WorldWideScience

Sample records for launching high harmonic

  1. Phononic High Harmonic Generation

    CERN Document Server

    Ganesan, Adarsh; Seshia, Ashwin A

    2016-01-01

    This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.

  2. High-harmonic spectroscopy of aligned molecules

    Science.gov (United States)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  3. Polarization-fan high-order harmonics

    Science.gov (United States)

    Fleischer, Avner; Bordo, Eliyahu; Kfir, Ofer; Sidorenko, Pavel; Cohen, Oren

    2017-02-01

    We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies with frequency continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics where each harmonic in the spectrum has the following property: it is nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Also, we show that polarization-fan high harmonics with modulated ellipticity are obtained when elliptical drivers are used. Polarization-fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles in a two-dimensional plane. The use of bichromatic drivers with close central frequencies largely preserves the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized. Thus, it should offer several attracting features, including (i) a direct route for extending the maximal photon energy of observed helical high harmonics to keV by using bichromatic drivers only in the mid-IR region and (ii) utilizing phase matching methods that were developed for ‘ordinary’ high harmonic generation driven by quasi-monochromatic pulses (e.g. pressure tuning phase matching). These polarization-fan harmonics may be utilized for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot.

  4. High Orbital Angular Momentum Harmonic Generation

    Science.gov (United States)

    Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.

    2016-12-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.

  5. High orbital angular momentum harmonic generation

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.

  6. High Order Harmonics in Light Curves of Kepler Planets

    CERN Document Server

    Armstrong, Caden

    2015-01-01

    The Kepler mission was launched in 2009 and has discovered thousands of planet candidates. In a recent paper, Esteves et al. (2013) found a periodic signal in the light curves of KOI-13 and HAT-P-7, with a frequency triple the orbital frequency of a transiting planet. We found similar harmonics in many systems with a high occurrence rate. At this time, the origins of the signal are not entirely certain. We look carefully at the possibility of errors being introduced through our data processing routines but conclude that the signal is real. The harmonics on multiples of the orbital frequency are a result of non-sinusoidal periodic signals. We speculate on their origin and generally caution that these harmonics could lead to wrong estimates of planet albedos, beaming mass estimates, and ellipsoidal variations.

  7. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  8. Generation of high harmonics from silicon

    CERN Document Server

    Vampa, Giulio; Thiré, Nicolas; Schmidt, Bruno E; Légaré, Francois; Klug, Dennis D; Corkum, Paul B

    2016-01-01

    We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$\\mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.

  9. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  10. High-harmonic spectroscopy of molecular isomers

    Energy Technology Data Exchange (ETDEWEB)

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Spanner, M.; Patchkovskii, S. [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-11-15

    We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).

  11. High harmonic phase in molecular nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Brian K.

    2009-10-17

    Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.

  12. Coherent control of High-harmonic generation

    NARCIS (Netherlands)

    Barreaux, J.L.P.

    2012-01-01

    High-harmonic generation (HHG) is a non-linear optical process that can convert laser light with standard wavelengths, such as infrared light, into coherent radiation at much shorter wavelengths in the XUV (extreme ultraviolet) or soft X-ray regime. As opposed to low-order nonlinear frequency

  13. Coulomb time delays in high harmonic generation

    CERN Document Server

    Smirnova, Olga

    2016-01-01

    Measuring the time it takes to remove an electron from an atom or molecule during photoionization using newly developed attosecond spectroscopies has been a focus of many recent experiments. However, the outcome of such measurement depends on measurement protocols and specific observables available in each particular experiment. One of such protocols relies on high harmonic generation. First, we derive rigorous and general expressions for ionization and recombination times in high harmonic generation experiments. We show that these times are different from, but related to ionization times measured in photo-electron spectroscopy, i.e. using attosecond streak camera, RABBITT and atto-clock methods. Second, we use the Analytical R-Matrix theory (ARM) to calculate these times and compare them with experimental values.

  14. Coulomb time delays in high harmonic generation

    Science.gov (United States)

    Torlina, Lisa; Smirnova, Olga

    2017-02-01

    Measuring the time it takes to remove an electron from an atom or molecule during photoionization has been the focus of a number of recent experiments using newly developed attosecond spectroscopies. The interpretation of such measurements, however, depends critically on the measurement protocol and the specific observables available in each experiment. One such protocol relies on high harmonic generation. In this paper, we derive rigorous and general expressions for ionisation and recombination times in high harmonic generation experiments. We show that these times are different from, but related to, ionisation times measured in photoelectron spectroscopy: that is, those obtained using the attosecond streak camera, RABBITT and attoclock methods. We then proceed to use the analytical R-matrix theory to calculate these times and compare them with experimental values.

  15. Strongly Dispersive Transient Bragg Grating for High Harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, J.; Spector, L.S.; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Gaarde, M.B.; /SLAC, PULSE /Louisiana State U.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  16. High-order harmonics with frequency-varying polarization within each harmonic

    CERN Document Server

    Fleischer, Avner; Sidorenko, Pavel; Cohen, Oren

    2014-01-01

    We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics which are nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Polarization fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles. The process can be phase-matched using standard methods (e.g. pressure tuning phase matching) and maintains the single-atom polarization property through propagation. These polarization-fan harmonics may be used for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot

  17. High-order harmonic generation from eld-distorted orbitals

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer

    We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field-distortio......We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field...

  18. Nonlinear harmonics in the high-gain harmonic generation (HGHG) experiment

    CERN Document Server

    Biedron, S G; Milton, S V; Yu, L H; Wang, X J

    2001-01-01

    We have previously performed rigorous analyses of the nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) using a 3D simulation code. To date, we have presented only preliminary results of these higher harmonics resulting in the high-gain harmonic generation (HGHG) process. A single-pass, high-gain FEL experiment based on the HGHG theory is underway at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Using the above experiment's design parameters, the specific case of the harmonic output from the HGHG experiment will be examined using a 3D simulation code. The sensitivity of nonlinear harmonic output for this HGHG experiment as functions of emittance, energy spread, and peak current in both cases, and for the dispersive section strength and input seed power in the HGHG case, will be presented.

  19. Illuminating Molecular Symmetries with Bicircular High-Order-Harmonic Generation

    CERN Document Server

    Reich, Daniel M

    2016-01-01

    We present a complete theory of bicircular high-order-harmonic emission from N-fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.

  20. Role of Excited States In High-order Harmonic Generation

    Science.gov (United States)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  1. High-Order Harmonic Generation in the Ionization Process

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; CHEN Shi-Gang; LIU Jie

    2000-01-01

    Based on the nonperturbative quantum electrodynamics scattering theory for multiphoton ionization developed recently, high-order harmonic generated in the ionization process is discussed. The influence of the Coulomb potential is treated as a perturbation in the expansion of the transition matrix. It is deduced that the harmonic photons are emitted in the resonant process during ionization and the width of the harmonic peaks is just the ionization rate of the atom.

  2. Interpretation of Plateau in High-Harmonic Generation

    Institute of Scientific and Technical Information of China (English)

    程太旺; 李晓峰; 敖淑艳; 傅盘铭

    2003-01-01

    The plateau in high-harmonic generation is investigated in the frequency domain. Probability density of an electron in an electromagnetic field is obtained through analysing the quantized-field Volkov state. The plateau of high-harmonic generation reflects the spectral density of the electron at the location of nucleus after abovethreshold ionization.

  3. High-order-harmonic generation from field-distorted orbitals

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer

    2013-01-01

    We investigate the effect on high-order-harmonic generation of the distortion of molecular orbitals by the driving laser field. Calculations for high-order-harmonic generation including orbital distortion are performed for N2. Our results allow us to suggest that field distortion is the reason why...

  4. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; Slot, van der P.J.M.; Bastiaens, H.J.M.; Herek, J.L.; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, K-J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  5. High-order harmonic generation from the dressed autoionizing states

    Science.gov (United States)

    Fareed, M. A.; Strelkov, V. V.; Thiré, N.; Mondal, S.; Schmidt, B. E.; Légaré, F.; Ozaki, T.

    2017-07-01

    In high-order harmonic generation, resonant harmonics (RH) are sources of intense, coherent extreme-ultraviolet radiation. However, intensity enhancement of RH only occurs for a single harmonic order, making it challenging to generate short attosecond pulses. Moreover, the mechanism involved behind such RH was circumstantial, because of the lack of direct experimental proofs. Here, we demonstrate the exact quantum paths that electron follows for RH generation using tin, showing that it involves not only the autoionizing state, but also a harmonic generation from dressed-AIS that appears as two coherent satellite harmonics at frequencies +/-2Ω from the RH (Ω represents laser frequency). Our observations of harmonic emission from dressed states open the possibilities of generating intense and broadband attosecond pulses, thus contributing to future applications in attosecond science, as well as the perspective of studying the femtosecond and attosecond dynamics of autoionizing states.

  6. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    Science.gov (United States)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  7. Use of dominant harmonic active filters in high power applications

    Science.gov (United States)

    Cheng, Po-Tai

    The application of power electronics equipment is increasing rapidly. It is estimated that 60% of electrical power will be processed by power electronics equipment by year 2000. These equipments typically require rectifiers for AC-DC power conversion. Due to their nonlinear nature, most rectifiers draw harmonic current from the utility grid. The harmonic current causes higher energy losses, and may excite resonance conditions in the utility grid. Harmonic standards such as IEEE 519 and IEC 1000-3-2 have been proposed to regulate the harmonic current and voltage levels. This work is to develop a dominant harmonic active filter (DHAF) to realize a cost-effective active filtering solution for nonlinear loads in the range of megawatt and above. The DHAF system achieves harmonic isolation at dominant harmonic frequencies, e.g. the 5th and 7th. This approach allows use of low switching frequency and small rating active filter inverters (1%--2% of the load MVA rating) for implementation. Review of conventional passive filters and various active filters based on high bandwidth PWM inverters is provided. The control theory of the DHAF system is presented. Comparison of the DHAF system and other dominant harmonic filtering approach is provided. Simulation results and laboratory prototype test results are presented to validate the effectiveness of the proposed DHAF system.

  8. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  9. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  10. High-harmonic generation: Ultrafast lasers yield X-rays

    NARCIS (Netherlands)

    McKinnie, Iain; Kapteyn, Henry

    2010-01-01

    Table-top sources that generate both extreme ultraviolet light and soft X-rays through high-harmonic generation of ultrafast infrared laser pulses look set to perform tasks previously accessible using only large-scale synchrotrons.

  11. Multielectron High Harmonic Generation: simple man on a complex plane

    CERN Document Server

    Smirnova, Olga

    2013-01-01

    From the famous classical "simple man" model to the recent multichannel model for polyatomic molecules, this tutorial will guide you through the several landmarks in our understanding of high harmonic generation and high harmonic spectroscopy. Our goal was to provide recipes and insights for modelling the harmonic response in various regimes, from the single active electron regime typical for noble gas atoms to the laser-driven attosecond hole dynamics in polyatomics. We have tried to pay particular attention to both simple recipes and their limitations, including the connection of real-valued classical and complex-valued quantum times and velocities. In addition to physical pictures, general approaches and their practical realizations, we have also tried to discuss some of the sticky technical issues, such as the possibility to factorize high harmonic response into the three steps of ionization, propagation and recombination and practical ways to treat strong field ionization, search for the saddle points of...

  12. Noble Gas Clusters and Nanoplasmas in High Harmonic Generation

    CERN Document Server

    Aladi, M; Rácz, P; Földes, I B

    2015-01-01

    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.

  13. CERN launches high-school internship programme

    Science.gov (United States)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  14. Double-peak Splitting in High-order Harmonics Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Yingsong; LIU Yaqing; YANG Xiaodong; XU Zhizhan

    2000-01-01

    When the intensity of the driving pulse is much higher than the saturation intensity of the media involved, the double-peak splitting in frequency domain emerges in the generated high-order harmonic spectra. The possible origins of this splitting are carefully investigated. The ionization of the gas media and the propagation effect of harmonic field are the main reason for the double-peak splitting observed.

  15. Creating high-harmonic beams with controlled orbital angular momentum.

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  16. Creating High-Harmonic Beams with Controlled Orbital Angular Momentum

    Science.gov (United States)

    Boyd, Robert W.

    A beam of light with an angle-dependent phase Φ = lϕ , where ϕ is the azimuthal coordinate, about the beam axis carries an orbital angular momentum (OAM) of lℏ per photon. Such beams have been exploited to provide superresolution in visible-light microscopy. The ability to create extreme ultraviolet or soft-x-ray beams with controllable OAM would be a critical step towards extending superresolution methods to extremely small feature size. Here we show that OAM is conserved during the process of high-harmonic generation (HHG). Experimentally, we use a fundamental beam with l = 1 and interferometrically determine that the q-th harmonic has an OAM quantum number l equal to its harmonic order q. We also show theoretically how to couple an arbitrary low value of the OAM quantum number l to any harmonic order q in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  17. Plasma effect on the phase matching of high harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Candong Liu; Shitong Zhao; Peng Liu

    2011-01-01

    By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.

  18. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  19. Enhancing narrowband high order harmonic generation by Fano resonances

    CERN Document Server

    Rothhardt, Jan; Demmler, Stefan; Krebs, Manuel; Fritzsche, Stephan; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    Resonances in the photo-absorption spectrum of the generating medium can modify the spectrum of high order harmonics. In particular, window-type Fano resonances can reduce photo-absorption within a narrow spectral region and, consequently, lead to an enhanced emission of high-order harmonics in absorption-limited generation conditions. For high harmonic generation in argon it is shown that the 3s3p6 np 1P1 window resonances (n=4,5,6) give rise to enhanced photon yield. In particular, the 3s3p6 4p 1P1 resonance at 26.6 eV allows a relative enhancement up to a factor of 30 compared to the characteristic photon emission of the neighboring harmonic order. This enhanced, spectrally isolated and coherent photon emission line has a relative energy bandwidth of only {\\Delta}E/E=3*10-3. Therefore, it might be directly applied for precision spectroscopy or coherent diffractive imaging without the need of additional spectral filtering. The presented mechanism can be employed for tailoring and controlling the high harmon...

  20. High-intensity molecular harmonic generation without ionization

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Chen Gao; Guo Fu-Ming; Li Su-Yu; Chen Ji-Gen; Yang Yu-Jun

    2013-01-01

    We theoretically investigate high-order harmonic generation from H2+ in an infrared laser field.Our numerical simulations show that a highly efficient plateau structure exists in the molecular harmonic spectrum.Under the action of the infrared laser pulse,the bound electronic wave packet in a potential well has enough time to tunnel through the effective potential barrier,which is formed by the molecular potential and the infrared laser field,and then recombine with the neighboring nucleus emitting a harmonic photon.During the entire dynamic process,because the wave packet is mainly located in the effective potential,the diffusion effect is of no significance,and thus a highly efficient harmonic plateau can be achieved.Specifically,the cut-off frequency of the plateau is linearly scaled with the peak amplitude of the infrared laser electric field,which may open another route to examine the internuclear distance of the molecule.Furthermore,one may detect the molecular bond lengths using the harmonic plateau.

  1. Cluster size dependence of high-order harmonic generation

    Science.gov (United States)

    Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.

    2017-08-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.

  2. High harmonic fast waves in high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1995-04-01

    High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.

  3. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  4. Generation of Intense High-Order Vortex Harmonics

    CERN Document Server

    Zhang, Xiaomei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2014-01-01

    This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution dete...

  5. Enhancement of Bichromatic High-Order Harmonic Generation by a Strong Laser Field and Its Third Harmonic

    Institute of Scientific and Technical Information of China (English)

    PI Liang-Wen; SHI Ting-Yun; QIAO Hao-Xue

    2006-01-01

    We investigate high-order harmonic generation (HUG) in a linearly polarized bichromatic field composed of a fundamental laser Geld with frequencyωand an additional laser field with frequency 3ω. The numerical results show that it is possible to enhance the intensity of most high harmonics in orders of magnitude. A most striking feature in the enhancement is that the intensity of several special high harmonics is practically impaired as compared with that in the monochromatic case. The qualitative explanation to the great enhancement is that the additional high-frequency field can provide new transition paths for electrons to reach the continuum. The relative phase between the fundamental field and its third harmonic field also affects the intensity of high-order harmonics near the cutoff efficiently.

  6. Complex structure of spatially resolved high-order-harmonic spectra

    Science.gov (United States)

    Catoire, F.; Ferré, A.; Hort, O.; Dubrouil, A.; Quintard, L.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Mairesse, Y.; Constant, E.

    2016-12-01

    We investigate the spatiospectral coupling appearing in the spatially resolved high-order-harmonic spectra generated in gases. When ionization is weak, harmonic generation in the far field often exhibits rings surrounding a central spot centered on each odd harmonics in the spatiospectral domain. The nature of these structures is debated. They could stem from interferences between the emission of short and long trajectories, or could be the signature of the temporal and spatial dependence of the longitudinal phase matching of long trajectories (Maker fringes). We conducted spectrally and spatially resolved measurements of the harmonic spectra as a function of pressure, intensity, and ellipticity. In addition, we performed calculations where only a single emission plane is included (i.e., omitting deliberately the longitudinal phase matching), reproducing the features experimentally observed. This study has been completed by the spatiospectral coupling when strong ionization occurs leading to complex patterns which have been compared to calculations using the same model and also show good agreement. We conclude that many spatiospectral structures of the harmonic spectrum can be interpreted in terms of spatial and temporal transverse coherence of the emitting medium without resorting to longitudinal phase matching or quantum phase interference between short and long trajectories.

  7. High-order harmonic conversion efficiency in helium

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J.K.

    1992-10-23

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L{sub coh}={pi}b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N{sub q}=[({pi}{sup z}n{sup z}b{sup 3}{tau}{sub q}{vert_bar}d{sub q}{vert_bar}{sup z})/4h]{l_brace}(p/q)(2l/b){sup z}{r_brace}. N{sub q} - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; {tau}{sub q} - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).

  8. High-order harmonic conversion efficiency in helium

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J.K.

    1992-10-23

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L[sub coh]=[pi]b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N[sub q]=[([pi][sup z]n[sup z]b[sup 3][tau][sub q][vert bar]d[sub q][vert bar][sup z])/4h][l brace](p/q)(2l/b)[sup z][r brace]. N[sub q] - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; [tau][sub q] - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).

  9. High-frequency thermal processes in harmonic crystals

    CERN Document Server

    Kuzkin, Vitaly A

    2016-01-01

    We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...

  10. Theory of high gain harmonic generation an analytical estimate

    CERN Document Server

    Yu Li Hua

    2002-01-01

    We discuss the theory of the High Gain Harmonic Generation (HGHG). First, we describe an analytical estimate using the HGHG parameters in the DUVFEL project at BNL as an example. We show that the effective energy spread in a chicane dispersion section is found to be very small, and the effect of finite emittance can be neglected during the calculation of coherent harmonic generation. Then we discuss some issues such as the intensity stability, and how to use HGHG to obtain information about local energy spread. We compare these issues with recent experimental results in the infrared. We discuss some of the key issues in the cascading HGHG scheme and its possible limitations.

  11. Control of high-order harmonic generation with two-colour laser field

    Institute of Scientific and Technical Information of China (English)

    Dai Jun; Zeng Zhi-Nan; Li Ru-Xin; Xu Zhi-Zhan

    2010-01-01

    We numerically investigate the high-order harmonic generation with two-colour optical field,taking into consideration the propagation effects.Some harmonics can be dramatically enhanced at a certain delay between the fundamental pulse and its second harmonics.Choice of the enhanced harmonics can be realised by changing the time delay between the two laser pulses.

  12. Cluster size dependence of high-order harmonic generation

    CERN Document Server

    Tao, Y; Bastiaens, H M J; van der Slot, P J M; Biedron, S G; Milton, S V; Boller, K -J

    2016-01-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3x10^{16} cm^{-3} to 3x10^{18} cm^{-3}) at two different reservoir temperatures (303 K and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. Based on measurements with a thin jet where significant variations in reabsorption and the phase matching conditions can be neglected, we conclude that atoms in the form of small clusters (average cluster size < 1000 atoms) provide the same higher-order nonlinear response as single-atoms. This implies that HHG in ...

  13. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  14. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  15. High harmonic generation from impulsively aligned SO2

    Science.gov (United States)

    Devin, Julien; Wang, Song; Kaldun, Andreas; Bucksbaum, Phil

    2016-05-01

    Previous work in high harmonics generation (HHG) in aligned molecular gases has mainly focused on rotational dynamics in order to determine the contributions of different orbitals to the ionization step. In our experiment, we focus on the shorter timescale of vibrational dynamics. We generate high harmonics from impulsively aligned SO2 molecules in a gas jet and record the emitted attosecond pulse trains in a home-built high resolution vacuum ultra violet (VUV) spectrometer. Using the high temporal resolution of our setup, we are able to map out the effects of vibrational wavepackets with a sub-femtosecond resolution. The target molecule, SO2 gas, is impulsively aligned by a near-infrared laser pulse and has accessible vibrations on the timescale of the short laser pulse used. We present first experimental results for the response to this excitation in high-harmonics. We observe both fast oscillations in the time domain as well as shifts of the VUV photon energy outside of the pulse overlaps. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division and by the National Science Foundation Graduate Research Fellowship.

  16. High-order harmonic generation from polar molecules

    DEFF Research Database (Denmark)

    Etches, Adam

    When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser p....... Surprisingly, the dominating first-order Stark phase turns out to be nearly independent of the laser intensity.......When a molecule is submitted to a very intense laser pulse it emits coherent bursts of light in each optical half-cycle of the laser field. This process is known as high-order harmonic generation because the spectrum consists of many peaks at energies corresponding to an integer amount of laser...

  17. Plasmon-assisted high-harmonic generation in graphene

    CERN Document Server

    Cox, Joel D; de Abajo, F Javier García

    2016-01-01

    High-harmonic generation (HHG) in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. Here we argue that the large light intensity required for this phenomenon to occur can be reached by exploiting localized plasmons in conducting nanostructures. In particular, we demonstrate that doped graphene nanostructures combine a strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity that result in efficient broadband HHG within a single material platform. We extract this conclusion from time-domain simulations using two complementary nonperturbative approaches based on atomistic one-electron density-matrix and massless Dirac-fermion Bloch-equation pictures. High harmonics are predicted to be emitted with unprecedentedly large intensity by tuning the incident light to the localized plasmons of ribbons and finite islands. In contrast to atomic systems, we observe no cut...

  18. Tuning the topological charge of laser high-order harmonics

    CERN Document Server

    Gauthier, D; Adhikary, G; Camper, A; Chappuis, C; Cucini, R; Dovillaire, G; Géneaux, R; Poletto, L; Ressel, B; Ruchon, T; Spezzani, C; Stupar, M; De Ninno, G

    2016-01-01

    We report on the generation of optical vortices carrying a controllable amount of orbital angular momentum in laser high-order harmonics in gas. The experiment is based on two-color wave mixing, where a vortex and a Gaussian beam are spatially overlapped in the generation medium. Such a setup allows efficient and robust generation of lower order orbital angular momentum modes. The results constitute the first experimental verification of the conservation rule for orbital angular momentum in high-harmonic generation using two driving beams. Our findings significantly extend the capability of controlling the spatial properties of femtosecond extreme-ultraviolet pulses and could lead to entirely new experiments in the field of light-matter interactions.

  19. Spectral Shifts of Nonadiabatic High-Order Harmonic Generation

    Directory of Open Access Journals (Sweden)

    André D. Bandrauk

    2013-03-01

    Full Text Available High-order harmonic generation (HHG is a nonlinear nonperturbative process in ultrashort intense laser-matter interaction. It is the main source of coherent attosecond (1 as = 10−18 s laser pulses to investigate ultrafast electron dynamics. HHG has become an important table-top source covering a spectral range from infrared to extreme ultraviolet (XUV. One way to extend the cutoff energy of HHG is to increase the intensity of the laser pulses. A consequence of HHG in such intense short laser fields is the characteristic nonadiabatic red and blue shifts of the spectrum, which are reviewed in the present work. An example of this nonperturbative light-matter interaction is presented for the one-electron nonsymmetric molecular ion HeH2+, as molecular systems allow for the study of the laser-molecule orientation dependence of such new effects including a four-step model of MHOHG (Molecular High-order Harmonic Generation.

  20. Influence of circular aperture on high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Tingting Liu(刘婷婷); Weixin Lu(陆伟新); Dawei Wang(王大威); Hong Yang(杨宏); Qihuang Gong(龚旗煌)

    2003-01-01

    The influence of circular aperture on the intensity of high-order harmonic generation (HHG) with intense femtosecond laser pulse was studied both experimentally and theoretically. The intensity variety of HHG with the diameter of circular aperture was observed in pulsed Ar gas. The result was discussed and interpreted in terms of the theory of Hankel transform. It is found that using the Gaussian beam truncated by an aperture could enhance the conversion efficiency of HHG at certain conditions.

  1. Vacuum high harmonic generation in the shock regime

    CERN Document Server

    Böhl, P; Ruhl, H

    2015-01-01

    Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantised nature of vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant crossed background is calculated using numerical simulation and by analytically solving the corresponding wave equation. The electromagnetic shock resulting from vacuum high harmonic generation is investigated and a nonlinear shock parameter identified.

  2. Single-shot fluctuations in waveguided high-harmonic generation

    CERN Document Server

    Goh, S J; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K -J

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot dr...

  3. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  4. Frequency shift in high order harmonic generation from isotopic molecules

    CERN Document Server

    He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang

    2016-01-01

    We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.

  5. High-order harmonic generation from inhomogeneous fields

    CERN Document Server

    Ciappina, M F; Quidant, R; Lewenstein, M

    2011-01-01

    We present theoretical studies of high-order harmonic generation (HHG) produced by non-homogeneous fields as resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that the inhomogeneity of the local fields plays an important role in the HHG process and lead to the generation of even harmonics and a significantly increased cutoff, more pronounced for the longer wavelengths cases studied. In order to understand and characterize the new HHG features we employ two different approaches: the numerical solution of the time dependent Schr\\"odinger equation (TDSE) and the semiclassical approach known as Strong Field Approximation (SFA). Both approaches predict comparable results and show the new features, but using the semiclassical arguments behind the SFA, we are able to fully understand the reasons of the cutoff extension.

  6. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  7. Semiclassical-wave-function perspective on high-harmonic generation

    Science.gov (United States)

    Mauger, François; Abanador, Paul M.; Lopata, Kenneth; Schafer, Kenneth J.; Gaarde, Mette B.

    2016-04-01

    We introduce a semiclassical-wave-function (SCWF) model for strong-field physics and attosecond science. When applied to high-harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation, and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B 43, 122001 (2010), 10.1088/0953-4075/43/12/122001]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.

  8. Semi-Classical Wavefunction Perspective to High-Harmonic Generation

    CERN Document Server

    Mauger, Francois; Lopata, Kenneth; Schafer, Kenneth J; Gaarde, Mette B

    2015-01-01

    We introduce a semi-classical wavefunction (SCWF) model for strong-field physics and attosecond science. When applied to high harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B. 43, 122001 (2010)]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.

  9. Quasi-phase-matched high-order harmonic generation using tunable pulse trains.

    Science.gov (United States)

    O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M

    2014-04-07

    A simple technique for generating trains of ultrafast pulses is demonstrated in which the linear separation between pulses can be varied continuously over a wide range. These pulse trains are used to achieve tunable quasi-phase-matching of high harmonic generation over a range of harmonic orders up to the harmonic cut-off, resulting in enhancements of the harmonic intensity in excess of an order of magnitude. The peak enhancement of the harmonics is clearly shown to depend on the separation between pulses, as well as the number of pulses in the train, representing an easily tunable source of quasi-phase-matched high harmonic generation.

  10. Vacuum high-harmonic generation and electromagnetic shock

    Science.gov (United States)

    Böhl, P.; King, B.; Ruhl, H.

    2016-04-01

    > When one takes into account the presence of virtual charged states in the quantum vacuum, a nonlinear self-interaction can arise in the propagation of electromagnetic fields. This self-interaction is often referred to as `real photon-photon scattering'. When the centre-of-mass energy of colliding photons is much lower than the rest energy of an electron-positron pair, this quantum effect can be included in the classical field equations of motion as a vacuum current and charge density using the Heisenberg-Euler Lagrangian. Using analytical and numerical methods for subcritical fields, the intrinsic solution to Maxwell's equations has been found for counterpropagating probe and pump plane waves in the presence of vacuum four- and six-wave mixing. In the corresponding all-order solution for the scattered probe, a route to vacuum high-harmonic generation is identified in which a long phase length can compensate for the weakness of interacting fields. The resulting shocks in the probe carrier wave and envelope are studied for different parameter regimes and polarisation set-ups. In this special issue, we study two additional set-ups: that of a slowly varying single-cycle background to highlight the effect of an oscillating background on the probe harmonic spectrum, and that of a few-cycle probe to highlight the smoothing of the harmonic peaks produced by a wider spectrum of probe photons. We also correct sign errors in an earlier publication.

  11. High-order harmonic generation in Ar and Ne with a 45fs intense laser field

    Institute of Scientific and Technical Information of China (English)

    徐至展; 王迎松; 翟侃; 李学信; 刘亚青; 杨晓东; 张正泉; 李儒新; 张文琦

    1999-01-01

    Experimental results of high-order harmonic generation (HHG) in Ar and Ne gas driven with a 45fs Ti: sapphire laser are presented. The shortest-wavelength harmonic emission corresponding to the 91st order harmonic (8.63nm) is observed in argon. In neon, the harmonics up to order 131 (5.99nm) is also observed. The effects of gas density, laser intensity, free electron and the focusing geometry parameters of the laser beam on the process of harmonic generation are investigated. The direct experimental evidence that an increased electron density causes a degenerated harmonic radiation is obtained.

  12. On high explosive launching of projectiles for shock physics experiments.

    Science.gov (United States)

    Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  13. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  14. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  15. Electron acceleration and high harmonic generation by relativistic surface plasmons

    Science.gov (United States)

    Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team

    2016-10-01

    Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.

  16. High harmonic generation with fully tunable polarization by train of linearly polarized pulses

    Science.gov (United States)

    Neufeld, Ofer; Bordo, Eliyahu; Fleischer, Avner; Cohen, Oren

    2017-02-01

    We propose and demonstrate, analytically and numerically, a scheme for generation of high-order harmonics with fully tunable polarization, from circular through elliptic to linear, while barely changing the other properties of the high harmonic radiation and where the ellipticity values of all the harmonic orders essentially coincide. The high harmonics are driven by a train of quasi-monochromatic linearly polarized pulses that are identical except for their polarization angles, which is the tuning knob. This system gives rise to full control over the polarization of the harmonics while largely preserving the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized.

  17. Application of High Intensity THz Pulses for Gas High Harmonic Generation

    CERN Document Server

    Balogh, Emeric; Hebling, János; Dombi, Péter; Farkas, Győző; Varjú, Katalin

    2013-01-01

    The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.

  18. LAUNCHING EFFORTS NEEDED FOR A HIGH-TECH PRODUCT

    Directory of Open Access Journals (Sweden)

    Lavinia DOVLEAC

    2011-01-01

    Full Text Available This paper aims the difficult problem of creating new product concepts in thearea of high-technology and innovation. Because of scientific discoveries andimpressive development of technology, many companies compete for marketsupremacy on the technological innovations market. In a global market,which is currently in an economic and financial crisis, consumers make a newhierarchy of priorities in terms of expenditure and consumption. Therefore,companies that create new products must be very careful about 2 aspects,so the new product may not become a failure: the products positioning on themarket and the target group which they address to. This paper belongs to themarketing area by bringing into discussion theoretical concepts, by analyzingthe stages crossed by a company in the process of launching a new hightechproduct and crossing the abyss in the product adoption process byconsumers.

  19. Gaussian-Schell analysis of the transverse spatial properties of high-harmonic beams

    CERN Document Server

    Lloyd, David T; Anderson, Patrick N; Hooker, Simon M

    2016-01-01

    High harmonic generation (HHG) is an established means of producing coherent, short wavelength, ultrafast pulses from a compact set-up. Table-top high-harmonic sources are increasingly being used to image physical and biological systems using emerging techniques such as coherent diffraction imaging and ptychography. These novel imaging methods require coherent illumination, and it is therefore important to both characterize the spatial coherence of high-harmonic beams and understand the processes which limit this property. Here we investigate the near- and far-field spatial properties of high-harmonic radiation generated in a gas cell. The variation with harmonic order of the intensity profile, wavefront curvature, and complex coherence factor is measured in the far-field by the SCIMITAR technique. Using the Gaussian-Schell model, the properties of the harmonic beam in the plane of generation are deduced. Our results show that the order-dependence of the harmonic spatial coherence is consistent with partial c...

  20. Near infrared few-cycle pulses for high harmonic generation

    CERN Document Server

    Driever, Steffen; Delagnes, Jean-Christophe; Fedorov, Nikita; Arnold, Martin; Bigourd, Damien; Cormier, Eric; Guichard, Roland; Constant, Eric; Zair, Amelle

    2014-01-01

    We report on the development of tunable few-cycle pulses with central wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of principle for high harmonic generation in atomic and molecular targets. In order to generate such pulses we produced a filament in a 4 bar krypton cell. Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse was achieved. The spectrally broadened output pulses were then compressed by fused silica plates down to the few-cycle regime close to the Fourier limit. The auto-correlation of these pulses revealed durations of about 3 cycles for all investigated central wavelengths. Pulses with a central wavelength of 1.7 um and up to 430 uJ energy per pulse were employed to generate high order harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the possibility to operate deeply in the non-perturbative regime with a Keldysh parameter smaller than 1. Hence, this source is suitable for the study of the non-adiabatic tunneling regime in ...

  1. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  2. High Harmonic Fast Wave heating and current drive for NSTX

    Science.gov (United States)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  3. High-order harmonic generation at high laser intensities beyond the tunnel regime

    CERN Document Server

    Pérez-Hernández, J A; Lewenstein, M; Zaïr, A; Roso, L

    2014-01-01

    We present studies of high-order harmonic generation (HHG) at laser intensities well above saturation. We use driving laser pulses which present a particular electron dynamics in the turn-on stage. Our results predict an increasing on the harmonic yield, after an initial dropping, when the laser intensity is increased. This fact contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities. We have identified a particular set of trajectories which emerges in the turn-on stage of these singular laser pulses, responsible of the unexpected growth on the harmonic efficiency at this high intensity regime. Our study combines two complementary approaches: classical analysis and full quantum mechanical calculations resulting from the numerical integration of the 3-dimensional time-dependent Schr\\"odinger equation complemented with the time-frequency analysis.

  4. Correlated Terahertz and High Harmonic Generation from Aligned Nitrogen Molecules

    Science.gov (United States)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lv, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2016-05-01

    When laser beams are focused on atoms and molecules, wide spectral range of photons can be radiated from the source. In the region of high energy, high harmonic generation (HHG), covering tens to hundreds electron volts, emit within the attosecond timescale. In the low energy region, terahertz wave generation (TWG) can also be generated. Synchronizing TWG with HHG is to take snapshot of the electronic dynamics with time-scale spanning over 6 orders of magnitudes. In this abstract, we report the joint measurements on TWG and HHG from pre-aligned molecules. By calibrating the angular ionization rates with the alignment dependent TWG, we reconstruct the photoionization cross section (PICS) of nitrogen in one run of experiment. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures (Yindong Huang et al., Phys. Rev. Lett. 115, 123002, 2015).

  5. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    Science.gov (United States)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  6. Gain of harmonic generation in high gain free electron laser

    Institute of Scientific and Technical Information of China (English)

    DENG Hai-Xiao; DAI Zhi-Min

    2008-01-01

    In a planar undulator employed free electron laser(FEL),each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation.In this paper,we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations,taking into account the effects due to energy spread,emittance,betatron oscillation of electron beam as well as diffraction guiding of the radiation field.A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented,which promise rapid computation in FEL design and optimization.The analytical approaches have been validated by 3D simulation results in large range.

  7. High-harmonic generation enhanced by dynamical electron correlation

    CERN Document Server

    Tikhomirov, Iliya; Ishikawa, Kenichi L

    2016-01-01

    We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional (1D) model atom. In addition to usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.

  8. Analytical approach to high harmonics spectrum in the nanobunching regime

    CERN Document Server

    Cherednychek, Mykyta

    2016-01-01

    With the high-order harmonic generation (HHG) from plasma sur- faces it is possible to turn a laser pulse into a train of attosecond or even zeptosecond pulses in the backward radiation. These attosecond pulses may have amplitude several orders of magnitude higher than that of the laser pulse under appropriate conditions. We study this process in detail, especially the nanobunching of the plasma electron density. We derive an analytical expression that describes the electron density pro- file and obtain a good agreement with particle-in-cell simulation results. We investigate the most efficient case of HHG at moderate laser intensity (I = 2*10^20 W/cm^2 ) on the over-dense plasma slab with an exponential profile pre-plasma. Subsequently we calculate the spectra of a single at- tosecond pulse from the backward radiation using our expression for the density shape in combination with the equation for the spectrum of the nanobunch radiation.

  9. Role of Rydberg States In High-order Harmonic Generation

    CERN Document Server

    Beaulieu, Samuel; Comby, Antoine; Wanie, Vincent; Petit, Stéphane; Légaré, François; Catoire, Fabrice; Mairesse, Yann

    2016-01-01

    The role of Rydberg states in strong field physics has known a renewed interest in the past few years with the study of resonant high-order harmonic generation. In addition to its fundamental in- terest, this process could create bright sources of coherent vacuum and extreme ultraviolet radiation with controlled polarization state. We investigate the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. The intensity-dependence of the emission shows that two different pathways interfere to populate the Rydberg states. Furthermore, we show that the population of Rydberg states can lead to different emission mecanisms: either direct emission through XUV Free Induction Decay, or sequentially with absorption of additional photons, in processes similar to resonance-enhanced multiphoton above- threshold ionization. Last, using the attosecond lighthouse technique we show that the resonant emission from Rydberg states is not temporal...

  10. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  11. Mechanism of High-Order Harmonic Generation from Periodic Potentials

    CERN Document Server

    Du, Tao-Yuan

    2016-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce a quasi-classical model in the \\emph{k} space combined with the energy band structure to understand the high-order harmonic generation (HHG) process occurring in a subcycle timescale. This model interprets the multiple plateau structure in HHG spectra well and the linear dependence of cutoff energies on the amplitude of vector potential of the laser fields. It also predicts the emission time of HHG, which agrees well with the results by solving the time-dependent Schr\\"{o}dinger equation (TDSE). It provides a scheme to reconstruct the energy dispersion relations in Brillouin zone and to control the trajectories of HHG by varying the shape of laser pulses. This model is instructive for experimental measurements.

  12. Role of the Ionic Potential in High Harmonic Generation

    CERN Document Server

    Shafir, D; Higuet, J; Soifer, H; Dagan, M; Descamps, D; Mevel, E; Petit, S; Worner, H J; Pons, B; Dudovich, N; Mairesse, Y

    2013-01-01

    Recollision processes provide direct insight into the structure and dynamics of electronic wave functions. However, the strength of the process sets its basic limitations - the interaction couples numerous degrees of freedom. In this Letter we decouple the basic steps of the process and resolve the role of the ionic potential which is at the heart of a broad range of strong field phenomena. Specifically, we measure high harmonic generation from argon atoms. By manipulating the polarization of the laser field we resolve the vectorial properties of the interaction. Our study shows that the ionic core plays a significant role in all steps of the interaction. In particular, Coulomb focusing induces an angular deflection of the electrons before recombination. A complete spatiospectral analysis reveals the influence of the potential on the spatiotemporal properties of the emitted light.

  13. Decameter U-burst Harmonic Pair from a High Loop

    Science.gov (United States)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Bubnov, I. N.; Gridin, A. A.; Shevchuk, N. V.; Rucker, H. O.; Poedts, S.; Panchenko, M.

    2015-01-01

    The results of the first observations of solar sporadic radio emission within 10 - 70 MHz by the Giant Ukrainian Radio Telescope (GURT) are presented and discussed. Observations in such a wide range of frequencies considerably facilitate the registration of harmonic pairs. The solar U-burst harmonic pair observed on 8 August 2012 is analyzed. The burst key features were determined. Among them, the time delay between the fundamental and harmonic emissions was of special interest. The fundamental emission was delayed for 7 s with respect to the harmonic emission. A model for explaining the occurrence of such a delay is proposed, in which the emission source is located inside a magnetic loop containing plasma of increased density. In this case, the delay appears due to the difference in group velocities of electromagnetic waves at the fundamental and the harmonic frequencies.

  14. Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2016-10-03

    A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.

  15. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses

    Science.gov (United States)

    Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.

    2016-08-01

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  16. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses.

    Science.gov (United States)

    Lara-Astiaso, M; Silva, R E F; Gubaydullin, A; Rivière, P; Meier, C; Martín, F

    2016-08-26

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  17. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

    2011-01-01

    Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

  18. Optimized plasma high harmonics generation from ultra-intense laser pulses

    CERN Document Server

    Tang, Suo; Keitel, Christoph H

    2016-01-01

    Plasma high harmonics generation from extremely intense short-pulse laser is explored by including the effects of ion motion and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra thereby constraining the coherence properties of the harmonics. Radiation reaction force slightly mitigates the effects caused by the ion motion. Based on the analytical estimates and particle-in-cell simulation results, an optimum parameter regime of plasma high-harmonics is presented.

  19. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation.

    Science.gov (United States)

    Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei

    2015-06-15

    Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.

  20. High Harmonic Inverse Free Electron Laser Interaction at 800 nm

    Energy Technology Data Exchange (ETDEWEB)

    Sears, C

    2005-03-08

    We demonstrate for the first time an inverse free electron laser (IFEL) operating at 800 nm and observe multiple resonances of the IFEL interaction. The IFEL is tested at half its fundamental resonance electron energy and scanned through multiple harmonics by adjusting the undulator field strength. We obtain a peak modulation of {approx}50 keV FWHM and observe the 4th through 6th harmonics of the IFEL resonance.

  1. Multi-photon resonance enhanced super high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Lin Zheng-Zhe; Zhuang Jun; Ning Xi-Jing

    2010-01-01

    This paper proposes highly charged ions pumped by intense laser to produce very high order harmonics.Numerical simulations and full quantum theory of Ne9+ ions driven by laser pulses at 1064 nm in the power range of 109 W/cm2 ~ 1015 W/cm2 show that the emission spectrum corresponds to the electronic transitions from the excited states to the ground state,which is very different from the spectrum of general high-order harmonic generation.In such situation,harmonic order as high as 1000 can be obtained without producing lower order harmonics and the energy conversion efficiency is close to general high order harmonic generation of hydrogen atom in the same laser field.

  2. A highly efficient method for second and third harmonic generation from magnetic metamaterials

    CERN Document Server

    Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk

    2016-01-01

    Second and third harmonic signals have been usually generated by using nonlinear crystals, but that method suffers from the low efficiency in small thicknesses. Metamaterials can be used to generate harmonic signals in small thicknesses. Here, we introduce a new method for amplifying second and third harmonic generation from magnetic metamaterials. We show that by using a grating structure under the metamaterial, the grating and the metamaterial form a resonator, and amplify the resonant behavior of the metamaterial. Therefore, we can generate second and third harmonic signals with high efficiency from this metamaterial-based nonlinear media.

  3. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  4. Super-resonant radiation stimulated by high-harmonics

    CERN Document Server

    Loures, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2016-01-01

    Solitons propagating in media with higher order dispersion will shed radiation known as dispersive wave or resonant radiation, with applications in frequency broadening, deep UV sources for spectroscopy or simply fundamental studies of soliton physics. Starting from a recently proposed equation that models the behaviour of ultrashort optical pulses in nonlinear materials using the analytic signal, we find that the resonant radiation associated with the third-harmonic generation term of the equation is parametrically stimulated with an unprecedented gain. Resonant radiation levels, typically only a small fraction of the soliton, are now as intense as the soliton itself. The mechanism is quite universal and works also in normal dispersion and with harmonics higher than the third. We report experimental hints of this super-resonant radiation stimulated by the fifth harmonic in diamond.

  5. High-order harmonic generation with a two-color laser pulse

    Institute of Scientific and Technical Information of China (English)

    Luo Lao-Yong; Du Hong-Chuan; Hu Bi-Tao

    2012-01-01

    We theoretically investigate the electron dynamics of the high-order harmonics generation process by combining a near-infrared 800 nm driving pulse with a mid-infrared 2000 nm control field.We also investigate the emission time of harmonics using time-frequency analysis to illustrate the physical mechanisms of high-order harmonic generation.We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variations in harmonic intensity for different control field strengths and delays.We find that the width of the harmonic plateau can be extended when the control electric field is added,and a supercontinuum from 198 to 435 eV is generated,from which an isolated 61-as pulse can be directly obtained.

  6. Helicity reversion in high harmonic generation driven by bichromatic counterrotating circularly polarized laser fields

    CERN Document Server

    Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2016-01-01

    We investigate the polarization properties of high harmonics generated with the bichromatic counterrotating circularly polarized (BCCP) laser fields by numerically solving time-dependent Schr\\"odinger equation (TDSE). It is found that, the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that, the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser field.

  7. Macroscopic effect of plasmon-driven high-order-harmonic generation

    Science.gov (United States)

    Wang, Feng; Liu, Weiwei; He, Lixin; Li, Liang; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2017-09-01

    We present a numerical method to calculate the macroscopic harmonic spectrum generated from the gas-exposed nanostructure. This method includes the propagation of plasmonic and harmonic fields in the macroscopic medium as well as the response of the single atom exposed to plasmonic field. Based on the simulation, we demonstrate that the macroscopic harmonic yields drop dramatically in the high-energy region. This result well interprets the disagreement in the cutoff between the single-atom prediction and the experimental detection. Moreover, we also show that the harmonic cutoff difference induced by a π shift in carrier-envelope phase (CEP) of laser pulses depends sensitively on the spatial position. However, when the collective effect of plasmon-driven high-order-harmonic generation is considered, this cutoff difference is eliminated.

  8. High-order-harmonic generation in atomic and molecular systems

    Science.gov (United States)

    Suárez, Noslen; Chacón, Alexis; Pérez-Hernández, Jose A.; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.

    2017-03-01

    High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation (SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range model, but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016), 10.1103/PhysRevA.94.043423], the multicenter matrix elements in our theory are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic systems, modeled under the single active electron approximation, and for simple diatomic molecular systems. Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are also captured by our model.

  9. Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control

    Directory of Open Access Journals (Sweden)

    Laux Martin

    2013-03-01

    Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.

  10. Field-reversed configuration maintained by rotating magnetic field with high spatial harmonics.

    Science.gov (United States)

    Inomoto, Michiaki; Kitano, Katsuhisa; Okada, Shigefumi

    2007-10-26

    Field-reversed configurations (FRCs) driven by rotating magnetic fields (RMFs) with spatial high harmonics have been studied in the metal flux conserver of the FRC injection experiment. The experimental results show that the fundamental RMF component is observed to penetrate the plasma column, while the high harmonics are screened at the plasma edge due to their slower or reversed rotation. This selective penetration of the RMF provides good compatibility of radial and azimuthal force balances; significant radial inward force mostly from the high-harmonic components, and sufficient azimuthal torque solely provided by the fundamental component.

  11. Attosecond pulse production using resonantly-enhanced high-order harmonics

    CERN Document Server

    Strelkov, V V

    2016-01-01

    We study theoretically the effect of the giant resonance in Xe on the phase difference between the consecutive high order resonantly-enhanced harmonics and calculate the duration of the attosecond pulses produced by these harmonics. For certain conditions resonantly-induced dephasing compensates the phase difference which is intrinsic for the off-resonance harmonics. We find these conditions analytically and compare them with the numerical results. This harmonic synchronization allows attosecond pulse shortening in conjunction with the resonance-induced intensity increase by more than an order of magnitude; the latter enhancement relaxes the requirements for the UV filtering needed for the attosecond pulse production. Using a two-color driving field allows further increase of the intensity. In particular, a caustic-like feature in the harmonic spectrum leads to the generation efficiency growth up to two orders of magnitude, however accompanied by an elongation of the XUV pulse.

  12. Electron motion enhanced high harmonic generation in xenon clusters

    CERN Document Server

    Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.

  13. A Rotating-Frame Perspective on High-Harmonic Generation of Circularly Polarized Light

    CERN Document Server

    Reich, Daniel M

    2016-01-01

    We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond cur...

  14. Influence of High Harmonics of Magnetic Fields on Trapped Magnetic Fluxes in HTS Bulk

    Science.gov (United States)

    Yamagishi, K.; Miyagi, D.; Tsukamoto, O.

    Various kinds of HTS bulk motors are proposed and have been developed. Generally, those motors are driven by semiconductor inverters and currents fed to the armature windings contain high harmonics. Therefore, the bulks are exposed to high harmonics magnetic fields and AC losses are produced in the bulks. The AC losses deteriorate the efficiency of the motors and cause temperature rise of the bulks which decrease the trapped magnetic fluxes of the bulks. Usually, electro-magnetic shielding devices are inserted between the bulks and armature windings. However, the shielding devices degrade compactness of the motors. Therefore, it is important to have knowledge of the influence of the high harmonics magnetic fields on the AC losses and trapped magnetic fluxes of the bulk for optimum design of the shielding devices. In this work, the authors experimentally study the influence of high harmonics magnetic fields.

  15. Quasi-phase-matched high harmonic generation in corrugated micrometer-scale waveguides

    CERN Document Server

    Husakou, Anton

    2016-01-01

    The high harmonic generation in periodically corrugated submicrometer waveguides is studied numerically. Plasmonic field enhancement in the vicinity of the corrugations allows to use low pump intensities. Simultaneously, periodic placement of the corrugations leads to quasi-phase-matching and corresponding increase of the high harmonic efficiency. The optimization of waveguide geometry is performed, and the resulting spectra are analyzed by the means of (1+1)D numerical model.

  16. Beam divergence of high-order harmonics generated in the few-optical cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Altucci, C. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Bruzzese, R.; Lisio, C. de; Tosa, V. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Univ. di Napoli ' ' Federico II' ' , Napoli (Italy). Dipt. di Scienze Fisiche; Barbiero, P.; Poletto, L.; Tondello, G.; Villoresi, P. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Padova Univ. (Italy). Lab. di Elettronica Quantistica; Nisoli, M.; Stagira, S.; Cerullo, G.; Silvestri, S. de; Svelto, O. [Universita degli Studi della Basilicata, Potenza (Italy). Dipt. die Chimica; Politecnico di Milano, Milan (Italy). Dipt. di Chimica Fisica Applicata

    2001-07-01

    The beam divergence of high-order harmonics generated in Helium by an ultra-short Ti:sapphire laser (7 fs and 30 fs) is experimentally characterized by means of a flat-field, high-resolution spectrometer. The harmonic beam divergence is also analysed as a function of the gas-jet position relative to the laser beam waist. Results, which are partly different from previous measurements performed at longer laser pulse duration, are discussed. (orig.)

  17. Behaviors of harmonic signals in wavelength-modulated spectroscopy under high absorption strength

    Institute of Scientific and Technical Information of China (English)

    Yuntao Wang; Haiwen Cai; Jianxin Geng; Zhengqing Pan; Dijun Chen; Zujie Fang

    2007-01-01

    @@ Behaviors of harmonic signals in wavelength modulation spectroscopy (WMS) for gas detection with Lorentzian line under high absorption strength are investigated. Approximate analytic expressions of the second, fourth, and sixth harmonics on the strength are presented in concise forms. Simulations show that the expressions are in agreement with the Fourier expansion by numerical integration. It is expected theoretically and experimentally in a WMS system for methane detection that there are not only a maximum, but also a null point in the harmonics versus strength relations, which should be of practical importance in methane sensing applications.

  18. High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    陆伟新; 刘婷婷; 杨宏; 孙騊亨; 龚旗煌

    2003-01-01

    We have studied the high-order harmonic generated by two coherent pulses in argon gas produced by a gas jet. A loop in the relationship of the harmonic intensity versus the absolute values of relative phase difference was observed for non-collinear arrangement. Compared with the collinear arrangement, increase of 10 times of the conversion efficiency for 17th-order harmonic generation at an appropriate relative phase difference was obtained. The calculation of the intensity and phase for the laser field near the focus gives a simple reason for these phenomena.

  19. Spatiotemporal separation of high harmonic radiation into two quantum path components

    Energy Technology Data Exchange (ETDEWEB)

    Gaarde, M. B.; Salin, F.; Constant, E.; Balcou, Ph.; Schafer, K. J.; Kulander, K. C.; L’Huillier, A.

    1999-02-01

    We present a spatio-temporal analysis of high harmonic generation, showing evidence for the presence of several quantum path contributions to the atomic dipole moment. We show that the harmonic radiation can largely be described as a sum of two fields having a phase proportional to the intensity of the generating field. We compare our results to recent experimental results demonstrating this separation. We show how the temporal and spatial coherence properties are influenced by this effect, and discuss how it could be used to obtain better control of the generated harmonic radiation.

  20. High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1-\\mu m source: high-order harmonic spectroscopy under macroscopic effects

    CERN Document Server

    Hong, Kyung-Han; Gkortsas, Vasileios-Marios; Huang, Shu-Wei; Moses, Jeffrey; Granados, Eduardo; Bhardwaj, Siddharth; Kärtner, Franz X

    2012-01-01

    We experimentally and numerically study the atomic response and pulse propagation effects of high-order harmonics generated in Xe, Kr, and Ar driven by a 2.1-\\mu m infrared femtosecond light source. The light source is an optical parametric chirped-pulse amplifier, and a modified strong-field approximation and 3-dimensional pulse propagation code are used for the numerical simulations. The extended cutoff in the long-wavelength driven high-harmonic generation has revealed the spectral shaping of high-order harmonics due to the atomic structure (or photo-recombination cross-section) and the macroscopic effects, which are the main factors of determining the conversion efficiency besides the driving wavelength. Using precise numerical simulations to determine the macroscopic electron wavepacket, we are able to extract the photo-recombination cross-sections from experimental high-order harmonic spectra in the presence of macroscopic effects. We have experimentally observed that the macroscopic effects shift the o...

  1. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2008-04-28

    We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.

  2. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology.

    Science.gov (United States)

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-02-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.

  3. Ultra-intense high orbital angular momentum harmonic generation in plasmas

    Science.gov (United States)

    Vieira, Jorge; Trines, R.; Alves, E. P.; Mendonca, J. T.; Fonseca, R. A.; Norreys, P.; Bigham, R.; Silva, L. O.

    2016-10-01

    As an independent degree of freedom, it is in principle possible to manipulate the orbital angular momentum (OAM) independently of any other laser property. The OAM therefore stands in equal foot to any other fundamental property of light, such as its frequency. There are, however, many open questions regarding the ability to control the OAM as an independent degree of freedom. A striking example is high harmonic generation, for which there is no OAM counterpart. Here we investigate a high OAM harmonics technique to generate and amplify high OAM harmonics while preserving the laser frequency. The scheme, based on simulated Raman backscattering, employs a linearly polarised long pump containing more than one OAM level, and a counter-propagating linearly polarised signal beam. The high OAM harmonics result from angular momentum cascading from modes with lower OAM to the modes with higher OAM. The OAM harmonics spectrum can be tailored according to the OAM contents of the pump. We illustrate the scheme with the generation of prime OAM harmonics, an all-optical realisation of the Green-Tao theorem. We support our theoretical findings with 3D particle-in-cell (PIC) simulations using Osiris.

  4. A systematic investigation of high harmonic generation using mid-infrared driving laser pulses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We report on a systematic investigation of the influences of gas pressure,focal position and focusing geometry on high harmonic generation by use of mid-infrared femtosecond laser pulses. We also discuss the spatial characteristics of harmonics under different focusing conditions. By optimizing the parameters,we experimentally observed the generation of 1 kHz,low divergence coherent X-ray beams in the water-window region.

  5. High-order harmonic generation from gapped graphene: Perturbative response and transition to nonperturbative regime

    Science.gov (United States)

    Dimitrovski, Darko; Madsen, Lars Bojer; Pedersen, Thomas Garm

    2017-01-01

    We consider the interaction of gapped graphene in the two-band approximation using an explicit time-dependent approach. In addition to the full high-order harmonic generation (HHG) spectrum, we also obtain the perturbative harmonic response using the time-dependent method at photon energies covering all the significant features in the responses. The transition from the perturbative to the fully nonperturbative regime of HHG at these photon energies is studied in detail.

  6. Single-pass high harmonic generation at high repetition rate and photon flux

    Science.gov (United States)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and

  7. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    Science.gov (United States)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  8. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: josetitomend@gmail.com [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil); Vieira, J., E-mail: jorge.vieira@ist.utl.pt [GoLP, IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  9. Thermal optimization of second harmonic generation at high pump powers.

    Science.gov (United States)

    Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther

    2011-11-07

    We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.

  10. Design of the Advanced High Kinetic Energy Launch System

    Science.gov (United States)

    1982-08-01

    of 41,800 psi. ASTM 574 A516 steel was used for the dome because it is easy to shape and is readily weldable . ASTM A572, Grade 60 is classified as...stirrups were used at 12 or 14 inches, as required. The reinforcement used was ASTM A615 , Grade 60 except for the stirrups for which Grade 40 was used...a high strength, low alloy structural steel and was used for its availability, high strength, and weldability for the rest of the structure. The

  11. Planck pre-launch status: High Frequency Instrument polarization calibration

    CERN Document Server

    Rosset, C; Ponthieu, N; Ade, P; Catalano, A; Conversi, L; Couchot, F; Crill, B P; Désert, F -X; Ganga, K; Giard, M; Giraud-Héraud, Y; Haïssinski, J; Henrot-Versillé, S; Holmes, W; Jones, W C; Lamarre, J -M; Lange, A; Leroy, C; Macías-Pérez, J; Maffei, B; de Marcillac, P; Miville-Deschênes, M -A; Montier, L; Noviello, F; Pajot, F; Perdereau, O; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Puget, J -L; Ristorcelli, I; Savini, G; Sudiwala, R; Veneziani, M; Yvon, D

    2010-01-01

    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization ($\\Delta P/T_{\\tiny cmb} \\sim 4\\cdot 10^{-6}$) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the Cosmic Microwave Background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the $E$-mode spectrum (up to $\\ell \\sim 1500$) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of...

  12. Dependence of high-order-harmonic generation on dipole moment in Si O2 crystals

    Science.gov (United States)

    Yu, Chao; Zhang, Xirui; Jiang, Shicheng; Cao, Xu; Yuan, Guanglu; Wu, Tong; Bai, Lihua; Lu, Ruifeng

    2016-07-01

    High-order-harmonic generation in α-quartz Si O2 is theoretically investigated under a strong laser field by solving the extended semiconductor Bloch equations. The accurate band structures as well as dipole moments between different bands are obtained from state-of-the-art first-principles calculations. We find that the shapes of k -space-dependent dipole moments play an important role in harmonic generation. The calculated results show that harmonic conversion efficiency is significantly enhanced and the cutoff energy is distinctly increased when the dipole moments change greatly along a valley in the k direction in the solid. Based on that dependence on the dipole moment, we also show that symmetry groups greatly affect the harmonic spectra from the solid materials. Moreover, a two-color synthesized field is used to achieve a supercontinuum harmonic spectrum near the cutoff region, and isolated attosecond pulses can be obtained directly by filtering out the harmonic radiation. We hope the contribution presented in this work provides a useful reference for future studies on laser-crystal interactions.

  13. Stability Analysis of an Inverted Pendulum Subjected to Combined High Frequency Harmonics and Stochastic Excitations

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi-Long; JIN Xiao-Ling; ZHU Zi-Qi

    2008-01-01

    Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively,are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged It(o) stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged It(o) stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.

  14. Spectroscopic diagnostics of superthermal electrons with high-number harmonic EC radiation in tokamak reactor plasmas

    Directory of Open Access Journals (Sweden)

    Minashin P.V.

    2015-01-01

    Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.

  15. Alpha Channeling with High-field Launch of Lower Hybrid Waves

    CERN Document Server

    Ochs, Ian E; Fisch, Nathaniel J

    2015-01-01

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  16. Supercontinuous high harmonic generation from asymmetric molecules in the presence of a terahertz field

    Institute of Scientific and Technical Information of China (English)

    Du Hong-Chuan; Wang Hui-Qiao; Hu Bi-Tao

    2011-01-01

    We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u.The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons,in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadbandsupercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.

  17. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2014-12-19

    We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6  μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.

  18. Multipass relativistic high-order-harmonic generation for intense attosecond pulses

    Science.gov (United States)

    Edwards, Matthew R.; Mikhailova, Julia M.

    2016-02-01

    We demonstrate that the total reflected field produced by the interaction of a moderately relativistic laser with dense plasma is itself an efficient driver of high-order-harmonic generation. A system of two or more successive interactions of an incident laser beam on solid targets may therefore be an experimentally realizable method of optimizing conversion of laser energy to high-order harmonics. Particle-in-cell simulations suggest that attosecond pulse intensity may be increased by up to four orders of magnitude in a multipass system, with decreased duration of the attosecond pulse train. We discuss high-order-harmonic wave-form engineering for enhanced attosecond pulse generation with an electron trajectory model, present the behavior of multipass systems over a range of parameters, and offer possible routes towards experimental implementation of a two-pass system.

  19. Attosecond pulses at kiloelectronvolt photon energies from high-order harmonic generation with core electrons

    CERN Document Server

    Buth, Christian; Ullrich, Joachim; Keitel, Christoph H; Hatsagortsyan, Karen Z

    2013-01-01

    High-order harmonic generation (HHG) in simultaneous intense near-infrared (NIR) laser light and brilliant x rays above an inner-shell absorption edge is examined. A tightly bound inner-shell electron is transferred into the continuum. Then, NIR light takes over and drives the liberated electron through the continuum until it eventually returns to the cation leading in some cases to recombination and emission of a high-harmonic photon that is upshifted by the x-ray photon energy. We develop a theory of this scenario and apply it to 1s electrons of neon atoms. The boosted high-harmonic light is used to generate a single attosecond pulse in the kiloelectronvolt regime. Prospects for nonlinear x-ray physics and HHG-based spectroscopy involving core orbitals are discussed.

  20. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    DEFF Research Database (Denmark)

    Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....

  1. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    CERN Document Server

    Smirnova, Olga; Patchkovskii, Serguei

    2015-01-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R. Cireasa et al ( Nat. Phys. 11, 654 - 658, 2015). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule C$_3$H$_6$O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independen...

  2. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  3. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  4. Phase properties of the cut-off high-order harmonics

    CERN Document Server

    Khokhlova, M A

    2015-01-01

    The cut-off regime of high-order harmonic generation (HHG) by atoms in an intense laser field is studied numerically and analytically. We find that the cut-off regime is characterized by equal dephasing between the successive harmonics. The change of the harmonic phase-locking when HHG evolves from the cut-off to the plateau regime determines the optimal bandwidth of the spectral region which should be used for attosecond pulse generation via amplitude gating technique. The cut-off regime is also characterized by a linear dependence of the harmonic phase on the fundamental intensity. The proportionality coefficient grows as the cube of the fundamental wavelength, thus this dependence becomes very important for the HHG by mid-infrared fields. Moreover, for every high harmonic there is a {\\it range} of laser intensities providing the generation in the cut-off regime and the atomic response magnitude in this regime can be greater than that in the plateau regime. Thus the cut-off regime substantially contributes ...

  5. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  6. Pulsed high harmonic generation of light due to pumped Bloch oscillations in noninteracting metals

    CERN Document Server

    Freericks, J K; Kemper, A F; Devereaux, T P; 10.1088/0031-8949/2012/T151/014062

    2012-01-01

    We derive a simple theory for high-order harmonic generation due to pumping a noninteracting metal with a large amplitude oscillating electric field. The model assumes that the radiated light field arises from the acceleration of electrons due to the time-varying current generated by the pump, and also assumes that the system has a constant density of photoexcited carriers, hence it ignores the dipole excitation between bands (which would create carriers in semiconductors). We examine the circumstances under which odd harmonic frequencies would be expected to dominate the spectrum of radiated light, and we also apply the model to real materials like ZnO, for which high-order harmonic generation has already been demonstrated in experiments.

  7. High-order harmonic generation in polyatomic molecules induced by a bicircular laser field

    CERN Document Server

    Odžak, Senad; Milošević, Dejan B

    2016-01-01

    High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $r\\omega$ and $s\\omega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field possesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)\\pm r$, $q=1,2,\\ldots$, are emitted having the ellipticity $\\varepsilon_n=\\pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.

  8. High-order harmonic generation in polyatomic molecules induced by a bicircular laser field

    Science.gov (United States)

    Odžak, S.; Hasović, E.; Milošević, D. B.

    2016-09-01

    High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency r ω and s ω (r and s are integers), is investigated for a polyatomic molecule. This field possesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the Cr +s symmetry, only the harmonics n =q (r +s )±r ,q =1 ,2 ,..., are emitted having the ellipticity ɛn=±1 . We illustrate this using the example of the planar molecules BH3 and BF3, which obey the C3 symmetry. We show that for the BF3 molecule, similarly to atoms with a p ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.

  9. Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    CERN Document Server

    Soifer, Hadas; Negro, Matteo; Devetta, Michele; Faccialà, Davide; Vozzi, Caterina; de Silvestri, Sandro; Stagira, Salvatore; Dudovich, Nirit

    2014-01-01

    High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.

  10. High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-03-01

    A high-resolution second-harmonic optical coherence tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti :sapphire laser. An axial resolution of 4.2μm at the second-harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second-harmonic generation signals that strongly depend on the orientation, polarization, and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues of the rat-tail tendon. Highly organized collagen fibrils in the rat-tail tendon can be visualized in recorded images.

  11. Measurement of the angular distributions of high-order harmonic generations from aligned CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H; Zhao, S T; Zhang, Z X; Liu, P; Zeng, Z N; Li, R X; Xu, Z Z, E-mail: peng@siom.ac.cn, E-mail: ruxinli@mail.shcnc.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, No. 390, Qinghe Road, Jiading District, Shanghai 201800 (China)

    2011-02-01

    In this study, the angular distributions of harmonics emission from aligned CO{sub 2} are explored experimentally and theoretically, and the validity of Strong Field Approximation (SFA) model in the molecular high harmonic generation is therefore studied. The study shows that for describing the angle distribution of high harmonic generation from molecules, SFA is roughly consistent with the qualitative analysis, while the quantitative analysis is different.

  12. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    Science.gov (United States)

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  13. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  14. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields

    Science.gov (United States)

    Dorney, Kevin M.; Ellis, Jennifer L.; Hernández-García, Carlos; Hickstein, Daniel D.; Mancuso, Christopher A.; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  15. Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation

    CERN Document Server

    Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina

    2016-01-01

    We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.

  16. Quantum-orbit analysis of high-order harmonic generation by resonant plasmon field enhancement

    CERN Document Server

    Shaaran, T; Lewenstein, M

    2012-01-01

    We perform a detailed analysis of high-order harmonic generation (HHG) in atoms within the strong field approximation (SFA) by considering spatially inhomogeneous monochromatic laser fields. We investigate how the individual pairs of quantum orbits contribute to the harmonic spectra. We show that in the case of inhomogeneous fields, the electron tunnels with two different canonical momenta. One of them leads to a higher cutoff and the other one develops a lower cutoff. Furthermore, we demonstrate that the quantum orbits have a very different behavior in comparison to the homogeneous field. We also conclude that in the case of the inhomogeneous fields, both odd and even harmonics are present in the HHG spectra. Within our model, we show that the HHG cutoff extends far beyond the semiclassical cutoff as a function of inhomogeneity strength. Our findings are in good agreement both with quantum mechanical and classical models.

  17. Tailoring high-order harmonic generation with nonhomogeneous fields and electron confinement

    CERN Document Server

    Ciappina, M F; Shaaran, T; Biegert, J; Quidant, R; Lewenstein, M

    2012-01-01

    We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that both the inhomogeneities of the local electric field and the confinement of the electron motion play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In order to understand and characterize this feature, we combine the numerical solution of the time dependent Schroedinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and to explain the extended harmonic spectra. Our findings have the potential to boost up the utilization of HHG as coherent extreme ultraviolet (XUV) sources.

  18. Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures.

    Science.gov (United States)

    Ciappina, M F; Aćimović, Srdjan S; Shaaran, T; Biegert, J; Quidant, R; Lewenstein, M

    2012-11-19

    We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.

  19. Harmonic mode locking in a high-Q whispering gallery mode microcavity

    Science.gov (United States)

    Tanabe, Takasumi; Kato, Takumi; Kobatake, Tomoya; Suzuki, Ryo; Chen-Jinnai, Akitoshi

    2016-03-01

    We present a numerical and experimental study of the generation of harmonic mode locking in a silica toroid microcavity. We use a generalized mean-field Lugiato-Lefever equation and solve it with the split-step Fourier method. We found that a stable harmonic mode-locking regime can be accessed when we reduce the input power after strong pumping even if we do not carefully adjust the wavelength detuning. This is due to the bistable nature of the nonlinear cavity system. The experiment agrees well with the numerical analysis, where we obtain a low-noise Kerr comb spectrum with a narrow longitudinal mode spacing by gradually reducing the input pump power after strong pumping. This finding clarifies the procedure for generating harmonic mode locking in such high-Q microcavity systems.

  20. High-order harmonic generation and multi-photon ionization of Na2 in laser fields

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Ping; Zhang Feng-Shou; Meng Ke-Lai; Xiao Guo-Qing

    2007-01-01

    In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.

  1. Electron trajectory selection for high harmonic generation inside a short hollow fiber.

    Science.gov (United States)

    Igarashi, Hironori; Makida, Ayumu; Sekikawa, Taro

    2013-09-09

    The 19th harmonic beam divergences from a Ti:sapphire laser generated using a gas jet and 10-mm-long hollow fibers with bore diameters of 300 and 200 μm were investigated. The beam quality factor M(2) of the harmonic beam generated in a 300-μm hollow fiber was found to be better than the gas jet using the phase match including the atomic dipole phase induced by the short trajectory. On the other hand, a 200-μm hollow fiber was found to generate a more divergent beam with a larger M(2) because of the long trajectory. The electron trajectory contributing to high harmonic generation was selected using the phase-matching process inside a short hollow fiber.

  2. Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.

    Science.gov (United States)

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-04-10

    We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  3. Carrier-wave Rabi flopping signatures in high-order harmonic generation for alkali atoms

    CERN Document Server

    Ciappina, M F; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-01-01

    We present the first theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2$\\pi$ and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These new characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  4. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  5. Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    We solve the time-dependent Schrödinger equation for atomic hydrogen in an intense field using spherical coordinates with a radial grid and a spherical harmonic basis for the angular part. We present the high-order harmonic spectra based on three different forms, the dipole, dipole velocity......, and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two...... gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required...

  6. Narrow-bandwidth high-order harmonics driven by long-duration hot spots

    Science.gov (United States)

    Kozlov, Maxim; Kfir, Ofer; Fleischer, Avner; Kaplan, Alex; Carmon, Tal; Schwefel, Harald G. L.; Bartal, Guy; Cohen, Oren

    2012-06-01

    We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emission from a thermal gas and from a jet of atoms. In both cases, the line shape of a high-order harmonic exhibits a narrow spike with spectral width that is determined by the bandwidth of the driving laser. Finally, we discuss a scheme for producing long-duration laser hot spots with intensity in the range of the intensity threshold for high-harmonic generation. In the proposed scheme, the hot spot is produced by a long laser pulse that is consecutively coupled to a high-quality micro-resonator and a metallic nano-antenna. This system may be used for generating ultra-narrow bandwidth extreme-ultraviolet radiation through frequency up-conversion of a low-cost compact pump laser.

  7. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld;

    2003-01-01

    A second-harmonic scanning optical microscopy (SHSOM) apparatus operating in reflection is used for high-resolution imaging of second-order optical non-linearities (SONs) in electric-field poled silica-based waveguides. SHSOM of domain walls in a periodically poled KTiOPO4 crystal is performed......, and the spatial resolution at the pump wavelength of 790 nm is determined to be better than 0.7 m. SHSOM images of positively poled silica waveguides were obtained for different polarization combinations of the incident pump beam and the detected second-harmonic radiation. Calibration of the SHSOM with a Ga...

  8. High order harmonic generation in noble gases using plasmonic field enhancement

    CERN Document Server

    Ciappina, M F; Lewenstein, M

    2012-01-01

    We present theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. We demonstrate that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. Our models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations.

  9. High-harmonic generation from plasma mirrors at kilohertz repetition rate

    OpenAIRE

    Quéré, Fabien

    2011-01-01

    International audience; We report the first demonstration of high-harmonic generation from plasma mirrors at a 1 kHz repetition rate. Harmonics up to nineteenth order are generated at peak intensities close to 1018 W=cm2 by focusing 1 mJ, 25 fs laser pulses down to 1:7 μm FWHM spot size without any prior wavefront correction onto a moving target. We minimize target surface motion with respect to the laser focus using online interferometry to ensure reproducible interaction conditions for ever...

  10. Role of the leader in the rail gun channel at high launching velocities

    Science.gov (United States)

    Zagorskii, A. V.; Katsnel'Son, S. S.; Pravdin, S. S.; Fomichev, V. P.

    1992-08-01

    An analysis of the performance of a number of rail guns indicates that one of the factors limiting the launching velocity is the formation of a leader. In experiments, the leader is usually formed as a result of a plasma breakdown between the dielectric projectile and the channel walls. This can be prevented by various technical means. However, at high launching velocities (5 km/s and greater) a leader may form as a result of a breakdown in the ionized gas in the wake of a strong shock wave ahead of the projectile. Further research is needed to find ways of preventing the formation of a leader in the latter case.

  11. Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low...

  12. Experimental study of conversion from atomic high-order harmonics to x-ray emissions

    Institute of Scientific and Technical Information of China (English)

    王骐; 陈建新; 夏元钦; 陈德应

    2003-01-01

    There are two physical phenomena in a strong laser intensity. One is the high-order harmonic emission; the other is x-ray emission from optical-field ionized plasmas. The experiment of conversion from high-order harmonics to x-ray emissions was given with a 105fs Ti:sapphire laser by adjusting laser intensities. The ingredient in plasma was investigated by the numerical simulations. Our experimental results suggested that the free electrons have detrimental effects on harmonic generation but are favourable for x-ray emission from optical-field ionized plasmas. If we want to obtain more intense harmonic signals as a coherent light source in the soft x-ray region, we must avoid the production of free electrons in plasmas. At the same time, if we want to observe x-rays for the development of high-repetition-rate table-top soft x-ray lasers, we should strip all atoms in the plasmas to a necessary ionized stage by the optical-fieldionization in the field of a high-intensity laser pulse.

  13. Plasmonic enhancement of High Harmonic Generation revisited: Predominance of Atomic Line Emission

    Directory of Open Access Journals (Sweden)

    Ropers C.

    2013-03-01

    Full Text Available We demonstrate nanostructure-enhanced extreme ultraviolet fluorescence from noble gases driven by low-energy, few-cycle light pulses. Despite sufficient local intensities, plasmon-enhanced high harmonic generation is not observed, which follows from the small, nanometer-size coherent source volume.

  14. Real-time observation of interfering crystal electrons in high-harmonic generation.

    Science.gov (United States)

    Hohenleutner, M; Langer, F; Schubert, O; Knorr, M; Huttner, U; Koch, S W; Kira, M; Huber, R

    2015-07-30

    Acceleration and collision of particles has been a key strategy for exploring the texture of matter. Strong light waves can control and recollide electronic wavepackets, generating high-harmonic radiation that encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of high-harmonic generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems, and provides hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not so far been observable in real time. Here we study high-harmonic generation in a bulk solid directly in the time domain, and reveal a new kind of strong-field excitation in the crystal. Unlike established atomic sources, our solid emits high-harmonic radiation as a sequence of subcycle bursts that coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features are characteristic of a non-perturbative quantum interference process that involves electrons from multiple valence bands. These results identify key mechanisms for future solid-state attosecond sources and next-generation light-wave electronics. The new quantum interference process justifies the hope for all-optical band-structure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates.

  15. Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-Song; XU Zhi-Zhan

    2000-01-01

    The generation of subfemtosecond pulses in hydrogen-like atoms through high-harmonic generation by using superintense multicycle driver pulses is numerically investigated. It is shown that a single subfemtosecond pulse can be directly generated when the driver pulse is strong enough to deplete the neutral atoms within several optical cycles. The propagation effect is neglected during the numerical examinations.

  16. Nanoscale imaging with table-top coherent extreme ultraviolet source based on high harmonic generation

    Science.gov (United States)

    Ba Dinh, Khuong; Le, Hoang Vu; Hannaford, Peter; Van Dao, Lap

    2017-08-01

    A table-top coherent diffractive imaging experiment on a sample with biological-like characteristics using a focused narrow-bandwidth high harmonic source around 30 nm is performed. An approach involving a beam stop and a new reconstruction algorithm to enhance the quality of reconstructed the image is described.

  17. Nonsequential double-recombination high-order-harmonic generation in molecularlike systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth Christian Klochmann; Madsen, Lars Bojer

    2017-01-01

    We present a study of nonsequential double-recombination (NSDR) high-harmonic generation (HHG) in a molecularlike system. We have calculated the HHG spectrum for a wide range of internuclear distances, and using a Coulomb-corrected three-step model we are able to analyze and predict the observed...

  18. Non-Sequential Double Recombination High Harmonic Generation in Molecular-like Systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth Christian Klochmann; Madsen, Lars Bojer

    Non-sequential double recombination (NSDR) high harmonic generation (HHG) is a strongly correlated two-electron HHG process where two electrons combine their potential and kinetic energy into emitting a single photon. We have studied this process in a molecular-like system and found that the two...

  19. Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory

    Institute of Scientific and Technical Information of China (English)

    王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman

    2001-01-01

    From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.

  20. Effect of nuclear motion on high-order harmonic generation of H$_2^+$ in intense ultrashort laser pulses

    CERN Document Server

    Ahmadi, Hamed; Sabzyan, Hassan; Niknam, Ali Reza; Vafaee, Mohsen

    2014-01-01

    High-order harmonic generation is investigated for H$_2^+$ and D$_2^+$ with and without Born-Oppenheimer approximation by numerical solution of full dimensional electronic time-dependent Schr\\"{o}dinger equation under 4-cycle intense laser pulses of 800 nm wavelength and $I$=4, 5, 7, 10 $\\times 10^{14}$ W$/$cm$^2$ intensities. For most harmonic orders, the intensity obtained for D$_2^+$ is higher than that for H$_2^+$, and the yield difference increases as the harmonic order increases. Only at some low harmonic orders, H$_2^+$ generates more intense harmonics compared to D$_2^+$. The results show that nuclear motion, ionization probability and system dimensionality must be simultaneously taken into account to properly explain the isotopic effects on high-order harmonic generation and to justify experimental observations.

  1. Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources

    OpenAIRE

    Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Winters, Danyal; Kühl, Thomas; Stöhlker, Thomas; Limpert, J.; Tünnermann, A.

    2015-01-01

    We present novel high photon flux XUV and soft x-ray sources based on high harmonic generation (HHG). The sources employ femtosecond fiber lasers, which can be operated at very high (MHz) repetition rate and average power (>100 W). HHG with such lasers results in similar to 10(13) photons s(-1) within a single harmonic line at similar to 40 nm (similar to 30 eV) wavelength, a photon flux comparable to what is typically available at synchrotron beam lines. In addition, resonant enhancement of ...

  2. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  3. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  4. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-Bing; CHEN Jing; LIU Jie; LI Xiao-Feng; FU Pan-Ming

    2005-01-01

    @@ We investigate the carrier envelope phase (CEP) effects on high-order harmonic generation (HHG) in ultrashort pulses with the pulse duration 2.5fs when the laser intensity is high enough so that the initial state is ionized effectively during the laser pulse but remains about 20% population at the end of the laser pulse. We find that the ionization process of the initial state is very sensitive to the CEP during the laser pulse. The ionization process of the initial state determines the continuum state population and hence influences dramatically the weights of the classical trajectories that contribute to HHG. In such a case we can not predict the cutoff and the structure of the harmonic spectrum only by the number and the kinetic energy of the classical trajectories. The harmonic spectrum exhibits abundant characters for different CEP cases. As a result, we can control the cutoff frequency and the plateau structure of the harmonic spectrum with CEP by controlling the time behaviour of the ionization of the initial state.

  5. Extending the strong-field approximation of high-order harmonic generation to polar molecules: gating mechanisms and extension of the harmonic cutoff

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Lars Bojer

    2010-01-01

    Polar molecules such as CO are interesting target systems for high-order harmonic generation (HHG) as they can be oriented with current laser techniques, thus allowing the study of systems without inversion symmetry. However, the asymmetry of the molecule also means that the molecular orbitals...

  6. High harmonic generation from bulk diamond driven by intense femtosecond laser pulse

    CERN Document Server

    Apostolova, Tzveta

    2016-01-01

    We investigate the high-harmonic generation (HHG) from bulk diamond induced by intense 15 fs laser pulse and photon energy 1.55 eV. For laser intensity in the range $I \\in [1,50]$ TW/cm$^2$, we find that HHG spectra from diamond exhibits two plateaus with high harmonics extending beyond the 50th order. Consistently with experimental observations, we find that the cutoff energy of the two plateaus scales linearly with the field strength. The first plateau is due to recombination of electron-hole pairs near the Brillouin zone center. The appearance of weak second plateau region for high field strength with $F \\sim$ 1 V/$\\AA$ results in emission of highly energetic XUV photons.

  7. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    Science.gov (United States)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  8. A Near-Term, High-Confidence Heavy Lift Launch Vehicle

    Science.gov (United States)

    Rothschild, William J.; Talay, Theodore A.

    2009-01-01

    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  9. Identifying Contributing Harmonics in the Gravitational Wave Spectrum of Highly Eccentric EMRIs

    Science.gov (United States)

    Kaiser, Andrew; Stone, Jordan; Ahrens, Sloan; Kennefick, Daniel

    2016-03-01

    In the study of gravitational waves emitted from extreme mass ratio inspirals highly eccentric orbits are problematic because of the large number of harmonics, and thus the lengthy computation times that were thought to be inherent to it. The issue however, is made simpler because the spectrum is not that broad and is fairly localized. The true complexity lies in finding the peaks of the largest contributors to accurately describe the complete spectrum, since for any given multipole of the spectrum the position of the peak in the emission is difficult to predict. This project uses two methods of finding the peak harmonic of a given spectrum. The first method uses a skipping algorithm to systematically jump over harmonics with insignificant contributions to the total waveform. Because this method is still not completely efficient, a second method uses a Newtonian order approximation given by Peters and Matthews to give an estimate of the frequency of the actual waveform peak, and then fills in around this harmonics to give the spectrum. The two methods are complementary since the skipping algorithm can be used when the Newtonian estimation fails to find the peak immediately.

  10. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier

    Science.gov (United States)

    2011-11-11

    light source. We build a high energy tunable visible Optical Parametric Amplifier, and drive High Harmonic Generation in Argon and Helium . We study how...wavelength of 13.5 nm. The results agree well with a previously developed theoretical model. We predict that using a 630-nm driver in Helium could have a...light on the photo resist. Current techniques are capable of producing sub-100-nm features by using UV light at 193 nm from excimer lasers, but for

  11. Beris Engineering Launching Its High Quality Aluminum Plate & Strip Project In Qinghai

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Pingan high quality aluminum plate and strip project has its cold rolling part fully launched, with the entire design from Beris Engineering and Research Corp.The contract for hot roll- ing and high rack warehouse has been signed. The 200,000-ton/year high quality aluminum plate and strip project is a standard hot con- tinuous rolling unit in Pingan High Quality Aluminum Ltd.in Qinghai Province.The whole project consists of 4 parts of hot rolling, cold rolling,finishing and high rack warehouse.

  12. High-order harmonic generation driven by metal nanotip photoemission: theory and simulations

    CERN Document Server

    Ciappina, M F; Lewenstein, M; Krüger, M; Hommelhoff, P

    2014-01-01

    We present theoretical predictions of high-order harmonic generation (HHG) resulting from the interaction of short femtosecond laser pulses with metal nanotips. It has been demonstrated that high energy electrons can be generated using nanotips as sources; furthermore the recollision mechanism has been proven to be the physical mechanism behind this photoemission. If recollision exists, it should be possible to convert the laser-gained energy by the electron in the continuum in a high energy photon. Consequently the emission of harmonic radiation appears to be viable, although it has not been experimentally demonstrated hitherto. We employ a quantum mechanical time dependent approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties. The use of metal tips shall pave a new way of generating coherent XUV light with a femtosecond laser field.

  13. Highly efficient second-harmonic generation from indefinite epsilon-near-zero slabs of subwavelength thickness

    CERN Document Server

    Ciattoni, Alessandro

    2011-01-01

    We theoretically predict efficient optical second-harmonic generation (SHG) from a few hundred nanometer thick slab consisting of a quadratic nonlinear anisotropic medium whose linear principal permittivities are, at the fundamental wavelength, very small and have different signs (indefinite medium). We show that, by illuminating the slab with a p-polarized fundamental wave (with intensity of a few MW/cm^2), a highly efficient scattering of the second-harmonic field occurs when the conditions of linear complete slab transparency for the fundamental wave are met. The high efficiency of the SHG process, stems from the large non-plasmonic enhancement of the longitudinal field, perpendicular to the slab surface, produced by the very small value of the slab dielectric permittivities. A suitable nano-structured composite is proposed and numerically designed for observing the novel non-phase-matched and highly efficient SHG process from nano-structures.

  14. Different time scales in plasmonically enhanced high-order harmonic generation

    CERN Document Server

    Zagoya, C; Chomet, H; Slade, E; Faria, C Figueira de Morisson

    2016-01-01

    We investigate high-order harmonic generation in inhomogeneous media for reduced dimensionality models. We perform a phase-space analysis, in which we identify specific features caused by the field inhomogeneity. We compute high-order harmonic spectra using the numerical solution of the time-dependent Schr\\"odinger equation, and provide an interpretation in terms of classical electron trajectories. We show that the dynamics of the system can be described by the interplay of high-frequency and slow-frequency oscillations, which are given by Mathieu's equations. The latter oscillations lead to an increase in the cutoff energy, and, for small values of the inhomogeneity parameter, take place over many driving-field cycles. In this case, the two processes can be decoupled and the oscillations can be described analytically.

  15. High-order harmonic spectroscopy for molecular imaging of polyatomic molecules

    CERN Document Server

    Negro, M; Faccialà, D; De Silvestri, S; Vozzi, C; Stagira, S

    2014-01-01

    High-order harmonic generation is a powerful and sensitive tool for probing atomic and molecular structures, combining in the same measurement an unprecedented attosecond temporal resolution with a high spatial resolution, of the order of the angstrom. Imaging of the outermost molecular orbital by high-order harmonic generation has been limited for a long time to very simple molecules, like nitrogen. Recently we demonstrated a technique that overcame several of the issues that have prevented the extension of molecular orbital tomography to more complex species, showing that molecular imaging can be applied to a triatomic molecule like carbon dioxide. Here we report on the application of such technique to nitrous oxide (N2O) and acetylene (C2H2). This result represents a first step towards the imaging of fragile compounds, a category which includes most of the fundamental biological molecules.

  16. Time and Space Resolved High Harmonic Imaging of Electron Tunnelling from Molecules

    Science.gov (United States)

    Smirnova, O.

    2009-05-01

    High harmonic generation in intense laser fields carries the promise of combining sub-Angstrom spatial and attosecond temporal resolution of electronic structures and dynamics in molecules, see e.g. [1-3]. High harmonic emission occurs when an electron detached from a molecule by an intense laser field recombines with the parent ion [4]. Similar to Young's double-slit experiment, recombination to several ``lobes'' of the same molecular orbital can produce interference minima and maxima in harmonic intensities [1]. These minima (maxima) carry structural information -- they occur when the de-Broglie wavelength of the recombining electron matches distances between the centers. We demonstrate both theoretically and experimentally that amplitude minima (maxima) in the harmonic spectra can also have dynamical origin, reflecting multi-electron dynamics in the molecule. We use high harmonic spectra to record this dynamics and reconstruct the position of the hole left in the molecule after ionization. Experimental data are consistent with the hole starting in different places as the ionization dynamics changes from tunnelling to the multi-photon regime. Importantly, hole localization and subsequent attosecond dynamics are induced even in the tunnelling limit. Thus, even ``static'' tunnelling induced by a tip of a tunnelling microscope will generate similar attosecond dynamics in a sample. We anticipate that our approach will become standard in disentangling spatial and temporal information from high harmonic spectra of molecules.[4pt] In collaboration with Serguei Patchkovskii, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; Yann Mairesse, NRC Canada and CELIA, Universit'e Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Lib'eration, 33405 Talence Cedex, France; Nirit Dudovich, NRC Canada and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; David Villeneuve, Paul Corkum, NRC Canada

  17. High-resolution Reflection Spectroscopy of Cs D2 Line Studied by High-order-harmonic Detection

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yanting; MA Weiguang; XIAO Liantuan; LI Changyong; ZHANG Linjie; JIA Suotang

    2002-01-01

    In this paper, by numerical analysis the relationship of the modulation broaden index with modulation index using high-order-harmonic detection is investigated. Using the voltage modulation the 2f,4f and 6f harmonic signals about the reflection spectroscopy of 6S1/2(F=4)→6P3/2 transition of the cesium D2 line are also be measured. The experimental results are in good agreement with the theoretical predictions. It is found that narrower line-width can be achieved by higher-harmonic detection than the line-width detected by direct absorption when the modulation index is smaller than 1.81, 2.98 and 4.14 for 2f, 4f, and 6f signals, respectively.

  18. High efficiency second-harmonic generation in multi-pass quadrature arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hiromitsu; Nakano, Fumihiko; Yamakawa, Koichi [Japan Atomic Energy Research Institute, Kansai Research Establishment, Kizu, Kyoto (Japan)

    2001-05-01

    We report on multi-pass quadrature frequency conversion of high-energy and high-average-power lasers with high conversion efficiency for pumping high peak power, ultrashort pulse Ti:sapphire laser amplifiers. Using a four-pass quadrature second harmonic scheme with KTiOPO{sub 4} (KTP) crystals, we obtained an efficiency from a fundamental laser energy into a total second-harmonic laser energy in excess of 80% of a commercial Q-Switched 1064-nm Nd:YAG laser at a low input fundamental laser intensity of 76 MW/cm{sup 2}. For higher power operation, we employed a two-pass quadrature scheme with CsLiB{sub 6}O{sub 10} (CLBO) crystals. We obtained a total second-harmonic output pulse energy of 2.73 J from an input 1064-nm fundamental pulse energy of 3.27 J of a custom-built Q-switched 1064-nm Nd:YAG laser system at a fundamental laser intensity of 330 MW/cm{sup 2} at 10 Hz, corresponding to energy conversion efficiency of 83%. We discuss the details of the design and performance of this frequency conversion scheme in terms of output energy, conversion efficiency and scalability. (author)

  19. High-harmonic transient grating spectroscopy of NO2 electronic relaxation

    CERN Document Server

    Ruf, H; Ferré, A; Thiré, N; Bertrand, J B; Bonnet, L; Cireasa, R; Constant, E; Corkum, P B; Descamps, D; Fabre, B; Larregaray, P; Mével, E; Petit, S; Pons, B; Staedter, D; Wörner, H J; Villeneuve, D M; Mairesse, Y; Halvick, P; Blanchet, V

    2012-01-01

    We study theoretically and experimentally the electronic relaxation of NO2 molecules excited by absorption of one ~400 nm pump photon. Semi-classical simulations based on trajectory surface hopping calculations are performed. They predict fast oscillations of the electronic character around the intersection of the ground and first excited diabatic states. An experiment based on high-order harmonic transient grating spectroscopy reveals dynamics occuring on the same timescale. A systematic study of the detected transient is conducted to investigate the possible influence of the pump intensity, pump wavelength, and rotational temperature of the molecules. The quantitative agreement between measured and predicted dynamics shows that, in NO2, high harmonic transient grating spectroscopy encodes vibrational dynamics underlying the electronic relaxation.

  20. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  1. Active control of highly efficient third-harmonic generation in ultrathin nonlinear metasurfaces

    Science.gov (United States)

    Gong, Zibo; Li, Chong; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2016-10-01

    Active electric control of highly efficient third harmonic generation was realized in an ultrathin nonlinear metasurface by using a nanocomposite consisting of gold nanoparticles dispersed in polycrystalline strontium titanate as the electro-optic material. Owing to the nonlinearity enhancement associated with the slow light effect, quantum confinement effect, and field-reinforcement, a high conversion efficiency of 3 × 10-5 was obtained, which is two orders of magnitude larger than previously reported efficiencies at comparable pump intensities. A modulation of 12% in the intensity of the third harmonic generation and a 30-nm shift in the transparency window center were achieved by varying the applied voltage from -30 V to zero. Our results pave the way toward the realization of multi-functional integrated photonic devices and chips based on metasurfaces.

  2. Generation of high harmonic free electron laser with phase-merging effect

    Science.gov (United States)

    Li, Heting; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  3. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    Science.gov (United States)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  4. Harmonic Mitigated Front End Three Level Diode Clamped High Frequency Link Inverter by Using MCI Technique

    Directory of Open Access Journals (Sweden)

    Sreedhar Madichetty

    2014-02-01

    Full Text Available In this paper it proposes a high efficient soft-switching scheme based on zero-voltage-switching (ZVS and zero-current-switching(ZCS principle operated with a simple auxiliary circuit extended range for the front-end isolated DC-AC-DC-AC high power converter with an three phase three level diode clamped multi level inverter by using Minority Charge Carrier inspired optimization technique (MCI with Total Harmonic Distortion(THD,Switching losses, Selective harmonic elimination maintaining with its fundamental as an objective function. Input to the inverter is obtained by the photo voltaic cells and with battery bank. The switching scheme is optimized by MCI technique, analyzed and executed in Matlab and implemented with a digital signal processor (DSP .Experimental results with different loads have observed and shows its effectives, robustness of the applied technique.

  5. Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Mücke, Oliver D.; Kärtner, Franz X.; Rubio, Angel

    2017-02-01

    An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals; (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential; the yield is increased for heavier atoms; and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.

  6. First lasing of a high-gain harmonic generation free- electron laser experiment

    CERN Document Server

    Yu, L H; Ben-Zvi, I; Di Mauro, Louis F; Doyuran, A; Graves, W; Johnson, E; Krinsky, S; Malone, R; Pogorelsky, I V; Skaritka, J; Rakowsky, G; Solomon, L; Wang, X J; Woodle, M; Yakimenko, V; Biedron, S G; Galayda, J N; Gluskin, E; Jagger, J; Sajaev, Vadim; Vasserman, I

    2000-01-01

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x10 sup 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approx 2 m) through the same wiggler. This means the HGHG signal is 2x10 sup 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  7. Minimum in the high-order harmonic generation spectrum from molecules: role of excited states

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    that the coherent laser coupling induced between the 2Σ+g(1sσg) ground state and the first excited 2Σ+u(2pσu) state leads to two dominating amplitudes for the high-order harmonic generation that may interfere: amplitudes describing recombination back into the σg and σu states, respectively. These two amplitudes may......We model the process of high-order harmonic generation by solving the time-dependent Schrödinger equation for H+2 in the fixed nuclei approximation including full 3D electron motion for nonvanishing angles between the nuclear axis and the linear polarization of the driving pulse. We show...

  8. High-harmonic probing of electronic coherence in dynamically aligned molecules

    CERN Document Server

    Kraus, P M; Gijsbertsen, A; Lucchese, R R; Rohringer, N; Wörner, H J

    2013-01-01

    We introduce and demonstrate a new approach to measuring coherent electron wave packets using high-harmonic spectroscopy. By preparing a molecule in a coherent superposition of electronic states, we show that electronic coherence opens previously unobserved high-harmonic-generation channels that connect distinct but coherently related electronic states. Performing the measurements in dynamically aligned nitric oxide (NO) molecules we observe the complex temporal evolution of the electronic coherence under coupling to nuclear motion. Choosing a weakly allowed transition to prepare the wave packet, we demonstrate an unprecedented sensitivity that arises from optical interference between coherent and incoherent pathways. This mechanism converts a 0.1 $%$ excitation fraction into a $\\sim$20 $%$ signal modulation.

  9. High-harmonic and terahertz wave spectroscopy (HATS) for aligned molecules

    CERN Document Server

    Huang, Yindong; Zhao, Jing; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2016-01-01

    We present the experimental and theoretical details of our recent published letter [Phys. Rev. Lett. 115. 123002] on synchronized high-harmonic and terahertz-wave spectroscopy (HATS) from nonadiabatically aligned nitrogen molecules in dual-color laser fields. Associating the alignment-angle dependent terahertz wave generation with the synchronizing high-harmonic signal, the angular differential photoionization cross section (PICS) for molecules can be reconstructed, and the minima of the angle on PICS show great convergence between the theoretical predictions and the experimental deduced results. We also show the optimal relative phase between the dual-color laser fields for terahertz wave generation dose not change with the alignment angle at a precision of $50$ attoseconds. This all-optical method provides an alternative for investigating molecular structures and dynamics.

  10. Impact of the electronic band structure in high-harmonic generation spectra of solids

    CERN Document Server

    Tancogne-Dejean, Nicolas; Kärtner, Franz X; Rubio, Angel

    2016-01-01

    An accurate analytic model describing high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that: (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals, (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential, the yield is increased for heavier atoms, and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.

  11. Phase-matched high-order harmonics by interaction of Ar atoms with high-repetition-rate low-energy femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    XIE Xinhua; ZENG Zhinan; LI Ruxin; CHEN Shu; LU Haihe; YIN Dingjun; XU Zhizhan

    2004-01-01

    Phase-matched high-order harmonic generation in Ar gas-filled cell was investigated experimentally. We obtained phase-matched 27th order harmonic driven by a commercially available solid-state femtosecond laser system at 0.55 m J/pulse energy level and 1 kHz repetition rate. To our knowledge, this is the lowest driving laser energy used to obtain phase-matched 27th order harmonic in a static gas cell. High-order harmonic generation at different gas density was studied systematically. Spectral blueshift and broadening of high harmonics under different pressure were analyzed. We found that the source size and spatial distribution of high-order harmonics are quite different under the phase-matching condition from those of the phase-mismatching case.

  12. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    Science.gov (United States)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  13. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    Science.gov (United States)

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  14. Boosted high harmonics pulse from a double-sided relativistic mirror

    CERN Document Server

    Esirkepov, T Zh; Kando, M; Pirozhkov, A S; Zhidkov, A G

    2009-01-01

    A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by a co-propagating ultra-intense electromagnetic wave, reflects a counter-propagating relativistically strong electromagnetic wave, producing strongly time-compressed and intensified radiation due to the double Doppler effect. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light.

  15. Windspharm: A High-Level Library for Global Wind Field Computations Using Spherical Harmonics

    Directory of Open Access Journals (Sweden)

    Andrew Dawson

    2016-08-01

    Full Text Available The 'windspharm' library is a Python package for performing computations on global wind fields in spherical geometry. It provides a high-level interface for computing derivatives and integrals of vector wind fields over a sphere using spherical harmonics. The software allows for computations with plain arrays, or with structures that include metadata, integrating with several popular data analysis libraries from the atmospheric and climate science community. The software is available on Github.

  16. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  17. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    Science.gov (United States)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  18. Spectral splitting of high order harmonics of ionizing gases irradiated with ultrashort intense laser pulses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [1]Chang Zenghu,Rundquist,A.,Wang Haiwen et al.,Generation of coherent soft X-rays a 2.7 nm using high harmonics,Phys.Rev.Lett.,1997,79(16): 2967-2970.[2]Schnurer,M.,Spielmann,Ch.,Wobrauschek,P.et al.,Coherent 0.5 keV X-ray emission from Helium driven by a sub-10-fs laser,Phys.Rev.Lett.,1998,80(15): 3236-3239.[3]Corkum,P.B.,Plasma perspective on strong-field multiphoton ionization,Phys.Rev.Lett.,1993,71(13): 1994-1997.[4]Lewenstein,M.,Balcou,Ph.,Yu.M.et al.,Theory of high-harmonic generation by low frequency laser fields,Phys.Rev.A,1994,49(3): 2117-2132.[5]Li,X.F.,L'Huillier,A.L.,Ferray,M.et al.,Multiple-harmonic generation in rare gases at high laser intensity,Phys.Rev.A,1989,39(11): 5751-5761.[6]L'Huillier,A.,Schafer,K.J.,Kulander,K.C.,Theoretical aspects of intense field harmonic generation,J.Phys.B,1991,24(),3315-3341.[7]L'Huillier,A.,Balcou,Ph.,Candel,S.et al.,Calculation of high-order harmonic-generation processin Xeon at 1064 nm,Phys.Rev.A,1992,46(5): 2778-2790.[8]Balcou,Ph.,L'Huillier,A.,Phase-matching effects in strong-field harmonics generation,Phys.Rev.A,1993,47(2): 1447-1459.[9]Race,S.C.,Burnett,K.,Detailed simulation of plasma-induced spectral blueshifting,Phys.Rev.A,1992,46(2): 1084-1090.[10]Wood,W.M.,Siders,C.W.,Downer,M.C.,Measurement of femtosecond ionization dynamics of atmosphere density gases by spectral blueshifting ,Phys.Rev.Lett.,1991,67(25): 3523-3526.[11]Le Blanc S.P.,Sauerbrey,R.,Rae,S.C.et al.,Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,J.Opt.Soc.Am.B,1993,10(10): 1801-1809.[12]Le Blanc,S.P.,Sauerbrey,R.,Spectral,temporal,and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement,J.Opt.Soc.Am.B,1996,[13](1): 72-88.13.Burnett,N.H.,Corkum,P.B.,Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization,J.Opt.Soc.Am.B,1989,6(6): 1195

  19. Elasticity of hcp cobalt at high pressure and temperature: a quasi-harmonic case

    Energy Technology Data Exchange (ETDEWEB)

    Antonangeli, D; Krisch, M; Farber, D L; Ruddle, D G; Fiquet, G

    2007-11-30

    We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, deriving 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the frame of a quasi-harmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities and elastic anisotropy are minimal at constant density. These results support the validity of the Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations.

  20. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  1. Hadronization scheme dependence of long-range azimuthal harmonics in high energy p + A reactions

    Directory of Open Access Journals (Sweden)

    Angelo Esposito

    2015-07-01

    Full Text Available We compare the distortion effects of three popular final-state hadronization schemes. We show how hadronization modifies the initial-state gluon correlations in high energy p + A collisions. The three models considered are (1 LPH: local parton–hadron duality, (2 CPR: collinear parton–hadron resonance independent fragmentation, and (3 LUND: color string hadronization. The strong initial-state azimuthal asymmetries are generated using the GLVB model for non-abelian gluon bremsstrahlung, assuming a saturation scale Qsat=2 GeV. Long-range elliptic and triangular harmonics for the final hadron pairs are compared based on the three hadronization schemes. Our analysis shows that the process of hadronization causes major distortions of the partonic azimuthal harmonics for transverse momenta at least up to pT=3 GeV. In particular, they appear to be greatly reduced for pT<1÷2 GeV.

  2. High-harmonic generation in alpha-quartz by the electron-hole recombination

    CERN Document Server

    Otobe, T

    2016-01-01

    The first-principle calculation for the high-harmonic generation (HHG) in an alpha-quartz employing the time-dependent density-functional theory is reported. The photon energy is set to 1.55 eV, and the cutoff energy of the plateau region is found to be limited at the 19th harmonics (30 eV). The laser intensity dependence of HHG efficiency at the cutoff energy region is consistent with that of the hole density in the lowest-lying valence band. Numerical results indicate that the electron-hole recombination plays a crucial role in HHG in alpha-quartz. It is found that the 200 attosecond pulse train is generated utilizing HHG around the plateau cutoff energy.

  3. High-harmonic generation in α -quartz by electron-hole recombination

    Science.gov (United States)

    Otobe, T.

    2016-12-01

    A calculation of the high-harmonic generation (HHG) in α -quartz using the time-dependent density functional theory is reported. The interband process is attributed to the dominant in HHG above the band gap. The photon energy is set to 1.55 eV, and the cutoff energy of the plateau region is found to be limited at the 19th harmonic (30 eV). The dependence of the HHG efficiency at the cutoff energy region on laser intensity is consistent with that of the hole density in the lowest-lying valence band. Numerical results indicate that electron-hole recombination plays a crucial role in HHG in α -quartz. It is found that a 200 attosecond pulse train is produced using HHG around the plateau cutoff energy.

  4. Strong-field-approximation theory of high-order harmonic generation by polyatomic molecules

    Science.gov (United States)

    Odžak, S.; Hasović, E.; Milošević, D. B.

    2016-04-01

    A theory of high-order harmonic generation by arbitrary polyatomic molecules is introduced. A polyatomic molecule is modeled by an (N +1 ) -particle system, which consists of N heavy atomic (ionic) centers and an electron. After the separation of the center-of-mass coordinate, the dynamics of this system is reduced to the relative electronic and nuclear coordinates. Various versions (with or without the dressing of the initial and/or final molecular state) of the molecular strong-field approximation are introduced. For neutral polyatomic molecules the derived expression for the T -matrix element takes a simple form. The interference minima in the harmonic spectrum are explained as a multiple-slit type of interference. This is illustrated by numerical examples for the ozone (O3) and carbon dioxide (CO2) molecules.

  5. High order harmonic generation in noble gases using plasmonic field enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, Marcelo F.; Shaaran, Tahir [ICFO-Institut de Ciences Fotoniques, Castelldefels (Barcelona) (Spain); Lewenstein, Maciej [ICFO-Institut de Ciences Fotoniques, Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)

    2013-02-15

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. High-order harmonic generation from Rydberg atoms driven by plasmonic-enhanced laser fields

    CERN Document Server

    Tikman, Y; Ciappina, M F; Chacon, A; Altun, Z; Lewenstein, M

    2015-01-01

    We theoretically investigate high-order harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should to exceed certain threshold in order to generate HHG, when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructures engineering. In this work we propose to use Rydberg atoms, driven by spatially inhomogeneous, plasmonic-enhanced laser fields, for HHG. We exhaustively discuss the behaviour and efficiency of these systems in the generation of coherent harmonic emission. To this aim we numerically solve the time...

  7. Carbon coatings for extreme-ultraviolet high-order laser harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Coraggia, S.; Frassetto, F. [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy); Aznarez, J.A.; Larruquert, J.I.; Mendez, J.A. [GOLD-Instituto de Optica-Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain); Negro, M.; Stagira, S.; Vozzi, C. [Department of Physics-Politecnico of Milano and CNR-Institute of Photonics and Nanotechnologies, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Poletto, L., E-mail: poletto@dei.unipd.i [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy)

    2011-04-11

    The experimental study of the optical properties of thin carbon films to be used as grazing-incidence coatings for extreme-ultraviolet high-order harmonics is presented. The carbon samples were deposited on plane glass substrates by the electron beam evaporation technique. The optical constants (real and imaginary parts of the refraction index) have been calculated through reflectivity measurements. The results are in good agreement with what reported in the literature, and confirm that carbon-coated optics operated at grazing incidence have a remarkable gain over conventional metallic coatings in the extreme ultraviolet. Since the harmonics co-propagate with the intense infrared laser generating beam, the carbon damage threshold when exposed to ultrashort infrared laser pulses has been measured.

  8. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Science.gov (United States)

    Tanaka, Takashi; Kinjo, Ryota

    2017-08-01

    We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs), which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  9. Anomalous circular dichroism in high harmonic generation of stereoisomers with two chiral centers.

    Science.gov (United States)

    Zhu, Xiaosong; Liu, Xi; Lan, Pengfei; Wang, Dian; Zhang, Qingbin; Li, Wei; Lu, Peixiang

    2016-10-31

    When a molecule has more than one chiral center, it can be either a chiral molecule or a meso isomer. High harmonic generation (HHG) of stereoisomers with two chiral centers driven by circularly polarized (CP) laser pulses is investigated. Counterintuitively, it is found that the HHG exhibits prominent circular dichroism for the meso isomer, while the harmonic spectra with left and right CP laser pulses are nearly the same for the chiral isomers. We show that the anomalous circular dichroism is attributed to the characteristic recollision dynamics of HHG. This feature makes the HHG a promising tool to discriminate the meso isomer and racemic mixture, where no optical activity can be found in both cases. Similar dichroism responses are also found by applying the counter-rotating bicircular laser pulses.

  10. High-order harmonics generated from single and multiple molecular orbits in mid-infrared laser fields

    Directory of Open Access Journals (Sweden)

    ZHANG Jingtao

    2015-08-01

    Full Text Available High-order harmonics generated from aligned molecules are studied by a nonperturbative QED theory and the effect of the multiple molecular orbits is included.The harmonic spectra generated from single molecular orbit exhibit an interference minimum which is induced by the molecular structure.The location of the spectral minimum shifts with the laser intensity in long laser pulses,but is fixed in ultrashort laser pulses.This difference is owed to the quiver motion of the electron in the laser pulses.The maximal shift of the spectral minimum equals to the increment of the ponderomotive energy and depends linearly on the laser intensity.The interference between the harmonics generated from multiple molecular orbits has two principal effects:one is obscuring the deep minima in the overall harmonic spectrum,the other is manifesting the phase jump in the harmonics generated from single molecular orbit.

  11. Multi-level perspective on high-order harmonic generation in solids

    CERN Document Server

    Wu, Mengxi; Gaarde, Mette B

    2016-01-01

    We investigate high-order harmonic generation in a solid, modeled as a multi-level system dressed by a strong infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [Ndabashimiye {\\it et al.}, Nature 534, 520 (2016)]. We also show that when the multi-level system originates from the Bloch state at the $\\Gamma$ point of the band structure, the laser-dressed states are equivalent to the Houston states [Krieger {\\it el al.} Phys. Rev. B 33, 5494 (1986)] and will therefore map out the band structure away from the $\\Gamma$ point as the laser field increases. This leads to a semi-classical three-step picture in momentum space that describes the high-o...

  12. Wannier-Bloch approach to localization in high harmonics generation in solids

    CERN Document Server

    Osika, Edyta N; Ortmann, Lisa; Suárez, Noslen; Pérez-Hernández, Jose Antonio; Szafran, Bartłomiej; Ciappina, Marcelo F; Sols, Fernando; Landsman, Alexandra S; Lewenstein, Maciej

    2016-01-01

    Emission of high-order harmonics from solids provides a new avenue in attosecond science. On one hand, it allows to investigate fundamental processes of the non-linear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomena of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine with any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process, and hence addresses precisely the question of localization of harmonic emission...

  13. Few-cycle and sub-cycle metrology for the characterization of high harmonics

    Science.gov (United States)

    Power, Erik P.

    that the XFROG is sensitive to the relative delay between harmonic orders to within +/-180as. The observed negative dispersion on the harmonics' spectral phase and the observed harmonic yield versus frequency are shown to be qualitatively consistent with 1-D time-dependent Schrodinger equation calculations. Additional measurements are presented demonstrating self-compressed, spectrally broadened pulses emerging from filamentary propagation at both lambda 0 = 800nm and lambda0 = 2mum with high energy transmission. The 2mum self-compressed pulses are shown to maintain carrier-envelope phase stability through the filamentary propagation process with pulse durations < 3 optical cycles.

  14. Tuning High-Harmonic Generation by Controlled Deposition of Ultrathin Ionic Layers on Metal Surfaces

    CERN Document Server

    Aguirre, Néstor F

    2016-01-01

    High harmonic generation (HHG) from semiconductors and insulators has become a very active area of research due to its great potential for developing compact HHG devices. Here we show that by growing monolayers (ML) of insulators on single-crystal metal surfaces, one can tune the harmonic spectrum by just varying the thickness of the ultrathin layer, not the laser properties. This is shown from numerical solutions of the time-dependent Schr\\"odinger equation for $n$ML NaCl/Cu(111) systems ($n=1-50$) based on realistic potentials available in the literature. Remarkably, the harmonic cutoff increases linearly with $n$ and as much as an order of magnitude when going from $n$ $=$ 1 to 30, while keeping the laser intensity low and the wavelength in the near-infrared range. Furthermore, the degree of control that can be achieved in this way is much higher than by varying the laser intensity. The origin of this behavior is the reduction of electronic "friction" when moving from the essentially discrete energy spectr...

  15. Tuning high-harmonic generation by controlled deposition of ultrathin ionic layers on metal surfaces

    Science.gov (United States)

    Aguirre, Néstor F.; Martín, Fernando

    2016-12-01

    High-harmonic generation (HHG) from semiconductors and insulators has become a very active area of research due to its great potential for developing compact HHG devices. Here we show, that by growing monolayers (ML) of insulators on single-crystal metal surfaces, one can tune the harmonic spectrum by just varying the thickness of the ultrathin layer, rather than the laser properties. This is shown from numerical solutions of the time-dependent Schrödinger equation for Cu(111)/n -ML NaCl systems (n =1 -50 ) based on realistic potentials. Remarkably, the harmonic cutoff increases linearly with n and as much as an order of magnitude when going from n =1 to 30, while keeping the laser intensity low and the wavelength in the near-infrared range. The origin of this behavior is twofold: the initial localization of electrons in a Cu-surface state and the reduction of electronic "friction" when moving from the essentially discrete energy spectrum associated with a few-ML system to the continuous spectrum (bands) inherent in extended periodic systems. Our findings are valid for both few- and multicycle IR pulses and wavelengths ˜1 -2 μ m .

  16. Recollision dynamics of electron wave packets in high-order harmonic generation

    Science.gov (United States)

    Yuan, Kai-Jun; Bandrauk, André D.

    2009-11-01

    We numerically investigate the dynamics of recollision of an electron in high-order harmonic generation (HHG) for an H atom and a molecular ion H2+ using a short (ten optical cycles), and intense (I0≥1014W/cm2) , z -polarized linear laser pulse with wavelength 800 nm by accurately solving the three-dimensional time-dependent Schrödinger equation. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision and recombination times responsible for the generation of harmonics. We find that the HHG spectra are mainly attributed to the recollision of an inner electron wave packet with the parent ion in agreement with the classical recollision model. A time delay of the electron recollision occurs between wave packets in inner and outer regions, near to and far from the parent ion, due to different phase of the acceleration (as well as dipole velocity) of the electron. Inner wave packets at recollision contain mainly short and long trajectories whereas outer wave packets contain only single trajectories. Lower-order harmonics are generated mainly by single recollisions near field extrema, i.e., in strong electric fields whereas higher-order harmonics are generated by double trajectories with different intensities. In the case of H2+ at a critical nuclear distance for charge resonance enhanced ionization, we also find that HHG mainly comes from contributions of the inner electron wave packet, but with more complex recollision trajectories due to the presence of more than one Coulomb center. Triple recollision trajectories are shown to occur generally for the latter.

  17. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    relation to local moments. Phys. Scr . 1993, 302 (1993). 7. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays...Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing . Phys. Rev. A 61, 063403 (2000). 38...1995). 42. Eichmann, H. et al. Polarization-dependent high-order two-color mixing . Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O

  18. Boosted High-Harmonics Pulse from a Double-Sided Relativistic Mirror

    Science.gov (United States)

    Esirkepov, T. Zh.; Bulanov, S. V.; Kando, M.; Pirozhkov, A. S.; Zhidkov, A. G.

    2009-07-01

    An ultrabright high-power x- and γ-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  19. Generation of bright circularly-polarized extreme ultraviolet high harmonics for magnetic circular dichroism spectroscopy

    CERN Document Server

    Kfir, Ofer; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M; Fleicher, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2014-01-01

    Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, such experiments have been possible only using large-scale free-electron lasers or synchrotrons. Here we demonstrate the first bright extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of cobalt. This work paves the way towards element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatio-temporal resolution, all on a tabletop.

  20. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along

  1. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Science.gov (United States)

    Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.

    2013-03-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  2. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  3. Quasi-phase-matching high harmonic generation using trains of pulses produced using an array of birefringent plates.

    Science.gov (United States)

    O'Keeffe, Kevin; Robinson, Tom; Hooker, Simon M

    2012-03-12

    Quasi-phase-matched high harmonic generation using trains of up to 8 counter-propagating pulses is explored. For trains of up to 4 pulses the measured enhancement of the harmonic signal scales with the number of pulses N as (N + 1)², as expected. However, for trains with N > 4, no further enhancement of the harmonic signal is observed. This effect is ascribed to changes of the coherence length Lc within the generating medium. Techniques for overcoming the variation of Lc are discussed. The pressure dependence of quasi-phase-matching is investigated and the switch from true-phase-matching to quasi-phase-matching is observed.

  4. Control of quantum paths in high-order harmonic generation via a {omega}+3{omega} bichromatic laser field

    Energy Technology Data Exchange (ETDEWEB)

    Cao Wei; Lu Peixiang; Lan Pengfei; Hong Weiyi; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-03-14

    The time-frequency properties of high harmonic generation (HHG) driven by a bichromatic field consisting of a fundamental and a weak third harmonic field are investigated. The selection of an individual quantum path contributing to harmonic generation can be achieved by adjusting the relative phase between the two components of the driving field. The classical trajectory simulation of the strong-field electron dynamics is performed to analyse the physical process. Our calculations show that it is the control of the ionization step that leads to the quantum path selection. This quantum selection can be used to generate regular and strong attosecond pulses.

  5. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  6. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro.

    Science.gov (United States)

    Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong

    2007-04-07

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log(10)N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images.

  7. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  8. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    Science.gov (United States)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology

  9. High field side launch of RF waves: A new approach to reactor actuators

    Science.gov (United States)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering

  10. Quasi-phase-matched high-harmonic generation in composites of metal nanoparticles and a noble gas

    Science.gov (United States)

    Husakou, A.; Herrmann, J.

    2014-08-01

    We theoretically study high-harmonic generation (HHG) in a composite which consists of ellipsoidal silver nanoparticles in argon. The significant field enhancement in argon in the vicinity of metal nanoparticles allows us to use much lower incident intensities than in typical HHG experiments. A periodic modulation of the nanoparticle concentration provides quasi-phase matching, which mitigates the negative effect of the significant phase mismatch. First, we study the linear optical properties of such a composite and the field enhancement and consider the technological possibilities of creating such a composite. Then the generation of high harmonics is simulated using a propagation equation which includes field enhancement, phase mismatch, absorption of the pump beam and harmonics, and other relevant effects. Generation of harmonics with an efficiency above 10-7 is predicted.

  11. Advances in high-order harmonic generation sources for time-resolved investigations

    Energy Technology Data Exchange (ETDEWEB)

    Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others

    2015-10-15

    We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.

  12. Alignment dependent ultrafast electron-nuclear dynamics in high-order harmonic generation

    CERN Document Server

    Li, Mu-Zi; Bian, Xue-Bin

    2016-01-01

    We investigated the high-order harmonic generation (HHG) process of diatomic molecular ion $\\mathrm{H}_2^+$ in non-Born-Oppenheimer approximations. The corresponding three-dimensional time-dependent Schr\\"odinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG. Redshifts are unique in molecular HHG which decrease with the increase of alignment angles of the molecules and are sensitive to the initial vibrational states. It can be used to extract the ultrafast electron-nuclear dynamics and image molecular structure.

  13. Precise Access to the Molecular-Frame Complex Recombination Dipole through High-Harmonic Spectroscopy

    Science.gov (United States)

    Schoun, S. B.; Camper, A.; Salières, P.; Lucchese, R. R.; Agostini, P.; DiMauro, L. F.

    2017-01-01

    We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N2 in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μ m driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.

  14. Efficient 2.45 GHz Rectenna Design with high Harmonic Rejection for Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Zied Harouni

    2010-09-01

    Full Text Available The purpose of this work is to propose an efficient microstrip rectenna operating on ISM band with high harmonic rejection. The receiving antenna with proximity coupled feeding line implemented in a multilayer substrate. The rectenna with integrated circular sector antenna can eliminate the need for an low pass filter (LPF placed between the antenna and the diode as well as produce higher output power, with maximum conversion efficiency of 74% using a 1300 load resistor at a power density of 0.3 mW/cm square.

  15. Second-harmonic-generation measurements on ZnSe under high pressure

    CERN Document Server

    Jin Ming Xing; Mukhtar, E; Ding Da Jun

    2002-01-01

    Second-harmonic-generation (SHG) measurements on ZnSe at high pressure, up to 7 GPa, have been reported. The zinc-blende-rock-salt transition pressure has been determined at room temperature from the SHG in ZnSe using a femtosecond laser. The pressure required to induce transformation from a zinc-blende to a rock-salt structure decreases from 11.5 to 1.07 GPa in a femtosecond laser field. SHG can be used to monitor structural changes under pressure of some materials with nonlinear optical properties.

  16. High-Order Harmonic Generation by Two Non-Collinear Femtosecond Laser Pulses in CO

    Institute of Scientific and Technical Information of China (English)

    WANG Run-Hai; JIANG Hong-Bing; YANG Hong; WU Cheng-Yin; GONG Qi-Huang

    2005-01-01

    @@ We have experimentally studied the high order harmonic generation (HHG) in CO molecules by two femtosecond laser pulses using a pump-probe technique. The delay time between two pulses is longer than the pulse duration, and the pump intensity is about 6.2 × 1014 W/cm2. It is found that the HHG signal is independent of the time delay in the picosecond region, but it is dependent on the distance between the centres of focuses of the two beams. The phase modulation induced by the pump pulse is regarded to be responsible for this.

  17. Focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    吴家骏; 尉鹏飞

    2012-01-01

    We investigate the focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation (HHG) from CO2 molecules.We also experimentally demonstrate that both the spectral shape and alignment signal of HHG significantly vary with changing focus position.A maximal alignment signal is achieved at a given focus position because of the optimal intensity of the driving laser.This intensity is related to the ionization potential of the molecules.These results indicate that a unique focus position provides an optimal alignment signal for practical applications.

  18. Tailoring of XUV supercontinua through coherent control of high-order harmonic generation

    CERN Document Server

    Holgado, W; Alonso, B; Miranda, M; Silva, F; Plaja, L; Crespo, H; Sola, I J

    2016-01-01

    We present observations of the emission of XUV supercontinua in the 20-37 eV region by high harmonic generation (HHG) with 4-7 fs pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulses, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate chirp and phase matching conditions the resulting interference will yield a supercontinuum XUV spectrum. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV supercontinua without the need of an isolated attosecond burst.

  19. Merge of high harmonic generation from gases and solids and its implications for attosecond science

    Science.gov (United States)

    Vampa, G.; Brabec, T.

    2017-04-01

    High harmonic generation (HHG) in atomic and molecular gases builds the foundation of attosecond science. In recent experiments HHG has been demonstrated in solids for the first time. A theoretical analysis has revealed that one of the mechanisms driving HHG in semiconductors is similar to the one in atomic and molecular gases. As a result, many of the processes developed for attosecond science in gases can be adapted and applied to the condensed matter phase. In this tutorial, the connection between atomic and solid HHG is summarized with covering both theoretical and experimental work, and some implications for attosecond science in solids are presented.

  20. High harmonic generation in H$_2^+$ and HD$^+$ by two-colour femtosecond laser pulses

    Indian Academy of Sciences (India)

    Farzana Sharmin; Samir Saha; S S Bhattacharyya

    2013-12-01

    We have theoretically investigated the high harmonic generation (HHG) spectra of H$_2^+$ and HD$^+$ using a time-dependent wave packet approach for the nuclear motion with combined twocolour (1$_L$–3$_L$) pulsed lasers for ωL corresponding to wavelengths 1064 nm and 800 nm. The 1$_L$ and 3$_L$ lasers have peak intensities of $I_1^0 = 5.0 × 10^{13}$ W/cm$^2$ and $I_2^0 = 2.0 × 10^{14}$ W/cm$^2$, respectively. We have taken the pulse duration of $T = 50$ fs for both the fields, and the molecular initial vibrational level 0 = 0. We have argued that for these combinations, the harmonic generation due to transitions in the electronic continuum by tunnelling or multiphoton ionization may be neglected and only the electronic transitions within the two lowest electronic states would be important. Thus, the characteristic features of HHG spectra in the two-colour field are determined, in our model, by the nuclear motions on the two lowest field-coupled electronic states between which interelectronic and intraelectronic (due to the intrinsic dipole moments in case of HD+) radiative transitions can take place. We have studied the role of relative phase ($\\varphi$) of the two fields on the HHG spectra of the molecular ions. In case of HD+, the effect of nonadiabatic (NA) nonradiative interaction between the two lowest Born–Oppenheimer (BO) electronic states (1$s_g$, 2$p_u$) has been taken into account. Our calculations give realistic HHG spectra which are reasonably efficient and extended for both H$_2^+$ and HD$^+$ in the mixed two-colour field without involving the electronic continuum. The use of two-colour (1$_L$–3$_L$) field enables us to generate high harmonics beyond that achievable with a single 1$_L$ or 3$_L$ field of the corresponding intensity, frequency and pulse time.

  1. High photon flux XUV and soft x-ray sources enabled by high harmonic generation of high power fiber lasers

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2015-07-01

    This contribution reports on the recent advances in high harmonic generation (HHG) with high power femtosecond fiber lasers at high repetition rates. The capabilities of high power fiber lasers, the challenges of phase matching in the tight-focusing regime and recent experimental results will be discussed. In particular, post compressed pules as short as 30 fs, with ~150 μJ pulse energy at 0.6 MHz repetition rate have been used for efficient HHG into the XUV. Despite the tight focusing phase matching is ensured by providing the target gas with adequately high density. A conversion efficiency in excess of 10-6 at ~30 eV has been achieved in xenon gas. This resulted in more than 100μW of average power (>1013 photons per second), which represents the highest photon flux achieved by any HHG source in this spectral region so far. In addition, further pulse compression yielded few-cycle pulses at high average power that have enabled efficient soft Xray generation in neon and helium. HHG in neon provided more than 3·109 photons/s within a 1% bandwidth at 120 eV and helium allowed for HHG up to the water window spectral region beyond 283 eV. These compact sources provide highest photon flux on a table-top and will enable exciting applications such as nanometer-resolution imaging or coincidence spectroscopy in the near future.

  2. A Monolithic High-G SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations

    Directory of Open Access Journals (Sweden)

    Bradford S. Davis

    2006-01-01

    Full Text Available Analog Devices (ADI has designed and fabricated a monolithic high-g acceleration sensor (ADXSTC3-HG fabricated with the ADI silicon-on-insulator micro-electro-mechanical system (SOI-MEMS process. The SOI-MEMS sensor structure has a thickness of 10 um, allowing for the design of inertial sensors with excellent cross-axis rejection. The high-g accelerometer discussed in this paper was designed to measure in-plane acceleration to 10,000 g while subjected to 100,000 g in the orthogonal axes. These requirements were intended to meet Army munition applications. The monolithic sensor was packaged in an 8-pin leadless chip carrier (LCC-8 and was successfully demonstrated by the US Army Research Laboratory (ARL as part of an inertial measurement unit during an instrumented flight experiment of artillery projectiles launched at 15,000 g.

  3. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source

    CERN Document Server

    Klas, Robert; Tschernajew, Maxim; Hädrich, Steffen; Shamir, Yariv; Tünnermann, Andreas; Rothhardt, Jan; Limpert, Jens

    2016-01-01

    Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal to noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which delivers due to the drastic better single atom response for short wavelength drivers, an average output power of (832 +- 204) {\\mu}W at 21.7 eV. This is the highest average power produced by any HHG source in this spectral range surpassing precious demonstrations by more than a factor of four. Furthermore, a narrow-band harmonic at 26.6 eV with a relative energy bandwidth of only {\\Delta}E/E= 1.8 x 10E-3 has been generated, which is of high interest for high precision spectroscopy experiments.

  4. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  5. Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses

    Science.gov (United States)

    Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.

    2017-06-01

    In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.

  6. Electrical Rhythms Revealed by Harmonic Analysis of a High-Resolution Cardiogram.

    Science.gov (United States)

    Revenko, S V; Selector, L Ya; Gavrilov, I Yu; Nesterov, A V; Limonov, E V; Mudraya, I S; Kirpatovskii, V I

    2015-05-01

    The front-end low-noise electronic amplifiers and high-throughput computing systems made it possible to record ECG with a high resolution in the low-frequency range including the respiration and Mayer frequencies and to analyze ECG with digital filtering technique and harmonic analysis. These tools yielded ECG spectra of narcotized rats, which contained the characteristic pulsatile triplets and pentaplets with splitting constant equal to respiration rate, as well as the peaks at respiration and Mayer frequencies. The harmonic analysis of ECG determined the frequency parameters employed to tune the software bandpass filters, which revealed the respiratory (R) and Mayer (M) waves in the time domain with the amplitudes of 20-30 μV amounting to 5% ECG amplitude. The depolarizing myorelaxant succinylcholine chloride capable to trigger various types of arrhythmias, transiently increased R-wave, inhibited M-wave, and provoked a negative U-wave within a heartbeat ECG cycle synchronously with inspiration. It is hypothesized that M-, R-, and U-waves in ECG reflect cardiotropic activity of autonomic nervous system. The respective spectral peaks in ECG can be employed to assess intensity of sympathetic and parasympathetic cardiotropic influences, their balance, and the risk of arrhythmias.

  7. Surface spectroscopy of CO/Pt(111) with high harmonics in the XUV

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2008-07-01

    We report on the generation of high harmonic radiation in the photon energy range up to 100 eV with up to 10 kHz repetition rate, based on the conversion of femtosecond Ti:sapphire radiation in rare gases. The fundamental laser is based on a single stage, multiple pass ampli-fication of a cavity-dumped oscillator. Output pulse energies of 1 mJ and pulse durations of les than 30 fs at adjustable repetition rates up to 10 kHz are achieved. The generated High Harmonics are separated by a toroidal grating and directed to the surface. A time-of-flight detector with multiple anodes registers the kinetic energies of emitted photoelectrons. The angular distributions of photoelectrons emitted form CO/Pt(111) under s-polarized excitations have been measured for a variety of initial photon energies. Different from gas phase results a significant intensity of photoelectrons are emitted also in the normal direction, i.e., in the direction of the C-O chemical bond. A first theoretical investigation supports qualitatively the observed angular distributions.

  8. Pulse Mask Controlled HFAC Resonant Converter for high efficiency Industrial Induction Heating with less harmonic distortion

    Directory of Open Access Journals (Sweden)

    Nagarajan Booma

    2016-04-01

    Full Text Available This paper discusses about the fixed frequency pulse mask control based high frequency AC conversion circuit for industrial induction heating applications. Conventionally, for induction heating load, the output power control is achieved using the pulse with modulation based converters. The conventional converters do not guarantee the zero voltage switching condition required for the minimization of the switching losses. In this paper, pulse mask control scheme for the power control of induction heating load is proposed. This power control strategy allows the inverter to operate closer to the resonant frequency, to obtain zero voltage switching condition. The proposed high frequency AC power conversion circuit has lesser total harmonic distortion in the supply side. Modeling of the IH load, design of conversion circuit and principle of the control scheme and its implementation using low cost PIC controller are briefly discussed. Simulation results obtained using the Matlab environment are presented to illustrate the effectiveness of the pulse mask scheme. The obtained results indicate the reduction in losses, improvement in the output power and lesser harmonic distortion in the supply side by the proposed converter. The hardware results are in good agreement with the simulation results.

  9. Amplification of coherent synchrotron high harmonic emission from ultra-thin foils in relativistic light fields

    Science.gov (United States)

    Braenzel, J.; Andreev, A. A.; Platonov, K. Y.; Ehrentraut, L.; Schnürer, M.

    2017-08-01

    We report on a remarkable enhancement of high harmonic (HH) radiation emitted from the interaction of an ultra-intense laser pulse with ultra-thin foils by a manipulation of foil pre-plasma conditions. With a strong counter-propagating pre-pulse, we introduce a concerted expansion of the ultrathin foil target, and this significantly raises the efficiency of the HH generation process. Our experimental results show how the emission efficiency can be easily controlled by the intensity and delay time of the pre-pulse. The results give an important insight into the high harmonic generation process from solid dense plasmas when spatially limited. 1D particles in cell simulations confirm our experimental findings and show a significant dependency of the HH emission efficiency on the plasma density. The simplicity of the ultra-thin foil target and interaction geometry hold promise for specifically compact realization of imaging experiments with ultra-short and bright extreme ultra violet-pulses.

  10. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    CERN Document Server

    Metzger, Philip T; Carilli, Robert A; Long, Jason M; Shawn, Kathy L

    2009-01-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the o...

  11. Generation of Higher-Order Harmonics By Addition of a High Frequency XUV Radiation to the IR One

    CERN Document Server

    Fleischer, Avner

    2008-01-01

    The irradiation of atoms by a strong IR laser field of frequency $\\omega$ results in the emission of odd-harmonics of $\\omega$ ("IR harmonics") up to some maximal cut-off frequency. The addition of an XUV field of frequency $\\tilde{q}\\omega$ larger than the IR cut-off frequency to the IR driver field leads to the appearance of new higher-order harmonics ("XUV harmonics") $\\tilde{q} \\pm 2K, 2\\tilde{q} \\pm (2K-1), 3\\tilde{q} \\pm 2K,...$ ($K$ integer) which were absent in the spectra in the presence of the IR field alone. The mechanism responsible for the appearance of the XUV harmonics is analyzed analytically using a generalization of the semiclassical re-collision (three-step) model of high harmonic generation. It is shown that the emitted HHG radiation field can be written as a serie of terms, with the HHG field obtained from the three-step model in its most familiar context [P. B. Corkum, \\textit{Phys. Rev. Lett.} {\\bf 71}, 1994 (1993)] resulting from the zeroth-order term. The origin of the higher-order te...

  12. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays

    Science.gov (United States)

    Bartels; Backus; Zeek; Misoguti; Vdovin; Christov; Murnane; Kapteyn

    2000-07-13

    When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.

  13. High-order harmonic generation from Rydberg states at fixed Keldysh parameter

    CERN Document Server

    Bleda, E A; Altun, Z; Topcu, T

    2013-01-01

    Because the commonly adopted viewpoint that the Keldysh parameter $\\gamma $ determines the dynamical regime in strong field physics has long been demonstrated to be misleading, one can ask what happens as relevant physical parameters, such as laser intensity and frequency, are varied while $\\gamma$ is kept fixed. We present results from our one- and fully three-dimensional quantum simulations of high-order harmonic generation (HHG) from various bound states of hydrogen with $n$ up to 40, where the laser intensities and the frequencies are scaled from those for $n=1$ in order to maintain a fixed Keldysh parameter $\\gamma$$< 1$ for all $n$. We find that as we increase $n$ while keeping $\\gamma $ fixed, the position of the cut-off scales in well defined manner. Moreover, a secondary plateau forms with a new cut-off, splitting the HHG plateau into two regions. First of these sub-plateaus is composed of lower harmonics, and has a higher yield than the second one. The latter extends up to the semiclassical $I_p+...

  14. Carrier-wave steepened pulses and gradient-gated high-order harmonic generation

    CERN Document Server

    Radnor, S B P; Kinsler, P; New, G H C

    2008-01-01

    We show how to optimize the process of high-harmonic generation (HHG) by gating the interaction using the field gradient of the driving pulse. Since maximized field gradients are efficiently generated by self-steepening processes, we first present a generalized theory of optical carrier-wave self-steepened (CSS) pulses. This goes beyond existing treatments, which only consider third-order nonlinearity, and has the advantage of describing pulses whose wave forms have a range of symmetry properties. Although a fertile field for theoretical work, CSS pulses are difficult to realize experimentally because of the deleterious effect of dispersion. We therefore consider synthesizing CSS-like profiles using a suitably phased sub-set of the harmonics present in a true CSS wave form. Using standard theoretical models of HHG, we show that the presence of gradient-maximized regions on the wave forms can raise the spectral cut-off and so yield shorter attosecond pulses. We study how the quality of the attosecond bursts cr...

  15. Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order

    Science.gov (United States)

    Fukushima, Toshio

    2017-02-01

    In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by 90° such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are 4 π fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271-285, 2012a). As an example, we obtained 2190× 2190 coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.

  16. A quantum optical model for the dynamics of high harmonic generation

    CERN Document Server

    Gombkötő, Ákos; Varró, Sándor; Földi, Péter

    2016-01-01

    We investigate a two-level atom in the field of a strong laser pulse. The resulting time-dependent polarization is the source of a radiation the frequency components of which are essentially harmonics of the driving field's carrier frequency. The time evolution of this secondary radiation is analyzed in terms of the expectation values of the photon number operators for a large number of electromagnetic modes that are initially in the vacuum state. Our method is based on a multimode version of the Jaynes-Cummings-Paul model and can be generalized to different radiating systems as well. We show, that after the exciting pulse, the final distribution of the photon numbers is close to the conventional (Fourier transform-based) power spectrum of the secondary radiation. The details of the high harmonic spectra are also analyzed, for many-cycle excitations a clear physical interpretation can be given in terms of the Floquet quasi-energies. A first step towards the determination of the photon statistics of the HHG mo...

  17. High-order harmonic generation by enhanced plasmonic near-fields in metal nanoparticules

    CERN Document Server

    Shaaran, T; Guichard, R; Pérez-Hernández, J A; Arnold, M; Siegel, T; Zaïr, A; Lewenstein, M

    2013-01-01

    We present theoretical investigations of high-order harmonic generation (HHG) resulting from the interaction of noble gases with localized surface plasmons. These plasmonic fields are produced when a metal nanoparticle is subject to a few-cycle laser pulse. The enhanced field, which largely depends on the geometrical shape of the metallic structure, has a strong spatial dependency. We demonstrate that the strong non-homogeneity of this laser field plays an important role in the HHG process and leads to a significant increase of the harmonic cut-off energy. In order to understand and characterize this new feature, we include the functional form of the laser electric field obtained from recent attosecond streaking experiments [F. S{\\"u}{\\ss}mann and M. F. Kling, Proc. of SPIE, {\\bf Vol. 8096}, 80961C (2011)] in the time dependent Schr\\"odinger equation (TDSE). By performing classical simulations of the HHG process we show consistency between them and the quantum mechanical predictions. These allow us to underst...

  18. High-harmonic generation in benzene with linearly- and circularly-polarised laser pulses

    CERN Document Server

    Wardlow, Abigail

    2015-01-01

    High harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions move classically. The interaction with both circularly- and linearly-polarised infra-red ($\\lambda = 800$ nm) laser pulses of duration 10 cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly-polarised pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included while our results for linearly-polarised pulses are compared with both previous calculations and experiment. We find that even for the short duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly-polarised pulses are used, the response to ...

  19. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-01

    An analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013), 10.1103/PhysRevC.87.024906]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in the number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. The proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p +p , p +A, and A+A collisions are discussed.

  20. Reduction of Sub-Harmonic Oscillations in Flyback Converter for High Power Factor

    Directory of Open Access Journals (Sweden)

    Mr.M.SubbaRao,

    2011-03-01

    Full Text Available For High power factor (HPFoperation of flyback converter in continuous conduction mode(CCM, a variety of current mode control techniques, such as peak current control, Average current control andcharge control techniques has been analyzed. But these are suffer from stability problem due to presence of sub-harmonic oscillations and noise immunity. This can be overcome by using slope compensationtechnique, but it increases complexity .So the proposed technique in this paper i.e., a Single-Reset Integrator based line current shaping controller is a simple and accurate line current shaping controllerwith reduced sub-harmonic oscillations. In this paper presents the comparison between charge control technique with proposed control i.e., A Single-Reset Integrator based line current shaping controller for a 200 W,140V A.C input and 48V D.C output single phase flyback converter for HPF.MATLAB/Simulink software is used for implementation and simulation results shows the performance of proposed controller.

  1. Trajectory selection in high harmonic generation by controlling the phase between orthogonal two-color fields.

    Science.gov (United States)

    Brugnera, Leonardo; Hoffmann, David J; Siegel, Thomas; Frank, Felix; Zaïr, Amelle; Tisch, John W G; Marangos, Jonathan P

    2011-10-07

    We demonstrate control of short and long quantum trajectories in high harmonic emission through the use of an orthogonally polarized two-color field. By controlling the relative phase ϕ between the two fields we show via classical and quantum calculations that we can steer the two-dimensional trajectories to return, or not, to the core and so control the relative strength of the short or long quantum trajectory contribution. In experiments, we demonstrate that this leads to robust control over the trajectory contributions using a drive field from a femtosecond laser composed of the fundamental ω at 800 nm (intensity ∼1.2×10(14)  W cm(-2)) and its weaker orthogonally polarized second harmonic 2ω (intensity ∼0.3×10(14)  W cm(-2)) with the relative phase between the ω and 2ω fields varied simply by tilting a fused silica plate. This is the first demonstration of short and long quantum trajectory control at the single-atom level.

  2. Role of quantum trajectory in high-order harmonic generation in the Keldysh multiphoton regime.

    Science.gov (United States)

    Li, Peng-Cheng; Jiao, Yuan-Xiang; Zhou, Xiao-Xin; Chu, Shih-I

    2016-06-27

    We present a systematic study of spectral and temporal structure of high-order harmonic generation (HHG) by solving accurately the time-dependent Schrödinger equation for a hydrogen atom in the multiphoton regime where the Keldysh parameter is greater unity. Combining with a time-frequency transform and an extended semiclassical analysis, we explore the role of quantum trajectory in HHG. We find that the time-frequency spectra of the HHG plateau near cutoff exhibit a decrease in intensity associated with the short- and long-trajectories when the ionization process is pushed from the multiphoton regime into the tunneling regime. This implies that the harmonic emission spectra in the region of the HHG plateau near and before the cutoff are suppressed. To see the generality of this prediction, we also present a time-dependent density-functional theoretical study of the effect of correlated multi-electron responses on the spectral and temporal structure of the HHG plateau of the Ar atom.

  3. Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources

    Science.gov (United States)

    Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Winters, D. F. A.; Kühl, Th; Stöhlker, Th; Limpert, J.; Tünnermann, A.

    2015-11-01

    We present novel high photon flux XUV and soft x-ray sources based on high harmonic generation (HHG). The sources employ femtosecond fiber lasers, which can be operated at very high (MHz) repetition rate and average power (>100 W). HHG with such lasers results in ˜1013 photons s-1 within a single harmonic line at ˜40 nm (˜30 eV) wavelength, a photon flux comparable to what is typically available at synchrotron beam lines. In addition, resonant enhancement of HHG can result in narrow-band harmonics with high spectral purity—well suited for precision spectroscopy. These novel light sources will enable seminal studies on electronic transitions in highly-charged ions. For example, at the experimental storage ring 2s1/2-2p1/2 transitions in Li-like ions can be excited up to Z = 47 (˜100 eV transition energy), which provides unique sensitivity to quantum electro-dynamical effects and nuclear corrections. We estimate fluorescence count rates of the order of tens per second, which would enable studies on short-lived isotopes as well. In combination with the Doppler up-shift available in head-on excitation at future heavy-ion storage rings, such as the high energy storage ring, even multi-keV transitions can potentially be excited. Pump-probe experiments with femtosecond resolution could also be feasible and access the lifetime of short-lived excited states, thus providing novel benchmarks for atomic structure theory.

  4. Combining Harmonic Generation and Laser Chirping to Achieve High Spectral Density in Compton Sources

    CERN Document Server

    Terzić, Balša; Krafft, Geoffrey A

    2015-01-01

    Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. This combination of chirping and h...

  5. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  6. Molecular internal dynamics studied by quantum path interferences in high order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Zaïr, Amelle, E-mail: azair@imperial.ac.uk [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Siegel, Thomas; Sukiasyan, Suren; Risoud, Francois; Brugnera, Leonardo; Hutchison, Christopher [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Diveki, Zsolt; Auguste, Thierry [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Tisch, John W.G. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Salières, Pascal [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Ivanov, Misha Y.; Marangos, Jonathan P. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom)

    2013-03-12

    Highlights: ► Electronic trajectories in high order harmonic generation encodes attosecond and femtosecond molecular dynamical information. ► The observation of these quantum paths allows us to follow nuclear motion after ionization. ► Quantum paths interference encodes a signature of superposition of ionization channels. ► Quantum paths interference encodes a signature of transfer of population between channels due to laser coupling. ► Quantum paths interference is a promising technique to resolve ultra-fast dynamical processes after ionization. - Abstract: We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to information about intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidence that the long trajectory contribution is more dependent upon the molecular species than the short one, providing a high sensitivity to cation nuclear dynamics from 100’s of as to a few fs after ionisation. Using theoretical approaches based on the strong field approximation and numerical integration of the time dependent Schrödinger equation, we examine how quantum path interferences encode electronic motion when the molecules are aligned. We show that the interferences are dependent upon which ionisation channels are involved and any superposition between them. In particular, quantum path interferences can encode signatures of electron dynamics if the laser field drives a coupling between the channels. Hence, molecular quantum path interferences are a promising method for attosecond spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.

  7. High harmonic generation in a two-color field composed of a pump field and a weak subsidiary high frequency field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    “Coherent control of high-harmonic generation in a two-color field” has been widely concerned. Using split-operator algorithm, we have calculated the high-harmonic generation for helium ion He+ in a two-color field which is composed of a driving field and a weak subsidiary high frequency field (Is=I0/100, (ω,13ω), …(ω, 120ω)) and found that such a field can produce much higher harmonic intensity, typically increasing the harmonics corresponding to the incident frequency of the subsidiary field. The different effects coming from the different subsidiary fields are calculated and analyzed. It is indicated that one of the important underlying mechanisms is high frequency photon induced radiation.

  8. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    Science.gov (United States)

    Chacón, Alexis; Ciappina, Marcelo F.; Lewenstein, Maciej

    2016-10-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the single- and two-electron active approximation models of the hydrogen negative ion, we provide strong evidence that a nonsequential double-electron recombination mechanism appears to be mainly responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schrödinger equation, and on investigations of the classical electron trajectories, resulting from the Newton's equation of motion. Additional comparisons between the hydrogen negative ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multielectronic systems driven by spatially inhomogeneous fields.

  9. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  10. Introduction to macroscopic power scaling principles for high-order harmonic generation

    Science.gov (United States)

    Heyl, C. M.; Arnold, C. L.; Couairon, A.; L'Huillier, A.

    2017-01-01

    This tutorial presents an introduction to power scaling concepts for high-order harmonic generation (HHG) and attosecond pulse production. We present an overview of state-of-the-art HHG-based extreme ultraviolet (XUV) sources, followed by a brief introduction to basic principles underlying HHG and a detailed discussion of macroscopic effects and scaling principles. Particular emphasis is put on a general scaling model that allows the invariant scaling of the HHG process both, to μJ-level driving laser pulses and thus to multi-MHz repetition rates as well as to 100 mJ-or even Joule-level laser pulses, allowing new intensity regimes with attosecond XUV pulses.

  11. Laser-Duration Dependence of Emission Properties of High-Order Harmonic Generation

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2008-01-01

    @@ Quantitative investigations are made for the laser-duration dependence of the emission properties of high-order harmonic generation (HHG). HHG emission properties produced by few-cycle lasers show some useful characteristics. The cutoff energy is less than that by laser for infinite duration. The single energy distribution pulse decreases much faster than its duration as the laser duration grows. A two-cycle laser with carrier-envelope phase of O°can produce a single distribution pulse peaked at the laser carrier phase 1.22rad and spanned 1.18 rad with the cutoff energy 2.9Uρ + Iρ and a bandwidth 0.63Uρ, where Uρ is the ponderomotive potential of the laser field and Iρ is the atomic ionization potential.

  12. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    CERN Document Server

    Schubert, O; Langer, F; Urbanek, B; Lange, C; Huttner, U; Golde, D; Meier, T; Kira, M; Koch, S W; Huber, R

    2016-01-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and in...

  13. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source

    CERN Document Server

    Rupp, Daniela; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; Vrakking, Marc J J; Fennel, Thomas; Rouzée, Arnaud

    2016-01-01

    Coherent diffractive imaging of individual free nanoparticles has opened novel routes for the in-situ analysis of their transient structural, optical, and electronic properties. So far, single-particle diffraction was assumed to be feasible only at extreme ultraviolet (XUV) and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using XUV pulses from a femtosecond-laser driven high harmonic source. We obtain bright scattering patterns that provide access to the nanostructure's optical parameters. Moreover, the wide-angle scattering data enable us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.

  14. High Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Christopher M.S.; Colby, Eric; Cowan, Ben; Siemann, Robert H.; Spencer, James; /SLAC; Byer, Robert L.; Plettner, Tomas; /Stanford U., Phys. Dept.

    2005-05-13

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  15. High-Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    Energy Technology Data Exchange (ETDEWEB)

    Sears, C

    2006-02-17

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  16. Gaussian continuum basis functions for calculating high-harmonic generation spectra

    CERN Document Server

    Coccia, Emanuele; Labeye, Marie; Caillat, Jérémie; Taieb, Richard; Toulouse, Julien; Luppi, Eleonora

    2016-01-01

    We explore the computation of high-harmonic generation spectra by means of Gaussian basis sets in approaches propagating the time-dependent Schr{\\"o}dinger equation. We investigate the efficiency of Gaussian functions specifically designed for the description of the continuum proposed by Kaufmann et al. [ J. Phys. B 22 , 2223 (1989) ]. We assess the range of applicability of this approach by studying the hydrogen atom , i. e. the simplest atom for which "exact" calculations on a grid can be performed. We notably study the effect of increasing the basis set cardinal number , the number of diffuse basis functions , and the number of Gaussian pseudo-continuum basis functions for various laser parameters. Our results show that the latter significantly improve the description of the low-lying continuum states , and provide a satisfactory agreement with grid calculations for laser wavelengths $\\lambda$0 = 800 and 1064 nm. The Kaufmann continuum functions therefore appear as a promising way of constructing Gaussian ...

  17. Real-time observation of interfering crystal electrons in high-harmonic generation

    CERN Document Server

    Hohenleutner, M; Schubert, O; Knorr, M; Huttner, U; Koch, S W; Kira, M; Huber, R

    2016-01-01

    Accelerating and colliding particles has been a key strategy to explore the texture of matter. Strong lightwaves can control and recollide electronic wavepackets, generating high-harmonic (HH) radiation which encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of HH generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems and sparks hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not been observable in real time. Here, we study HH generation in a bulk solid directly in the time-domain, revealing a new quality of strong-field excitations in the crystal. Unlike established atomic sources, our solid emits HH radiation as a sequence of subcycle bursts which coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features hallmark a novel non-perturbative qua...

  18. Investigating Ag nanostructures by TOF-PEEM using high harmonic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Soo Hoon; Spaeth, Christian K.; Schmidt, Juergen; Kleineberg, Ulf [Department of Physics, Ludwig Maximilian University of Munich, Garching (Germany); Suessmann, Frederik; Guggenmos, Alexander; Yang, Yingying; Wirth, Adrian; Zherebtsov, Sergey; Hofstetter, Michael; Kling, Matthias F.; Krausz, Ferenc [Max-Planck-Institute of Quantum Optics, Garching (Germany); Stockman, Mark I. [Georgia State University, Altanta (United States)

    2011-07-01

    We demonstrate first experimental results on imaging plasmonic nanostructures by Time-of Flight-Photoelectron Emission Microscope (TOF-PEEM) in combination with Extreme Ultraviolet (XUV) attosecond pulses from a High Harmonic Generation source. The 1 kHz coherent attosecond XUV radiation is produced by ionizing neon atoms with waveform-controlled near-infrared (0.6 mJ,5 fs) laser pulses and spectrally filtered at 93 eV by means of a multilayer mirror. We have characterized various polycrystalline Cu microstructures and Ag nanostructures using these ultrashort XUV pulses by TOF-PEEM with a spatial resolution approaching 100 nm. The electron energy spectrum have been investigated at different sample positions and energy filtering has been applied to improve image resolution. The experiments demonstrate first steps towards the temporal characterization of nanoscaled localized surface plasmon fields in a femtosecond optical-pump/attosecond XUV-probe experiments.

  19. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  20. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  1. Theoretical Study of Molecular Electronic and Rotational Coherences by High-Harmonic Generation

    CERN Document Server

    Zhang, Song Bin; Kraus, Peter M; Wörner, Hans Jakob; Rohringer, Nina

    2015-01-01

    The detection of electron motion and electronic wavepacket dynamics is one of the core goals of attosecond science. Recently, choosing the nitric oxide (NO) molecule as an example, we have introduced and demonstrated a new experimental approach to measure coupled valence electronic and rotational wavepackets using high-harmonic generation (HHG) spectroscopy [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. A short outline of the theory to describe the combination of the pump and HHG probe process was published together with an extensive discussion of experimental results [Baykusheva et al., Faraday Discuss 171, 113 (2014)]. The comparison of theory and experiment showed good agreement on a quantitative level. Here, we present the generalized theory in detail, which is based on a generalized density matrix approach that describes the pump process and the subsequent probing of the wavepackets by a semiclassical quantitative rescattering approach. An in-depth analysis of the different Raman scattering contrib...

  2. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  3. XUV-initiated high harmonic generation: driving inner valence electrons using below-threshold-energy XUV light

    CERN Document Server

    Brown, A C

    2016-01-01

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in XUV-initiated high-harmonic generation in neon. By probing the atom with a low energy (below the 2s ionisation threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.

  4. High-resolution harmonic retrieval using the full fourth-order cumulant

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Naus, H.W.L.; Zwamborn, A.P.M.

    2010-01-01

    The harmonic retrieval (HR) problem concerns the estimation of the frequencies in a sum of real or complex harmonics. Both correlation and cumulant-based approaches are used for this purpose. Cumulant-based HR algorithms use a single 1-D slice of the fourth-order cumulant that is estimated directly

  5. High efficiency second and third harmonic generation from magnetic metamaterials by using a grating

    Science.gov (United States)

    Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk

    2017-08-01

    Metamaterials can be used to generate harmonic signals in small thicknesses, but they suffer from low efficiency. Here, we introduce a new method for amplifying second and third harmonic generation from magnetic metamaterials. We show numerically that by using a grating structure under the metamaterial, the grating and the metamaterial form a resonator which leads to a higher absorption in the metamaterial. By this method we could increase the absorption of the structure in the magnetic resonance up to 25% of the initial value. This leads to the generation of second and third harmonic signals with a higher efficiency from this metamaterial-based nonlinear media. We confirmed this idea in the nanostrip metamaterials and saw the amplitude of the second harmonic generation was doubled and the amplitude of the third harmonic generation increased by a factor of 4 in comparison to the same structure without grating.

  6. Prediction and validation of high frequency vibration repsonses of NASA Mars Pathfinder spacecraft due to acoustic launch load using statistical energy analysis

    Science.gov (United States)

    Hwang, H. J.

    2002-01-01

    Mid and high frequency structural responses of a spacecraft during the launch condition are mainly dominated by the intense acoustic pressure field over the exterior of the launch vehicle. The prediction of structural responses due to the acoustic launch load is therefore an important analysis for engineers and scientists to correctly define various dynamics specifications of the spacecraft.

  7. A High-Payload Fraction, Pump-Fed, 2-Stage Nano Launch Vehicle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on-demand placement of cube and nano-satellites into LEO. The proposed...

  8. High Performance Acousto-Optic Arrays based on Fiber Bragg Gratings for Measuring Launch Acoustics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations in acousto-optic sensor development for measurement of launch...

  9. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground...

  10. Low Cost, High Efficiency, Pressurization System for Responsive Launch Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — KT Engineering (KTE) is pleased to submit this proposal to address the stated need for "innovative solutions that will allow spaceport launch service providers to...

  11. Post-compression of high energy terawatt-level femtosecond pulses and application to high order harmonic generation

    CERN Document Server

    Hort, Ondřej; Cabasse, Amélie; Petit, Stéphane; Mével, Eric; Descamps, Dominique; Constant, Eric

    2015-01-01

    We perform a post-compression of high energy pulses by using optical-field ionization of low pressure helium gas in a guided geometry. We apply this approach to a TW chirped-pulse-amplification based Ti:Sapphire laser chain and show that spectral broadening can be controlled both with the input pulse energy and gas pressure. Under optimized conditions, we generate 10 fs pulses at TW level directly under vacuum and demonstrate a high stability of the post compressed pulse duration. These high energy post-compressed pulses are thereafter used to perform high harmonic generation in a loose focusing geometry. The XUV beam is characterized both spatially and spectrally on a single shot basis and structured continuous XUV spectra are observed.

  12. Optimization of total harmonic current distortion and torque pulsation reduction in high-power induction motors using genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Arash SAYYAH; Mitra AFLAK; Alireza REZAZADEH

    2008-01-01

    This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters,based on an approximate harmonic model. That is,having defined a desired fundamental output voltage,optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies,they can cause troublesome speed fluctuations,shaft fatigue,and unsatisfactory performance in the feedback control system,the 5th,7th,11 th,and 13th current harmonics (in the case of five switching angles) are con strained at some pre-specified values,to mitigate the detrimental effects of low-frequency harmonics. At the same time,the THCD is optimized while the required fun-damental output voltage is maintained.

  13. Raman spectroscopy of CaSnO{sub 3} at high temperature: a highly quasi-harmonic perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Redfern, S A T; Salje, E K H [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Chen, C-J; Kung, J [Department of Earth Sciences, National Chen Kung University, 1 University Road, 701-Tainan, Taiwan (China); Chaix-Pluchery, O; Kreisel, J, E-mail: satr@cam.ac.uk [Laboratoire des Materiaux et du Genie Physique, Grenoble INP, CNRS, Minatec, 3 Parvis Louis Neel, F-38016 Grenoble (France)

    2011-10-26

    Calcium stannate perovskite (CaSnO{sub 3}) has been studied by Raman spectroscopy at two excitation wavelengths (514.5 and 632.8 nm). No phase transition was observed. Rather, the thermal evolution of the Raman lines showed a high degree of harmonicity with small Grueneisen parameters and thermal line broadening following {Gamma} = Acoth{theta}/T, where the quantum temperature {theta} is determined by the phonon branch without further coupling with other degrees of freedom. The geometrical nature of phonon lines has been identified. High-temperature powder x-ray diffraction measurements provide thermal expansion coefficients of {alpha}{sub x} = 13.9 x 10{sup -6} K{sup -1}, {alpha}{sub y} = 2.7 x 10{sup -6} K{sup -1}, {alpha}{sub z} = 14.3 x 10{sup -6} K{sup -1}. The strongly quasi-harmonic behaviour observed and the lack of any indication of instability with respect to the post-perovskite structure points to the strongly first-order character of the reported perovskite to post-perovskite phase transition in this material, which appears to behave as a very good analogue to MgSiO{sub 3} in the Earth's interior. (paper)

  14. The selection rules of high harmonic generation: roles of projections of molecules and dynamical directivities of laser fields

    CERN Document Server

    Liu, Xi; Li, Liang; Li, Yang; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2016-01-01

    The selection rules of high harmonic generation (HHG) are investigated using three-dimensional time-dependent density functional theory (TDDFT). From the harmonic spectra obtained with various real molecules and different forms of laser fields, several factors that contribute to selection rules are revealed. Extending the targets to stereoscopic molecules, it is shown that the allowed harmonics are dependent on the symmetries of the projections of molecules. Moreover, it is found that the dynamical directivities of the laser fields play an important role on the selection rules. Our study presents a more general form of selection rules, which can be extended to the HHG for more complex molecules and various forms of laser fields.

  15. Simultaneous generation of ions and high-order harmonics from thin conjugated polymer foil irradiated with ultrahigh contrast laser

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I. W.; Kim, I J.; Pae, K. H.; Nam, K. H.; Lee, C.-L.; Yun, H.; Kim, H. T.; Lee, S. K.; Yu, T. J.; Sung, J. H.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Pirozhkov, A. S.; Ogura, K.; Orimo, S.; Daido, H. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan)

    2011-10-31

    We report the manufacturing of an (ultra-)thin foil target made of conjugated polymer, poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT), and the simultaneous observation of laser-accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 4 x 10{sup 19 }W/cm{sup 2}. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.

  16. High-order harmonic generation in a plasma plume of in situ laser-produced silver nanoparticles

    Science.gov (United States)

    Singhal, H.; Ganeev, R. A.; Naik, P. A.; Chakera, J. A.; Chakravarty, U.; Vora, H. S.; Srivastava, A. K.; Mukherjee, C.; Navathe, C. P.; Deb, S. K.; Gupta, P. D.

    2010-10-01

    The results of the experimental study of high-order harmonic generation (HHG) from the interaction of 45-fs Ti:sapphire laser pulses with plasma plumes of Ag nanoparticles produced in situ are presented in this article. The nanoparticles were generated by the interaction of 300-ps, 20-mJ laser pulses with bulk silver targets at an intensity of ~1×1013W/cm2. The spectral characteristics of the HHG from nanoparticles produced in situ are compared with the HHG from monoparticle plasma plumes and with the HHG from preformed nanoparticle-containing plasma plumes. The cutoff harmonic order generated using the in situ silver nanoparticles is at the 21st harmonic order.

  17. Exploring the jet launching region in active galactic nuclei using high-resolution VLBI

    Science.gov (United States)

    Rani, Bindu

    2017-01-01

    The high radio frequency polarization imaging of non-thermal emission from AGN is a direct way to probe the magnetic field strength and structure in the immediate vicinity of SMBHs and is crucial in testing the jet-launching scenario. To explore the magnetic field configuration at the base of jets in blazars, I took advantage of the full polarization capabilities of the GMVA (Global Millimeter VLBI Array). With an angular resolution of 50 micro-arcseconds at 86 GHz, one could reach scales down to 900 Rs (for a 109 solar mass black hole). On sub-mas scales the core and central jet of BL Lac is polarized with the EVPA being aligned well with jet in the North-South jet direction. This suggests a well ordered magnetic field, with its main component being perpendicular to the jet axis. Such a field configuration is consistent with a helical magnetic field in the jet. In this talk, I will show the results of our study on BL Lac.

  18. Field strength scaling in quasi-phase-matching of high-order harmonic generation by low-intensity assisting fields

    CERN Document Server

    Balogh, Emeric

    2016-01-01

    High-order harmonic generation in gas targets is a widespread scheme used to produce extreme ultraviolet radiation, however, it has a limited microscopic efficiency. Macroscopic enhancement of the produced radiation relies on phase-matching, often only achievable in quasi-phase-matching arrangements. In the present work we numerically study quasi-phase-matching induced by low-intensity assisting fields. We investigate the required assisting field strength dependence on the wavelength and intensity of the driving field, harmonic order, trajectory class and period of the assisting field. We comment on the optimal spatial beam profile of the assisting field.

  19. High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters

    DEFF Research Database (Denmark)

    Lascu, Cristian; Asiminoaei, Lucian; Boldea, I.;

    2007-01-01

    computational effort. The proposed controller design is based on the pole-zero cancellation technique, taking into account the load transfer function at each harmonic frequency. Two design methods are provided, which give controller transfer functions with superior frequency response. The complete current...... controller is realized as the superposition of all individual harmonic controllers. The frequency response of the entire closed loop control is optimal with respect to filtering objectives, i.e., the system provides good overall stability and excellent selectivity for interesting harmonics. This conclusion...

  20. How to Improve the Supportive Role of Estonian Innovation System toward Launching New Products by High Technology Companies?

    Directory of Open Access Journals (Sweden)

    Liisi Sepp

    2013-01-01

    Full Text Available The purpose of the study is to evaluate how supportive is Estonian national innovation system toward the launching of new innovative products by high technology firms. The article intends to combine two broad areas of research – national innovation system approach and the different models of the new product launching. Based on the literature review and in-depth analysis of three case studies of Estonian high-tech company’s major barriers as well success factors of highly innovative product launches were identified. The barriers of the new product launching were linked with the systemic failures of the national innovation system. The most relevant failures of Estonian national innovation system inhibiting the new product development are capability and networking failures. The sources of innovation of high-technology firms are too narrow, linkages with domestic firms and higher education institutions as well with foreign firms are poorly developed. High-tech firms have also serious capacity problems due to the extremely weak support mechanism by national innovation system on the seed funding stage of product development and prototype building stage as well. Paper argues that resources needed for the innovation should not be looked too narrowly following linear innovation model approach. Instead interactive approach is needed, which combines capability building, network development, interactive learning with direct investments into fundamental research.

  1. The response of a high-speed train wheel to a harmonic wheel-rail force

    Science.gov (United States)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-09-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel.

  2. Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Bjarke Holl; Raarup, Merete Krog; Balling, Peter

    2010-01-01

    realization allows the sample, located in an ultrahigh-vacuum chamber, to be illuminated by 106 65-eV photons per laser pulse at a 10 Hz repetition rate. The spectral width of a single harmonic is 0.77 eV (FWHM), and a few harmonics are selected by specially designed Mo/Si multi-layer mirrors. Photoelectrons...

  3. Synchronous pumping of picosecond dye laser using high efficiency second harmonic generation from optical fibres

    Science.gov (United States)

    Lawandy, N. M.; Bernardin, J. P.; Macdonald, R. L.; Demouchy, G.

    1991-01-01

    The stable operation of a mode-locked dye laser synchronously pumped by the second harmonic of an Nd:YAG laser produced in an Nd codoped germanosilicate optical fiber is reported. The optical fiber preparation technique, which results in a second harmonic conversion efficiency of 2 percent, is described. This optical fiber SHG conversion efficiency is the highest reported to date using a continuous-wave mode-locked laser.

  4. Spectral splitting of high order harmonics of ionizing gases irradiated with ultrashort intense laser pulses

    Institute of Scientific and Technical Information of China (English)

    钟方川; 胡雪原; 黎忠; 张正泉; 李儒新; 徐至展

    2002-01-01

    The spectrum of harmonics generated and propagated in ionized noble gas has been analyzed using one-dimensional wave propagation equation.The result shows that the spectral lines of harmonic become broadened and then split into two peaks when the laser intensity is strong enough to ionize the noble gas.The influnence of laser parameters and gas pressure on the splitting has been made clear.

  5. High Degree Spherical Harmonic Synthesis Over Geographic Rectangles: A Simple Approach

    Science.gov (United States)

    Holmes, S. A.; Featherstone, W. E.; Kuhn, M.

    Future spherical harmonic models of the geopotential and other quantities, such as digital elevation models, are likely extend to degree 2160 (corresponding to 5' by 5' geographic rectangles), and beyond. Simple techniques have been developed by the first two authors (Journal of Geodesy, in press) for high-degree (2700) `point' synthesis of gravimetric quantities, in IEEE double precision, pole to pole. Numerical underflows are avoided by modifying exiting recursive algorithms to generate scaled, fully normalised, associated Legendre functions [ALFs] and their first and second derivatives. Final point-synthesis and rescaling was achieved using Horner's scheme. This simple approach has now been extended to stabilise high-degree (2700) `integral' synthesis over geographic rectangles (bound by meridians and parallels). Existing recursive routines compute definite integrals of ALFs for constant orders (`column- wise'). New routines have been designed to compute definite integrals of ALFs for constant degrees (`row-wise'). Both routines have been modified to generate scaled in- tegrals. Final synthesis and rescaling is achieved using Horner's scheme. Preliminary tests indicate that this approach allows, in IEEE double precision, integral synthesis to degree and order 2700, pole to pole, without underflow or overflow errors. Numer- ical tests suggest the new row-wise routines to be more precise than the column-wise routines, especially in polar regions.

  6. Harmonic analysis of irradiation asymmetry for cylindrical implosions driven by high-frequency rotating ion beams

    CERN Document Server

    Bret, Antoine; Tahir, Naeem

    2012-01-01

    Cylindrical implosions driven by intense heavy ions beams should be instrumental in a near future to study High Energy Density Matter. By rotating the beam by means of a high frequency wobbler, it should be possible to deposit energy in the outer layers of a cylinder, compressing the material deposited in its core. The beam temporal profile should however generate an inevitable irradiation asymmetry likely to feed the Rayleigh-Taylor instability (RTI) during the implosion phase. In this paper, we compute the Fourier components of the target irradiation in order to make the junction with previous works on RTI performed in this setting. Implementing a 1D and 2D beam models, we find these components can be expressed exactly in terms of the Fourier transform of the temporal beam profile. If $T$ is the beam duration and $\\Omega$ its rotation frequency, "magic products" $\\Omega T$ can be identified which cancel the first harmonic of the deposited density, resulting in an improved irradiation symmetry.

  7. Solid-state three-step model for high-harmonic generation from periodic crystals

    CERN Document Server

    Ikemachi, Takuya; Sato, Takeshi; Yumoto, Junji; Kuwata-Gonokami, Makoto; Ishikawa, Kenichi L

    2016-01-01

    We study high-harmonic generation (HHG) from solids driven by intense laser pulses using the time-dependent Schrodinger equation for a one-dimensional model periodic crystal. Based on the simulation results, we propose a simple model that can quantitatively explain many aspects of solid- state HHG, some of which have been experimentally observed. Incorporating interband tunneling, intraband acceleration, and recombination with the valence-band hole, our model can be viewed as a solid-state counterpart of the familiar three-step model highly successful for gas-phase HHG and provides a unified basis to understand HHG from gaseous media and solid-state materials. The solid-state three-step model describes how, by repeating intraband acceleration and interband tunneling, electrons climb up across multiple conduction bands. The key parameter in predicting the HHG spectrum structure from the band-climbing process is the peak-to-valley (or valley-to-peak) full amplitude of the pulse vector potential $A(t)$. When the...

  8. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    Science.gov (United States)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Verkamp, Max A.; Vura-Weis, Josh

    2016-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M2,3-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (≈20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (≈70fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built over the past two years, along with preliminary data and simulations of the M2,3-edge absorption data of a battery of small inorganic molecules to demonstrate the high specificity of this ultrafast tabletop technique.

  9. Azimuthal anisotropy harmonics from long-range correlations in high multiplicity pp collisions at CMS

    Science.gov (United States)

    Chen, Zhenyu

    2016-12-01

    Measurements of two-particle angular correlations in pp collisions at √{ s} = 7 TeV are presented as a function of charged-particle multiplicities. The data, corresponding to an integrated luminosity of about 6.2 pb-1, were collected during the 2010 LHC pp run using the CMS detector. In high-multiplicity events, a long-range (| Δη | > 2), near-side (Δϕ ≈ 0) structure is found in the two-particle Δη - Δϕ correlation functions. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of charged particles, KS0 and Λ / Λ ‾ particles are extracted from long-range two-particle correlations as a function of particle multiplicity and transverse momentum, after correcting for the contribution of back-to-back jet correlations. A v2 and v3 value of about 4% and 1%, averaging over 0.3 high-multiplicity region, and are found to be smaller than values obtained in pPb and PbPb collisions at similar multiplicities.

  10. Data Acquisition in a High Harmonic Generation Lab and at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Hirokawa, Takako; /U. Colorado, Boulder /SLAC

    2011-06-22

    In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI), thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.

  11. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    Science.gov (United States)

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  12. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility

    Science.gov (United States)

    Zhu, Tuo; Shang, Wanli; Zhang, Wenhai; Yang, Jiamin; Xiong, Gang; Zhao, Yang; Kuang, Longyu; Zhao, Yidong; Zheng, Lei; Cui, Mingqi; Tang, Kun; Ma, Chenyan

    2013-12-01

    A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the monochromatic X-ray has third-order and second-order harmonics. The proportion of second-order harmonic of 4B7B is less than 9.0% and the third-order harmonic is below 0.7% when no suppressing method is applied. When suppression methods are used, the proportion of second-order harmonic is less than 1.7% and the third-order harmonic is ignorable.

  13. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation

    Science.gov (United States)

    Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z.; Zhou, Xiao-Xin; Chu, Shih-I.

    2016-09-01

    Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.

  14. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields

    CERN Document Server

    Pisanty, Emilio; Galloway, Benjamin R; Durfee, Charles G; Kapteyn, Henry C; Murnane, Margaret M; Ivanov, Misha

    2016-01-01

    The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and the parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation, elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond t...

  15. Attosecond lighthouse above 100 eV from high-harmonic generation of mid-infrared pulses

    Science.gov (United States)

    Kovács, K.; Negro, M.; Vozzi, C.; Stagira, S.; Tosa, V.

    2017-10-01

    In this paper, we numerically investigate the possibility to obtain a lighthouse emission for the attosecond pulses produced by high-order harmonics of a strong mid-infrared fundamental pulse without any optical element inserted in the path of the generating beam. The parameters of the driving pulse, focusing geometry, gas medium and detection configuration are currently experimentally feasible. Here, we study in detail the specific propagation conditions of the laser beam, and describe the exact mechanism of the sensitive space-time variation of the medium’s refractive index that lead to the dynamic wavefront rotation. This basic requirement for the lighthouse phenomenon is transmitted to the harmonic bursts, which are emitted with different divergence in successive optical half-cycles, thus can be detected in the far field at increasing distances from the optical axis. In this configuration, spectral filtering of the harmonics is not necessary, therefore the total harmonic pulse power might be used in further pump-probe experiments.

  16. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules

    CERN Document Server

    Rothhardt, Jan; Shamir, Yariv; Tschnernajew, Maxim; Klas, Robert; Hoffmann, Armin; Tadesse, Getnet K; Klenke, Arno; Gottschall, Thomas; Eidam, Tino; Boll, Rebecca; Bomme, Cedric; Dachraoui, Hatem; Erk, Benjamin; Di Fraia, Michele; Horke, Daniel A; Kierspel, Thomas; Mullins, Terence; Przystawik, Andreas; Savelyev, Evgeny; Wiese, Joss; Laarmann, Tim; Küpper, Jochen; Rolles, Daniel; Limpert, Jens; Tünnermann, Andreas

    2016-01-01

    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 10$^{11}$ photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH$_3$I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafas...

  17. A harmonic injection SPWM method for the high-responsive PMSM control system

    Science.gov (United States)

    Lei, Wang; Shuanghui, Hao; Minghui, Hao; Baoyu, Song

    2016-01-01

    In a permanent magnet synchronous motor (PMSM) control system, usually, the phase voltage instruction is limited independently to prevent a three-phase pulse width modulation (PWM) wave from overflowing. This method decreases the efficiency of the bus voltage and causes voltage vector direction errors. To solve these problems, we propose a harmonic injection sinusoidal pulse-width modulation (SPWM). This method uses harmonic injected sinusoidal PWM to improve the utilisation ratio of the bus voltage, and consequently improve system performance. In this paper, we analyse the problem in terms of potential difference. The simulation results show that the proposed method can increase the utilisation ratio of the bus voltage up to 15.4%, and the voltage vector mode obtained with the proposed algorithm is larger than that obtained with the conventional one. The method with harmonic injection consequently improves current response, without affecting voltage vector accuracy. The experiment results validate the proposed method.

  18. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  19. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3

  20. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Science.gov (United States)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  1. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Energy Technology Data Exchange (ETDEWEB)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  2. High harmonics of the cyclotron resonance in a weak magnetic field

    Science.gov (United States)

    Gramada, A.; Raikh, M. E.

    1998-03-01

    Harmonics of the cyclotron resonance have their origin in the disorder-induced mixing of the Landau levels which leads to the violation of the Kohn theorem. In a strong magnetic field, ω_cτ>> 1, (ωc is the cyclotron frequency and τ is the relaxation time) the amplitudes of the harmonics, σ^n, fall off rapidly^1 with the number n: σ^n∝ n-2. We have studied theoretically the opposite case, ω_cτPhys. Soc. Japan, 38, 989 (1975). 2. M. A. Zudov, R. R. Du, J. A. Simmons, J. L. Reno, preprint cond-mat/9711149.

  3. Harmonic statistics

    Science.gov (United States)

    Eliazar, Iddo

    2017-05-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.

  4. Multi-mJ, kHz, 2.1-$\\mu$m OPCPA for high-flux soft X-ray high-harmonic radiation

    CERN Document Server

    Hong, Kyung-Han; Siqueira, Jonathas; Krogen, Peter; Moses, Jeffrey; Smrz, Martin; Zapata, Luis E; Kärtner, Franz X

    2013-01-01

    We report on a multi-mJ 2.1-$\\mu$m OPCPA system operating at a 1-kHz repetition rate, pumped by a picosecond cryogenic Yb:YAG pump laser, and the phase-matched high-flux high-harmonic soft X-ray generation.

  5. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  6. Trajectory Resolved High-order Harmonic Generation in Elliptically Polarized Fields in the Presence of Window Resonances

    CERN Document Server

    Larsen, E W; Lorek, E; Heyl, C M; Palecek, D; L'Huillier, A; Zigmantas, D; Mauritsson, J

    2015-01-01

    We experimentally investigate how the ellipticity of the driving laser pulses influences high-order harmonic generation from the first two sets of quantum trajectories. Using long pulses at a high repetition rate in a tight focusing configuration combined with a spectrometer that resolves the harmonic emission both spatially and spectrally, allows for a clear separation of the emission generated by the long and the short trajectories. We find that a model describing the long trajectories has to include a sub-cycle change in both ionization rate and initial electron velocity distribution as well as a change of the excursion time when the ellipticity is changed. Additionally, we find that the configuration interaction between two electrons influences the ellipticity dependence of both trajectories through the AC-Stark shift.

  7. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    Science.gov (United States)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p tissue ablation and can be fully integrated into any HMI

  8. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    Energy Technology Data Exchange (ETDEWEB)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  9. High-Altitude Balloon Launches and Hands-On Sensors for Effective Student Learning in Astronomy and STEM

    Science.gov (United States)

    Voss, H. D.; Dailey, J.; Snyder, S. J.

    2011-09-01

    Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52

  10. Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    CERN Document Server

    Wingeier, B M; Silberstein, R B; Wingeier, Brett M.; Nunez, Paul L.; Silberstein, Richard B.

    2001-01-01

    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.

  11. Harmonic frequency mixing using high Tc superconductor Josephson junction mounted on pulse tube cryocooler

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A frequency mixing system including microwave coupling and intermediate frequency (IF) measurement arrangements is esigned. In lieu of liquid nitrogen, a pulse tube cryocooler is used to cool the whole system. With YBa2Cu3O7/Yttrium stabilized irconia (YBCO/YSZ) bicrystal Josephson junction as the mixing element, 36th harmonic frequency mixing at the 8 mm waveband is obtained.

  12. Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    OpenAIRE

    Wingeier, Brett M.; Nunez, Paul L.; Silberstein, Richard B.

    2000-01-01

    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.

  13. Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-T{sub c} SQUID magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Saari, Mohd Mawardi, E-mail: en19463@s.okayama-u.ac.jp; Tsukamoto, Yuya; Kusaka, Toki; Ishihara, Yuichi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2015-11-15

    The magnetization curve of iron oxide nanoparticles in low-concentration solutions was investigated by a highly sensitive high-T{sub c} superconducting quantum interference device (SQUID) magnetometer. The diamagnetic contribution of water that was used as the carrier liquid was observed in the measured magnetization curves in the high magnetic field region over 100 mT. The effect of the diamagnetic contribution of water on the generation of harmonics during the application of AC and DC magnetic fields was simulated on the basis of measured magnetization curves. Although the diamagnetic effect depends on concentration, a linear relation was observed between the detected harmonics and concentration in the simulated and measured results. The simulation results suggested that improvement could be expected in harmonics generation because of the diamagnetic effect when the iron concentration was lower than 72 μg/ml. The use of second harmonics with an appropriate bias of the DC magnetic field could be utilized for realization of a fast and highly sensitive detection of magnetic nanoparticles in a low-concentration solution. - Highlights: • We measured iron oxide nanoparticles solutions using a high-T{sub c} SQUID magnetometer. • Diamagnetic contribution of water in diluted solutions was observed. • Improvement in harmonics generation due to diamagnetism of water could be expected. • Linear relation between harmonics and concentration in diluted solutions was shown. • Detection using second harmonics showed high sensitivity.

  14. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    Science.gov (United States)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  15. Interference minima effect of high-order harmonic generation from H2+ with different full width at half maximum

    Science.gov (United States)

    Pan, Xue-Fei; Zhang, Jun; Du, Hui; Liu, Hai-Feng; Zhang, Hong-Dan; Liu, Xue-Shen

    2017-01-01

    We investigate the effect of the interference minima of the high-order harmonic generation (HHG) in H2+ molecule with varying the full width at half maximum (FWHM) of the laser field by solving the one-dimensional (1D) time-dependent Schrödinger equation (TDSE) within the non-Born-Oppenheimer approximation. The numerical results show that the probability of the electron recombined with the two nuclei is different with the variation of the FWHM. The HHG spectrum of H2+ molecule is separated into two parts according to the electronic coordinate z (z > 0 and z < 0), which illustrate the contributions of the two nuclei to the harmonic generation. In addition, we investigate the time-evolution electron wave packet distributions to illustrate the underlying physical mechanism.

  16. Rational harmonic mode-locked laser using a bismuth-oxide-based highly nonlinear erbium-doped fiber

    Science.gov (United States)

    Fukuchi, Yutaka; Hirata, Kouji; Muraguchi, Masahiro; Maeda, Joji

    2017-01-01

    We report a rational harmonic mode-locked fiber laser employing a bismuth-oxide-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF) with a length of 1.5 m. The Bi-HNL-EDF is used as a broadband gain medium and as a noise suppressor based on self-phase modulation. The amplitude of the rational harmonic mode-locked pulses can be regulated by properly tuning the modulation parameters of the intracavity modulator. The cavity length as short as 6 m enables generation of stable and clean short pulses with a repetition frequency up to 40 GHz over the wavelength range covering both the conventional and the longer bands.

  17. High-order harmonic generation driven by chirped laser pulses induced by linear and non linear phenomena

    CERN Document Server

    Neyra, E; Pérez-Hernández, J A; Ciappina, M F; Roso, L; Torchia, G A

    2016-01-01

    We present a theoretical study of high-order harmonic generation (HHG) driven by ultrashort optical pulses with different kind of chirps. The goal of the present work is perform a detailed study to clarify the relevant parameters in the chirped pulses to achieve a noticeable cut-off extensions in HHG. These chirped pulses are generated using both linear and nonlinear dispersive media.The description of the origin of the physical mechanisms responsible of this extension is, however, not usually reported with enough detail in the literature. The study of the behaviour of the harmonic cut-off with these kind of pulses is carried out in the classical context, by the integration of the Newton-Lorentz equation complemented with the quantum approach, based on the integration of the time dependent Schr\\"odinger equation in full dimensions (TDSE-3D), we are able to understand the underlying physics.

  18. Estimating the plasmonic field enhancement using high-order harmonic generation: The role of inhomogeneity of the fields

    CERN Document Server

    Shaaran, T; Lewenstein, M

    2012-01-01

    In strong field laser physics it is a common practice to use the high-order harmonic cutoff to estimate the laser intensity of the pulse that generates the harmonic radiation. Based on the semiclassical arguments it is possible to find a direct relationship between the maximum value of the photon energy and the laser intensity. This approach is only valid if the electric field driving HHG is spatially homogenous. In laser-matter processes driven by plasmonics fields, the enhanced fields present a spatial dependence that strongly modifies the electron motion and consequently the laser driven phenomena. As a result, this method should be revised in order to more realistically estimate the field. In this work, we demonstrate how the inhomogeneity of the fields will effect this estimation. Furthermore, by employing both quantum mechanical and classical calculations, we show how one can obtain a better estimation for the intensity of the enhanced field in plasmonic nanostructure.

  19. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. J., E-mail: sebastien.weber@cea.fr; Manschwetus, B.; Billon, M.; Bougeard, M.; Breger, P.; Géléoc, M.; Gruson, V.; Lin, N.; Ruchon, T.; Salières, P.; Carré, B. [Commissariat l’Energie Atomique, Laser, Interactions and Dynamics Laboratory (LIDyL), DSM/IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Böttcher, M.; Huetz, A.; Picard, Y. J. [ISMO, UMR 8214, Université Paris-Sud, Batiment 350, Orsay (France)

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.

  20. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty

    Science.gov (United States)

    Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.

    2016-10-01

    A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.

  1. An air launched, highly responsive military transatmospheric vehicle (TAV), based on existing aerospace systems

    Science.gov (United States)

    Hampsten, Kenneth R.

    1996-03-01

    A novel vehicle design is presented that minimizes Research Development Test and Evaluation (RDT&E) cost. The proposed TAV can satisfy a broad range of military mission applications for the 21st century. TAV deployment is provided by a Rockwell B-1B bomber. Pre-launch orientation of the vehicle is centerline, underneath the B-1B forward weapon bays. Launch occurs at 30,000 ft, Mach 0.90, and at a flight path angle of 15-20 degrees. The TAV is a Two-Stage-To-Orbit (TSTO) vehicle utilizing Liquid Oxygen (LOX) and RP-1 (kerosene) propellants. The reusable upper stage, or TAV, incorporates a 130 cubic foot payload bay for mission specific equipment. The booster can either be expended, or potentially recovered for reuse. TAV reentry relies on a biconic aeroshell for the hypersonic flight phase and a parafoil for the subsonic, terminal recovery phase. Nominal mission performance is between 1,150-1,800 lbs of payload into a 100 nmi circular orbit.

  2. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  3. Spatial and Temporal Characterization of Femtosecond Pulses at High-Numerical Aperture Using Collinear, Background-Free, Third-Harmonic Autocorrelation

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, D N; der Au, J A; Squier, J A

    2004-08-09

    We show that a simple plane wave analysis can be used even under tight focusing conditions to predict the dependence of third-harmonic generation on the polarization state of the incident beam. Exploiting this fact, we then show that circularly polarized beams may be used to spatially characterize the beam focus and temporally characterize ultrashort pulses in high numerical aperture systems by experimentally demonstrating, for the first time, novel collinear, background-free, third-harmonic intensity autocorrelations in time and space in a high numerical aperture microscope. We also discuss the possibility of using third harmonic generation with circularly polarized beams for background-free collinear frequency resolved optical gating.

  4. High throughput second harmonic imaging for label-free biological applications

    KAUST Repository

    Macias Romero, Carlos

    2014-01-01

    Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.

  5. Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul

    2006-03-30

    The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.

  6. Non-collinear Generation of Angularly Isolated Circularly Polarized High Harmonics

    Science.gov (United States)

    2015-09-21

    the electromagnetic field propagator49. The target (gas jet) was discretized into elementary radiators and propagated the emitted field Ej(rd,t) to...harmonic generation using analytical descriptions in both the photon and wave models. Advanced numerical simulations indicate that this non-collinear mixing...collinear HHG using both intuitive physical models as well as advanced numerical calculations. In the photon picture (Fig. 1b), we show that the NCP

  7. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N

    2017-09-13

    We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

  8. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2017-05-15

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  9. High-power green light generation by second harmonic generation of single-frequency tapered diode lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2010-01-01

    We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...... laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50....

  10. High-power green light generation by second harmonic generation of single-frequency tapered diode lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd;

    2010-01-01

    laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50.......We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...

  11. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  12. Anchor Trial Launch

    Science.gov (United States)

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  13. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    Science.gov (United States)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X.

    2012-10-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ1.7 + 0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ˜25 and ˜100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  14. High-Performance Harmonic Isolation and Load Voltage Regulation of the Three-Phase Series Active Filter Utilizing the Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    . The SAF-compensated system utilizing WRM provides highperformance load harmonic voltage isolation and load voltage regulation at steady-state and during transients compared to the system utilizing the synchronous reference-frame-based signal decomposition. In addition, reducing the line current sampling......This paper develops a waveform reconstruction method (WRM) for high accuracy and bandwidth signal decomposition of voltage-harmonic-type three-phase diode rectifier load voltage into its harmonic and fundamental components, which are utilized in the series active filter (SAF) control algorithms...

  15. Implementation of PLL and FLL trackers for signals with high harmonic content and low sampling frequency

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Iov, Florin; Sera, Dezso

    2014-01-01

    The accurate tracking of phase, frequency, and amplitude of different frequency components from a measured signal is an essential requirement for many digitally controlled equipment. The accurate and robust tracking of a frequency component from a complex signal was successfully applied for example...... signal is rich in harmonics and the sampling frequency is close to the tracked frequency component. In this paper different discretization methods and implementation issues, such as Tustin, Backward-Forward Euler, are discussed and compared. A special case is analyzed, when the input signal is reach...

  16. Laser dyes excited by high PRR Nd:YAG laser second-harmonic radiation

    Science.gov (United States)

    Soldatov, A. N.; Donin, V. I.; Jakovin, D. V.; Reimer, I. V.

    2008-01-01

    The lasing characteristics of red-emitting dyes in ethanol excited by Nd:YAG laser second-harmonic radiation are examined. The Nd:YAG laser was pumped by a diode matrix. The pump pulse repetition rates (PRRs) were 2.5 - 10 kHz and the pulse duration was 60 - 300 ns. The following dyes were evaluated: oxazine 17, DCM, DCM sp, and pyridine 1. The conversion efficiency for oxazine was 25 % without wavelength selection and 15 % with wavelength selection over the tuning range from 630 to 700 nm. The Nd:YAG and dye laser designs used are described elsewhere [1,2].

  17. Strong-Field Many-Body Physics and the Giant Enhancement in the High-Harmonic Spectrum of Xenon

    CERN Document Server

    Pabst, Stefan

    2013-01-01

    We resolve an open question about the origin of the giant enhancement in the high-harmonic generation (HHG) spectrum of atomic xenon around 100 eV. By solving the many-body time-dependent Schr\\"odinger equation with all orbitals in the 4d, 5s, and 5p shells active, we demonstrate the enhancement results truly from collective many-body excitation induced by the returning photoelectron via two-body interchannel interactions. Without the many-body interactions, which promote a 4d electron into the 5p vacancy created by strong-field ionization, no collective excitation and no enhancement in the HHG spectrum exist.

  18. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high-intensity laser waves

    Energy Technology Data Exchange (ETDEWEB)

    Rax, J.M. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States))

    1992-12-01

    The dynamics of an electron in a finite set of linearly or circularly polarized ultra-high-intensity (above 10{sup 18} W/cm{sup 2}) laser waves is investigated within the framework of a Hamiltonian analysis. The Compton harmonic resonances are identified as the source of various stochastic instabilities. The stochasticity threshold due to resonance overlap is calculated and the structure of the resonances is analyzed. The quasilinear kinetic equation describing the evolution of the electron distribution function is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  19. High-gain adaptive regulator for a string equation with uncertain harmonic disturbance under boundary output feedback control

    Institute of Scientific and Technical Information of China (English)

    Baozhu GUO; Wei GUO

    2003-01-01

    This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infitv and meanwhile, the estimated parameter converges to the unknown parameter.

  20. Characterization of multi-jet gas puff targets for high-order harmonic generation using EUV shadowgraphy

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, P.W., E-mail: wachulak@gmail.com [Institute of Optoelectronics, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Bartnik, A.; Jarocki, R.; Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2012-08-15

    Characterization measurements of multi-jet gas puff targets, developed for investigations on high-order harmonic generation (HHG) by a focused laser beam in a gas medium of modulated density, are presented. The targets produced by pulsed injection of gas through a nozzle in a form of a chain of small orifices have been characterized by EUV backlighting at 13.5 nm wavelength. Measurements were performed for nozzles with 5, 7 and 9 orifices of 0.5 mm in diameter each. Density profiles for argon targets have been obtained for the first time.

  1. Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-harmonic generation

    CERN Document Server

    Sato, Takeshi; Brezinova, Iva; Lackner, Fabian; Nagele, Stefan; Burgdorfer, Joachim

    2016-01-01

    We present the numerical implementation of the time-dependent complete-active-space self-consistent-field (TD-CASSCF) method [Phys. Rev. A, 88, 023402 (2013)] for atoms driven by a strong linearly polarized laser pulse. The present implementation treats the problem in its full dimensionality and introduces a gauge-invariant frozen-core approximation, an efficient evaluation of the Coulomb mean field scaling linearly with the number of basis functions, and a split-operator method specifically designed for stable propagation of stiff spatial derivative operators. We apply this method to high-harmonic generation in helium, beryllium, and neon and explore the role of electron correlations.

  2. Thermally induced dephasing of high power second harmonic generation in MgO: LiNbO3 waveguides

    Institute of Scientific and Technical Information of China (English)

    Guohui Li; Xinye Xu

    2011-01-01

    High power second harmonic generation (SHG) in MgO-doped LiNbO3 waveguides is investigated using a three-dimensional (3D) coupled thermo-optical model. Simulations performed for a 1111.6-nm fundamental laser show the influence of the absorptions and the thermally induced dephasing on the conversion efficiencies of the different waveguides. The onset of the thermally induced dephasing effect for each waveguide is also indicated. As a result of high light intensity in the waveguide, nonlinear absorptions are identified as the possible main factors in efficiency losses in specific cases.%High power second harmonic generation (SHG) in MgO-doped LiNbO3 waveguides is investigated using a three-dimensional (3D) coupled thermo-optical model.Simulations performed for a 1111.6-nm fundamental laser show the influence of the absorptions and the thermally induced dephasing on the conversion efficiencies of the different waveguides.The onset of the thermally induced dephasing effect for each waveguide is also indicated.As a result of high light intensity in the waveguide,nonlinear absorptions are identified as the possible main factors in efficiency losses in specific cases.

  3. Covariant harmonic oscillators and coupled harmonic oscillators

    Science.gov (United States)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  4. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain [Physics Division, Institute of Nuclear Energy Research (INER), Longtan, Taoyuan County 32546, Taiwan (China); Leou, Keh-Chyang [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-09-14

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  5. Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.

    Science.gov (United States)

    Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K

    2013-04-26

    Coherent x-ray beams with a subfemtosecond (scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21)  W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

  6. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  7. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, S., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se; Terschlüsen, J. A., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se; Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se [Department of Physics and Astronomy, Molecular and Condensed Matter Physics, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden)

    2015-12-15

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  8. Review and Simulation of Fixed and Adaptive Hysteresis Current Control Considering Switching Losses and High-Frequency Harmonics

    Directory of Open Access Journals (Sweden)

    Hani Vahedi

    2011-01-01

    Full Text Available Hysteresis Current Control (HCC is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.

  9. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    Science.gov (United States)

    Plogmaker, S.; Terschlüsen, J. A.; Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J.

    2015-12-01

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ṡ 1010 photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  10. HELIOS--A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy.

    Science.gov (United States)

    Plogmaker, S; Terschlüsen, J A; Krebs, N; Svanqvist, M; Forsberg, J; Cappel, U B; Rubensson, J-E; Siegbahn, H; Söderström, J

    2015-12-01

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  11. Measurement of Terahertz Optical-Beat Frequency Using High-Order Harmonics of Microwave in a Photoconductive Device

    Directory of Open Access Journals (Sweden)

    Kengo Murasawa

    2011-01-01

    Full Text Available A method for measuring frequencies of the terahertz (THz radiation emitted by the antenna mounted on the photoconductive (PC device is presented. Two laser beams with slightly different frequencies irradiate the PC device, producing a beat current of 1 THz in the photocurrent. A microwave signal is applied to the antenna electrode. The frequency of the THz wave is measured using the homodyne detection of the optical beat with the high-order harmonics of the microwave. It is being investigated that the high-order harmonics are produced by the PC device owing to its nonlinearity. Periodic peaks generated by the homodyne detection were observed in the photocurrent, as the microwave was swept from 16 to 20 GHz with a power of −40 dBm. Using the peak frequencies, the THz-wave frequency was determined to be 1030.3±3.73 GHz. The measurement error is estimated to be less than 0.43 GHz. The proposed method realizes a compact frequency meter in the THz region.

  12. A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine

    Directory of Open Access Journals (Sweden)

    Yujiao Yang

    2017-03-01

    Full Text Available A purified inactivated vaccine (PIV using the Zika virus (ZIKV Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly. The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F. The mutant cDNA clone produced >25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination.

  13. Launch Stabilisation System for Vertical Launch of a Missile

    Directory of Open Access Journals (Sweden)

    K. Sreekumar

    2005-07-01

    Full Text Available The launch platform stabilisation control system is a roll-pitch stabilised platform for the vertical launch of a missile from a naval ship. Stabilisation of the launch platform is achievedwith the help of embedded controllers and electro-hydraulic servo control system. The launch platform is stabilised wrt true horizontal with a 2-axis (roll and pitch stabilisation systemconsisting of a gimbal and a set of three high-pressure servo hydraulic actuators. The control system uses rate gyro and tilt sensor feedbacks for stabilising the platform. This paper outlines the details of the launch platform stabilisation control system, results of digital simulation, and the performance during sea trials.

  14. Parameter analysis for a high-gain harmonic generation FEL using a recently developed 3D polychromatic code

    CERN Document Server

    Biedron, S G; Yu, L H

    2000-01-01

    One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to suppress and can be at a much lower subharmonic of the output radiation. Recently, a 3D code that includes multiple frequencies, multiple undulators (both in quantity and/or type), quadrupole magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed...

  15. Extending the high-order harmonic generation cutoff by means of self-phase-modulated chirped pulses

    Science.gov (United States)

    Neyra, E.; Videla, F.; Pérez-Hernández, J. A.; Ciappina, M. F.; Roso, L.; Torchia, G. A.

    2016-11-01

    In this letter we propose a complementary approach to extend the cutoff in high-order harmonic generation (HHG) spectra beyond the well established limits. Inspired by techniques normally used in the compression of ultrashort pulses and supercontinuum generation, we show this extension can be achieved by means of a nonlinear phenomenon known as self-phase-modulation (SPM). We demonstrated that relatively long optical pulses, around 100 fs full-width half maximum (FWHM), non linearly chirped by SPM, are able to produce a considerable extension in the HHG cutoff. We have also shown it is possible control this extension by setting the length of the nonlinear medium. Our study was supported by the numerical integration of the time-dependent Schrödinger equation joint with a complete classical analysis of the electron dynamic. Our approach can be considered as an alternative to the utilization of optical parametric amplification (OPA) and it can be easily implemented in usual facilities with femtosecond laser systems. This technique also preserves the harmonic yield in the zone of the plateau delimited by I p   +  3.17Up law, even when the driven pulses contain larger wavelength components.

  16. Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of Zebrafish heart using high frame rate ultrasound biomicroscopy.

    Science.gov (United States)

    Park, Jinhyoung; Huang, Ying; Chen, Ruimin; Lee, Jungwoo; Cummins, Thomas M; Zhou, Qifa; Lien, Ching-Ling; Shung, K K

    2013-01-01

    This paper reports a pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) method for visualizing small animal hearts that provides fine spatial resolution at a high frame rate without sacrificing the echo signal to noise ratio (eSNR). A 40 MHz lithium niobate (LiNbO(3)) single element transducer is employed to evaluate the performance of PI-CTHI by scanning tungsten wire targets, spherical anechoic voids, and zebrafish hearts. The wire phantom results show that PI-CTHI improves the eSNR by 4 dB from that of conventional pulse inversion tissue harmonic imaging (PI-THI), while still maintaining a spatial resolution of 88 and 110 μm in the axial and lateral directions, respectively. The range side lobe level of PI-CTHI is 11 dB lower than that of band-pass filtered CTHI (or F-CTHI). In the anechoic sphere phantom study, the contrast-to-noise ratio of PI-CTHI is found to be 2.7, indicating a 34% enhancement over conventional PI-THI. Due to such improved eSNR and contrast resolution, blood clots in zebrafish hearts can be readily visualized throughout heart regeneration after 20% of the ventricle is removed. Disappearance of the clots in the early stages of the regeneration has been observed for 7 days without sacrificing the fish.

  17. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  18. Assessment of hepatic VX2 tumors of rabbits with second harmonic imaging under high and low acoustic pressures

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua Du; Wei-Xiao Yang; Xiang Wang; Xiu-Qin Xiong; Yi Zhou; Tao Li

    2003-01-01

    AIM: To investigate the possible clinical application value of second harmonic imaging under low acoustic pressure.METHODS: Six New Zealand rabbits, averaging 2.7±0.4kg, were selected and operated upon to construct hepatic VX2 tumor carrier model. Hepatic VX2 tumors were imaged with B mode Ultrasonography (US), and second harmonic imaging (SHI) under high mechanic index (1.6) and low mechanic index (0.1). Echo agent was intravenously injected through ear vein at a dose of 0.01 mL/kg under B mode US and high MI SHI, and 0.05 mL/kg under low MI SHI, and then the venous channel was cleaned with sterilized saline.All the images were recorded by magnetic optics (MO),and they were analyzed further by at least two independent experienced sonographers.RESULTS: Totally 6 hypoechoic and 3 hyperechoic lesions were found in the six carrier rabbits with a mean size about 2.1±0.4 under B mode ultrasound, they were oval or round in shape with a clear outline or a hypoechoic halo at the margin of the lesions. Contrast agent could not change the echogenicity of the lesions under B mode US and SHI under high acoustic pressure. However, it could greatly increase the real time visualization sensitivity of the lesions with SHI under low acoustic pressure.CONCLUSION: Our results suggest that contrast enhanced SHI with low MI and a bubble non-destructive method would be much more helpful than conventional SHI in our future clinical applications.

  19. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The

  20. The High-Resolution Doppler Imager: status update 12 years after launch

    Science.gov (United States)

    Skinner, Wilbert R.; Marshall, Alan R.; Gell, David A.; Raines, Jim

    2003-11-01

    The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has been measuring winds in the stratosphere, mesosphere and lower thermosphere since November, 1991. The winds are determined by measuring the Doppler shift of emission and absorption lines in the O2 Atmospheric Band that are located between 630 and 762 nm. HRDI is a triple-etalon Fabry-Perot interferometer that has a resolution of ~0.05 cm-1 and very good white light rejection. A multi-channel detector with 31 channels is used to examine a spectral region 0.5 cm-1 wide and an adjustable filter wheel permits the selection of any one of 13 spectral bands. The long life of this instrument has presented many challenges in keeping the calibrations current and in compensating for inevitable degradations in instrument and spacecraft performance. Some of the problems with the UARS spacecraft the affect HRDI operations are: limited power due to the solar array drive failure; loss of data resulting from a failure of the tape recorders, and loss of attitude knowledge caused by the failure of the star trackers. HRDI has shown little loss in capability over the years with only a decrease in the azimuth rate of the telescope motor a significant sign of aging. This paper will discuss some of these challenges and how they have been met.

  1. Shifting nodal-plane suppressions in high-order harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    CERN Document Server

    Das, T

    2016-01-01

    We analyze the imprint of nodal planes in high-order harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semi-analytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wavefunction. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for $\\mathrm{O}_2$, whose highest occupied molecular orbital provides...

  2. Parameter Analysis For A High-Gain Harmonic Generation FEL By Numerical Calculation Based On 1D Theory

    CERN Document Server

    Li, Yuhui; Zhang, Shancai

    2004-01-01

    The high-gain harmonic generation (HGHG) free-electron laser (FEL) is an important candidate for a fourth-generation light source. Lots of theoretical work has been performed. Recently a further 1D theory about HGHG FEL has been developed. It considers the effects of different parameters for the whole process. An initial program based on this theory has been made. In this paper, a brief comparison of the results from this 1D program and from TDA (3D code) is discussed. It also analyses the parameters for Shanghai deep ultra violate free-electron laser source (SDUV-FEL), including electron beam energy spread, seed laser power, strength of dispersion section etc.

  3. Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, S.; Stabile, H.; Tortora, A.; Monot, P.; Reau, F.; Bougeard, M.; Merdji, H.; Carre, B.; Martin, Ph. [CEA, IRAMIS, Service des Photons Atomes et Molecules, F-91191 Gif- sur-Yvette (France); Joyeux, D.; Phalippou, D.; Delmotte, F.; Gautier, J.; Mercier, R. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS et Universite Paris Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France)

    2009-11-15

    We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10{sup 20} cm{sup -3} 1.1 ns after the creation of a plasma on aluminum target.

  4. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    Science.gov (United States)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  5. Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    Science.gov (United States)

    Das, T.; Figueira de Morisson Faria, C.

    2016-08-01

    We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.

  6. Spatial distribution on high-order-harmonic generation of an H2+ molecule in intense laser fields

    Science.gov (United States)

    Zhang, Jun; Ge, Xin-Lei; Wang, Tian; Xu, Tong-Tong; Guo, Jing; Liu, Xue-Shen

    2015-07-01

    High-order-harmonic generation (HHG) for the H2 + molecule in a 3-fs, 800-nm few-cycle Gaussian laser pulse combined with a static field is investigated by solving the one-dimensional electronic and one-dimensional nuclear time-dependent Schrödinger equation within the non-Born-Oppenheimer approximation. The spatial distribution in HHG is demonstrated and the results present the recombination process of the electron with the two nuclei, respectively. The spatial distribution of the HHG spectra shows that there is little possibility of the recombination of the electron with the nuclei around the origin z =0 a.u. and equilibrium internuclear positions z =±1.3 a.u. This characteristic is irrelevant to laser parameters and is only attributed to the molecular structure. Furthermore, we investigate the time-dependent electron-nuclear wave packet and ionization probability to further explain the underlying physical mechanism.

  7. High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

    Directory of Open Access Journals (Sweden)

    Mark Cronin-Golomb

    2013-04-01

    Full Text Available Atomic force microscopes have become indispensable tools for mechanical characterization of nanoscale and submicron structures. However, materials with complex geometries, such as electrospun fiber networks used for tissue scaffolds, still pose challenges due to the influence of tension and bending modulus on the response of the suspended structures. Here we report mechanical measurements on electrospun silk fibers with various treatments that allow discriminating among the different mechanisms that determine the mechanical behavior of these complex structures. In particular we were able to identify the role of tension and boundary conditions (pinned versus clamped in determining the mechanical response of electrospun silk fibers. Our findings show that high-resolution mechanical imaging with torsional harmonic atomic force microscopy provides a reliable method to investigate the mechanics of materials with complex geometries.

  8. Signatures of double-electron re-combination in high-order harmonic generation driven by spatially inhomogeneous fields

    CERN Document Server

    Chacón, A; Lewenstein, M

    2015-01-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the two-active electron and single-active electron approximation models of the negative hydrogen ion atom, we provide strong evidence that a double non-sequential two-electron recombination appears to be the main responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schr\\"odinger equation (TDSE), and on investigations of the classical electron trajectories resulting from the Newton's equation of motion. Additional comparisons between the negative hydrogen ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multi-electronic systems driven by spatially inhomogeneous fields.

  9. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  10. Role of quantum trajectories associated internuclear-distance on high-order harmonic generation of H2+

    Science.gov (United States)

    Du, Ling-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin

    2017-08-01

    We present the role of quantum trajectories on high-order harmonic generation (HHG) related to the various internuclear distances in hydrogen molecule ions in an intense laser field by solving two-dimensional time-dependent Schrödinger equation. We find that the contribution of the long trajectories in HHG is dominant at smaller internuclear distances, but the contribution of the short trajectories is dominant at larger internuclear distances, it implies that the role of quantum trajectories closes to those HHG of the atom. In addition, the HHG spectrum of hydrogen molecule ions exhibits an internuclear distance-dependent double plateau structure which is related to the electron migrating from one nucleus to another one. Combining with the Morlet transform of quantum time-frequency spectrum and an extended semiclassical analysis, the role of quantum trajectories on HHG with the various internuclear distance are clarified.

  11. A Wilkinson Power Divider with Harmonic Suppression and Size Reduction using High-low Impedance Resonator Cells

    Directory of Open Access Journals (Sweden)

    M. Hayati

    2015-04-01

    Full Text Available A miniaturized Wilkinson power divider using high-low impedance resonator cells are designed and fabricated. The proposed power divider occupies 23.7% of the conventional structure circuit area at the operating frequency of 0.9 GHz and it is also able to suppress harmonics. According to the measured results at 0.9 GHz, the insertion-losses of output ports are 3.087 dB, the return-losses at all ports are more than 30 dB, and the isolation between output ports is better than 35 dB. Also, 2nd to 10th spurious frequencies are suppressed. According to the measured S11, when it is less than -15 dB (from 0.65 GHz to 1.1 GHz the fractional bandwidth of the proposed structure is 50%. Good agreement between simulation and measured results is achieved.

  12. Diffusion Bonded KTiOPO4 Crystal for the Second Harmonic Generation of High Average Power Zigzag Slab Nd:YAG Laser

    Science.gov (United States)

    Tei, Kazuyoku; Kato, Masaaki; Matsuoka, Fumiaki; Niwa, Yosito; Maruyama, Yoichiro; Matoba, Tohru; Arisawa, Takasi

    1999-01-01

    For the second harmonic generation (SHG) of a high-repetition rate and high pulse energy zigzag slab Nd:YAG laser, the direct bonding of two KTiPO4 (KTP) crystals is carried out and their characteristics are studied using the zigzag slab laser that produces 2.1 J energy pulses with a beam having a rectangular cross section at a pulse repetition rate of 100 Hz. Although an angle mismatch of four minutes between two tuning curves is observed for the bonded crystals, the energy conversion efficiency is the same as that of a single KTP crystal. The second harmonic produced is 1 J.

  13. Ablation of boron carbide for high-order harmonic generation of ultrafast pulses in laser-produced plasma

    Science.gov (United States)

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2016-07-01

    We demonstrate the generation of harmonics up to the 27th order (λ=29.9 nm) of 806 nm radiation in the boron carbide plasma. We analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by studying the plasma emission and harmonic spectra from three species. We compare different schemes of the two-color pump of B4C plasma, particularly using the second harmonics of 806 nm laser and optical parametric amplifier (1310 nm) as the assistant fields, as well as demonstrate the sum and difference frequency generation using the mixture of the wavelengths of two laser sources. These studies showed the advantages of the two-color pump of B4C plasma leading to the stable harmonic generation and the growth of harmonic conversion efficiency. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic. Our spatial characterization of harmonics shows their on-axis modification depending on the conditions of frequency conversion.

  14. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.

    Science.gov (United States)

    Yoshizawa, Shin; Yasuda, Jun; Umemura, Shin-ichiro

    2013-08-01

    Cavitation bubbles are known to accelerate therapeutic effects of ultrasound. Although negative acoustic pressure is the principle factor of cavitation, positive acoustic pressure has a role for bubble cloud formation at a high intensity of focused ultrasound when cavitation bubbles provide pressure release surfaces converting the pressure from highly positive to negative. In this study, the second-harmonic was superimposed onto the fundamental acoustic pressure to emphasize either peak positive or negative pressure. The peak negative and positive pressure emphasized waves were focused on a surface of an aluminum block. Cavitation bubbles induced near the block were observed with a high-speed camera by backlight and the size of the cavitation generation region was measured from the high-speed images. The negative pressure emphasized waves showed an advantage in cavitation inception over the positive pressure emphasized waves. In the sequence of the negative pressure emphasized waves immediately followed by the positive pressure emphasized waves, cavitation bubbles were generated on the block by the former waves and the cavitation region were expanded toward the transducer in the latter waves with high reproducibility. The sequence demonstrated its potential usefulness in enhancing the effects of therapeutic ultrasound at a high acoustic intensity.

  15. Second-Harmonic and Third-Harmonic Generations in the Thue-Morse Dielectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    蔡祥宝

    2002-01-01

    Theoretical work on the optical properties of the one-dimensional dielectric superlattice is extended. 3Byv means of a transfer matrix method, the second-harmonic and third-harmonic generations in a one-dimensional tinite Thue Morse dielectric superlattice are analysed. The electric field amplitude variables of the second-harmonic and third-harmonic can be expressed by the formula of matrices. Taking advantage of numerical procedure, we discuss the dependence of the second-harmonic and third-harmonic on the fundamental wavelength and the field amplitude variables of the fundamental wave. High conversion efficiency of the third-harmonic can be obtained at some special fundamental wavelength.

  16. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  17. Probing the wind launching regions of the Herbig Be star HD 58647 with high spectral resolution interferometry

    CERN Document Server

    Kurosawa, Ryuichi; Weigelt, G; Natta, A; Benisty, M; Isella, Andrea; Tatulli, Eric; Massi, F; Testi, Leonardo; Kraus, Stefan; Duvert, G; Petrov, Romain G; Stee, Ph

    2016-01-01

    We present a study of the wind launching region of the Herbig Be star HD 58647 using high angular (lambda/2B=0.003") and high spectral (R=12000) resolution interferometric VLTI-AMBER observations of the near-infrared hydrogen emission line, Br-gamma. The star displays double peaks in both Br-gamma line profile and wavelength-dependent visibilities. The wavelength-dependent differential phases show S-shaped variations around the line centre. The visibility level increases in the line (by ~0.1) at the longest projected baseline (88 m), indicating that the size of the line emission region is smaller than the size of the K-band continuum-emitting region, which is expected to arise near the dust sublimation radius of the accretion disc. The data have been analysed using radiative transfer models to probe the geometry, size and physical properties of the wind that is emitting Br-gamma. We find that a model with a small magnetosphere and a disc wind with its inner radius located just outside of the magnetosphere can...

  18. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Science.gov (United States)

    Chen, Hsin-Liang; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain; Leou, Keh-Chyang

    2014-09-01

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  19. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    Science.gov (United States)

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Fleischer, Avner; Bordo, Eliyahu; Fan, Tingting; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2016-06-01

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.

  20. LM-3B Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    LM-3B launch vehicle is a heavy three-stage liquid propellant strap-on launch vehicle, which was developed based on the mature technologies of the LM-3A and LM-2E. It not only has the highest payload capacity to send China's satellites to GTO, but is also one of the most advanced launch vehicles in the world with high reliability, reasonable price and perfect technological design.

  1. Objective Quantification of Pre-and Postphonosurgery Vocal Fold Vibratory Characteristics Using High-Speed Videoendoscopy and a Harmonic Waveform Model

    Science.gov (United States)

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J.

    2014-01-01

    Purpose: The model-based quantitative analysis of high-speed videoendoscopy (HSV) data at a low frame rate of 2,000 frames per second was assessed for its clinical adequacy. Stepwise regression was employed to evaluate the HSV parameters using harmonic models and their relationships to the Voice Handicap Index (VHI). Also, the model-based HSV…

  2. Towards a quantitative understanding of high $p_T$ flow harmonics

    CERN Document Server

    Noronha, Jorge

    2016-01-01

    In this proceedings I briefly review the recent progress achieved on the calculation of $v_n$ at high $p_T$ via the coupling of a jet energy loss model with full event-by-event viscous hydrodynamics. It is shown that that this framework can simultaneously describe experimental data for $R_{AA}$, $v_2$, and $v_3$ at high $p_T$. High $p_T$ $v_2$ is found to be approximately linearly correlated with the soft $v_2$ on an event-by-event basis, which opens up a new way to correlate soft and hard observables in heavy ion collisions.

  3. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  4. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  5. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Science.gov (United States)

    Plötzing, M.; Adam, R.; Weier, C.; Plucinski, L.; Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M.; Mathias, S.; Schneider, C. M.

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  6. Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency Harmonics Interrogation for Structural Damage Detection

    Science.gov (United States)

    2014-09-17

    AFRL-OSR-VA-TR-2014-0255 ADAPTIVE PIEZOELECTRIC CIRCUITRY SENSOR NETWORK KON-WELL WANG MICHIGAN UNIV ANN ARBOR Final Report 09/17/2014 DISTRIBUTION A...by ANSI Std. Z39.18 09-09-2014 Final Performance Report 06-01-2011 - 05-31-2014 Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency...approach. Specifically, we propose to create a new concept of adaptive high-frequency piezoelectric self-sensing interrogation by means of tunable

  7. Multielectron effects in high harmonic generation in N2 and benzene: simulation using a non-adiabatic quantum molecular dynamics approach for laser-molecule interactions.

    Science.gov (United States)

    Dundas, Daniel

    2012-05-21

    A mixed quantum-classical approach is introduced which allows the dynamical response of molecules driven far from equilibrium to be modeled. This method is applied to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations are possible. The approach is applied to the study of high harmonic generation in N(2) and benzene using linearly polarized laser pulses and, to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N(2) an enhancement of the cut-off harmonics is observed whenever the laser polarization is aligned perpendicular to the molecular axis. This enhancement is attributed to the symmetry properties of the Kohn-Sham orbital that responds predominantly to the pulse. In benzene we predict that a suppression in the cut-off harmonics occurs whenever the laser polarization is aligned parallel to the molecular plane. We attribute this suppression to the symmetry-induced response of the highest-occupied molecular orbital.

  8. Influence of High-Order Harmonic on Reactance Converter%高次谐波对电抗变换器的影响

    Institute of Scientific and Technical Information of China (English)

    李延新

    2012-01-01

    Currently some relay protection device converters use reactance converters and low-pass filters. This paper analyzes the composition and mathematical models of reactance converters and low-pass filters and their influences on higher harmonics. It is found that the reactance converter significantly enlarges the high-order harmonic, while the low-pass filter reduces the higher harmonic, but the AC circuit containing reactance converters enlarges the high order harmonic on the whole. The conclusions are proved by MATLAB and the waveform of the protection device. In addition, the paper proposes some suggestions on development of the protection devices in the future.%目前,部分继电保护装置采用电抗变换器以及低通滤波回路.分析了电抗变换器以及低通滤波回路的组成、数学模型以及对高次谐波的影响.得出电抗变换器显著放大了高次谐波,通过MATLAB仿真以及保护装置的实际波形,证明了电抗变换器对高次谐波的放大作用,并对以后的保护装置的开发提出了建议.

  9. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  10. Quantum path control of H2 + during a high-order harmonic generation process by adjusting the laser intensity of a terahertz assisted field

    Science.gov (United States)

    Ge, Xin-Lei

    2016-06-01

    We investigate high-harmonic generation (HHG) for the \\text{H}2+ molecular ion by solving a two-dimensional time-dependent Schrödinger equation in the combination of a circularly polarized laser pulse and a terahertz (THz) field. The results published recently by Ge et al (Opt. Express 23 8837-44) show that the harmonic intensity can be greatly enhanced when a THz field is added. Our work is an extension of Ge et al’s. We focus on considering the influence of THz field with different peak intensity, which shows that, with the increasing peak intensity of THz field, the cutoff of the harmonics can be remarkably extended, and the harmonic spectrum presents a two-plateau structure. The time-frequency analysis shows that the long trajectory makes a contribution to HHG when the intensity of THz field is low. With the increase of peak intensity of THz field, the long trajectory gradually disappears and the short trajectory makes the main contribution to HHG. We present the classical trajectory of the electron and the temporal evolution of the probability density of the electron wave packet to further understand the electron motion and the physical insight into HHG.

  11. High harmonic generation in H$_{2}^{+}$ and HD+ by intense femtosecond laser pulses: A wave packet approach with nonadiabatic interaction in HD+

    Indian Academy of Sciences (India)

    Farzana Sharmin; Samir Saha; S S Bhattacharyya

    2013-06-01

    We have theoretically investigated the high harmonic generation (HHG) spectra of H$_{2}^{+}$ and HD+ using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (0) of 3.5 × 1014 and 4.5 × 1014 W/cm2, wavelengths (L) of 800 and 1064 nm, and pulse durations () of 40 and 50 fs, for initial vibrational levels 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD+) radiative transitions can take place. For HD+, the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD+ obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD+ with the NA interaction and hyper-Raman lines in the spectra of both H$_{2}^{+}$ and HD+ for 0 = 1 have been observed for higher value of 0 or L. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.

  12. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  13. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  15. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    Science.gov (United States)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  16. Launch of Zoological Letters.

    Science.gov (United States)

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  17. A high-resolution and harmonized model approach for reconstructing and analyzing historic land changes in Europe

    Science.gov (United States)

    Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.

    2012-10-01

    Currently, up to 30% of global carbon emission is estimated to originate from land use and land changes. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modeling techniques and the integration of land conversion types allow us to create accurate, high resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe changes over the period 1950 to 2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicate that the main drivers of land change over the studied period were urbanization, the reforestation program after the timber shortage since the Second World War, the fall of the Iron Curtain, Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method takes stock of the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristic allow the data to be used to support and improve ongoing GHG inventories and climate research.

  18. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe

    Science.gov (United States)

    Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.

    2013-03-01

    Human-induced land use changes are nowadays the second largest contributor to atmospheric carbon dioxide after fossil fuel combustion. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modelling techniques, and the integration of land conversion types allow us to create accurate, high-resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe has changed over the period 1950-2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicates that the main drivers of land change over the studied period were urbanization, the reforestation program resulting from the timber shortage after the Second World War, the fall of the Iron Curtain, the Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method considers the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristics allow the data to be used to support and improve ongoing GHG inventories and climate research.

  19. A high-resolution and harmonized model approach for reconstructing and analyzing historic land changes in Europe

    Directory of Open Access Journals (Sweden)

    R. Fuchs

    2012-10-01

    Full Text Available Currently, up to 30% of global carbon emission is estimated to originate from land use and land changes. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modeling techniques and the integration of land conversion types allow us to create accurate, high resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011, Ramankutty and Foley (1999, Pongratz et al. (2008 and Hurtt et al. (2006. The results indicate that almost 700 000 km2 (15.5% of land cover in Europe changes over the period 1950 to 2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%. Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicate that the main drivers of land change over the studied period were urbanization, the reforestation program after the timber shortage since the Second World War, the fall of the Iron Curtain, Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method takes stock of the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristic allow the data to be used to support and improve ongoing GHG inventories and climate research.

  20. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe

    Directory of Open Access Journals (Sweden)

    R. Fuchs

    2013-03-01

    Full Text Available Human-induced land use changes are nowadays the second largest contributor to atmospheric carbon dioxide after fossil fuel combustion. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modelling techniques, and the integration of land conversion types allow us to create accurate, high-resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011, Ramankutty and Foley (1999, Pongratz et al. (2008 and Hurtt et al. (2006. The results indicate that almost 700 000 km2 (15.5% of land cover in Europe has changed over the period 1950–2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%. Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicates that the main drivers of land change over the studied period were urbanization, the reforestation program resulting from the timber shortage after the Second World War, the fall of the Iron Curtain, the Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method considers the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristics allow the data to be used to support and improve ongoing GHG inventories and

  1. Efficient generation of highly squeezed light and second harmonic wave with periodically poled MgO:LiNbO_3

    CERN Document Server

    Masada, Genta; Satoh, Yasuhiro; Ishizuki, Hideki; Taira, Takunori; Furusawa, Akira

    2009-01-01

    We report on effective generation of continuous-wave squeezed light and second harmonics with a periodically poled MgO:LiNbO$_{\\mathrm{3}}$ (PPMgLN) crystal which enables us to utilize the large nonlinear optical coefficient $d_{\\mathrm{33}}$. We achieved the squeezing level of $-7.60 \\pm 0.15$dB at 860 nm by utilizing a subthreshol optical parametric oscillator with a PPMgLN crystal. We also generated 400 mW of second harmonics at 430 nm from 570 mW of fundamental waves with 70% of conversion efficiency by using a PPMgLN crystal inside an external cavity.

  2. High harmonics focusing undulator

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S. [Kurchatov Institute, Moscow (Russian Federation)

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  3. Multielectron effects in high harmonic generation in N_2 and benzene: simulation using a non-adiabatic quantum molecular dynamics approach for laser-molecule interactions

    CERN Document Server

    Dundas, Daniel

    2012-01-01

    A mixed quantum-classical approach is introduced which allows the dynamically response of molecules driven far from equilibrium to be modeled. This method is applied here to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations can be performed. The approach is applied to the study of high harmonic generation in N_2 and benzene using linearly-polarized laser pulses and to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N_2 an enhancement ...

  4. A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities

    CERN Document Server

    Karkar, Sami; Vergez, Christophe; 10.1016/j.jsv.2012.09.033

    2012-01-01

    In this paper, we extend the method proposed by Cochelin and Vergez [A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, 324 (2009) 243-262] to the case of non-polynomial nonlinearities. This extension allows for the computation of branches of periodic solutions of a broader class of nonlinear dynamical systems. The principle remains to transform the original ODE system into an extended polynomial quadratic system for an easy application of the harmonic balance method (HBM). The transformation of non-polynomial terms is based on the differentiation of state variables with respect to the time variable, shifting the nonlinear non-polynomial nonlinearity to a time-independent initial condition equation, not concerned with the HBM. The continuation of the resulting algebraic system is here performed by the asymptotic numerical method (high order Taylor series representation of the solution branch) using a further differentiation ...

  5. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  6. Cassini launch contingency effort

    Science.gov (United States)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  7. Extension of high-order harmonic cutoff frequency by synthesizing the waveform of a laser field via the optimization of classical electron trajectory in the laser field

    Institute of Scientific and Technical Information of China (English)

    Zhao Di; Li Fu-Li

    2013-01-01

    We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields.The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane.The classical trajectory consists of three sections (Acceleration Away,Deceleration Away,and Acceleration Back),and their relationship with the electron recollision energy is investigated.The analysis of classical trajectories indicates that,besides the final (Acceleration Back) section,the electron recollision energy also relies on the previous two sections.We simultaneously optimize the waveform in all three sections to increase the electron recollision energy,and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.

  8. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  9. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  10. Optimal Selective Harmonic Control for Power Harmonics Mitigation

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    the cost, the complexity and the performance: high accuracy, fast transient response, easy-implementation, cost-effective, and also easy-to-design. The analysis and synthesis of the optimal SHC system are addressed. The proposed SHC offers power convert-ers a tailor-made optimal control solution......This paper proposes an Internal Model Principle (IMP) based optimal Selective Harmonic Controller (SHC) for power converters to mitigate power harmonics. According to the harmonics distribution caused by power converters, a universal recursive SHC module is developed to deal with a featured group...... of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...

  11. Small Space Launch: Origins & Challenges

    Science.gov (United States)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  12. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  13. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Katsuno, Takashi, E-mail: e1417@mosk.tytlabs.co.jp; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu [Toyota Central R and D Laboratories Inc., Nagakute, Aichi 480-1192 (Japan); Manaka, Takaaki; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan)

    2014-06-23

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  14. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering Faradaic processes at glassy carbon and at boron-doped diamond electrodes.

    Science.gov (United States)

    Zhang, Jie; Guo, Si-Xuan; Bond, Alan M; Marken, Frank

    2004-07-01

    Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.

  15. The Falcon I Launch Vehicle

    OpenAIRE

    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne

    2004-01-01

    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  16. Spherical harmonics in texture analysis

    Science.gov (United States)

    Schaeben, Helmut; van den Boogaart, K. Gerald

    2003-07-01

    The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.

  17. New product development and product launch strategies

    OpenAIRE

    Filiz Bozkurt Bekoğlu; Ahu Ergen

    2016-01-01

    In today’s highly competitive environment, a balanced product portfolio, success in new product development and product launch are important factors for the sustainability of organizations. The aim of the study is to reveal the right product launch steps for the companies through theory and case study. In the study, new product development and product launch strategies are first investigated theoretically. Afterwards, a successful product series launch case from cosmetics sector is analyzed. ...

  18. High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide

    Science.gov (United States)

    Ming, Lu; Gawith, Corin B. E.; Gallo, Katia; O'Connor, Martin V.; Emmerson, Gregory D.; Smith, Peter G. R.

    2005-06-01

    We report a modified technique for the fabrication of zinc-diffused channel waveguides using z-cut electric-field periodically poled LiNbO3. Unlike previous work, the diffusion was carried out using metallic zinc at atmospheric pressure. By optimizing the thermal diffusion parameters, channel waveguides that preserve the existing periodically poled domain structures, support both TE and TM modes, and enhance photorefractive damage resistance were obtained. Nonlinear characterisation of the channel waveguides was investigated via second harmonic generation of a 1552nm laser with a maximum conversion efficiency of 59%W-1cm-2 at 14.6ºC. Using a pulsed source a second harmonic conversion efficiency of 81% was achieved.

  19. LiNbO3 ridge waveguides realized by precision dicing on silicon for high efficiency second harmonic generation

    CERN Document Server

    Chauvet, Mathieu; Bassignot, Florent; Devaux, Fabrice; Gauthier-Manuel, Ludovic; Pêcheur, Vincent; Maillotte, Hervé; Dahmani, Brahim

    2016-01-01

    Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only use of a precision dicing machine without need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. Influence of geometrical non uniformities of waveguides due to fabrication process is asserted. Components characteristics are studied notably their robustness and tunability versus temperature.

  20. A new method to suppress high-order harmonics for synchrotron radiation soft x-ray beamline

    CERN Document Server

    Guo, Zhi-Ying; Xing, Hai-Ying; Tang, Kun; Han, Yong; Chen, Dong-Liang; Zhao, Yi-Dong

    2014-01-01

    A feasible and convenient method has been proposed to suppress higher-harmonics for varied-line-spacing (VLS) plane grating monochromator in soft x-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at Beijing Synchrotron Radiation Facility (BSRF).

  1. The spatial distribution in high-order harmonic generation of H2+ with different time delays of the two-color laser fields

    Science.gov (United States)

    Zhang, Jun; Pan, Xue-Fei; Du, Hui; Xu, Tong-Tong; Guo, Jing; Liu, Xue-Shen

    2017-01-01

    We theoretically investigate the high-order harmonic generation (HHG) and the spatial distribution in HHG of the H2+ molecule by introducing a time-delayed two-color laser field which consists of the mid-infrared and near-infrared laser field. For the different time delays of the two-color laser fields, the pulse shapes are changed which result in the variation of the electron recombined with the nuclei along the positive- or negative-z direction. When the time delay is 0 fs (1.34 fs), a smooth harmonic plateau from the electron recombined with the nuclei along the negative (positive)-z direction can be achieved. An isolated attosecond pulse with a duration of about 99 as is generated when the time delay is 1.34 fs. We perform the classical analysis which is consistent with the numerical results from the one-dimensional non-Born-Oppenheimer time dependent Schrödinger equation (TDSE). We also investigate emission time of harmonics in terms of a time-frequency analysis to further understand the underlying physical mechanism.

  2. A New Method for Estimating the Number of Harmonic Components in Noise with Application in High Resolution Radar

    Directory of Open Access Journals (Sweden)

    Radoi Emanuel

    2004-01-01

    Full Text Available In order to operate properly, the superresolution methods based on orthogonal subspace decomposition, such as multiple signal classification (MUSIC or estimation of signal parameters by rotational invariance techniques (ESPRIT, need accurate estimation of the signal subspace dimension, that is, of the number of harmonic components that are superimposed and corrupted by noise. This estimation is particularly difficult when the S/N ratio is low and the statistical properties of the noise are unknown. Moreover, in some applications such as radar imagery, it is very important to avoid underestimation of the number of harmonic components which are associated to the target scattering centers. In this paper, we propose an effective method for the estimation of the signal subspace dimension which is able to operate against colored noise with performances superior to those exhibited by the classical information theoretic criteria of Akaike and Rissanen. The capabilities of the new method are demonstrated through computer simulations and it is proved that compared to three other methods it carries out the best trade-off from four points of view, S/N ratio in white noise, frequency band of colored noise, dynamic range of the harmonic component amplitudes, and computing time.

  3. Magnetic Launch Assist Experimental Track

    Science.gov (United States)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  5. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren

    2009-01-01

    have received less attention. This study considers the interdependencies between strategic, internally and externally, directed tactical launch activities and investigates both direct and indirect performance effects. The analysis is based upon data from 113 technological innovations launched...

  6. Possible role of cochlear nonlinearity in the detection of mistuning of a harmonic component in a harmonic complex

    Science.gov (United States)

    Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh

    2015-12-01

    The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection

  7. harmonics mitigation on industrial loads using series and parallel ...

    African Journals Online (AJOL)

    user

    This work compared the use of series and parallel resonant harmonic filters in suppressing harmonics ... industrial applications high technology devices related to communication .... magnification is large because of high circuit Q-factor or.

  8. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning.

    Science.gov (United States)

    Mihailescu, A.

    2016-12-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond (fs) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  9. Killing vector fields and harmonic superfield theories

    Energy Technology Data Exchange (ETDEWEB)

    Groeger, Josua, E-mail: groegerj@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin (Germany)

    2014-09-15

    The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.

  10. A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beamline

    Science.gov (United States)

    Guo, Zhi-Ying; Xing, Hai-Ying; Hong, Cai-Hao; Tang, Kun; Han, Yong; Chen, Dong-Liang; Zhao, Yi-Dong

    2015-04-01

    A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of the exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at the Beijing Synchrotron Radiation Facility (BSRF). Supported by National Natural Science Foundation of China (11375227, 61204008)

  11. General -Harmonic Blaschke Bodies

    Indian Academy of Sciences (India)

    Yibin Feng; Weidong Wang

    2014-02-01

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties. In particular, we obtain the extreme values concerning the volume and the -dual geominimal surface area of this new notion.

  12. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling

    Institute of Scientific and Technical Information of China (English)

    H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi

    2015-01-01

    A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.

  13. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  14. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  15. Comparison of natural and forced amplification regimes in plasma-based soft-x-ray lasers seeded by high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Eduardo; Zeitoun, Philippe; Lambert, Guillaume; Sebban, Stephane [Laboratoire d' Optique Appliquee, ENSTA ParisTech, Ecole Polytechnique Paris Tech, CNRS, UMR 7639, F-91761 Palaiseau Cedex (France); Fajardo, Marta [GoLP, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Ros, David [Laboratoire de Physique des Gaz et Plasmas, Universite Paris Sud 11, Orsay (France); Velarde, Pedro [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain)

    2011-07-15

    The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-{mu}J, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.

  16. Mode-locking of a high power, 888 nm pumped Nd:YVO4 laser using nonlinear polarization rotation via Type I second harmonic generation.

    Science.gov (United States)

    Schäfer, Christoph; Fries, Christian; Theobald, Christian; L'huillier, Johannes A

    2013-01-15

    Continuous-wave mode-locking of a laser exploiting the nonlinear polarization rotation (NPR) technique via Type I second harmonic generation is demonstrated for the first time. The NPR is generated by a lithium triborate crystal and transformed into nonlinear cavity losses of a 888 nm pumped Nd:YVO4 laser. Self-starting, reliable mode-locking has been achieved at a high average output power of 20.6 W and a pulse duration of 7.3 ps. Furthermore, transform limited pulses down to 2.7 ps have been demonstrated at 9.9 W.

  17. New Product Launching Ideas

    Science.gov (United States)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  18. Cumulants and nonlinear response of high $p_T$ harmonic flow at $\\sqrt{s_{NN}}=5.02$ TeV

    CERN Document Server

    Betz, Barbara; Luzum, Matthew; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia

    2016-01-01

    Event-by-event fluctuations caused by quantum mechanical fluctuations in the wave function of colliding nuclei in ultrarelativistic heavy ion collisions were recently shown to be necessary for the simultaneous description of $R_{AA}$ as well as the elliptic and triangular flow harmonics at high $p_T$ in PbPb collisions at the Large Hadron Collider. In fact, the presence of a finite triangular flow as well as cumulants of the flow harmonic distribution that differ from the mean are only possible when these event-by-event fluctuations are considered. In this paper we combine event-by-event viscous hydrodynamics and jet quenching to make predictions for high $p_T$ $R_{AA}$, $v_2\\{2\\}$, $v_3\\{2\\}$, and $v_2\\{4\\}$ in PbPb collisions at $\\sqrt{s_{NN}}=5.02$ TeV. With an order of magnitude larger statistics we find that high $p_T$ elliptic flow does not scale linearly with the soft elliptical flow, as originally thought, but has deviations from perfectly linear scaling. A new experimental observable, which involves ...

  19. A Designated Harmonic Suppression Technology for Sampled SPWM

    Institute of Scientific and Technical Information of China (English)

    YANG Ping

    2005-01-01

    Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for sampled SPWM, which is an improved algorithm for the harmonic suppression in high voltage and high frequency spectrum. As the technology is applied in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic of SP WM is also improved.

  20. Harmonic function theory

    CERN Document Server

    Axler, Sheldon; Ramey, Wade

    2013-01-01

    This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.

  1. Degradation feature extraction of the hydraulic pump based on high-frequency harmonic local characteristic-scale decomposition sub-signal separation and discrete cosine transform high-order singular entropy

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-07-01

    Full Text Available Hydraulic pump degradation feature extraction is a key step of condition-based maintenance. In this article, a novel method based on high-frequency harmonic local characteristic-scale decomposition sub-signal separation and discrete cosine transform high-order singular entropy is proposed. In order to reduce noises and other disturbances, the vibration signal is processed by the local characteristic-scale decomposition modified by the high-frequency harmonic. Sub-signal with sensitive information is obtained by blind source separation of the selected intrinsic scale components. Furthermore, the discrete cosine transform high-order spectral analysis algorithm is proposed to extract singular entropies of Shannon and Tsallis to be the degradation features of the hydraulic pump. Analysis of the hydraulic pump experiment demonstrates that the proposed method is feasible and effective in indicating the performance degradation of the hydraulic pump.

  2. Harmonic and complex analysis in several variables

    CERN Document Server

    Krantz, Steven G

    2017-01-01

    Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...

  3. Femtosecond laser fabrication of sub-diffraction nanoripples on wet Al surface in multi-filamentation regime: High optical harmonics effects?

    Energy Technology Data Exchange (ETDEWEB)

    Ionin, A.A.; Kudryashov, S.I., E-mail: sikudr@lebedev.ru; Makarov, S.V.; Rudenko, A.A.; Saltuganov, P.N.; Seleznev, L.V.; Sinitsyn, D.V.; Sunchugasheva, E.S.

    2014-02-15

    Relief ripples with sub-diffraction periods (≈λ{sub las}/3, λ{sub las}/4) were produced on a aluminum surface immersed in water and irradiated in a multi-filamentation regime by focused 744 nm femtosecond laser pulses with highly supercritical, multi-GW peak powers. For the VUV (8.5 eV) surface plasmon resonance on the wet aluminum surface, such small-scale surface nanogratings can be produced by high – second and third – optical harmonics, coming to the surface from the optical filaments in the water layer. Then, the sub-diffraction surface ripples may appear through interference of their transverse electric fields with the longitudinal electric fields of their counterparts, scattered on the surface roughness and appeared as the corresponding high-energy, high-wavenumber surface polaritons.

  4. Identification of problems when using long high voltage AC cable in transmission system II: Resonance & Harmonic resonance

    DEFF Research Database (Denmark)

    Rahimi, Saeed; Wiechowski, W.; Randrup, M.;

    2008-01-01

    cable in transmission system. The objective of this paper and the companion paper is to address the most important problems expected in transmission system with relatively larger share of long HV underground cables. The end goal will be a guideline to special solutions and precautions to avoid dangerous...... over voltage problems and also resonance problems in a transmission network with future increased share of cables. Two major categories of problems are switching transient and resonance problems. In each category of the possible problems, first some theoretical background is provided...... and then the problem and countermeasures are discussed. In this paper most important resonance problems are addressed and discussed. Three main categories of resonance problems are: Near Resonance, Harmonic resonance and Ferroresonance....

  5. Internuclear-distance dependence of the role of excited states in high-order-harmonic generation of H2+

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2013-01-01

    equilibrium value where also recombination to the 2Σg+ (1sσg) ground state dominates. As the internuclear distance is increased, the minimum first shifts in position compared with the prediction of the two-center interference model and subsequently disappears. These effects are caused by the excited 2Σu+ (2......pσu) state, partly due to the interference between the amplitudes of recombination to the ground and excited states, but also partly due to the signal associated with recombination to the excited state alone. We find that at internuclear distances beyond R≃3 a.u. the signal close to the harmonic...... cutoff may be completely dominated by recombination into the excited 2Σu+ (2pσu) state....

  6. Dual Time Stepping Algorithms With the High Order Harmonic Balance Method for Contact Interfaces With Fretting-Wear

    CERN Document Server

    Salles, Loic; Gouskov, Alexandre; Jean, Pierrick; Thouverez, Fabrice

    2014-01-01

    Contact interfaces with dry friction are frequently used in turbomachinery. Dry friction damping produced by the sliding surfaces of these interfaces reduces the amplitude of bladed-disk vibration. The relative displacements at these interfaces lead to fretting-wear which reduces the average life expectancy of the structure. Frequency response functions are calculated numerically by using the multi-harmonic balance method (mHBM). The dynamic Lagrangian frequency-time method is used to calculate contact forces in the frequency domain. A new strategy for solving nonlinear systems based on dual time stepping is applied. This method is faster than using Newton solvers. It was used successfully for solving Nonlinear CFD equations in the frequency domain. This new approach allows identifying the steady state of worn systems by integrating wear rate equations a on dual time scale. The dual time equations are integrated by an implicit scheme. Of the different orders tested, the first order scheme provided the best re...

  7. TAX HARMONIZATION VERSUS FISCAL COMPETITION

    Directory of Open Access Journals (Sweden)

    Florin Alexandru MACSIM

    2016-12-01

    Full Text Available Recent years have brought into discussion once again subjects like tax harmonization and fiscal competition. Every time the European Union tends to take a step forward critics enter the scene and give contrary arguments to European integration. Through this article we have offered our readers a compelling view over the “battle” between tax harmonization and fiscal competition. While tax harmonization has key advantages as less costs regarding public revenues, leads to higher degree of integration and allows the usage of fiscal transfers between regions, fiscal competition is no less and presents key advantages as high reductions in tax rates and opens a large path for new investments, especially FDI. Choosing tax harmonization or fiscal competition depends on a multitude of variables, of circumstances, the decision of choosing one path or the other being ultimately influenced by the view of central and local authorities. Our analysis indicates that if we refer to a group of countries that are a part of a monetary union or that form a federation, tax harmonization seems to be the best path to choose. Moving the analysis to a group of regions that aren’t taking any kind of correlated actions or that have not signed any major treaties regarding monetary or fiscal policies, the optimal solution is fiscal competition.

  8. Three-dimensional current collapse imaging of AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation

    Science.gov (United States)

    Katsuno, Takashi; Manaka, Takaaki; Ishikawa, Tsuyoshi; Soejima, Narumasa; Uesugi, Tsutomu; Iwamoto, Mitsumasa

    2016-11-01

    Three-dimensional (3D) current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistor devices was achieved by a combination of two-dimensional (2D) and depth directional electric field-induced optical second-harmonic generation (EFISHG) measurements. EFISHG can detect the electric field produced by trapped carriers, which causes the current collapse. In the 2D measurement, the strong second-harmonic (SH) signals appeared within 1 μm from the gate edge on the drain side at 0.8 μs after the transition from the off- to no bias- state in both unpassivated and passivated samples. In the depth measurement, the SH signals were generated mainly from the AlGaN surface region of the unpassivated sample due to the presence of high-density trap sites in the AlGaN layer, and SH signals from bulk GaN region were also detected at 50 μs after the transition from the off- to no bias- state in the passivated sample. The origin of the traps is presumably the nitrogen vacancies in the GaN buffer layer.

  9. Sunspots and Their Simple Harmonic Motion

    Science.gov (United States)

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  10. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  11. 交直交型机车的高频谐波混沌分析%Chaos analysis of high-frequency harmonics of locomotive LCI

    Institute of Scientific and Technical Information of China (English)

    张鲲; 张扬; 查晓明; 熊一; 彭光强; 樊友平

    2012-01-01

    针对典型的交直交型动车组CRH2车型,推导出其在正弦脉宽调制下的参数方程,并建立一套新的非线性参数模型.通过混沌原理分析了高次谐波的分形情况,并针对典型的牵引变电站,进行了计算和仿真,依托实际录波的数据验证,证实高频谐波能够导致系统谐振,为混沌分析方法拓展了新的应用.%Considering typical AC-DC-AC multiple units, CRH2 motor car, in this paper we deduce its parametric equations under sine pulse width modulation, and set up a new nonlinear parameter model. Fractal situation of higher harmonic is analyzed based on chaos theory. Aiming at typical traction substations, calculation and simulation are conducted, and the result is verified based on data from actual wave records, which proves that high-frequency harmonic can lead to system resonance and expands the application of chaos analysis method.

  12. A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials

    Institute of Scientific and Technical Information of China (English)

    俎栋林; 郭华; 宋枭禹; 包尚联

    2002-01-01

    The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4 × 6 layers of superconducting wires is de signed The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/Bo in the single-solenoid magnet is 30%lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.

  13. Residual thermal stress of a mounted KDP crystal after cooling and its effects on second harmonic generation of a high-average-power laser

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Yu, Fuli

    2017-01-01

    Thermal problems are huge challenges for solid state lasers that are interested in high output power, cooling of the nonlinear optics is insufficient to completely solve the problem of thermally induced stress, as residual thermal stress remains after cooling, which is first proposed, to the best of our knowledge. In this paper a comprehensive model incorporating principles of thermodynamics, mechanics and optics is proposed, and it is used to study the residual thermal stress of a mounted KDP crystal after cooling process from mechanical perspective, along with the effects of the residual thermal stress on the second harmonic generation (SHG) efficiency of a high-average-power laser. Effects of the structural parameters of the mounting configuration of the KDP crystal on the residual thermal stress are characterized, as well as the SHG efficiency. The numerical results demonstrate the feasibility of solving the problems of residual thermal stress from the perspective on structural design of mounting configuration.

  14. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  15. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge; Lau, Cornwall H [ORNL; Blazevski, Dan [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Berry, Lee Alan [XCEL Engineering Inc., Oak Ridge; Bonoli, P. T. [Massachusetts Institute of Technology (MIT); Gerhardt, S.P. [Princeton Plasma Physics Laboratory (PPPL); Hosea, J. C. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. [Princeton Plasma Physics Laboratory (PPPL); Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. I. [General Atomics, San Diego; Prater, R. [General Atomics; Qin, C M [Chinese Academy of Sciences (CAS), Institute of Plasma Physics, Hefei; Ryan, P. M. [Oak Ridge National Laboratory (ORNL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Valeo, E. J. [Princeton Plasma Physics Laboratory (PPPL); Wilson, Randy [Princeton Plasma Physics Laboratory (PPPL); Wright, J. [Massachusetts Institute of Technology (MIT); Zhang, X J [Chinese Academy of Sciences (CAS), Institute of Plasma Physics, Hefei

    2015-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  16. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.

    Science.gov (United States)

    Sturm, Irene; Blankertz, Benjamin; Potes, Cristhian; Schalk, Gerwin; Curio, Gabriel

    2014-01-01

    Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

  17. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song

    Directory of Open Access Journals (Sweden)

    Irene eSturm

    2014-10-01

    Full Text Available Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently within the subject group identified as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song overlaid on instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

  18. The current issues of internal control and internal audit harmonization

    OpenAIRE

    Синюгіна, Наталія Вікторівна

    2013-01-01

    The relevance of topics related to a harmonization of internal control and internal audit system of internal financial control is being proved. It is high lightened the essence of harmonization period by reviewing existing thoughts on this object, a concept of 'harmonization of internal control and internal audit", and provided reasonably practical recommendations to ensure such harmonization in the modern world. The scientific impact of this research is to clarify the concept of "harmonizati...

  19. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy

    Science.gov (United States)

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L.; de Pablo, Pedro J.; Raman, Arvind

    2013-05-01

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the

  20. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects?

    Science.gov (United States)

    Jayachander Rao, B.; Varandas, A. J. C.

    2016-06-01

    Sub-femtosecond nuclear dynamics and high-order harmonic generation (HHG) studies are reported for the X ˜ 2B1 and A ˜ 2A1 states of Mu2O+ . The photoelectron spectra and autocorrelation functions are calculated by solving the time-dependent Schrödinger equation, and the HHG signals from the autocorrelation functions for the two cationic states. Good agreement is observed with our earlier studies, with the autocorrelation function ratios revealing maxima as a function of time. Expectation values of bond lengths and bond angle show quasiperiodic oscillations that reflect repeated passages of the wavepacket at minima of the potential surfaces, thence being responsible for the HHG peaks.