11. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt;

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...

  12. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... fundamental healing mechanism. Adrenocorticoid compounds have been reported to cause an increase in...

  13. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  14. Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees.

    Science.gov (United States)

    Arlov, Øystein; Aachmann, Finn Lillelund; Sundan, Anders; Espevik, Terje; Skjåk-Bræk, Gudmund

    2014-07-14

    Sulfated glycosaminoglycans have a vast range of protein interactions relevant to the development of new biomaterials and pharmaceuticals, but their characterization and application is complicated mainly due to a high structural variability and the relative difficulty to isolate large quantities of structurally homogeneous samples. Functional and versatile analogues of heparin/heparan sulfate can potentially be created from sulfated alginates, which offer structure customizability through targeted enzymatic epimerization and precise tuning of the sulfation degree. Alginates are linear polysaccharides consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G), derived from brown algae and certain bacteria. The M/G ratio and distribution of blocks are critical parameters for the physical properties of alginates and can be modified in vitro using mannuronic-C5-epimerases to introduce sequence patterns not found in nature. Alginates with homogeneous sequences (poly-M, poly-MG, and poly-G) and similar molecular weights were chemically sulfated and structurally characterized by the use of NMR and elemental analysis. These sulfated alginates were shown to bind and displace HGF from the surface of myeloma cells in a manner similar to heparin. We observed dependence on the sulfation degree (DS) as well as variation in efficacy based on the alginate monosaccharide sequence, relating to relative flexibility and charge density in the polysaccharide chains. Co-incubation with human plasma showed complement compatibility of the alginates and lowering of soluble terminal complement complex levels by sulfated alginates. The sulfated polyalternating (poly-MG) alginate proved to be the most reproducible in terms of precise sulfation degrees and showed the greatest relative degree of complement inhibition and HGF interaction, maintaining high activity at low DS values.

  15. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  16. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.

    Science.gov (United States)

    Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

    2014-03-15

    Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.

  17. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.

    Science.gov (United States)

    Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

    2013-01-01

    In order to treat acid mine drainage (AMD) effectively using sulfate-reducing bacteria (SRB) at high concentration of sulfate and heavy metals, Fe(0) was added to enhance the activity of SRB. When AMD was treated by SRB and Fe(0) at 25 °C, more than 61% of sulfate was removed and the effluent pH was improved from 2.75 to 6.20 during the operation. Cu(2+) was removed effectively with the removal efficiency at 99%, while only 86% of Fe(2+) was removed during the AMD treatment, without conspicuous change of Mn(2+) in the effluent in the process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan.

    Science.gov (United States)

    Xue, Jimin; Zhao, Weifeng; Nie, Shengqiang; Sun, Shudong; Zhao, Changsheng

    2013-06-01

    In this study, a novel sulfated derivative of chitosan, which could be dissolved in many common organic solvents, is conveniently synthesized for the modification of polyethersulfone (PES) membrane. Elemental analysis, FTIR, (1)H NMR and X-ray diffraction diagrams (XRD) are used to demonstrate the introduction of functional groups. Owing to the solubility in organic solvents, the sulfated derivative of chitosan could be directly blended with PES in organic solvent to prepare membrane by means of a liquid-liquid phase separation technique. The modified membrane showed lower protein (bovine serum albumin (BSA) and bovine serum fibrinogen (BFG)) adsorption and suppressed platelet adhesion. Moreover, the activated partial thromboplastin time (APTT) for the modified membrane was enhanced as high as 60% compared to pure PES membrane. The lower protein adsorption, suppressed platelet adhesion and increased APTT confirmed that the blood compatibility of the modified PES membrane by the sulfated derivative of chitosan was significantly improved.

  19. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  20. Sulfate-reducing bacteria: Microbiology and physiology

    Science.gov (United States)

    Peck, H. D.

    1985-01-01

    The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.

  1. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  2. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  3. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  4. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  5. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans.

    Science.gov (United States)

    Ortmann, Corinna; Pickhinke, Ute; Exner, Sebastian; Ohlig, Stefanie; Lawrence, Roger; Jboor, Hamodah; Dreier, Rita; Grobe, Kay

    2015-06-15

    All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.

  6. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  7. Selective sulfation of carrageenans and the influence of sulfate regiochemistry on anticoagulant properties.

    Science.gov (United States)

    de Araújo, Cristiano A; Noseda, Miguel D; Cipriani, Thales R; Gonçalves, Alan G; Duarte, Maria Eugênia R; Ducatti, Diogo R B

    2013-01-16

    Sulfated polysaccharides are recognized for their broad range of biological activities, including anticoagulant properties. The positions occupied by the sulfate groups are often related to the level of the inherent biological activity. Herein the naturally sulfated galactans, kappa-, iota- and theta-carrageenan, were additionally sulfated by regioselective means. The anticoagulant activity of the resulting samples was then studied using the aPTT in vitro assay. The influence of sulfate regiochemistry on the anticoagulant activity was evaluated. From kappa-carrageenan three rare polysaccharides were synthesized, one of them involved a synthetic route with an amphiphilic polysaccharide intermediate containing pivaloyl groups. Iota- and theta-carrageenan were utilized in a selective C6 sulfation at β-D-Galp units to produce different structures comprising trisulfated diads. All the samples were characterized by NMR (1D and 2D). The resulting aPPT measurements suggested that sulfation at C2 of 3,6-anhydro-α-D-Galp and C6 of β-D-Galp increased the anticoagulant activity.

  8. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  9. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  10. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic fermentatio

  11. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  12. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  13. Sulfate reducing potential in an estuarine beach

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    Sulfate reducing bacteria (SRB) and their activity (SRA) together with total anaerobic and aerobic bacterial flora were estimated during July 1982-April 1983 and July-August 1984 from 1, 3 and 5 cm depths using core samples. The average number (no...

  14. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  15. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  16. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  17. Lung injury in dimethyl sulfate poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Ip, M.; Wong, K.L.; Wong, K.F.; So, S.Y.

    1989-02-01

    Two manual laborers were exposed to dimethyl sulfate during work and sustained mucosal injury to the eyes and respiratory tract. In one of them, noncardiogenic pulmonary edema occurred and improved with high-dose methylprednisolone. On follow-up for 10 months, this patient developed persistent productive cough with no evidence of bronchiectasis or bronchial hyperreactivity.

  18. Intravenous magnesium sulfate therapy in severe asthma

    Directory of Open Access Journals (Sweden)

    Mohd. Al-Ajmi

    2007-01-01

    Full Text Available A 22-year-old female, known asthmatic since seven years, developed severe bronchospasm in the preop-erative period. Bronchospasm remained unresponsive to the inhaled beta-agonist plus anticholinergic, IV ami-nophylline and hydrocortisone but responded quickly with magnesium sulfate® ( PSI, KSA infusion 1.25gm in 100ml normal saline over 20 minutes and another 1.25 gm over next 30 minutes as the initial infusion showed improvement in her clinical symptoms. Within half an hour of administering the 1st infusion of magnesium sulfate (1.25 gm the respiratory rate started reducing, rhonchi became less, SpO 2 came upto 92% and re-mained always above 90%. Encouraged by this result IV magnesium sulfate 2.5 gm in 500 ml normal saline was infused over next 24 hours along with alternate salbutamol and ipratropium nebulization every 6 hourly. With this treatment regimen the patient became asymptomatic within next 24 hours with normal clinical parameters and FEV 1 value. Hence it may be concluded that IV magnesium sulfate can be considered for patients with acute severe asthma who do not respond to standard therapeutic medications.

  19. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  20. Comparative Evaluation of Ankaferd Blood Stopper, Ferric Sulfate ...

    African Journals Online (AJOL)

    2016-07-24

    Jul 24, 2016 ... ferric sulfate (FS) as pulpotomy agent in primary teeth. Settings and Design: ... sulfate (FS), calcium hydroxide (CH), and mineral trioxide aggregate ..... internal root resorption may remain stable or may be repaired with hard ...

  1. Bacterial transport of sulfate, molybdate, and related oxyanions.

    Science.gov (United States)

    Aguilar-Barajas, Esther; Díaz-Pérez, César; Ramírez-Díaz, Martha I; Riveros-Rosas, Héctor; Cervantes, Carlos

    2011-08-01

    Sulfur is an essential element for microorganisms and it can be obtained from varied compounds, sulfate being the preferred source. The first step for sulfate assimilation, sulfate uptake, has been studied in several bacterial species. This article reviews the properties of different bacterial (and archaeal) transporters for sulfate, molybdate, and related oxyanions. Sulfate uptake is carried out by sulfate permeases that belong to the SulT (CysPTWA), SulP, CysP/(PiT), and CysZ families. The oxyanions molybdate, tungstate, selenate and chromate are structurally related to sulfate. Molybdate is transported mainly by the high-affinity ModABC system and tungstate by the TupABC and WtpABC systems. CysPTWA, ModABC, TupABC, and WtpABC are homologous ATP-binding cassette (ABC)-type transporters with similar organization and properties. Uptake of selenate and chromate oxyanions occurs mainly through sulfate permeases.

  2. Pregnenolone Sulfate: From Steroid Metabolite to TRP Channel Ligand

    Directory of Open Access Journals (Sweden)

    Christian Harteneck

    2013-09-01

    Full Text Available Pregnenolone sulfate is a steroid metabolite with a plethora of actions and functions. As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from the pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Most recently, pregnenolone sulfate has been functionally “upgraded” from modulator of ion channels to an activating ion channel ligand. This review will focus on molecular aspects of the neurosteroid, pregnenolone sulfate, its metabolism, concentrations in serum and tissues and last not least will summarize the functional data.

  3. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    Science.gov (United States)

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide

  4. 21 CFR 522.1484 - Neomycin sulfate sterile solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate sterile solution. 522.1484... § 522.1484 Neomycin sulfate sterile solution. (a) Specifications. Each milliliter of sterile aqueous solution contains 50 milligrams of neomycin sulfate (equivalent to 35 milligrams of neomycin base).1...

  5. 21 CFR 524.1484a - Neomycin sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate ophthalmic ointment. 524.1484a... § 524.1484a Neomycin sulfate ophthalmic ointment. (a) Specifications. Each gram of the ointment contains 5 milligrams of neomycin sulfate equivalent in activity to 3.5 milligrams of neomycin base....

  6. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides

    NARCIS (Netherlands)

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-01-01

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin an

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...

  8. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    Arghya Dey; G Naresh Patwari

    2011-11-01

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of cationic (CTAB) or neutral (Trition X -100) surfactants. ESPT of C-102 was also observed in aqueous solutions but on addition of very high concentrations of hydrochloric acid. However, on comparing the ratio of the protonated species from the emission spectra in the presence and absence of SDS micelle, a conclusive estimation of the local proton concentration at the Stern layer of SDS micelles could be evaluated.

  9. Branched alkyl alcohol propoxylated sulfate surfactants for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [California Institute of Technology, Covina, CA (US). Power, Environmental and Energy Research (PEER) Center; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States). Materials and Process Simulation Center

    2010-05-15

    This investigation considers branched alkyl alcohol propoxylated sulfate surfactants as candidates for chemical enhanced oil recovery (EOR) applications. Results show that these anionic surfactants may be preferred candidates for EOR as they can be effective at creating low interfacial tension (IFT) at dilute concentrations, without requiring an alkaline agent or cosurfactant. In addition, some of the formulations exhibit a low IFT at high salinity, and hence may be suitable for use in more saline reservoirs. Adsorption tests onto kaolinite clay indicate that the loss of these surfactants can be comparable to or greater than other types of anionic surfactants. Surfactant performance was evaluated in oil recovery core flood tests. Selected formulations recovered 35-50% waterflood residual oil even with dilute 0.2 wt% surfactant concentrations from Berea sandstone cores. (orig.)

  10. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  11. Characterization of sulfate-reducing granular sludge in the SANI(®) process.

    Science.gov (United States)

    Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

    2013-12-01

    Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. Copyright © 2013 Elsevier

  12. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  13. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J.

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose, S11(:

  14. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY.

    Science.gov (United States)

    Leach, Franklin E; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I Jonathan

    2012-12-15

    Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.

  15. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11

    NARCIS (Netherlands)

    Steen, S.C.H.A. van der; Tilborg, A.G. van; Vallen, M.J.E.; Bulten, J.; Kuppevelt, T.H. van; Massuger, L.F.

    2016-01-01

    OBJECTIVE: The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstr

  16. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  17. Effect of magnetic field on the crystallization of zinc sulfate

    Directory of Open Access Journals (Sweden)

    Freitas A. M. B.

    2000-01-01

    Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.

  18. Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Mr.P. Atcha Rao

    2015-11-01

    Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.

  19. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  20. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  1. Effects of Sulfate Chitosan Derivatives on Nonalcoholic Fatty Liver Disease

    Institute of Scientific and Technical Information of China (English)

    YU Mingming; WANG Yuanhong; JIANG Tingfu; LV Zhihua

    2014-01-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentra-tion emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly amelio-rated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  2. The Importance of Heparan Sulfate in Herpesvirus Infection

    Institute of Scientific and Technical Information of China (English)

    Christopher D.O'Donnell; Deepak Shukla

    2008-01-01

    Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor.Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor.Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry.In addition,a modified form of heparan sulfate,known as 3-O-sulfated heparan sulfate,interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane.The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carded out by a family of enzymes known as 3-O-sulfotransferases.Due to its involvement in multiple steps of the infection process,heparan sulfate has been a prime target for the development of agents to inhibit HSV entry.Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus,but it may also be crucial in the fight against many other pathogens as well.

  3. Cholesterol sulfate in human physiology: what's it all about?

    Science.gov (United States)

    Strott, Charles A; Higashi, Yuko

    2003-07-01

    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  4. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...... of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of delta S-34 values. Using models informed by sulfur cycling in Lake Matano, we infer...... Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans....

  5. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    Sulfate reduction was measured with the (SO42-)-S-35-tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0 degrees to 15 degrees C. The incubations were made at temperatures from 0 degrees C to 80 degrees C in temperature increments of 2 degrees...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  6. Studies on the binding of amylopectin sulfate with gastric mucin.

    Science.gov (United States)

    Kim, Y S; Bella, A; Whitehead, J S; Isaacs, R; Remer, L

    1975-07-01

    Amylopectin sulfate, a sulfated polysaccharide that has an antipeptic property, was examined for its ability to bind gastric mucins. After chemically cross-linking the amylopectin sulfate into an insoluble gel, its binding with mucins isolated from antral and fundic mucosa of canine stomachs was studied with chromatography. A component present in both mucin fractions bound to the amylopectin sulfate gel below pH 4.5. This binding was reversible, and the complex dissociated above pH 5. Similar binding properties were found with soluble amylopectin sulfate. The component of the mucine which bound to amylopectin sulfate differed from the one which did not bind in its electrophoretic mobility and in its higher proportion of basic amino acids and a lower hexosamine, serine, and threonine content. This study suggests that amylopectin sulfate may bind to gastric mucins only under conditions of low pH.

  7. Nickel hydroxide precipitation from aqueous sulfate media

    Science.gov (United States)

    Sist, Cinziana; Demopoulos, George P.

    2003-08-01

    Hydrometallurgical processing of laterite ores constitutes a major industrial and R&D activity in extractive metallurgy. In some of the process flowsheets, nickel hydroxide precipitation is incorporated. For these operations, the optimization of nickel hydroxide precipitation is important to assure efficiency and product quality. The main objective of this investigation was to study and improve the precipitation characteristics of Ni(OH)2 in a sulfate system using supersaturation controlled precipitation.

  8. Engineering sulfotransferases to modify heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Moon, Andrea F.; Song, Danyin; Pedersen, Lars C.; Liu, Jian (NIH); (UNC)

    2008-03-19

    The biosynthesis of heparan sulfate (HS) involves an array of specialized sulfotransferases. Here, we present a study aimed at engineering the substrate specificity of different HS 3-O-sulfotransferase isoforms. Based on the crystal structures, we identified a pair of amino acid residues responsible for selecting the substrates. Mutations of these residues altered the substrate specificities. Our results demonstrate the feasibility of tailoring the specificity of sulfotransferases to modify HS with desired functions.

  9. 硫酸盐废水处理系统强化菌株的分离鉴定及功能基因分析%Characterization of efficiency-enhancing bacterium for sulfate wastewater treatment and structure analysis of dissimilatory sulfite reductase gene

    Institute of Scientific and Technical Information of China (English)

    赵阳国; 任南琪; 王爱杰; 商淮湘

    2006-01-01

    @@ 引言 硫酸盐还原菌(sulfate-reducing bacteria,SRB)在自然界硫循环中起着重要作用,由于其主要代谢产物硫化氢的毒害性和腐蚀性,而备受石油开采、废水处理和管线保护等行业的关注.

  10. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.

    Science.gov (United States)

    Chen, Qin; Jia, Rong; Qu, Dong; Li, Ming

    2017-04-01

    Sulfate contamination is an increasingly serious environmental problem related to microbial reduction processes in anoxic paddy soil. This study revealed the changes and interrelations of ferric iron [Fe(III)] reduction, ferrous iron [Fe(II)] oxidation, and oxygenic photosynthesis in an anoxic paddy soil (Fe-accumuli-Stagnic Anthrosols) amended with a range of high sulfate concentrations. Soil slurries mixed with 0 (control), 50, 100, 200, and 400 mmol kg(-1) Na2SO4 were incubated anaerobically under dark and light conditions. The changes in chlorophyll a (Chl a), Fe(II), pH levels, and the chlorophyll absorption spectrum were determined over a 42-day period. Fe(II) concentrations increased with the addition of sulfate under dark conditions, while Fe(III) reduction potential was enhanced by increasing sulfate addition. The effect of light on Fe(II) concentration was observed after 16 days of incubation, when Fe(II) started to decrease markedly in the control. The decrease in Fe(II) slowed with increasing sulfate addition. The concentrations of Chl a increased in all treatments after 16 days of incubation under light conditions. There was a reduction in Chl a accumulation with increasing sulfate at the same incubation time. The absorption peaks of chlorophyll remained shorter than the 700-nm wavelength throughout the incubation period. The pH of all treatments decreased in the first week and then increased thereafter. The pH increased with sulfate addition and light conditions. In conclusion, contamination with high concentrations of sulfate could accelerate Fe(III) reduction while inhibiting oxygenic photosynthesis, which correspondingly slows chemical Fe(II) oxidation in an anoxic paddy soil.

  11. Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis

    DEFF Research Database (Denmark)

    Zielinska, Marlena; Sawosz, Ewa; Grodzik, Marta

    2011-01-01

    Purpose: It was hypothesized that heparan sulfate (HS) as an essential compound for myogenesis and nanoparticles of gold (nano-Au) ashighly reactive compounds can affect muscle development as a consequence of molecular regulation of muscle cell formation, and that these effects may be enhanced...... in blood, immunohistochemistry, microscopy (transmission electron microscopy, scanning electron microscopy, confocal), and gene expression at the messenger ribonucleic acid and protein levels. Results: The treatments did not adversely affect mortality, organ weight, and homeostasis of the embryos. HS...

  12. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    Science.gov (United States)

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  13. Conformation of sulfated galactan and sulfated fucan in aqueous solutions: implications to their anticoagulant activities.

    Science.gov (United States)

    Becker, Camila F; Guimarães, Jorge A; Mourão, Paulo A S; Verli, Hugo

    2007-07-01

    The discovery of sulfated galactans and sulfated fucans in marine invertebrates with simple and ordered structures opened new perspectives to investigate the biological activity of these molecules and to determine whether different structures confer high affinity for a particular protein. We undertook a conformational analysis of a 2-sulfated, 3-linked alpha-L-galactan and of a alpha-L-fucan with similar structure. Through comparison between theoretical and NMR derived coupling constants, we observed that the pyranose rings are predominantly in the (1)C(4) conformation in these polysaccharides. Additionally, the geometry of the glycosidic linkages was determined based on force field calculations, indicating that the two polysaccharides have similar conformations in solution. Since the sulfated alpha-L-galactan, but not the alpha-L-fucan potentiates antithrombin (AT) inhibition of thrombin, the solution conformations of the compounds were docked into AT and the complexes obtained were refined through molecular dynamics calculations. The obtained results indicates extremely different orientations for the two polysaccharides, which well correlates and explain their distinct anticoagulant activities. Finally, the molecular mechanism of a selective 2-desulfation reaction, observed among sulfated fucans, was explained as a consequence of an intramolecular hydrogen bond capable of assisting in the removal of the charged group.

  14. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event

    Science.gov (United States)

    Planavsky, Noah J.; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D.; Lyons, Timothy W.

    2012-01-01

    Carbonates from approximately 2.3–2.1 billion years ago show markedly positive δ13C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ13C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth’s most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ34S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ34S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ34S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion. PMID:23090989

  15. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event.

    Science.gov (United States)

    Planavsky, Noah J; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D; Lyons, Timothy W

    2012-11-06

    Carbonates from approximately 2.3-2.1 billion years ago show markedly positive δ(13)C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ(13)C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth's most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ(34)S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ(34)S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ(34)S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion.

  16. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Solution conformation and antioxidant activities in vitro.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Tang, YinYing; Xu, Qing; Huang, Shengli; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2016-01-20

    Regioselective modification is an effective approach to synthesize polysaccharides with different structure features and improved properties. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharide (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. The decrease in fractal dimension (df) values (1.56-2.04) of SRSASP was observed in size-exclusion chromatography combined with multi angle laser light scattering (SEC-MALLS) analysis. Compared to sample substituted at C-6, SRSASP showed a more expanded conformation of random coil, which was attributed to the breakup of hydrogen bonds and elastic contributions. Circular dichroism (CD), methylene blue (MB) and congo red (CR) spectrophotometric method and atomic force microscopy (AFM) results confirmed the conformational transition and stiffness of the chains after sulfation. SRSASP exhibited enhanced antioxidant activities in the DPPH, superoxide and hydroxyl radical scavenging assay. Sulfation at C-2 or C-3 was favorable for the chelation which might prevent the generation of hydroxyl radicals. It concluded that the degree of substitution and substitution position were the factors influencing biological activities of sulfated polysaccharides.

  17. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  18. Purity determination of amphotericin B, colistin sulfate and tobramycin sulfate in a hydrophilic suspension by HPLC.

    Science.gov (United States)

    Pfeifer, Corina; Fassauer, Georg; Gerecke, Hagen; Jira, Thomas; Remane, Yvonne; Frontini, Roberto; Byrne, Jonathan; Reinhardt, Robert

    2015-05-15

    A suspension comprising of the three antibiotic substances amphotericin B, colistin sulfate and tobramycin sulfate is often used in clinical practice for the selective decontamination of the digestive tract of patients in intensive care. Since no detailed procedures, specifications or stability data are available for manufacturing this suspension, there may be discrepancies regarding formulation and stability of suspensions prepared in different pharmacies. The aim of this work is to develop a standardized formulation and to determine its stability under defined storage conditions. This would help guarantee that all patients receive the same preparation, therefore ensuring similar efficacy and improved safety. The first step in this process is to develop the required analytical tools to measure the content and purity of the drug substances in this complex mixture. In this paper, the development and validation of these tools as well as the development of the drug suspension formulation is described. The formulation comprises of Ampho-Moronal(®)-Suspension (Dermapharm) and a buffered, preservated aqueous solution of colistin sulfate and tobramycin sulfate. Two simple, well established high-performance liquid chromatography (HPLC) methods in the European Pharmacopoeia (EP) for impurity profiling of the two active ingredients amphotericin B and colistin sulfate were combined with a newly developed sample extraction procedure for the suspension. Sufficient selectivity and stability-indicating power have been demonstrated. Additionally, a new robust routine method was developed to determine possible degradation products of tobramycin sulfate in the investigated suspension. The specificity, precision, accuracy and linearity of the analytical procedures were demonstrated. The recovery rate was in the range of 90-110%. The precision results for the calculated impurities showed variation coefficients of <10%. The calibration curves were found to be linear with correlation

  19. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug.

  20. The preparation and antioxidant activity of glucosamine sulfate

    Institute of Scientific and Technical Information of China (English)

    XING Ronge; LIU Song; WANG Lin; CAI Shengbao; YU Huahua; FENG Jinhua; LI Pengcheng

    2009-01-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O(2))/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O(2) scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL.However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  1. The preparation and antioxidant activity of glucosamine sulfate

    Science.gov (United States)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  2. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm.

    Science.gov (United States)

    Mourão, P A; Boisson-Vidal, C; Tapon-Bretaudière, J; Drouet, B; Bros, A; Fischer, A

    2001-04-15

    A polysaccharide extracted from the sea cucumber body wall has the same backbone structure as the mammalian chondroitin sulfate, but some of the glucuronic acid residues display sulfated fucose branches. These branches confer high anticoagulant activity to the polysaccharide. Since the sea cucumber chondroitin sulfate has analogy in structure with mammalian glycosaminoglycans and sulfated fucans from brown algae, we compared its anticoagulant action with that of heparin and of a homopolymeric sulfated fucan with approximately the same level of sulfation as the sulfated fucose branches found in the sea cucumber polysaccharide. These various compounds differ not only in their anticoagulant potencies but also in the mechanisms of thrombin inhibition. Fucosylated chondroitin sulfate, like heparin, requires antithrombin or heparin cofactor II for thrombin inhibition. Sulfated fucans from brown algae have an antithrombin effect mediated by antithrombin and heparin cofactor II, plus a direct antithrombin effect more pronounced for some fractions. But even in the case of these two polysaccharides, we observed some differences. In contrast with heparin, total inhibition of thrombin in the presence of antithrombin is not achieved with fucosylated chondroitin sulfate, possibly reflecting a less specific interaction. Fucosylated chondroitin sulfate is able to inhibit thrombin generation after stimulation by both contact-activated and thromboplastin-activated systems. It delayed only the contact-induced thrombin generation, as expected for an anticoagulant without direct thrombin inhibition. Overall, the specific spatial array of the sulfated fucose branches in the fucosylated chondroitin sulfate not only confer high anticoagulant activity to the polysaccharide but also determine differences in the way it inhibits thrombin.

  3. Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate

    NARCIS (Netherlands)

    Qu, X.; Carbe, C.; Tao, C.; Powers, A.; Lawrence, R.; Kuppevelt, A.H.M.S.M. van; Cardoso, W.V.; Grobe, K.; Esko, J.D.; Zhang, X.

    2011-01-01

    Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fg

  4. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2015-03-01

    Full Text Available Abid Mehmood Yousaf,1 Dong Wuk Kim,1 Yu-Kyoung Oh,2 Chul Soon Yong,3 Jong Oh Kim,3 Han-Gon Choi11College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 2College of Pharmacy, Seoul National University, Seoul, 3College of Pharmacy, Yeungnam University, Gyongsan, South KoreaBackground: The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate.Methods: The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS, fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder.Results: Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in

  5. 窄分布十二醇醚(2)羧酸钠盐的合成及性能%Synthesis and Properties of Lauryl Polyoxyethylene Ether Carboxylate with Narrow Molecular Weight Distribution

    Institute of Scientific and Technical Information of China (English)

    伊然; 王力; 谢思; 吴宏海; 朱宏

    2014-01-01

    以窄分布十二醇聚氧乙烯(2)醚(AEO2)为原料经羧甲基化法合成了窄分布十二醇醚(2)羧酸钠盐(AE2C),经单因素实验对反应温度、投料比及反应时间等参数进行探讨,得出最佳的合成工艺条件为:n ( AEO2)∶n (ClCH2COOH)∶n(NaOH)=1.0∶1.1∶2.2,反应温度70℃,反应时间5 h.经分离提纯后对产品进行红外结构表征和活性含量测定,并对其表面张力、泡沫性、润湿性、乳化性、钙皂分散力和去污力进行了测试.结果表明,合成的AE2 C阴离子活性含量为87.38%, CMC为0.41 mmol/L,最低表面张力为25.4 mN/m,泡沫性(0.1%溶液)83 mL、润湿性(0.1%溶液)5.1 s、乳化性(液体石蜡)131.8 s、钙皂分散力LSDP 16和去污力(0.25%溶液)47.2%.%Lauryl polyoxyethylene ether carboxylate with narrow molecular weight distribution ( AE2 C) was synthe-sized by using AEO 2 with narrow molecular weight distribution as a starting material and the optimized reaction condi -tions were shown as follows:n(fatty alcohol ether)∶n(sodium chloroacetate)∶n(sodium hydroxide)=1.0∶1.1∶2.2, the reactive temperature 70℃, and the reactive time 5 h.The structure of the product was identified by IR and the anion active contents was determined .The properties of the product such as surface activity , foaming, wetting, emul-sifying, washing properties and calcium soap dispersion were measured .The results showed that anion active content of AE2 C is 87.38%, CMC of the product is 0.41 mmol/L, andγCMC is 25.4 mN/m, and the foaming hight is 83 mL, wetting properties is 5.1 s, emulsifying abilities is 131.8 s, LSDP is 16, and the washing properties is 47.2%.

  6. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard;

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate was studied respectively in a fast-heating rate thermogravimetric analyzer for deriving a kinetic model to describe the process. The yields of SO2 and SO3...... of different sulfates indicated that ammonium sulfate has clearly strongest sulfation power towards KCl at temperatures below 800oC, whereas the sulfation power of ferric and aluminum sulfates exceeds clearly that of ammonium sulfate between 900 and 1000oC. However, feeding gaseous SO3 was found to be most...

  7. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))

    1991-02-15

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  8. Sulfated fucan as support for antibiotic immobilization.

    Science.gov (United States)

    Araújo, P M; Oliveira, G B; Córdula, C R; Leite, E L; Carvalho Jr, L B; Silva, M P C

    2004-03-01

    Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml) was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide methiodide (20 mg in 2 ml), under stirring for 1 h at 25 masculine C and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml) was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C=O at 1647.9 and 1700.7 cm(-1)) and to amide (C-NH2) groups (1662.8 and 1714.0 cm(-1)). Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  9. Sulfated fucan as support for antibiotic immobilization

    Directory of Open Access Journals (Sweden)

    Araújo P.M.

    2004-01-01

    Full Text Available Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propylcarbodiimide methiodide (20 mg in 2 ml, under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1 and to amide (CÝ-NH2 groups (1662.8 and 1714.0 cm-1. Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  10. Synthesis and characterization of novel cellulose ether sulfates.

    Science.gov (United States)

    Rohowsky, Juta; Heise, Katja; Fischer, Steffen; Hettrich, Kay

    2016-05-20

    The synthesis and characterization of novel cellulose sulfate derivatives was reported. Various cellulose ethers were prepared in a homogeneous reaction with common sulfating agents. The received product possess different properties in dependence on the reaction conditions like sulfating agent, solvent, reaction time and reaction temperature. The cellulose ether sulfates are all soluble in water, they rheological behavior could be determined by viscosity measurements and the determination of the sulfur content by elemental analysis lead to a resulting degree of substitution ascribed to sulfate groups (DSSul) of the product. A wide range of products from DSSul 0.1 to DSSul 2.7 will be obtained. Furthermore the cellulose sulfate ethers could be characterized by Raman spectroscopy.

  11. Chemical leukoderma induced by dimethyl sulfate*

    Science.gov (United States)

    Gozali, Maya Valeska; Zhang, Jia-an; Yi, Fei; Zhou, Bing-rong; Luo, Dan

    2016-01-01

    Chemical leukoderma occurs due to the toxic effect of a variety of chemical agents. Mechanisms include either destruction or inhibition of melanocytes. We report two male patients (36 and 51 years old) who presented with multiple hypopigmented macules and patches on the neck, wrist, and legs after exposure to dimethyl sulfate in a chemical industry. Physical examination revealed irregular depigmentation macules with sharp edges and clear hyperpigmentation around the lesions. History of repeated exposure to a chemical agent can help the clinical diagnosis of chemical leukoderma. This diagnosis is very important for prognosis and therapeutic management of the disease.

  12. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  13. Sulfation patterns determine cellular internalization of heparin-like polysaccharides

    OpenAIRE

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R.; Kuberan, Balagurunathan

    2013-01-01

    Heparin is a highly sulfated polysaccharide which serves biologically relevant roles as an anticoagulant and anti-cancer agent. While it is well known that modification of heparin’s sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently-labeled ...

  14. Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE.

    Science.gov (United States)

    Lai, Agnese; Verdini, Roberta; Aulenta, Federico; Majone, Mauro

    2015-04-01

    This paper investigated the reductive dechlorination (RD) of cis-dichloroethylene (cis-DCE) (average influent 14.2±0.7 μM) by a bioelectrochemical system (BES), in the presence of real contaminated groundwater containing high levels of nitrate and sulfate. The BES enhanced both the RD and competing reactions, such as nitrate and sulfate reductions, which occurred with neither an external organic carbon source nor any inoculum other than the indigenous microbial consortia in the real groundwater. In preliminary batch tests, RD and full nitrate removal occurred after a short lag phase, whereas sulfate reduction occurred slowly and alongside the RD. Under continuous flow conditions (hydraulic retention time, HRT, 1.4 d), the competition of different electron acceptors was strongly affected by the cathodic potential in the range -550 to -750 mV vs. standard hydrogen electrode (SHE). Nitrate reduction was driven to completion at all tested cathodic potentials, whereas sulfate reduction and the RD rate increased as the cathodic potential became more negative. At -750 mV vs. SHE, strong methanogenesis was also observed and became the most important sink of electrons. The overall coulombic efficiency decreased while the potential became more negative. The RD contribution was always less than 1%. Hence, greater energy consumption was required to obtain higher RD rate and better conversion. Anodic oxidation was only observed at -750 mV vs. SHE where almost 39% of residual vinyl chloride (VC) was oxidized and the sulfate was formed back from sulfide (further contributing to electric waste).

  15. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Liesbeth Lenaerts

    Full Text Available Application of human adenovirus type 5 (Ad5 derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR, as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1 is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  16. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Negroni, Elisa; Henault, Emilie; Chevalier, Fabien; Gilbert-Sirieix, Marie; Van Kuppevelt, Toin H; Papy-Garcia, Dulce; Uzan, Georges; Albanese, Patricia

    2014-08-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and excessive accumulation of extracellular matrix (ECM). Sulfated glycosaminoglycans (GAGs) are components of the ECM and are increasingly implicated in the regulation of biologic processes, but their possible role in the progression of DMD pathology is not understood. In the present study, we performed immunohistochemical and biochemical analyses of endogenous GAGs in skeletal muscle biopsies of 10 DMD patients and 11 healthy individuals (controls). Immunostaining targeted to specific GAG species showed greater deposition of chondroitin sulfate (CS)/dermatan (DS) sulfate in DMD patient biopsies versus control biopsies. The selective accumulation of CS/DS in DMD biopsies was confirmed by biochemical quantification assay. In addition, high-performance liquid chromatography analysis demonstrated a modification of the sulfation pattern of CS/DS disaccharide units in DMD muscles. In conclusion, our data open up a new path of investigation and suggest that GAGs could represent a new and original therapeutic target for improving the success of gene or cell therapy for the treatment of muscular dystrophies.

  17. Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease.

    NARCIS (Netherlands)

    Bruinsma, I.B.; Riet, L. te; Gevers, T.; Dam, G.B. ten; Kuppevelt, A.H.M.S.M. van; David, G.; Kusters, B.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions such as amyloid-beta (Abeta) plaques and cerebral amyloid angiopathy. Both these lesions consist mainly of aggregated Abeta protein and this aggregation is affected by macromolecules such as heparan sulfate (HS) proteoglycans.

  18. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished.

  19. Intrinsic and enhanced biodegradation of benzene in strongly reduced aquifers

    NARCIS (Netherlands)

    Heiningen, W.N.M. van; Rijnaarts, H.H.M; Langenhoff, A.A.M.

    1999-01-01

    Laboratory microcosm studies were performed to examine intrinsic and enhanced benzene bioremediation using five different sediment and groundwater samples from three deeply anaerobic aquifers sited in northern Netherlands. The influence of addition of nitrate, sulfate, limited amounts of oxygen, and

  20. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    Science.gov (United States)

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  1. Cloud water chemistry and the production of sulfates in clouds

    Science.gov (United States)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  2. Theoretical study on the reactivity of sulfate species with hydrocarbons

    Science.gov (United States)

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  3. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  4. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  5. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... sulfate proteoglycans previously described....

  6. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  7. Mitigation of chloride and sulfate based corrosion in reinforced concrete via electrokinetic nanoparticle treatment

    Science.gov (United States)

    Kupwade-Patil, Kunal

    Concrete is a porous material which is susceptible to the migration of highly deleterious species such as chlorides and sulfates. Various external sources, including sea salt spray, direct seawater wetting, deicing salts and chlorides can contaminate reinforced concrete. Chlorides diffuse into the capillary pores of concrete and come into contact with the reinforcement. When chloride concentration at the reinforcement exceeds a threshold level it breaks down the passive oxide layer, leading to chloride induced corrosion. The application of electrokinetics using positively charged nanoparticles for corrosion protection in reinforced concrete structures is an emerging technology. This technique involves the principle of electrophoretic migration of nanoparticles to hinder chloride diffusion in the concrete. The return of chlorides is inhibited by the electrodeposited assembly of the nanoparticles at the reinforcement interface. This work examined the nanoparticle treatment impact on chloride and sulfate induced corrosion in concrete. Electrokinetic Nanoparticle (EN) treatments were conducted on reinforced cylindrical concrete, rectangular ASTM G109 specimens that simulate a bridge deck and full scale beam specimens. EN treatment to mitigate external sulfate attack in concrete was performed on cylindrical concrete specimens. Corrosion results indicated lower corrosion potentials and rates as compared to the untreated specimens. Scanning electron microscopy (SEM) showed a dense microstructure within the EN treated specimens. Chemical analysis (Raman spectroscopy, X ray-diffraction, and Fourier transform infrared spectroscopy FTIR) showed the presence of strength enhancing phases such as calcium aluminate hydrate (C-A-H) and increased amounts of calcium silicate hydrate (C-S-H) within the EN treated specimens. Strength and porosity results showed an increase in strength and a reduction in porosity among the EN treated specimens. EN treatment acted as a protective

  8. The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.

    Science.gov (United States)

    El Masri, Rana; Seffouh, Amal; Lortat-Jacob, Hugues; Vivès, Romain R

    2016-11-03

    The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.

  9. Controls of Soluble Al in Experimental Acid Sulfate Conditions and Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    LINCHUXIA; M.D.MELVILLE

    1997-01-01

    The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.

  10. Papillomavirus microbicidal activities of high-molecular-weight cellulose sulfate, dextran sulfate, and polystyrene sulfonate.

    Science.gov (United States)

    Christensen, N D; Reed, C A; Culp, T D; Hermonat, P L; Howett, M K; Anderson, R A; Zaneveld, L J

    2001-12-01

    The high-molecular-weight sulfated or sulfonated polysaccharides or polymers cellulose sulfate, dextran sulfate, and polystyrene sulfonate were tested for microbicidal activity against bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 11 (HPV-11) and type 40 (HPV-40). In vitro assays included the BPV-1-induced focus-forming assay and transient infection of human A431 cells with HPVs. The compounds were tested for microbicidal activity directly by preincubation with virus prior to addition to cell cultures and indirectly by addition of virus to compound-treated cells and to virus-coated cells to test inactivation of the virus after virus-cell binding. The data indicated that all three compounds showed direct microbicidal activity with 50% effective concentrations between 10 to 100 microg/ml. These concentrations were nontoxic to cell cultures for both assays. When a clone of C127 cells was tested for microbicidal activity, approximately 10-fold-less compound was required to achieve a 50% reduction in BPV-1-induced foci than for the uncloned parental C127 cells. Pretreatment of cells with compound prior to addition of virus also demonstrated strong microbicidal activity with dextran sulfate and polystyrene sulfonate, but cellulose sulfate required several orders of magnitude more compound for virus inactivation. Polystyrene sulfonate prevented subsequent infection of HPV-11 after virus-cell binding, and this inactivation was observed up to 4 h after addition of virus. These data indicate that the polysulfated and polysulfonated compounds may be useful nontoxic microbicidal compounds that are active against a variety of sexually transmitted disease agents including papillomaviruses.

  11. Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10

    Institute of Scientific and Technical Information of China (English)

    Jinming GAO; Ruolan XIANG; Lei JIANG; Wenhui LI; Qiping FENG; Zijiang GUO; Qi SUN; Zhengpei ZENG; Fude FANG

    2009-01-01

    Aim:Human CXCR3,a seven-transmembrane segment (7TMS),is predominantly expressed in Th1-mediated responses.Interferon-γ-inducible protein 10 (IP-10) is an important ligand for CXCR3.Their interaction is pivotal for leukocyte migra-tion and activation.Tyrosine sulfation in 7TMS is a posttranslational modification that contributes substantially to ligand binding.We aimed to study the role of tyrosine sulfation of CXCR3 in the protein's binding to IP-10.Methods: Plasmids encoding CXCR3 and its mutants were prepared by PCR and site-directed mutagenesis.HEK 293T cells were transfected with plasmids encoding CXCR3 or its variants using calcium phosphate.Transfected cells were labeled with [35S]-cysteine and methionine or [35S]-Na2SO3 and then analyzed by immunoprecipitation to measure sulfation.Experi-ments with 125I-labeled IP-10 were carried out to evaluate the affinity of CXCR3 for its ligand.Calcium influx assays were used to measure intercellular signal transduction.Results: Our data show that sulfate moieties are added to tyrosines 27 and 29 of CXCR3.Mutation of these two tyrosines to phenylalanines substantially decreases binding of CXCR3 to IP-10 and appears to eliminate the associated signal transduc-tion.Tyrosine sulfation of CXCR3 is enhanced by tyrosyl protein sulfotransferases (TPSTs),and it is weakened by shRNA constructs.The binding ability of CXCR3 to IP-10 is increased by TPSTs and decreased by shRNAs.Conclusion: This study identifies two sulfated tyrosines in the N-terminus of CXCR3 as part of the binding site for IP-10,and it underscores the fact that tyrosine sulfation in the N-termini of 7TMS receptors is functionally important for ligand interactions.Our study suggests a molecular target for inhibiting this ligand-receptor interaction.

  12. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  13. Molecular Structure of Aminoguanidine Sulfate Monohydrate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-yan; ZHANG Tong-lai; QIAO Xiao-jing; YANG Li; SHAO Feng-lei

    2006-01-01

    The single crystal of aminoguanidine sulfate monohydrate [(AG)2SO4·H2O] is obtained and its structure is determined by X-ray diffraction analysis. The compound crystallizes in orthorhombic system with space group Pnma and the empirical formula C2H16N8O5S. The unit cell parameters are as follows: a=0.6759(2)nm, b=1.4131(5)nm, c=1.1650(4)nm, V=1.1128(6)n m3, Z=4, Dc=1.578g/cm3, F(000)=560, s=1.069, μ(MoKα)=0.318mm-1. The final R and Wr are 0.0312 and 0.0833, respectively. The title compound is an ionic compound and its structure unit consists of two aminoguanidium cations, one sulfate anion and one crystal water molecule, which are interconnected by electrostatic forces and hydrogen bond s into net structure, making the title compound very stable. Under a linear heat ingrate, the thermal decomposition processes of (AG)2SO4·H2O have one en dothermal dehydration stage, one melting process and one exothermic decomposition stage at 50-400℃, and can evolve abundant gas products.

  14. Diammonium tricadmium tris(sulfate dihydroxide dihydrate

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2011-05-01

    Full Text Available The title compound, (NH42Cd3(SO43(OH2(H2O2, has been obtained serendipitously. It is isotypic with the heavier alkali analogues M2Cd3(SO43(OH2(H2O2 (M = K, Rb, Cs. The structure contains two Cd2+ ions, one in a general position and one with site symmetry m. The former Cd2+ ion is coordinated by three O atoms of three SO4 groups, two hydroxide O atoms and one water O atom, the latter Cd2+ ion by four O atoms of four SO4 groups and two hydroxide O atoms, both in a distorted octahedral coordination geometry. This arrangement leads to the formation of a layered framework extending parallel to (100, with the ammonium cations situated in the voids. O—H...O hydrogen bonds involving the water molecules, hydroxide groups and sulfate O atoms, as well as N—H...O hydrogen bonds between ammonium cations and sulfate O atoms consolidate the crystal packing.

  15. Effects of brief and intermediate exposures to sulfate submicron aerosols and sulfate injections on cardiopulmonary function of dogs and tracheal mucous velocity of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Sackner, M.A. (Mount Sinai Medical Center, Miami Beach, FL); Dougherty, R.L.; Chapman, G.A.; Cipley, J.; Perez, D.; Kwoka, M.; Reinhart, M.; Brito, M.; Schreck, R.

    1981-06-01

    Pulmonary mechanics of anesthetized dogs were not changed or were minimally altered by breathing the following compounds as submicron aerosols in concentrations up to 17.3 mg/m/sup 3/ for 7.5 min: (1) sodium chloride (as a control), (2) sodium sulfate, (3) ammonium sulfate, (4) zinc sulfate, (5) zinc ammonium sulfate, (6) ammonium bisulfate, (7) aluminum sulfate, (8) manganese sulfate, (9) nickel sulfate, (10) copper sulfate, (11) ferrous fulfate, and (12) ferric sulfate. Submicron aerosols of these compounds in concentrations of 4.1 to 8.8 mg/m/sup 3/, administered for 4 h to anesthetized dogs, did not affect mechanics of breathing, hemodynamics, and arterial blood gases. In conscious sheep, tracheal mucous velocity was not altered by exposure to the submicron aerosols of the sulfate compounds. None of these compounds, injected iv in a dose of 1 mg, had adverse effects on mechanics of breathing, pulmonary and systemic hemodynamics, or arterial blood gases. In 100-mg injections, zinc sulfate and zinc ammonium sulfate produced a fall in cardiac output, systemic hypotension, hypoxemia, and metabolic acidosis. Copper sulfate at this dose produced pulmonary hypertension, a fall in cardiac output, hypoxemia, respiratory acidosis, and a decrease of specific total respiratory conductance. It is concluded that submicron aerosols of sulfate salts do not have adverse cardiopulmonary effects when administered in high concentrations for up to 4 h. However, prolonged exposure to high concentrations of zinc sulfate, zinc ammonium sulfate, and copper sulfate aerosols might have adverse cardiopulmonary effects.

  16. Detection of volcanic sulfate aerosol with Envisat MIPAS shown for the Kasatochi, Sarychev, and Nabro eruptions

    Science.gov (United States)

    Griessbach, Sabine; Hoffmann, Lars; Spang, Reinhold; von Hobe, Marc; Müller, Rolf; Riese, Martin

    2013-04-01

    Stratospheric sulfate aerosol is known to have a strong impact on climate. Transport pathways of sulfur dioxide and sulfate aerosol to the stratosphere are still discussed. It is known that volcanic eruptions can inject significant amounts of sulfur directly into the stratosphere. Most sulfur, however, is injected into the troposphere and only a fraction of it can make its way into the stratosphere. Global and altitude resolved time series of observations are a valuable source of information for sulfur dioxide and sulfate aerosol detection. Here we present a new aerosol detection method for the infrared limb sounder Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the results for the Kasatochi, Sarychev, and Nabro eruptions. The new detection method utilizes three infrared window regions that are located around 830, 960, and 1224 cm-1. The combination of these three windows allows for a better detection of enhanced aerosol events in the troposphere as well as the discrimination from ice clouds. With this new method the 10 year record of MIPAS measurements was analyzed. The most remarkable sulfate aerosol events follow the Kasatochi, Sarychev, and Nabro eruptions. After these eruptions enhanced aerosol is detected in the upper troposphere and lower stratosphere (UTLS) region. Within one to two months it spreads over most of the northern hemisphere. In the tropics the aerosol reaches altitudes up to around 20 km and in the Arctic up to 15 km. The enhanced aerosol signal can be observed for about 5, 7, and up to 10 month for the Kasatochi, Sarychev, and Nabro eruptions, respectively. During this period the enhanced aerosol detections decrease in number, strength, and observation altitude. After the Nabro eruption on 13 June 2011 volcanic aerosol is detected in the UTLS region two days after the initial eruption. The following days the aerosol moves around the northern edge of the Asian monsoon region, is then transported southwards and later

  17. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  18. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  19. Regeneration of sulfated limestone from FBCs. Quarterly report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Chopra, O.K.; Lenc, J.F.; Moulton, D.S.; Nunes, F.F.; Smith, G.W.; Smyk, E.B.; Jonke, A.A.

    1979-01-01

    These studies support the national development program in fluidized-bed combustion. The objective of this program is to develop an economically acceptable process for the regeneration of the partly sulfated limestone product of a fluidized-bed coal combustor, and to obtain the design data needed for the construction of larger regenerators. This report presents information on: a thermodynamic analysis of the one-step reductive decomposition regeneration process, an evaluation of a regeneration process using a rotary kiln, and the use of fly ash for the reduction of gaseous SO/sub 2/ elemental sulfur. In the previous year, studies of the effect of limestone sulfation-enhancement agents (e.g., NaCl and CaCl/sub 2/) on corrosion of FBC structural materials were described. Results of these tests are reported here.

  20. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity.

    Science.gov (United States)

    Gulberti, Sandrine; Jacquinet, Jean-Claude; Chabel, Matthieu; Ramalanjaona, Nick; Magdalou, Jacques; Netter, Patrick; Coughtrie, Michael W H; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2012-04-01

    Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage oligosaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K(m) values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specifity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.

  1. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate and ...

  2. Climate Driven Changes in the Formation Pathways of Atmospheric Sulfate: A Comparison from Bipolar Ice Core Records

    Science.gov (United States)

    Geng, L.; Alexander, B.

    2013-12-01

    Atmospheric sulfate aerosol affects radiative forcing of the atmosphere and thus climate. The formation pathways of sulfate, through gas-phase or aqueous phase oxidation of SO2, have implications for climate forcing because only sulfate produced in the gas-phase can nucleate new aerosol particles. Thus, constraining the formation pathways of sulfate in different climates is important to assess its climate impact. O-17 excess of sulfate (Δ17O(SO42-)) can be used to distinguish the formation pathways of atmospheric sulfate. Δ17O(SO42-) measured from an Antarctic (Vostok) ice core covering a full climate cycle suggested that gas-phase oxidation was more important in the last glacial period than that in the interglacial periods before and after, though its cause was not fully understood. We present new results of Δ17O(SO42-) measured from a Greenland (GISP2) ice core covering the last glacial period. Compared to the Vostok results, the GISP2 results display a similar Δ17O(SO42-) - temperature/climate relationship, but with much smaller Δ17O(SO42-) values in preindustrial Holocene (PIH). This difference seen in PIH is likely because aqueous-phase oxidation of SO2 by H2O2 is more important in the Northern Hemisphere than in the Southern Hemisphere, due to differences in cloud pH and oxidant abundances. Results from a new chemistry-climate model (ICECAP) suggest that the enhanced gas-phase oxidation in the glacial period in both hemispheres is due to 1) increased tropospheric OH production in mid- to high latitudes caused by enhanced UV-B radiation originating from reduced stratospheric ozone abundance and higher surface albedos over land and sea ice, and 2) reduced cloud fraction in the glacial climate. Implications for the global sulfur budget will be discussed.

  3. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  4. Upper tropospheric ice sensitivity to sulfate geoengineering

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  5. A radioimmunoassay for measurement of thyroxine sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.J.; Santini, F.; Hurd, R.E.; Chua Teco, G.N. (Univ. of California Center for the Health Sciences, Los Angeles (United States))

    1993-01-01

    A highly sensitive, specific, and reproducible RIA has been developed to measure T[sub 4] sulfate (T[sub 4]S) in ethanol extracts of serum. rT[sub 3] sulfate (rT[sub 3]S) cross-reacted 7.1%, and T[sub 3]S cross-reacted 0.59% in the RIA; T[sub 4], T[sub 3], rT[sub 3] and 3,3[prime]-diiodothyronine cross-reacted 0.004% or less. The recovery of nonradioactive T[sub 4]S added to serum averaged 95%. The detection threshold of the RIA was 18 pmol/L. The coefficient of variation averaged 6.9% within an assay and 12% between assays. T[sub 4]S was bound by T[sub 4]-binding globulin and albumin in serum. The free fraction of T[sub 4]S in four normal sera averaged 0.06% compared to a value of 0.03% for T[sub 4] (P < 0.001). The serum concentration of T[sub 4]S was (mean [+-] SE) 19 [+-] 1.2 pmol/L in normal subjects, 33 [+-] 10 in hyperthyroid patients with Graves disease, 42 [+-] 15 in hypothyroid patients, 34 [+-] 6.9 in patients with systematic nonthyroidal illnesses, 21 [+-] 4.3 in pregnant women at 15-40 weeks gestation, and 245 [+-] 26 in cord blood sera of newborns; the value in the newborn was significantly different from normal (P < 0.001). Administration of sodium ipodate (Oragrafin; 3 g, orally) to hyperthyroid patients was associated with a transient increase in serum T[sub 4]S. The T[sub 4]S content of the thyroid gland was less than 1/4000th that of T[sub 4]. We conclude that (1) T[sub 4]S is a normal component of human serum, and its levels are markedly increased in newborn serum and amniotic fluid; and (2) the sulfation pathway plays an important role in the metabolism of T[sub 4] in man. 28 refs., 4 figs., 2 tabs.

  6. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids.

    Science.gov (United States)

    Roberts, D D; Haverstick, D M; Dixit, V M; Frazier, W A; Santoro, S A; Ginsburg, V

    1985-08-05

    The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.

  7. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    Science.gov (United States)

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  8. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  9. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology

    NARCIS (Netherlands)

    Lensen, J.F.M.; Vlag, J. van der; Versteeg, E.M.M.; Wetzels, J.F.M.; Heuvel, L.P.W.J. van den; Berden, J.H.M.; Kuppevelt, T.H. van; Rops, A.

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial

  10. Novel Thermally Stable Poly (vinyl chloride) Composites for Sulfate Removal

    Science.gov (United States)

    BaCO3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthe...

  11. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  12. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  13. 21 CFR 520.110 - Apramycin sulfate soluble powder.

    Science.gov (United States)

    2010-04-01

    ...) caused by strains of E. coli sensitive to apramycin. (2) It is administered for 7 days in drinking water... sulfate soluble powder. (a) Specifications. A water soluble powder used to make a medicated drinking water containing apramycin sulfate equivalent to 0.375 gram of apramycin activity per gallon of drinking water....

  14. 21 CFR 173.385 - Sodium methyl sulfate.

    Science.gov (United States)

    2010-04-01

    ... Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance with the following conditions. (a) It is present as the result of methylation of pectin by....1 percent by weight of the pectin....

  15. Serum Indoxyl Sulfate Associates with Postangioplasty Thrombosis of Dialysis Grafts.

    Science.gov (United States)

    Wu, Chih-Cheng; Hsieh, Mu-Yang; Hung, Szu-Chun; Kuo, Ko-Lin; Tsai, Tung-Hu; Lai, Chao-Lun; Chen, Jaw-Wen; Lin, Shing-Jong; Huang, Po-Hsun; Tarng, Der-Cherng

    2016-04-01

    Hemodialysis vascular accesses are prone to recurrent stenosis and thrombosis after endovascular interventions.In vitro data suggest that indoxyl sulfate, a protein-bound uremic toxin, may induce vascular dysfunction and thrombosis. However, there is no clinical evidence regarding the role of indoxyl sulfate in hemodialysis vascular access. From January 2010 to June 2013, we prospectively enrolled patients undergoing angioplasty for dialysis access dysfunction. Patients were stratified into tertiles by baseline serum indoxyl sulfate levels. Study participants received clinical follow-up at 6-month intervals until June 2014. Primary end points were restenosis, thrombosis, and failure of vascular access. Median follow-up duration was 32 months. Of the 306 patients enrolled, 262 (86%) had symptomatic restenosis, 153 (50%) had access thrombosis, and 25 (8%) had access failure. In patients with graft access, free indoxyl sulfate tertiles showed a negative association with thrombosis-free patency (thrombosis-free patency rates of 54%, 38%, and 26% for low, middle, and high tertiles, respectively;P=0.001). Patients with graft thrombosis had higher free and total indoxyl sulfate levels. Using multivariate Cox regression analysis, graft thrombosis was independently predicted by absolute levels of free indoxyl sulfate (hazard ratio=1.14;P=0.01) and free indoxyl sulfate tertiles (high versus low, hazard ratio=2.41;P=0.001). Results of this study provide translational evidence that serum indoxyl sulfate is a novel risk factor for dialysis graft thrombosis after endovascular interventions.

  16. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases.

    Science.gov (United States)

    Ko, Kyounga; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-09-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.

  17. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  18. Sulfate reduction at low pH in organic wastewaters

    NARCIS (Netherlands)

    Lopes, S.I.C.

    2007-01-01

    The objective of the research described in this thesis was to investigate the operational window of dissimilatory sulfate reduction at low pH (6, 5 and 4) during the acidification of organic wastewaters. High sulfate reduction efficiencies at low pH are desirable for a more sustainable operation of

  19. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  20. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Yang, Ting; Zhang, Xiaonuo; Zuo, Yuan; Tian, Jia; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-03-01

    In the present study, sulfated derivatives of Artemisia sphaerocephala polysaccharide (SASP) with high degree of substitution (DS) were synthesized by using 4-dimethylaminopyridine (DMAP)/dimethylcyclohexylcarbodiimide (DCC) as catalyst in homogeneous conditions. It was found that DMAP/DCC showed marked improvement in DS of sulfated samples. Compared to sulfated derivatives without catalyst, the DS of SASP increased from 0.91 to 1.28 with an increment in dosage of DMAP from 0 to 10 mg. The influence of DMAP/DCC on the DS of sulfated derivatives was depended on the content of DMAP. The effect of DMAP might be due to its strong coordination to the hydroxy group. The results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3- group (S6+, binding energy of 172.3 eV) was widely present in sulfated polysaccharide molecules. 13C NMR results indicated that C-6 substitution was predominant for sulfated polysaccharide when compared with other positions. In the sulfation reaction, a sharp decrease in MW was observed. DMAP/DCC was an effective catalyst system in sulfated modification of polysaccharide.

  1. Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum.

    Science.gov (United States)

    Seedevi, Palaniappan; Moovendhan, Meivelu; Sudharsan, Sadhasivam; Vasanthkumar, Shanmugam; Srinivasan, Alagiri; Vairamani, Shanmugam; Shanmugam, Annaian

    2015-01-01

    Sulfated polysaccharide was isolated from Monostroma oxyspermum through hot water extraction, anion-exchange and gel permeation column chromatography. The sulfated polysaccharide contained 92% of carbohydrate, 0% of protein, 7.8% of uronic acid, 22% of ash and 33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 55 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, fructose, galactose, xylose, and glucose. The structural features of sulfated polysaccharide were analyzed by NMR spectroscopy. Further the sulfated polysaccharide showed total antioxidant and DPPH free radical scavenging activity were as 66.29% at 250 μg/ml and 66.83% at 160 μg/ml respectively. The sulfated polysaccharide also showed ABTS scavenging ability and reducing power were as 83.88% at 125 μg/ml and 15.81% at 400 μg/ml respectively. The anticoagulant activity was determined for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT) was 20.09 IU and 1.79 IU at 25 μg/ml respectively. These results indicated that the sulfated polysaccharide from M. oxyspermum had potent antioxidant and anticoagulant activities.

  2. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    Science.gov (United States)

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  3. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    Science.gov (United States)

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi.

  4. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    Science.gov (United States)

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  5. Dehydroepiandrosterone, Its Sulfate and Cognitive Functions

    Science.gov (United States)

    de Menezes, Karina Junqueira; Peixoto, Clayton; Nardi, Antonio Egidio; Carta, Mauro Giovanni; Machado, Sérgio; Veras, André Barciela

    2016-01-01

    To present a review of cross-sectional and longitudinal studies that investigate the relationship between the hormones Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone sulfate (DHEA-S) and cognition. Methods: The cognition items included in this review were global cognitive function, memory, attention, executive function, intelligence, perception and visuospatial ability. A systematic review was proceeded using three databases: PubMed, ISI Web of Science, and PsycINFO. Results: Two thousand fifty five references about cognition and hormones were found; 772 duplicated references were excluded, resulting in 1.283 references to be evaluated. According to exclusion and inclusion criteria, 25 references were selected. A positive correlation between DHEA-S blood levels and global cognition was found in women and men. Other positive correlations between DHEA-S and working memory, attention and verbal fluency were found only in women. The DHEA effect on cognition is limited to one study conducted among young men with high-doses. PMID:27346998

  6. Dehydroepiandrosterone, Its Sulfate and Cognitive Functions.

    Science.gov (United States)

    de Menezes, Karina Junqueira; Peixoto, Clayton; Nardi, Antonio Egidio; Carta, Mauro Giovanni; Machado, Sérgio; Veras, André Barciela

    2016-01-01

    To present a review of cross-sectional and longitudinal studies that investigate the relationship between the hormones Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone sulfate (DHEA-S) and cognition. The cognition items included in this review were global cognitive function, memory, attention, executive function, intelligence, perception and visuospatial ability. A systematic review was proceeded using three databases: PubMed, ISI Web of Science, and PsycINFO. Two thousand fifty five references about cognition and hormones were found; 772 duplicated references were excluded, resulting in 1.283 references to be evaluated. According to exclusion and inclusion criteria, 25 references were selected. A positive correlation between DHEA-S blood levels and global cognition was found in women and men. Other positive correlations between DHEA-S and working memory, attention and verbal fluency were found only in women. The DHEA effect on cognition is limited to one study conducted among young men with high-doses.

  7. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  8. Distribution of sulfate between phases in Portland cement clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.F.W.

    1999-08-01

    Sulfate can occur in Portland cement clinkers as alkali sulfates, potassium calcium sulfate (calcium langbeinite), anhydrite, and as a substituent in the major phases, especially alite and belite. Data for the contents in alit and belite are reviewed and relations to bulk clinker composition are discussed. Evidence on sulfate distribution from extraction procedures is similarly considered. A procedure for predicting sulfate distribution from bulk composition is described and tested and potential sources of error in such calculations are discussed. The evidence does not support suggests that, in concrete made with present-day cements and not subjected to an elevated temperature, damage through delayed ettringite formation can occur for reasons connected with the SO{sub 3} present in the clinker.

  9. Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity.

    Science.gov (United States)

    Wang, Yuanfeng; Peng, Yonghua; Wei, Xinlin; Yang, Zhiwei; Xiao, Jianbo; Jin, Zhengyu

    2010-03-01

    Neutral polysaccharides (NTPS) and acid polysaccharides (ATPS) from tea leaves were obtained on a D315 macroporous anion-exchange resin column chromatography. NTPS and ATPS were sulfated by the pyridine-sulfonic acid method to obtain NTPS-S and ATPS-S. It was found that NTPS was easier sulfated than ATPS. There are strong characteristic absorption peaks located in 1258 cm(-1), 1146 cm(-1), 832 cm(-1) and 617 cm(-1) in the FTIR spectra of sulfated polysaccharides. Sulfation of polysaccharides also affected the endothermic and exothermic peaks via the DSC scan analysis. The appearance of exothermic peaks in both NTPS-S and ATPS-S indicated that the redox reaction might happen. The comparative study of hypoglycemic effect on mice showed that the sulfation of polysaccharides significantly improved hypoglycemic activity.

  10. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    Energy Technology Data Exchange (ETDEWEB)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L. (Cardiovascular Diseases Research, Upjohn Laboratories, Upjohn Company, Kalamazoo, MI (United States))

    1991-09-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to (35S) MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either (3H)MNXS (label on the piperidine ring of MNXS) or (3H)minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with (35S)MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in (35S) MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by (35S)MNXS in intact RMA were components of smooth muscle cells.

  11. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  12. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  13. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  14. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...: (1) To 000009; each gram contains 500 units of bacitracin, 3.5 milligrams of neomycin, and...

  15. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently decrease

  16. Impact of sulfation pattern on the conformation and dynamics of sulfated fucan oligosaccharides as revealed by NMR and MD.

    Science.gov (United States)

    Queiroz, Ismael N L; Wang, Xiaocong; Glushka, John N; Santos, Gustavo R C; Valente, Ana P; Prestegard, James H; Woods, Robert J; Mourão, Paulo A S; Pomin, Vitor H

    2015-05-01

    Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation.

  17. Binding Affinity and Capacity for the Uremic Toxin Indoxyl Sulfate

    Directory of Open Access Journals (Sweden)

    Eric Devine

    2014-01-01

    Full Text Available Protein binding prevents uremic toxins from removal by conventional extracorporeal therapies leading to accumulation in maintenance dialysis patients. Weakening of the protein binding may enhance the dialytic elimination of these toxins. In ultrafiltration and equilibrium dialysis experiments, different measures to modify the plasma binding affinity and capacity were tested: (i, increasing the sodium chloride (NaCl concentration to achieve a higher ionic strength; (ii, increasing the temperature; and (iii, dilution. The effects on the dissociation constant KD and the protein bound fraction of the prototypical uremic toxin indoxyl sulfate (IS in plasma of healthy and uremic individuals were studied. Binding of IS corresponded to one site binding in normal plasma. KD increased linearly with the NaCl concentration between 0.15 (KD = 13.2 ± 3.7 µM and 0.75 M (KD = 56.2 ± 2.0 µM. Plasma dilution further reduced the protein bound toxin fraction by lowering the protein binding capacity of the plasma. Higher temperatures also decreased the protein bound fraction of IS in human plasma. Increasing the NaCl concentration was effective to weaken the binding of IS also in uremic plasma: the protein bound fraction decreased from 89% ± 3% to 81% ± 3% at 0.15 and 0.75 M NaCl, respectively. Dilution and increasing the ionic strength and temperature enhance the free fraction of IS allowing better removal of the substance during dialysis. Applied during clinical dialysis, this may have beneficial effects on the long-term outcome of maintenance dialysis patients.

  18. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree.

    Science.gov (United States)

    de Freitas, Mateus B; Ferreira, Luciana G; Hawerroth, Caroline; Duarte, Maria Eugênia R; Noseda, Miguel D; Stadnik, Marciel J

    2015-11-20

    The present work aimed to evaluate the defense responses induced by chemically sulfated ulvans in Arabidopsis thaliana plants against the phytopathogenic fungi Alternaria brassicicola and Colletotrichum higginsianum. Derivatives with growing sulfate content (from 20.9 to 36.6%) were prepared with SO3-pyridine complex in formamide. NMR and FTIR spectroscopic analyses confirmed the increase of sulfate groups after the chemical sulfation process. The native sulfated polysaccharide (18.9% of sulfate) and its chemically sulfated derivatives similarly reduced the severity of both pathogenic fungi infections. Collectively, our results suggest that ulvans induce resistance against both fungal pathogens independently of its sulfation degree.

  19. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  20. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.

    Science.gov (United States)

    Kinsela, Andrew S; Collins, Richard N; Waite, T David

    2011-02-01

    Factors controlling the transport of geogenically-derived arsenic from a coastal acid sulfate soil into downstream sediments are identified in this study with both solid-phase associations and aqueous speciation clearly critical to the mobility and toxicity of arsenic. The data from both sequential extractions and X-ray adsorption spectroscopy indicate that arsenic in the unoxidised Holocene acid sulfate soils is essentially non-labile in the absence of prolonged oxidation, existing primarily as arsenopyrite or as an arsenopyrite-like species, likely arsenian pyrite. Anthropogenically-accelerated pedogenic processes, which have oxidised this material over time, have greatly enhanced the potential bioavailability of arsenic, with solid-phase arsenic almost solely present as As(V) associated with secondary Fe(III) minerals present. Analyses of downstream sediments reveal that a portion of the arsenic is retained as a mixed As(III)/As(V) solid-phase, though not at levels considered to be environmentally deleterious. Determination of arsenic speciation in pore waters using high performance liquid chromatography/Inductively Coupled Plasma-Mass Spectrometry shows a dominance of As(III) in upstream pore waters whilst an unidentified As species reaches comparative levels within the downstream, estuarine locations. Pore water As(V) was detected at trace concentrations only. The results demonstrate the importance of landscape processes to arsenic transport and availability within acid sulfate soil environments.

  1. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, Luis [Dr Peset University Hospital, Radiology Department, Valencia (Spain); Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Sanz-Requena, Roberto; Alberich-Bayarri, Angel [Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Rodrigo, Jose Luis [Dr Peset University Hospital, Traumatology and Orthopedics Surgery Department, Valencia (Spain); Carot, Jose Miguel [Universidad Politecnica de Valencia, EIO Department, Valencia (Spain)

    2009-06-15

    Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K{sup trans}) and interstitial interchangeable volume (v{sub e}). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 {+-} 1.1 to 3.6 {+-} 1.3, p < 0.001; AKS: 18.6 {+-} 6.9 to 42.9 {+-} 2.7, p < 0.01). Glucosamine significantly increased K{sup trans} at 6 months (-54.4 {+-} 21.2% vs 126.7 {+-} 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K{sup trans}, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. (orig.)

  2. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase

    Directory of Open Access Journals (Sweden)

    Biplab Kumar Dash

    2015-01-01

    Full Text Available A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25% as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37°C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L and sodium lauryl sulfate (0.2 g/L resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50°C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time.

  3. General Motors sulfate dispersion experiment: experimental procedures and results

    Energy Technology Data Exchange (ETDEWEB)

    Cadle, S.H.; Chock, D.P.; Monson, P.R.; Heuss, J.M.

    1977-01-01

    A massive experiment was conducted at the General Motors Proving Ground to measure the dispersion of sulfates generated by catalyst equipped vehicles. 352 cars equipped with catalysts and air pumps were driven on a 10 kilometer test track to provide a simulated freeway situation with a traffic density of 5462 cars/hour. Experiments were conducted on 17 days in October 1975, providing sixty-six 30 min data sets. On most days, the experiment was carried out early in the morning in order to run under the most adverse meteorological conditions available. Samples of airborne sulfate and a gas tracer, sulfur hexafluoride, as well as extensive meteorological data were collected simultaneously at 20 sampling points under a wide variety of meteorological conditions. The maximum measured increase in sulfate from each 30 min data set was generally found next to the roadway at the lowest level and varied from 3 to 15 ..mu..g/m/sup 3/. This increase in sulfate over background fell off rapidly with height and distance. Sulfate increases in vehicles (2 hr averages) ranged from 0 to 20 ..mu..g/m/sup 3/, and averaged 4 ..mu..g/m/sup 3/. Within experimental uncertainty, the sulfate aerosol and the gas tracer were found to disperse in the same manner. The tracer data have also been used to calculate the sulfate emission rate of the vehicles.

  4. Reconstruction of secular variation in seawater sulfate concentrations

    Science.gov (United States)

    Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.

    2015-04-01

    Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.

  5. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

  6. Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.

    Science.gov (United States)

    Detmers, J.; Schulte, U.; Strauss, H.; Kuever, J.

    2001-10-01

    In a combined isotope geochemical and microbiological investigation, a setting of multiple aquifers was characterized. Biologically mediated redox processes were observed in the aquifers situated in marine sands of Tertiary age and overlying Quaternary gravel deposits. Intercalated lignite seams define the aquitards, which separate the aquifers. Bacterial oxidation of organic matter is evident from dissolved inorganic carbon characterized by average carbon isotope values between ?18.4 per thousand and ?15.7 per thousand (PDB). Strongly positive sulfur isotope values of up to +50 per thousand (CTD) for residual sulfate indicate sulfate reduction under closed system conditions with respect to sulfate availability. Both, hydrochemical and isotope data are thus consistent with the recent activity of sulfate-reducing bacteria (SRB). Microbiological investigations revealed the presence of an anaerobic food chain in the aquifers. Most-probable-number (MPN) determinations for SRB and fermenting microorganisms reached highest values at the interface between aquifer and lignite seam (1.5 x 103 cells/g sediment dry mass). Five strains of SRB were isolated from highest MPN dilutions. Spore-forming bacteria appeared to dominate the SRB population. Sulfate reduction rates were determined by the 35S-radiotracer method. A detailed assessment indicates an increase in the reduction rate in proximity to the lignite seam, with a maximum turnover of 8.4 mM sulfate/a, suggesting that lignite-drived compounds represent the substrate for sulfate reduction.

  7. ALTERED ENZYMATIC ACTIVITY OF LYSOZYMES BOUND TO VARIOUSLY SULFATED CHITOSANS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Wang; Lin Yuan; Tie-liang Zhao; He Huang; Hong Chen; Di Wu

    2012-01-01

    The purpose of this research is to investigate the effects of the variously sulfated chitosans on lysozyme activity and structure.It was shown that the specific enzymatic activity of lysozyme remained almost similar to the native protein after being bound to 6-O-sulfated chitosan (6S-chitosan) and 3,6-O-sulfated chitosan (3,6S-chitosan),but decreased greatly after being bound to 2-N-6-O-sulfated chitosan (2,6S-chitosan).Meanwhile,among these sulfated chitosans,2,6S-chitosan induced the greatest conformational change in lysozyme as indicated by the fluorescence spectra.These findings demonstrated that when sulfated chitosans of different structures bind to lysozyme,lysozyme undergoes conformational change of different magnitudes,which results in corresponding levels of lysozyme activity.Further study on the interaction of sulfated chitosans with lysozyme by surface plasmon resonance (SPR) suggested that their affinities might be determined by their molecular structures.

  8. Sulfation patterns determine cellular internalization of heparin-like polysaccharides.

    Science.gov (United States)

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R; Kuberan, Balagurunathan

    2013-04-01

    Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.

  9. Structure versus anticoagulant and antithrombotic actions of marine sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2012-08-01

    Full Text Available Marine sulfated polysaccharides (MSP, such as sulfated fucans (SF, sulfated galactans (SG and glycosaminoglycans (GAG isolated from either algae or invertebrate animals, are highly anionic polysaccharides capable of interacting with certain cationic proteins, such as (co-factors of the coagulation cascade during clotting-inhibition processes. These molecular complexes between MSP and coagulation-related proteins might, at first glance, be assumed to be driven mostly by electrostatic interactions. However, a systematic comparison using several novel sulfated polysaccharides composed of repetitive oligosaccharides with clear sulfation patterns has shown that these molecular interactions are regulated essentially by the stereochemistry of the glycans (which depends on a conjunction of anomericity, monosaccharide, conformational preference, and glycosylation and sulfation sites, rather than just a simple consequence of their negative charge density (mainly the number of sulfate groups. Here, we present an overview of the structure-function relationships of MSP, correlating their structures with their potential anticoagulant and antithrombotic actions, since pathologies related to the cardiovascular system are one of the major causes of illness and mortality in the world.

  10. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction.

  11. The influence of cloud droplet heterogeneity on sulfate production mechanisms constrained by isotopic measurements of sulfate aerosol

    Science.gov (United States)

    Alexander, B.; Allman, D. J.; Amos, H. M.; Fairlie, T. D.; Dachs, J.; Hegg, D.; Sletten, R. S.

    2011-12-01

    Observations and modeling studies have shown that heterogeneity in fog and cloud drop size and chemical composition can significantly impact in-cloud sulfate production rates due to the strong pH dependence of the ozone oxidation pathway. Averaging cloud water pH tends to underestimate the fraction of S(IV) that is SO32- leading to underestimates of in-cloud sulfate production rates. Large scale models typically do not account for this heterogeneity due to the large computational expense associated with this calculation, and instead employ bulk calculations or assumptions of cloud water pH. Modeling studies have consistently shown that calculated sulfate production rates using bulk cloud pH treatments tend to underestimate in-cloud sulfate production rates compared to more explicit treatment of cloud drop heterogeneity by underestimating the ozone oxidation pathway. Here, we utilize a global chemical transport model (GEOS-Chem) and observations of the oxygen isotopic composition of sulfate aerosol collected during a ship cruise in the subtropical northeast Atlantic Ocean to quantify sulfate formation pathways in the marine boundary layer. The oxygen isotopic composition of sulfate aerosol is particularly sensitive to the importance of the ozone oxidation pathway due to its large isotopic signature. We employ a model parameterization by Yuen et al. (1996) that accounts for the impact of alkaline, coarse-mode sea salt aerosols on in-cloud sulfate production rates. As sulfate formation in cloud droplets formed on alkaline coarse-mode sea salt aerosols is thought to be dominated by the ozone oxidation pathway, observations of the oxygen isotopic composition of sulfate aerosol provide a robust test of this parameterization. Including the Yuen et al. (1996) parameterization of cloud droplet heterogeneity improves the model's agreement with the observed sulfate oxygen isotopes. Accounting for the impact of cloud droplet heterogeneity on in-cloud sulfate production rates

  12. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  13. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  14. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate.

    Science.gov (United States)

    Farhat, Ali; Keller, Jurg; Tait, Stephan; Radjenovic, Jelena

    2015-12-15

    Solutions of sulfate have often been used as background electrolytes in the electrochemical degradation of contaminants and have been generally considered inert even when high-oxidation-power anodes such as boron-doped diamond (BDD) were employed. This study examines the role of sulfate by comparing electro-oxidation rates for seven persistent organic contaminants at BDD anodes in sulfate and inert nitrate anolytes. Sulfate yielded electro-oxidation rates 10-15 times higher for all target contaminants compared to the rates of nitrate anolyte. This electrochemical activation of sulfate was also observed at concentrations as low as 1.6 mM, which is relevant for many wastewaters. Electrolysis of diatrizoate in the presence of specific radical quenchers (tert-butanol and methanol) had a similar effect on electro-oxidation rates, illustrating a possible role of the hydroxyl radical ((•)OH) in the anodic formation of sulfate radical (SO4(•-)) species. The addition of 0.55 mM persulfate increased the electro-oxidation rate of diatrizoate in nitrate from 0.94 to 9.97 h(-1), suggesting a nonradical activation of persulfate. Overall findings indicate the formation of strong sulfate-derived oxidant species at BDD anodes when polarized at high potentials. This may have positive implications in the electro-oxidation of wastewaters containing sulfate. For example, the energy required for the 10-fold removal of diatrizoate was decreased from 45.6 to 2.44 kWh m(-3) by switching from nitrate to sulfate anolyte.

  15. Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland

    Directory of Open Access Journals (Sweden)

    Raffaele PEDUZZI

    2004-08-01

    Full Text Available Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107 cells ml-1. The most abundant taxa in the chemocline are large- and small-celled purple sulfur bacteria, which account for up to 35% of all bacteria, and sulfate- reducing bacteria that represent up to 23% of all bacteria. Depending on the season, as much as 45% of all bacteria in the chemocline are associated in aggregates consisting of different populations of small-celled purple sulfur bacteria of the genus Lamprocystis (up to 35% of all bacteria and sulfate-reducing bacteria of the family Desulfobulbaceae (up to 12% of all bacteria that are almost completely represented by bacteria closely related to Desulfocapsa thiozymogenes. Their association in aggregates is restricted to small-celled purple sulfur bacteria of the genus Lamprocystis, but not obligate since non-associated cells of bacteria related to D. thiozymogenes are frequently found, especially under limited light conditions in winter and early summer. Aggregate formation and concomitant growth enhancement of isolates of both partners of this association suggests synergistic interactions that might resemble a sulfide-based source-sink relationship between the sulfate-reducing bacterium that is able to sustain growth by a disproportionation of inorganic sulfur compounds (sulfur, thiosulfate, sulfite, with the purple sulfur bacteria acting as a biotic scavenger. The availability of these isolates opens up the door for future studies considering other facets of potential interactions in aggregates since both types of organisms are metabolically highly versatile and interactions may not be limited to sulfur compounds only.

  16. Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-05-01

    Full Text Available Abstract Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra and Stolidobranchia (Halocynthia pyriformis and Styela plicata. Despite the identical disaccharide backbone, consisting of [→4IdoA(2Sβ-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi and Phlebobranchia (Ciona intestinalis, aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfateβ-1→3GalNAcβ-1

  17. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  18. Commercial Application of Technique for Removing Sulfates from Reforming Catalyst

    Institute of Scientific and Technical Information of China (English)

    JiChangqing

    2002-01-01

    In the course of reduction of reforming catalyst by not hydrogen a certain amount of chlorine containing compounds is added to the recycle hydrogen to facilitate the reduction of sulfates.The outcome of commercial application of this technique has revealed that the procedure of "regeneration by chlorination→reduction→sulfate removal→sulfiding and oil feed-in"aimed at sulate removal is very simple and can recover the reaction activity of reforming catalyst after having been poisoned by sulfates.This procedure can be disseminated for application in refineries.

  19. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  20. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  1. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  2. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  3. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  4. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim;

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  5. Preparation and characterization of mesoporous tetragonal sulfated zirconia

    Institute of Scientific and Technical Information of China (English)

    Chun Xia He; Bin Yue; Ji Fang Cheng; Wei Ming Hua; Ying Hong Yue; He Yong He

    2009-01-01

    Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.

  6. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  7. Chelate effects in sulfate binding by amide/urea-based ligands.

    Science.gov (United States)

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-01

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  8. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  9. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  10. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid.

    Science.gov (United States)

    Li, Zhonglai; Wnetrzak, Renata; Kwapinski, Witold; Leahy, James J

    2012-09-26

    TiO(2) nanorods and ZrO(2)-modified TiO(2) nanocomposites have been prepared by hydrothermal synthesis and the deposition-precipitation method. Their sulfated products were tested as solid superacid catalysts for the esterification of levulinic acid which was used as a model bio-oil molecule. SEM and TEM characterization showed that TiO(2) nanorods with diameters ranging from 20 to 200 nm and with lengths of up to 5 μm were synthesized by a hydrothermal method at 180 °C. ZrO(2) nanoparticles with the diameters ranging from 10 to 20 nm were evenly deposited on TiO(2) nanorods. IR and XPS results suggested that sulfated ZrO(2)/TiO(2) nanocomposite has higher content of sulfate groups on the surface with a S/(Zr+Ti) ratio of 13.6% than sulfated TiO(2) nanorods with a S/Ti ratio of 4.9%. The HPLC results showed that sulfated ZrO(2)/TiO(2) nanocomposite have enhanced catalytic activity for esterification reaction between levulinic acid and ethanol compared to sulfated TiO(2) nanorods. The conversion of levulinic acid to ethyl levulinate can reach to 90.4% at the reaction temperature of 105 °C after 180 min.

  11. The kinetics of sulfation of calcium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.; Longwell, J.P.

    1990-01-01

    The rate of sulfation of a CaO surface is rapid at first, limited by the intrinsic kinetics, but slows down with increasing conversion as a consequence of the increased resistance to diffusion through the product layer. The objectives of this study are to determine the intrinsic kinetics and the product layer diffusion pate by minimizing the resistances to gas-phase pore diffusion, and eliminating complications due to pore filling. This is achieved by the use of nonporous CaO. A wide range of particle sizes are used to change the relative importance of the regimes in which the intrinsic kinetics and product layer diffusion control. The assumption of constant product layer diffusivity can then be tested and the variables that determine this diffusivity independently studied. Information on product layer diffusion can also be obtained from studies of porous particles after the pore mouths are all plugged and a uniform surface coating is obtained. This information on diffusion rate and intrinsic reactivity can then be combined with a geometrical model to describe the rate of reaction over the entire range of conversions and is particularly useful in treating the effect of particle size on conversion history.

  12. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  13. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  14. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  15. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells.

    Science.gov (United States)

    Yusa, Akiko; Miyazaki, Keiko; Kimura, Naoko; Izawa, Mineko; Kannagi, Reiji

    2010-05-15

    Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of malignant transformation of colonic epithelial cells and was assumed to be responsible for the increased sialyl Lewis(x) expression in cancers. To elucidate the molecular biological background of the impaired sulfation in cancers, we studied the expression levels of mRNA for 6-O-sulfotransferase isoenzymes, PAPS synthases and transporters, and a cell membrane sulfate transporter, DTDST, in cancer tissues. The most striking decrease in cancer cells compared with nonmalignant epithelial cells was noted in the transcription of the DTDST gene (P = 0.0000014; n = 20). Most cultured colon cancer cells had a diminished DTDST transcription, which was restored when cultured with histone deacetylase inhibitors. Suppression of DTDST transcription under the control of a tet-off inducible promoter resulted in increased sialyl Lewis(x) expression and reduced sialyl 6-sulfo Lewis(x) expression. Unexpectedly, the growth rate of the cancer cells was markedly enhanced when transcription of DTDST was suppressed. These results show that the decrease in the transcription of the sulfate transporter gene is the major cause of decreased expression of sialyl 6-sulfo Lewis(x) and increased expression of sialyl Lewis(x) in colon cancers. The results also suggest that the diminished DTDST expression is closely related to enhanced proliferation of cancer cells.

  16. Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO₂ scrubbing liquor.

    Science.gov (United States)

    Chen, Mingxiang; Zhou, Jiti; Zhang, Yu; Wang, Xiaojun; Shi, Zhuang; Wang, Xiaowei

    2015-03-01

    A viable process concept, based on NO and SO2 absorption into an alkaline Fe(II)EDTA (EDTA: ethylenediaminetetraacetic acid) solution in a scrubber combined with biological reduction of the absorbed SO2 utilizing sulfate reducing bacteria (SRB) and regeneration of the scrubbing liquor in a single bioreactor, was developed. The SRB, Desulfovibrio sp. CMX, was used and its sulfate reduction performances in FeEDTA solutions and Fe(II)EDTA-NO had been investigated. In this study, the detailed regeneration process of Fe(II)EDTA solution, which contained Fe(III)EDTA and Fe(II)EDTA-NO reduction processes in presence of D. sp. CMX and sulfate, was evaluated. Fe(III)EDTA and Fe(II)EDTA-NO reduction processes were primarily biological, even if Fe(III)EDTA and Fe(II)EDTA-NO could also be chemically convert to Fe(II)EDTA by biogenic sulfide. Regardless presence or absence of sulfate, more than 87 % Fe(III)EDTA and 98 % Fe(II)EDTA-NO were reduced in 46 h, respectively. Sulfate and Fe(III)EDTA had no affection on Fe(II)EDTA-NO reduction. Sulfate enhanced final Fe(III)EDTA reduction. Effect of Fe(III)EDTA on Fe(II)EDTA-NO reduction rate was more obvious than effect of sulfate on Fe(II)EDTA-NO reduction rate before 8 h. To overcome toxicity of Fe(II)EDTA-NO on SRB, Fe(II)EDTA-NO was reduced first and the reduction of Fe(III)EDTA and sulfate occurred after 2 h. First-order Fe(II)EDTA-NO reduction rate and zero-order Fe(III)EDTA reduction rate were detected respectively before 8 h.

  17. Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions - Implications for ChemCam investigations on Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobron, Pablo, E-mail: pablo.sobron@asc-csa.gc.ca [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Wang, Alian [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Sobron, Francisco [Unidad Asociada UVa-CSIC a traves del Centro de Astrobiologia, Parque Tecnologico de Boecillo, Parcela 203, Boecillo (Valladolid), 47151 (Spain)

    2012-02-15

    Given the volume of spectral data required for providing accurate compositional information and thereby insight in mineralogy and petrology from laser-induced breakdown spectroscopy (LIBS) measurements, fast data processing tools are a must. This is particularly true during the tactical operations of rover-based planetary exploration missions such as the Mars Science Laboratory rover, Curiosity, which will carry a remote LIBS spectrometer in its science payload. We have developed: an automated fast pre-processing sequence of algorithms for converting a series of LIBS spectra (typically 125) recorded from a single target into a reliable SNR-enhanced spectrum; a dedicated routine to quantify its spectral features; and a set of calibration curves using standard hydrous and multi-cation sulfates. These calibration curves allow deriving the elemental compositions and the degrees of hydration of various hydrous sulfates, one of the two major types of secondary minerals found on Mars. Our quantitative tools are built upon calibration-curve modeling, through the correlation of the elemental concentrations and the peak areas of the atomic emission lines observed in the LIBS spectra of standard samples. At present, we can derive the elemental concentrations of K, Na, Ca, Mg, Fe, Al, S, O, and H in sulfates, as well as the hydration degrees of Ca- and Mg-sulfates, from LIBS spectra obtained in both Earth atmosphere and Mars atmospheric conditions in a Planetary Environment and Analysis Chamber (PEACh). In addition, structural information can be potentially obtained for various Fe-sulfates. - Highlights: Black-Right-Pointing-Pointer Routines for LIBS spectral data fast automated processing. Black-Right-Pointing-Pointer Identification of elements and determination of the elemental composition. Black-Right-Pointing-Pointer Calibration curves for sulfate samples in Earth and Mars atmospheric conditions. Black-Right-Pointing-Pointer Fe curves probably related to the crystalline

  18. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR.

    Science.gov (United States)

    Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming

    2013-11-15

    A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst.

  19. PENINGKATAN PRODUKTIVITAS KAMBING KACANG DI KELURAHAN PENATIH DENPASAR TIMUR MELALUI DEMOPLOT PEMBERIAN KONSENTRAT YANG DISUPLEMENTASI AMONIUM SULFAT VS MINERAL MIX

    OpenAIRE

    S. Putra; I A.M. Sukarini

    2012-01-01

    ABSTRACT In line with the regional government programs in sustaining the agricultural ? livestock farming system. An informative talk on enhancing performances and productivity of kacang goat was held at Penatih, Badung reegency on the 20th Dec. 2002. The aim of the community service is to fulfill the farmer?s knowledge and their technical skill in choosing and applying proportional feed stuff, especially using ammonium sulfate mineral as feed supplement on grass-legume based diet....

  20. ROE Wet Sulfate Deposition Raster 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  1. ROE Wet Sulfate Deposition Raster 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  2. Predictive mapping of the acidifying potential for acid sulfate soils

    DEFF Research Database (Denmark)

    Boman, A; Beucher, Amélie; Mattbäck, S

    Developing methods for the predictive mapping of the potential environmental impact from acid sulfate soils is important because recent studies (e.g. Mattbäck et al., under revision) have shown that the environmental hazards (e.g. leaching of acidity) related to acid sulfate soils vary depending...... on their texture (clay, silt, sand etc.). Moreover, acidity correlates, not only with the sulfur content, but also with the electrical conductivity (EC) measured after incubation. Electromagnetic induction (EMI) data collected from an EM38 proximal sensor also enabled the detailed mapping of acid sulfate soils...... over a field (Huang et al., 2014).This study aims at assessing the use of EMI data for the predictive mapping of the acidifying potential in an acid sulfate soil area in western Finland. Different supervised classification modelling techniques, such as Artificial Neural Networks (Beucher et al., 2015...

  3. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  4. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...... in the presence of Medium 199. It was purified as a proteoglycan with a molecular weight between 75 and 150 kDa, which was decorated with HS, chondroitin sulfate (CS) and keratan sulfate (KS) in a similar way to the full-length perlecan from the same cells. Compositional analysis of the glycosaminoglycan (GAG...

  5. Heparan sulfate proteoglycans in extravasation : assisting leukocyte guidance

    NARCIS (Netherlands)

    Celie, Johanna W. A. M.; Beelen, Robert H. J.; van den Born, Jacob

    2009-01-01

    Heparan sulfate proteoglycans (HSPGs) are glycoconjugates that are implicated in various biological processes including development, inflammation and repair, which is based on their capacity to bind and present several proteins via their carbohydrate side chains (glycosaminoglycans; GAGs). Well-know

  6. Biotechnological aspects of sulfate reduction with methane as electron donor

    OpenAIRE

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P. N L

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more attractive electron donor. Sulfate reduction with methane as electron donor prevails in marine sediments. Recently, several authors succeeded in cultivating the responsible microorganisms in vitro. In...

  7. A New Ursane type Sulfated Saponin from Zygophyllum fabago Linn.

    Directory of Open Access Journals (Sweden)

    Saleha Suleman Khan

    2014-07-01

    Full Text Available One new sulfated saponin 3β,23,30-trihydroxyurs-20-en-28-al-23-sulfate 3-O-β- D -xylopyranoside (Zygofaboside C; 1 was purified from the water soluble fraction of ethanolic extract of the aerial parts of Zygophyllum fabago Linn. The structure of the compound was elucidated through spectral studies, especially 1D- and 2D-NMR, HR-FAB mass spectrometry, and comparison with literature data.

  8. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs

    OpenAIRE

    2016-01-01

    Background Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effecti...

  9. Calcium sulfate in periodontics: A time tested versatile alloplast

    Directory of Open Access Journals (Sweden)

    Arnav Mukherji

    2016-01-01

    Full Text Available Calcium sulfate has multifaceted properties and has versatile use in the field of periodontal practice. Calcium sulfate can function as a resorbable space filler, a resorbable barrier (compatible with guided tissue regeneration principles, as a combination with other bone grafts in intrabony defects and in socket preservation procedures for implant placement. This review is an attempt to shed light on various applications of this bone graft in periodontal regeneration.

  10. Responses to sulfated steroids of female mouse vomeronasal sensory neurons

    OpenAIRE

    Celsi, F.; d'Errico, A.; Menini, A.

    2012-01-01

    The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and glucocorticoid families induced a calcium response in 71% of neurons. Moreover, 31% of the neurons respo...

  11. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    alveolar, airway, and vascular BMs, in addition to smooth muscle external laminae (EL), in the adult and developing rat. Immunostaining for CSPG required hyaluronidase digestion, whereas CS staining was lost with the same treatment. A polyclonal antibody to the core protein of HSPG was found...... to be similarly distributed to CSPG by immunoperoxidase staining in adult and developing rat lungs, with the notable exception that little immunoreactivity for HSPG was found in smooth muscle EL. Commercially obtained polyclonal antibodies to entactin and laminin gave immunostaining comparable to that seen......Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  12. Persistent sulfate formation from London Fog to Chinese haze

    Science.gov (United States)

    Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Yang, Lingxiao; Levy Zamora, Misti; Hu, Min; Lin, Yun; Peng, Jianfei; Guo, Song; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Wang, Yuesi; Gao, Jian; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min; Wang, Weigang; Huang, Yao; Wang, Yuan; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Cheng, Yuting; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S.; Duce, Robert A.; Kolb, Charles E.; Molina, Mario J.

    2016-11-01

    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

  13. "Maternal serum Dehydroepiandrosterone Sulfate levels and successful labor induction "

    Directory of Open Access Journals (Sweden)

    Modares Gilani M

    2003-06-01

    Full Text Available To evaluate the maternal serum dehydroepiandrosterone sulfate level as a factor associated with the outcome of labor induction. Venous blood was collected from 45 women at the initiation of labor induction. Pregnancies complicated by maternal corticosteriod use, anterpartum chorioamnionitis, or cesarean delivery for indications other than arrest disorders, were excluded from analysis. In 42 women meeting inclusion criteria, induction followed established protocol. Serum dehydroepiandrosterone sulfate levels were measured by radioimmunoassay and correlated with the outcome of each induction attempt. A successful result was defined as progression to active labor. The welch approximate t-test, Mann-Whitney test, Fisher exact test, simple regression, and multiple regression were used for statistical analysis, with P<0.05 considered to be significant. The mean (±standard error dehydroepiandrosterone sulfate level was higher in women who progressed to active labor (n=25 than in those with unsuccessful attempts (n=17, (48,63±6.53 µg/dl versus 26.86±5.17 mg/dl, respectively; p= 0.03. Compared with women with dehydroepiandrosterone sulfate levels above 60 µg/dl, women with lower levels had an unsuccessful induction odds ratio (OR of 6.92 (95% confidence interval 1.74, 32.52, p= 0.01. The OR increased as dehydroepiandrosterone sulfate levels decreased. Dehydroepiandrosterone sulfate may be an important factor in successful labor induction.

  14. Sulfated phenolic acids from Dasycladales siphonous green algae.

    Science.gov (United States)

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. Copyright © 2015. Published by Elsevier Ltd.

  15. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  16. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L.

    Science.gov (United States)

    de Oliveira, Letúzia Maria; Ma, Lena Q; Santos, Jorge A G; Guilherme, Luiz R G; Lessl, Jason T

    2014-01-01

    We investigated effects of arsenate (AsV), chromate (CrVI) and sulfate on As and Cr uptake and translocation by arsenic hyperaccumulator Pteris vittata (PV), which was exposed to AsV, CrVI and sulfate at 0, 0.05, 0.25 or 1.25 mM for 2-wk in hydroponic system. PV was effective in accumulating large amounts of As (4598 and 1160 mg/kg in the fronds and roots at 0.05 mM AsV) and Cr (234 and 12,630 mg/kg in the fronds and roots at 0.05 mM CrVI). However, when co-present, AsV and CrVI acted as inhibitors, negatively impacting their accumulation in PV. Arsenic accumulation in the fronds was reduced by 92% and Cr by 26%, indicating reduced As and Cr translocation. However, addition of sulfate increased uptake and translocation of As by 26-28% and Cr by 1.63 fold. This experiment demonstrated that As and Cr inhibited each other in uptake and translocation by PV but sulfate enhanced As and Cr uptake and translocation by PV.

  17. Esterification of Lauric Acid and Lauryl Alocohol Catalyzed by ZrOCl2 ·8H2O/USY%ZrOCl2·8H2O/USY催化月桂酸与月桂醇的酯化反应

    Institute of Scientific and Technical Information of China (English)

    邱俊; 王建刚; 高阳

    2011-01-01

    采用浸渍法制备了负载型ZrOCl2·8H2O/USY催化剂,并用XRD、SEM等对其进行了表征.以ZrOCl2·8H2O/USY为催化剂,考察了其对月桂酸与月桂醇酯化反应的催化性能.以月桂酸的转化率为考察指标,讨论了催化剂活性以及各种因素如催化剂用量、反应溶剂、反应时间对该酯化反应月桂酸的转化率的影响.实验结果表明,n(月桂酸):n(月桂醇)=1:1,30%(质量分数)ZrOCl2·8H2O/USY为催化剂,反应溶剂为氯代苯,当催化剂用量为反应物总质量的5.0%,溶剂回流条件下反应16 h,月桂酸的转化率达95.2%.%The catalyst of ZrOCl2 · 8H2O supported on molecular sieves USY was prepared using impregnation method, which was then characterized by means of XRD and SEM. The catalytic properties were examined by the catalytic esterification of lauric acid and lauryl alcohol. Based on the investigation index of the conversion rate of lauric acid, the effects of catalyst activity and other conditions such as reaction solvent, catalyst loadings, and reaction time on the conversion rate of lauric acid were investigated. The results show that the conversion rate of lauric acid was up to 95. 2% in the esterification of lauric acid and lauryl alcohol under the following optimum conditions; the mole ratio being 1:1,5.0 % quantity of catalyst,reflux temperature of solvent and reaction time of 16 h,30% (mass fraction) ZrOCl2 ·8H2O/USY as catalyst,and chlorobenzene as solvent.

  18. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  19. Chromatofocusing of mammalian estrone sulfate sulfohydrolase activity.

    Science.gov (United States)

    Choi, H Y; Hobkirk, R

    1986-12-01

    Estrone sulfate sulfohydrolase (estrogen sulfatase) activity was solubilized by treatment with Triton X-100 from 105,000 g pellets of guinea pig uterus, testis and brain, as well as from rat liver and human placenta. The solubilized forms were subjected to chromatofocusing in the fast protein liquid chromatography (FPLC) system and on conventional columns packed in our laboratory. The guinea pig tissue pattern was complex. Uterus showed peaks of activity with apparent pI's of 9.11 and 7.6; testis contained 3 peaks with pI's of 9.18, 8.7 and 7.5; brain possessed peaks with pI's of 9.28 and 8.6. In each case the major activity peak was that with pI greater than 9. Rat liver activity chromatofocused as a single peak of apparent pI = 6.87 and the human placental enzyme also showed a single, though broad, peak, of pI = 6.57. This suggests not only that the guinea pig enzyme(s) differs markedly from those of rat liver and human placenta, but that there may be qualitative differences between the forms in the three guinea pig tissues. Chromatofocusing behaviour was not independent of the specific exchange resins and ampholytes utilized. The recovered enzyme activity was fairly stable and it seems that chromatofocusing could be a useful step in purification of the guinea pig enzyme(s), particularly the main form possessing a pI greater than 9.

  20. Thermodestruction of complex sulfates of iridium and ruthenium in sulfate solutions at 100-180 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, N.M.; Godzhiev, S.E.; Blagodatin, Yu.V. (Moskovskij Inst. Tonkoj Khimicheskoj Tekhnologii (USSR))

    1983-12-01

    Thermodestruction of iridium- and ruthenium complex sulfates in sulfate solutions is studied at 100-180 deg C depending on the solution acidity, hold time, element initial chemical form in the solution, salt background. The complex ruthenium sulfates are shown to be destroyed during high-temperature solution holding with the solid phase formation, the rate of platinum metal transfer into a precipitate increasing with the temperature, hold time and pH of the source solution. Depending on the initial chemical form the thermodestruction proceeds in various ways and leads to the formation of either hydroxides or solid phase ''proper'' of the platinium metal salt. A reduced tendency to high-temperature hydrolysis of complex ruthenium sulfates at the +3 oxidation level is noted.

  1. Luminescence response of an osmium(II) complex to macromolecular polyanions for the detection of heparin and chondroitin sulfate in biomedical preparations.

    Science.gov (United States)

    Wu, Hao; Wu, Jain; Saez, Christopher; Campana, Maria; Megehee, Elise G; Wang, Enju

    2013-12-04

    Heparin, dextran sulfate (DS), chondroitin sulfate (CS), and carrageenan are found to enhance the luminescence intensity of an osmium(II) carbonyl complex with phenanthroline (phen) and 4-phenylpyridine (4-phpy) ligands in aqueous and ethanol solutions. The enhancing effect of the polyanions on the luminescence of the complex is heavily dependent on the sulfate content and other factors such as structure, solubility, and counter ions of the polyanion. The highly sulfated dextran and ι-carrageenan have the most profound effect, while the low charged κ-carrageenan and CS have the least response in aqueous solution. All polyanions exhibited enhanced luminescence intensity of the complex in ethanol solutions, and even the low charged CS and κ-carrageenan enhanced the luminescence more than 4 times. DS contamination of the sodium heparin at 5% can show a significant increase in luminescence response. The osmium complex is found to be highly successful in the fast and sensitive detection of heparin in commercial injectable samples with various backgrounds as well as the detection of CS in over the counter food supplement tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    Science.gov (United States)

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  3. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ.

    Science.gov (United States)

    Pendleton, James C; Shamblott, Michael J; Gary, Devin S; Belegu, Visar; Hurtado, Andres; Malone, Misti L; McDonald, John W

    2013-09-01

    CNS damage often results in demyelination of spared axons due to oligodendroglial cell death and dysfunction near the injury site. Although new oligodendroglia are generated following CNS injury and disease, the process of remyelination is typically incomplete resulting in long-term functional deficits. Chondroitin sulfate proteoglycans (CSPGs) are upregulated in CNS grey and white matter following injury and disease and are a major component of the inhibitory scar that suppresses axon regeneration. CSPG inhibition of axonal regeneration is mediated, at least in part, by the protein tyrosine phosphatase sigma (PTPσ) receptor. Recent evidence demonstrates that CSPGs inhibit OL process outgrowth, however, the means by which their effects are mediated remains unclear. Here we investigate the role of PTPσ in CSPG inhibition of OL function. We found that the CSPGs, aggrecan, neurocan and NG2 all imposed an inhibitory effect on OL process outgrowth and myelination. These inhibitory effects were reversed by degradation of CSPGs with Chondroitinase ABC prior to OL exposure. RNAi-mediated down-regulation of PTPσ reversed the inhibitory effect of CSPGs on OL process outgrowth and myelination. Likewise, CSPG inhibition of process outgrowth and myelination was significantly reduced in cultures containing PTPσ(-/-) OLs. Finally, inhibition of Rho-associated kinase (ROCK) increased OL process outgrowth and myelination during exposure to CSPGs. These results suggest that in addition to their inhibitory effects on axon regeneration, CSPGs have multiple inhibitory actions on OLs that result in incomplete remyelination following CNS injury. The identification of PTPσ as a receptor for CSPGs, and the participation of ROCK downstream of CSPG exposure, reveal potential therapeutic targets to enhance white matter repair in the damaged CNS.

  4. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206.

    Science.gov (United States)

    Jin, Mingliang; Wang, Youming; Huang, Ming; Lu, Zeqing; Wang, Yizhen

    2014-01-01

    The protective effects of sulfated polysaccharide derivatives produced by Enterobacter cloacae Z0206 against H₂O₂-induced oxidative damage in RAW264.7 murine macrophages as well as the possible mechanisms governing the protective effects were studied. Sulfated polysaccharides protected RAW264.7 cells from oxidative damage and apoptosis induced by H₂O₂ by protecting the cellular structure; improving the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); and inhibiting caspase-3 activation and DNA fragmentation. In addition, the sulfated polysaccharides conferred higher levels of protection from H₂O₂-induced oxidative damage in RAW264.7 murine macrophages compared to the native polysaccharide lacking sulfation. These results indicated that sulfated modifications might be an effective approach to enhance the antioxidant activity of polysaccharides produced by E. cloacae Z0206, and the sulfated derivatives of these polysaccharides may act as potent antioxidant agents.

  5. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  6. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex.

    Science.gov (United States)

    Takeda-Uchimura, Yoshiko; Uchimura, Kenji; Sugimura, Taketoshi; Yanagawa, Yuchio; Kawasaki, Toshisuke; Komatsu, Yukio; Kadomatsu, Kenji

    2015-12-01

    Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation.

  7. Flow injection spectrophotometry coupled with a crushed barium sulfate reactor column for the determination of sulfate ion in water samples

    OpenAIRE

    Burakham,Rodjana; Higuchi, Keiro; Oshima, Mitsuko; Grudpan, Kate; Motomizu, Shoji

    2004-01-01

    A new type of a reactor column, a crushed BaSO4 reactor column used for the flow injection spectrophotometric determination of sulfate ion using the exchange reaction of sulfate ion and barium-dimethylsulfonazo III is proposed. The column is very simple and economical. It can be continuously used for 8 h before washing with water for repeated usage of at least 1 month. The procedure is sensitive. Application to various water samples was demonstrated.

  8. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  9. Identification of keratan sulfate disaccharide at C-3 position of glucuronate of chondroitin sulfate from Mactra chinensis

    Science.gov (United States)

    Higashi, Kyohei; Takeda, Keita; Mukuno, Ann; Okamoto, Yusuke; Masuko, Sayaka; Linhardt, Robert J.; Toida, Toshihiko

    2016-01-01

    Glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate, heparin, heparan sulfate and keratan sulfate (KS) are linear sulfated repeating disaccharide sequences containing hexosamine and uronic acid [or galactose (Gal) in the case of KS]. Among the GAGs, CS shows structural variations, such as sulfation patterns and fucosylation, which are responsible for their physiological functions through CS interaction with CS-binding proteins. Here, we solved the structure of KS-branched CS-E derived from a clam, Mactra chinensis. KS disaccharide [d-GlcNAc6S-(1→3)-β-d-Gal-(1→] was attached to the C-3 position of GlcA, and consecutive KS-branched disaccharide sequences were found in a CS chain. KS-branched polysaccharides clearly exhibited resistance to degradation by chondroitinase ABC or ACII (at low concentrations) compared with typical CS structures. Furthermore, KS-branched polysaccharides stimulated neurite outgrowth of hippocampal neurons. These results strongly suggest that M. chinensis is a rich source of KS-branched CS, and it has important biological activities. PMID:27647934

  10. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin ☆

    OpenAIRE

    Fruhmann, Philipp; Skrinjar, Philipp; Weber, Julia; Mikula, Hannes; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Adam, Gerhard; Erwin ROSENBERG; Hametner, Christian; Fröhlich, Johannes

    2014-01-01

    The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior t...

  11. Zinc specifically stimulates the selective binding of a peptide analog of bindin to sulfated fucans.

    Science.gov (United States)

    DeAngelis, P L; Glabe, C G

    1990-01-01

    A synthetic nonapeptide (Leu-Arg-His-Leu-Arg-His-His-Ser-Asn) derived from the sequence of the sea urchin sperm adhesive protein, bindin, has been shown to bind sulfated fucans in high ionic strength (seawater) conditions. The binding is enhanced by approximately 100-fold in the presence of zinc ions, and no other transition metal tested demonstrates any enhancement. Bindin isolated from sperm contains zinc ion at roughly equimolar concentrations. In the presence of Zn++, the synthetic nonapeptide binds to eggs and inhibits fertilization with a half-maximal effective concentration of 300 microM. The polysaccharide binding selectivity of the peptide/Zn++ complex is similar to bindin but less stringent. Although the order of effectiveness of the inhibitory polysaccharides is the same for bindin and the synthetic peptide, polysaccharides that are only weak inhibitors of fucan binding to bindin show greater effectiveness against the peptide. The effect of chemical modification, pH, and amino acid substitution on the binding properties of the peptide suggest that arginine guanido moieties interact with the sulfated fucans, while histidine groups chelate zinc ions. Although the mechanism of zinc-specific stimulation of fucan binding is not yet clear, one potential explanation is that zinc may stabilize a peptide secondary structure that has a high affinity for fucans.

  12. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    Science.gov (United States)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  13. A statistical experimental design to remove sulfate by crystallization in a fluidized-bed reactor

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2017-05-01

    Full Text Available This study used crystallization in a fluidized-bed reactor as an alternative technology to the conventional chemical precipitation to remove sulfate. The Box-Behnken Design was used to study the effects and interactions of seed dosage of synthetic gypsum, initial sulfate concentration and molar ratio of calcium to sulfate on conversion and removal of sulfate. The optimum conditions of conversion and removal of sulfate were determined and used to treat the simulated acid mine drainage (AMD wastewater. The effect of inorganic ions CO32−, NH4+ and Al3+ on sulfate conversion was also investigated. Experimental results indicated that seed dosage, initial sulfate concentration and molar ratio of calcium to sulfate are all significant parameters in the sulfate removal by fluidized-bed crystallization. The optimal conditions of 4 g seed L−1, 119.7 mM of initial sulfate concentration and [Ca2+]/[SO42−] molar ratio of 1.48 resulted in sulfate conversion of 82% and sulfate removal of 67%. Conversion and removal of sulfate in the simulated AMD wastewater were 79 and 63%, respectively. When ammonium or aluminum was added to the synthetic sulfate wastewater, significant conversion of sulfate was achieved.

  14. Revisiting Modes of energy generation in sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

    2010-05-17

    Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

  15. Revisiting Modes of energy generation in sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil

    2010-05-17

    Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

  16. Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions.

    Science.gov (United States)

    Gámez, Victor M; Sierra-Alvarez, Reyes; Waltz, Rebecca J; Field, James A

    2009-07-01

    Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals, and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate, acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD) consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation, which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate microorganisms in the biofilm, acetate accumulated to levels accounting for 90-100% of the citrate-COD consumed. Based on carbon balances measured in phosphate buffered bioassays, acetate, CO(2) and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively. In bicarbonate buffered bioassays, acetogenesis of H(2) and CO(2) increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents in citrate.

  17. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    Science.gov (United States)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  18. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and met

  19. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and

  20. N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Nader Ghaffari Khaligh; Parisa Ghods Ghasem-Abadi

    2014-01-01

    N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate has been developed as a recyclable solid acid catalyst for the acetylation of alcohols, phenols, thiols, and amines, as well as the 1,1- diacetyla-tion of aldehydes under solvent-free conditions at room temperature. The acetylated products were formed in good to excellent yields over short reaction times, and the catalyst could be readily re-covered by filtration and used several times without any discernible loss in activity. The hydrogen sulfate anion of the catalytic system was found to play a critical role in enhancing the reaction time and yield of the acetylation reaction.

  1. Determinação turbidimétrica do antidepressivo amitriptilina em sistema fia explorando a formação do par iônico com lauril sulfato de sódio Turbidimetric determination of antidepressant amitriptyline in fia system exploiting the ion-pair formation with sodium lauryl sulphate

    Directory of Open Access Journals (Sweden)

    Gustavo Silveira

    2008-01-01

    Full Text Available The present work purposes the development of an analytical method for amitriptyline determination in pharmaceutical formulations using FIA system. It was based on interaction of amitriplyline with sodium lauryl sulphate in acid medium (pH 2.5 resulting in the ion-pair formation turbidimetrically detected at 410 nm. The fitting regression equation for range curve from 2.0 x 10-3 up to 3.2 x 10-3 mol L-1 was found to be analytical signal = -2.7417 + 0.1538 [amitriptyline] (r = 0.99991 with a detection limit of 1.8 x 10-3 mol L-1. The precision assessed as relative standard deviation (n = 10 was found to be 2.40 and 1.94%, for the respective concentration of amitriplyline 2.0 x 10-3 and 3.2 x 10-3 mol L-1 and the sample throughout was 60 h-1. The accuracy of method was successfully assessed in pharmaceutical formulation after comparison with a reference analytical method.

  2. Effect of oversulfation on the chemical and biological properties of chondroitin-4-sulfate.

    Science.gov (United States)

    Carranza, Yaneth E; Durand-Rougley, Clarissa; Doctor, Vasant

    2008-09-01

    Chondroitin-4-sulfate was oversulfated using chlorosulfonic acid-pyridine complex and was isolated as the sodium salt. A comparison of the infrared analysis of the native (N-2) and oversulfated (S-2) compounds showed that the two spectra were identical except for a new peak in S-2 at 825 cm corresponding to the equatorial C-6 position of galactosamine. There was a 2.7-fold increase of sulfate content in S-2 and a generation of a significant anticoagulant activity as measured by doubling of the prothrombin time of normal citrated human plasma using 7.5 microg, while N-2 was inactive even at 2,000 microg. The result of the in-vitro studies of the activation of glutamic plasminogen by tissue plasminogen activator (t-PA) or by high-molecular-weight urokinase using 0.05 mol/l Tris buffer (pH 7.35) containing a physiological concentration of NaCl (0.9%) showed that 28.6 microg/ml S-2 enhanced the activation by three-fold to four-fold by t-PA or by urokinase, while the same concentrations of N-2 or unfractionated heparin gave less than 30% enhancement of t-PA and no enhancement of urokinase. The mechanism of enhancement by S-2 was investigated by dilution studies. The results showed that S-2 interacted with both urokinase or t-PA and glutamic plasminogen favoring a template model, while N-2 or unfractionated heparin interacted only with t-PA.

  3. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development.

    Directory of Open Access Journals (Sweden)

    Tarja K Kinnunen

    Full Text Available Heparan sulfate proteoglycans (HSPGs play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS glycans. However, whether a specific HSPG (such as syndecan contains HS modifications that differ from another HSPG (such as glypican has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.

  4. Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model.

    Science.gov (United States)

    Sharma, Shaili; Vazquez-Portalatin, Nelda; Calve, Sarah; Panitch, Alyssa

    2016-02-08

    Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads. During the progression of OA, loss of aggrecan is considered to occur first, after which other cartilage matrix components become extremely susceptible to degradation. Proteolytic cleavage of the protein core of aggrecan by enzymes such as aggrecanases, prevent its binding to HA and lower cartilage mechanical strength. Here we present the use of HA-binding or collagen type II-binding molecules that functionally mimic aggrecan but lack known cleavage sites, protecting the molecule from proteolytic degradation. These molecules synthesized with chondroitin sulfate backbones conjugated to hyaluronan- or collagen type II- binding peptides, are capable of diffusing through a cartilage explant and adhering to the ECM of this tissue. The objective of this study was to test the functional efficacy of these molecules in an ex vivo osteoarthritic model to discern the optimal molecule for further studies. Different variations of chondroitin sulfate conjugated to the binding peptides were diffused through aggrecan depleted explants and assessed for their ability to enhance compressive stiffness, prevent CS degradation, and modulate catabolic (MMP-13 and ADAMTS-5) and anabolic (aggrecan and collagen type II) gene expression. A pilot in vivo study assessed the ability to retain the molecule within the joint space of an osteoarthritic guinea pig model. The results indicate chondroitin sulfate conjugated to hyaluronan-binding peptides is able to significantly restore equilibrium

  5. Phosphorylation and sulfation of arylsulfatase A accompanies biosynthesis of the enzyme in normal and carcinoma cell lines.

    Science.gov (United States)

    Waheed, A; van Etten, R L

    1985-10-30

    Arylsulfatase A (arylsulfate sulfohydrolase, EC 3.1.6.1), a mammalian lysosomal enzyme, is initially synthesized as a 69, 67 and 64 kDa precursor polypeptide in a prostate carcinoma cell line PC-3SF12, in HeLa cells and in a normal human embryonic lung cell line WI-38, respectively. These precursor polypeptides are secreted into the medium or processed to mature enzymes of apparent molecular mass 66, 64 or 62 kDa in PC-3SF12, HeLa or WI-38 cells, respectively. The precursor and mature polypeptides in WI-38 cells are phosphorylated, and the phosphate is lost upon treatment with endo-beta-hexosaminidase H. Arylsulfatase A is also shown to be sulfated in WI-38 cells. The presence of castanospermine, an inhibitor of sulfation of the second N-acetylglucosamine residue of the chitobiose core, does not reduce the extent of sulfation of arylsulfatase A, suggesting that either terminal sugars or the protein is sulfated. Sulfation may have a protective function similar to that of terminal sialic acid residues in glycoproteins. Although the subcellular location of arylsulfatase A is identical in PC-3SF12 and in WI-38 cells, pulse-chase experiments indicate that arylsulfatase A protein has a slower turnover in the prostate carcinoma cell line than it does in the normal human lung cell line. The differences in the apparent molecular weights of arylsulfatase A in the normal and carcinoma cell lines are shown to be due to variations in the carbohydrate content of the enzyme. The apparent molecular mass of the polypeptide chain obtained after endo-beta-hexosaminidase H treatment is 59 kDa, a value which is identical for all three cell lines studied here. These results suggest the possibility of an enhanced activity of terminal glucosyltransferase enzymes in carcinoma cell lines and in tumor tissues. Arylsulfatase A may be a useful marker for studying transformation-related processes in human cell lines.

  6. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.

    Science.gov (United States)

    Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

    2012-03-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals.

  7. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium

    Science.gov (United States)

    Liu, D.; Dong, H.; Bishop, M.E.; Zhang, Jiahua; Wang, Hongfang; Xie, S.; Wang, Shaoming; Huang, L.; Eberl, D.D.

    2012-01-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. ?? 2011 Blackwell Publishing Ltd.

  8. Sulfate Hydration States in Interpretation of Martian Mineral Assemblages

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.

    2008-12-01

    Remote spectral data and surface-measured chemical associations with S indicate widespread distribution of Mg-, Ca-, and Fe-sulfate salts on Mars. These salts are identified at least in part as hydrates, but spectral data and the low temperatures and low pH2O of Mars suggest that hydration states vary with origin, latitude, and exposure history. An understanding of stability limits and dehydration/rehydration rates is vital to understanding occurrences that may be interpreted variously as lacustrine, alteration via groundwater or discharge with evaporation, surface weathering, thermal brine systems, eolian recycling, or others. Different sulfates on Mars have varied susceptibility to desiccation at relatively warm, low-RH conditions or to hydration at cold, high-RH conditions. This variability provides a potent tool for interpreting exposure history. Among Ca-sulfates, gypsum and insoluble anhydrite should be stable and remain, respectively, fully hydrated or water-free at most latitudes and through diurnal and seasonal cycles, but bassanite is more sensitive to transient hydration. Mg-sulfates may have various values of n in the formula MgSO4.nH2O, and rehydration of desiccated forms often produces metastable phases. At low pH2O, unlike Ca- sulfates, amorphous forms appear with low values of n dependent, in part, on temperature. Kieserite resists dehydration but may hydrate in conditions where ice is stable at the surface. Fe-sulfates have more complex dehydration and rehydration properties. Jarosite is very resilient because of the lack of H2O molecules and presence of OH. Other Fe-sulfates are not so durable, e.g., coquimbite (Fe2 (SO4)3.9H2O) has independent H2O and dehydration on heating to 30 °C produces an amorphous product that does not rehydrate. Copiapite is similarly susceptible to dehydration. Modest heating of many H2O-bearing ferric sulfates can be destructive, and degradation can produce both cemented solids and viscous liquids. Sulfate salt

  9. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    Science.gov (United States)

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

  10. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    Science.gov (United States)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  11. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  12. Is Encephalopathy a Mechanism to Renew Sulfate in Autism?

    Directory of Open Access Journals (Sweden)

    Laurie Lentz-Marino

    2013-01-01

    Full Text Available This paper makes two claims: (1 autism can be characterized as a chronic low-grade encephalopathy, associated with excess exposure to nitric oxide, ammonia and glutamate in the central nervous system, which leads to hippocampal pathologies and resulting cognitive impairment, and (2, encephalitis is provoked by a systemic deficiency in sulfate, but associated seizures and fever support sulfate restoration. We argue that impaired synthesis of cholesterol sulfate in the skin and red blood cells, catalyzed by sunlight and nitric oxide synthase enzymes, creates a state of colloidal instability in the blood manifested as a low zeta potential and increased interfacial stress. Encephalitis, while life-threatening, can result in partial renewal of sulfate supply, promoting neuronal survival. Research is cited showing how taurine may not only help protect neurons from hypochlorite exposure, but also provide a source for sulfate renewal. Several environmental factors can synergistically promote the encephalopathy of autism, including the herbicide, glyphosate, aluminum, mercury, lead, nutritional deficiencies in thiamine and zinc, and yeast overgrowth due to excess dietary sugar. Given these facts, dietary and lifestyle changes, including increased sulfur ingestion, organic whole foods, increased sun exposure, and avoidance of toxins such as aluminum, mercury, and lead, may help to alleviate symptoms or, in some instances, to prevent autism altogether.

  13. Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles.

    Science.gov (United States)

    Noh, Hwa Jung; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-12-01

    Gold nanoparticles were green-synthesized using a glycosaminoglycan, chondroitin sulfate, as the reducing agent by mixing Au3+ and chondroitin sulfate under heating. Chondroitin sulfate-reduced gold nanoparticles were characterized by UV-Vis spectrophotometry, high resolution transmission electron microscopy and atomic force microscopy. The yield of Au3+ to Au0 was measured as 80.1% by inductively coupled plasma-atomic emission spectroscopy. A mostly spherical shape, with an average diameter of 44.68 +/- 11.25 nm, was observed from the atomic force microscopy images. Using chondroitin sulfate-reduced gold nanoparticles, we developed a melamine nanosensor that provides a simplified method to detect melamine in infant formula. With an increase in the melamine concentration in the gold nanoparticle solution, the characteristic surface plasmon resonance band of gold nanoparticles at 530 nm decreased, whereas a new peak appeared at 620 nm. There was a linear relationship between the absorbance ratio (A620/A530) and the melamine concentration in the range of 0.1-10 microM. The practical use of the proposed method was verified by quantifying melamine spiked in real infant formula at concentrations as low as 12.6 ppb. The nanosensing of melamine using chondroitin sulfate-reduced gold nanoparticles can be a promising technique for quick on-site melamine screening of milk products.

  14. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL‑1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL‑1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL‑1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  15. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Science.gov (United States)

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful.

  16. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  17. Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells.

    Science.gov (United States)

    Atzeri, Angela; Lucas, Ricardo; Incani, Alessandra; Peñalver, Pablo; Zafra-Gómez, Alberto; Melis, M Paola; Pizzala, Roberto; Morales, Juan C; Deiana, Monica

    2016-01-01

    The aim of this study was to investigate the ability of the sulfate metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to act as antioxidants counteracting the pro-oxidant effect of oxidized cholesterol in intestinal cells. For this purpose, we synthesized sulfate metabolites of HT and TYR using a chemical methodology and examined their antioxidant activity in Caco-2 monolayers in comparison with the parent compounds. Exposure to oxidized cholesterol led to ROS production, oxidative damage, as indicated by the MDA increase, a decrease of reduced glutathione concentration and an enhancement of glutathione peroxidase activity. All the tested compounds were able to counteract the oxidizing action of oxidized cholesterol; HT and TYR sulfate metabolites showed an efficiency in protecting intestinal cells comparable to that of the parent compounds, strengthening the assumption that the potential beneficial effect of the parent compounds is retained, although extensive metabolisation occurs, the resulting metabolites being able to exert a biological action themselves.

  18. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order...... quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high...

  19. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high...... branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel...

  20. Carbonate-Sulfate Volcanism on Venus?

    Science.gov (United States)

    Kargel, J.S.; Kirk, R.L.; Fegley, B.; Treiman, A.H.

    1994-01-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resemble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. The depositional fluvial-type features (deltas, braided bars, and channeled plains) are generally among the smoothest terrains at the Magellan radar wavelength (12.6 cm) on Venus. These features suggest the involvement of an unusual lava, unexpected processes, and/or extraordinary eruption conditions. Possibly the lava was an ordinary silicate lava such as basalt or a less common type of silicate lava, and conditions unique to Venus or to those particular eruptions may have caused an unusual volcanological behavior. We have developed the alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust