WorldWideScience

Sample records for launch rocket system

  1. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  2. Design and Feasibility Demonstration of a Deployment System for a Rocket Launched Buoy

    Science.gov (United States)

    1979-09-06

    as described in Section 3.3. 3.2 Deployment Piston After early experiments with the standard Sonobuoy deployment piston it was decided to utilize a...syzt-em- desee 4 s not limited to the electronic buoy for which it was developed but is applicable to any quasi cylindrical payload to be deployed following a rocket launch from the MK 36 launching system. -12-

  3. RADEM: An Air Launched, Rocket Demonstrator for Future Advanced Launch Systems

    Science.gov (United States)

    Parkinson, R. C.; Skorodelov, V. A.; Serdijk, I. I.; Neiland, V. Ya.

    1995-10-01

    Critical features associated with future reusable launch vehicles include reduction of turn around effort, use of integral liquid hydrogen tanks, advanced structures and thermal protection, and re-usable LOx-hydrogen propulsion with low maintenance overheads. Many doubts associated with such designs could be removed by a sub-orbital demonstrator. An air launched vehicle would fulfil many of the objectives for such demonstration. British Aerospace, NPO Molnija, TsAGI and DB Antonov have made an initial study for ESA for such a demonstrator (RADEM), using earlier studies of operational launch systems with the An-225 /Hotol and MAKS proposals. The paper describes the results of this study, including the selection of two potential vehicle designs, and an approach to sub-system design and vehicle development to minimize the costs. It appears that such a vheicle, capable of flying to Mach 12 or beyond using currently available technology, could have a cost an order of magnitude less than that required for development of an operational vehicle.

  4. Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition

    Directory of Open Access Journals (Sweden)

    V. N. Zubov

    2015-01-01

    Full Text Available The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is

  5. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  6. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  7. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  8. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    Science.gov (United States)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  9. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  10. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  12. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  13. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Science.gov (United States)

    2010-01-01

    ... Vehicles (including cruise missile systems, target drones and reconnaissance drones) End-Uses. 744.3... missile systems, target drones and reconnaissance drones) End-Uses. (a) General prohibition. In addition... transfer (in-country) you know that the item: (1) Will be used in the design, development, production...

  14. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  15. Requirements for the appearance and basic design parameters of a micro-rocket system meant for launching nano-, pico, and femtoscale spacecraft

    Science.gov (United States)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2016-12-01

    The paper proposes a concept of a microrocket system meant for the injection of nano-, pico-, and femtoscale satellites into near-Earth orbit. Requirements for the appearance and basic design parameters of the micro-rocket system are substantiated. Characteristics of possible prototypes and analogues of this system are analyzed.

  16. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  17. Relationship of Worldwide Rocket Launch Crashes with Geophysical Parameters

    Directory of Open Access Journals (Sweden)

    N. Romanova

    2013-01-01

    Full Text Available A statistical comparison of launch crashes at different worldwide space ports with geophysical factors has been performed. A comprehensive database has been compiled, which includes 50 years of information from the beginning of the space age in 1957 about launch crashes occurring world-wide. Special attention has been paid to statistics concerning launches at the largest space ports: Plesetsk, Baikonur, Cape Canaveral, and Vandenberg. In search of a possible influence of geophysical factors on launch failures, such parameters as the vehicle type, local time, season, sunspot number, high-energy electron fluxes, and solar proton events have been examined. Also, we have analyzed correlations with the geomagnetic indices as indirect indicators of the space weather condition. Regularities found in this study suggest that further detailed studies of space weather effects on launcher systems, especially in the high-latitude regions, should be performed.

  18. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  19. Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    2007-11-02

    NUCLEAR THERMAL ROCKET PROPULSION SYSTEMS, IAA WHITE PAPER PARIS, FRANCE, MARCH 2005 Lt Col Timothy J. Lawrence U.S. Air Force Academy...YYYY) 18-03-2005 2. REPORT TYPE White Paper 3. DATES COVERED (From - To) 18 Mar 2005 4. TITLE AND SUBTITLE NUCLEAR THERMAL ROCKET PROPULSION...reduce radiation exposure, is to have a high energy system like a nuclear thermal rocket that can get the payload to the destination in the fastest

  20. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  1. NASA's Space Launch System: Momentum Builds Towards First Launch

    Science.gov (United States)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  2. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  3. Rocket

    Directory of Open Access Journals (Sweden)

    K. Karmarkar

    1952-09-01

    Full Text Available The rockets of World War II represented, not the invention of a new weapon, but the modernization of a very old one. As early as 1232 A.D, the Chinese launched rockets against the Mongols. About a hundred years later the knowledge of ledge of rockets was quite widespread and they were used to set fire to buildings and to terrorize the enemy. But as cannon developed, rockets declined in warfare. However rockets were used occasionally as weapons till about 1530 A.D. About this time improvements in artillery-rifled gun barrel and mechanism to absorb recoil-established a standard of efficiency with which rockets could not compare until World War II brought pew conditions

  4. Advanced Launch System Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Area 1-120 consists of three liquid rocket stands, with five firing positions, a control center and various support facilities. Vertical Stand 1A is a...

  5. NASA's Space Launch System: Moving Toward the Launch Pad

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  6. Control of NASA's Space Launch System

    Science.gov (United States)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  7. 液氢加注系统漏热故障对火箭发射的影响%Impact of Liquid Hydrogen Injection System Heat Leakage Fault on the Rocket Launch

    Institute of Scientific and Technical Information of China (English)

    马昕晖; 栾骁; 陈景鹏; 孙克

    2013-01-01

    Using AMEsim modeling object-oriented software, with resistance to fluid and friction loss equation (Darcy-Weisbach) formula, extrusion and heat leakage model, based on liquid hydrogen injection system of the launch range, the paper establishes liquid flow and gas-liquid two-phase flow model, and analyzes the different heat leakage rate, pipe and device thermal failure, which affect the rocket changes in the tank. The results show that high-purity hydrogen flow compared with the actual value, in the two-phase flow model gasification hydrogen pressure, resistance, flow and other parameters have changed the role of the rocket tank's injection height and air pillow pressure; the two-phase flow model can simulate the heat leakage fault and can also indicate injection system failure process and results.%以AMEsim面向对象软件作为建模工具,以液阻与摩擦损失方程Darcy Weisbach公式、挤压与漏热模型为基础,基于发射场液氢加注系统,建立液相流动和气液两相流动模型,分析了不同漏热率,管路、器件漏热故障时对火箭贮箱的影响变化情况.研究结果表明:与液氢流动实际数值相比,两相流模型中气化液氢的压力、阻力、流量等参数的作用,改变了火箭贮箱的加注工位高度和贮箱气枕压力;两相流模型可进行加注系统漏热故障仿真,并能预示加注故障过程与结果.

  8. NASA's Space Launch System: Momentum Builds Toward First Launch

    Science.gov (United States)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  9. Launch Pad Escape System Design (Human Spaceflight)

    Science.gov (United States)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  10. Stardust is lifted in the launch tower for mating with a Boeing Delta II rocket

    Science.gov (United States)

    1999-01-01

    Workers inside the launch tower at Pad 17-A, Cape Canaveral Air Station, watch as the third stage of a Boeing Delta II rocket is lowered for mating with the second stage below it. The Stardust spacecraft, above it out of sight, is connected to the rocket's third stage. Stardust, targeted for liftoff on Feb. 6, is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.

  11. Squid rocket science: How squid launch into air

    Science.gov (United States)

    O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney

    2013-10-01

    Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.

  12. Space Launch System: Building the Future of Space Exploration

    Science.gov (United States)

    Morgan, Markeeva

    2016-01-01

    NASA has begun a new era of human space exploration, with the goal of landing humans on Mars. To carry out that mission, NASA is building the Space Launch System, the world's most powerful rocket. Space Launch System is currently under construction, with substantial amounts of hardware already created and testing well underway. Because of its unrivaled power, SLS can perform missions no other rocket can, like game-changing science and human landings on Mars. The Journey to Mars has begun; NASA has begun a series of missions that will result in astronauts taking the first steps on the Red Planet.

  13. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket

    Science.gov (United States)

    Lin, Charles C. H.; Shen, Ming-Hsueh; Chou, Min-Yang; Chen, Chia-Hung; Yue, Jia; Chen, Po-Cheng; Matsumura, Mitsuru

    2017-08-01

    We report the first observation of concentric traveling ionospheric disturbances (CTIDs) triggered by the launch of a SpaceX Falcon 9 rocket on 17 January 2016. The rocket-triggered ionospheric disturbances show shock acoustic wave signature in the time rate change (time derivative) of total electron content (TEC), followed by CTIDs in the 8-15 min band-pass filtering of TEC. The CTIDs propagated northward with phase velocity of 241-617 m/s and reached distances more than 1000 km away from the source on the rocket trajectory. The wave characteristics of CTIDs with periods of 10.5-12.7 min and wavelength 200-400 km agree well with the gravity wave dispersion relation. The optimal wave source searching and gravity wave ray tracing technique suggested that the CTIDs have multiple sources which are originated from 38-120 km altitude before and after the ignition of the second-stage rocket, 200 s after the rocket was launched.

  14. SpaceX launches cargo ship but rocket recovery test ends in crash

    Institute of Scientific and Technical Information of China (English)

    Jonathan; Amos

    2015-01-01

    The American SpaceX firm says its experiment to bring part of its Falcon rocket down to a soft landing on a floating sea platform did not work.The vehicle was launched on a mission to send a cargo capsule to the International Space Station.But once the first-stage of the rocket completed its part of this task,it tried to make a controlled return.The company CEO Elon Musk tweeted that the booster had hit the platform hard.

  15. Launch Stabilisation System for Vertical Launch of a Missile

    Directory of Open Access Journals (Sweden)

    K. Sreekumar

    2005-07-01

    Full Text Available The launch platform stabilisation control system is a roll-pitch stabilised platform for the vertical launch of a missile from a naval ship. Stabilisation of the launch platform is achievedwith the help of embedded controllers and electro-hydraulic servo control system. The launch platform is stabilised wrt true horizontal with a 2-axis (roll and pitch stabilisation systemconsisting of a gimbal and a set of three high-pressure servo hydraulic actuators. The control system uses rate gyro and tilt sensor feedbacks for stabilising the platform. This paper outlines the details of the launch platform stabilisation control system, results of digital simulation, and the performance during sea trials.

  16. NASA's Space Launch System Progress Report

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2011-01-01

    Exploration beyond Earth will be an enduring legacy for future generations, confirming America's commitment to explore, learn, and progress. NASA's Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program's Saturn V that sent Americans to the Moon. The SLS offers a flexible design that may be configured for the MultiPurpose Crew Vehicle and associated equipment, or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Both options support a national capability that will pay dividends for future generations. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 metric tons (mT) and will be evolvable to 130 mT. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of asteroids and Mars. With its superior lift capability, the SLS can expand the interplanetary highway to many possible destinations, conducting revolutionary missions that will change the way we view ourselves, our planet and its place in the cosmos. To perform missions such as these, the SLS will be the largest launch vehicle ever built. It is being designed for safety and affordability - to sustain our journey into the space age. Current plans include launching the first flight, without crew, later this decade, with crewed flights beginning early next decade. Development work now in progress is based on heritage space systems and working knowledge, allowing for a relatively quick start and for maturing the SLS rocket as future technologies become available. Together, NASA and the U.S. aerospace industry are partnering to develop this one-of-a-kind asset. Many of NASA's space

  17. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  18. NASA's Space Launch System Program Update

    Science.gov (United States)

    May, Todd; Lyles, Garry

    2015-01-01

    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software

  19. NASA Space Launch System Operations Strategy

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  20. Analysis and modeling of infrasound from a four-stage rocket launch.

    Science.gov (United States)

    Blom, Philip; Marcillo, Omar; Arrowsmith, Stephen

    2016-06-01

    Infrasound from a four-stage sounding rocket was recorded by several arrays within 100 km of the launch pad. Propagation modeling methods have been applied to the known trajectory to predict infrasonic signals at the ground in order to identify what information might be obtained from such observations. There is good agreement between modeled and observed back azimuths, and predicted arrival times for motor ignition signals match those observed. The signal due to the high-altitude stage ignition is found to be low amplitude, despite predictions of weak attenuation. This lack of signal is possibly due to inefficient aeroacoustic coupling in the rarefied upper atmosphere.

  1. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    Energy Technology Data Exchange (ETDEWEB)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D. [Astrium GmbH, Space Infrastructure Div. Advanced Programs and System Engineering, Munich (Germany)

    2003-11-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology developments shown in this paper are: Technologies for enhanced heat transfer to the coolant for expander cycle engines. Advanced injector head technologies. Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length. Hot gas side ribs in the chamber. Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques. Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the sub scale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation. (Author)

  2. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    Science.gov (United States)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  3. Demand-type gas supply system for rocket borne thin-window proportional counters

    Science.gov (United States)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  4. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  5. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    Science.gov (United States)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  6. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    Science.gov (United States)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  7. NASA's Space Launch System: Development and Progress

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft

  8. Computing Analysis of Bearing Elements of Launch Complex Aggregates for Space Rocket "Soyuz-2.1v"

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2014-01-01

    Full Text Available The research is devoted to the computational analysis of bearing structures of launch system aggregates, which are designed for the prelaunch preparation and launch security of space rocket (SR "SOYUZ-2" of 1B stage. The bearing structures taken under consideration are the following: supporting trusses (ST, bearing arms (BA, the upper cable girder (UCG, the umbilical mast (UM. The SR “SOYUZ-2" of 1B stage has the characteristics of the propulsion unit (PU thrust, different from those of the "Soyuz" family space rockets exploited before.The paper presents basic modeling principles to calculate units and their operating loadings. The body self-weight and the influence of a gas-dynamic jet of "SOYUZ-2.1B" propulsion unit have been considered as a load of units. Parameters of this influence are determined on the basis of impulse stream fields and of deceleration temperatures calculated for various SR positions according to the specified path of its ascent and demolition.Physical models of the aggregates and calculations are based on the finite elements method and super-elements method using “SADAS” software package developed at the chair SM8 of Bauman Moscow State Technical University.Fields of nodal temperatures distribution in the ST, BA, UCG, UM models, and fields of tension in finite elements as well represent the calculation results.Obtained results revealed the most vulnerable of considered starting system aggregates, namely UM, which was taken for local durability calculation. As an example, this research considers calculation of local durability in the truss branches junction of UM rotary part, for which the constructive strengthening has been offered. For this node a detailed finite-element model built in the model of UM rotary part has been created. Calculation results of local durability testify that the strengthened node meets durability conditions.SR developers used calculation results of launch system aggregates for the space

  9. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.

    2017-01-01

    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  10. Orion Launch Abort System Performance During Exploration Flight Test 1

    Science.gov (United States)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  11. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  12. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    Science.gov (United States)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  13. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    Science.gov (United States)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  14. Energy-Based Acoustic Measurement System for Rocket Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  15. Sounding rocket experiment of bare electrodynamic tether system

    OpenAIRE

    Fujii, Hironori; Watanabe, Takeo; Kojima, Hirohisa; OYAMA, Koh-ichiro; Kusagaya, Tairo; Yamagiwa, Yoshiki; Ohtsu, Hirotaka; Cho, Mengu; Sasaki, Susumu; Tanaka, Koji; Williams, John; Rubin, Binyamin; Les Jhonson, Charles; Khazanov, George; Sanmartín Losada, Juan Ramón

    2009-01-01

    An overview of asounding rocket S-520-25th, project on space tether technology experiment is presented.The project is prepared by an international research group consisting of Japanese,European,American,andAustralianresearchers.The sounding rocket will be assembled by the ISAS/JAXA and will be launched in the summer of 2009.

  16. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  17. Launch Control System Message Reduction

    Science.gov (United States)

    Nguyen, Uyen

    2014-01-01

    System Monitoring and Control (SMC) message browsers receive many messages daily that operators do not need to see. My job is to reduce the number of messages so that warning and emergency messages can be seen easily and therefore, responded to promptly. There are two methods to reduce messages: duplicate and state-based message correlations. With duplicate message correlation, SMC display the message the first time it shows up. The next times it occurs, a duplicate number will count the number of times the message appears. State-based message correlation is a process in which more informative messages acknowledge less useful ones and send them to history. I also work on correcting the severity level and text formats of messages. I follow two SMC message filtering tenets as I'm working on this project. Firstly, before filtering an offending message, a non-conformance (NC) must be created in order to attempt fixing that message through hardware or software. Only after the NC assessment states that it cannot fix an offending message, it can be filtered by SMC. Secondly, per Launch Control System (LCS) Coding Standards, SMC does not send information messages to the active message browser unless it's a response to an operator action.

  18. Launch processing system concept to reality

    Science.gov (United States)

    Bailey, W. W.

    1985-01-01

    The Launch Processing System represents Kennedy Space Center's role in providing a major integrated hardware and software system for the test, checkout and launch of a new space vehicle. Past programs considered the active flight vehicle to ground interfaces as part of the flight systems and therefore the related ground system was provided by the Development Center. The major steps taken to transform the Launch Processing System from a concept to reality with the successful launches of the Shuttle Programs Space Transportation System are addressed.

  19. NASA's Space Launch System: An Enabling Capability for Discovery

    Science.gov (United States)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  20. Ionospheric hole made by a North Korean rocket launched in 2012 December: Observation with the Russian GNSS

    Science.gov (United States)

    Nakashima, Y.; Heki, K.

    2013-12-01

    The Unha-3 rocket was launched due southward at 00:49:46UT on Dec. 12, 2012, from the Tongchang-ri.launch pad on the Yellow Sea side of North Korea. We converted the RINEX format GPS data of the launch day to TEC, and looked for the ionospheric hole signatures. We could not find clear electron depletion signals simply because no GPS satellites were available in the northwestern skies. GPS is the American GNSS system, and other systems are becoming operational. GEONET receivers have been replaced with the new models capable of receiving multiple GNSS, and about 10 percent of them could observe GLONASS and QZSS, the Russian and the Japanese GNSS, respectively, at the time of the Unha-3 launch. More than 20 GLONASS satellites are already in operation, and we used the number 13 satellite to detect the ionospheric hole formation above the Yellow Sea (see Figure). We modified the software to convert RINEX file into TEC time series [Heki et al., JGSJ 2010] in order to handle RINEX v.2.12 files including GLONASS/QZSS data. The broadcast orbits of the GLONASS satellites are given in the geocentric Cartesian coordinates instead of the Keplerian elements like GPS and QZSS. GLONASS uses different microwave frequencies for different satellites, which also required the modification for the original software to calculate TEC. Ozeki & Heki [2010] compared the thrust of the 1998 and 2009 Taepodong missiles by comparing the sizes/depths of the ionospheric holes, and here we compare the hole made by the 2012 December Unha-3 launch with the past cases. The onset times of the depletion are the same, suggesting similar ascending speeds of the three rockets (missiles). Depth of the hole depends both on the amount of water vapor in the exhaust and the background TEC. The hole of the Unha-3 is similar to the 2009 case (or somewhat deeper/larger), which would reflect the vertical TEC in the 2012 case about 1/3 larger than that in 2009. The hole seems to last longer in the 2012 case possibly

  1. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle

    Science.gov (United States)

    Dutton, Kevin E.

    1994-01-01

    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  2. Cloud Climatologies for Rocket Triggered Lightning from Launches at Cape Canaveral Air Force Station and Kennedy Space Center

    Science.gov (United States)

    2012-03-01

    6  Figure 4.  Map indicating five nautical mile ring around the average launch site (light yellow...as a temperature constraint, a wind direction and speed limitation, to potential for lightning occurrence, or a specific cloud formation surrounding...meteorological conditions near the site of the Apollo XII incident (From: Merceret et al. 2010) As the Saturn V rocket with the manned space capsule ascended

  3. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    Science.gov (United States)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  4. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  5. Minimum Cost Nanosatellite Launch System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Delta Velocity Corporation proposes the development of a very low cost, highly responsive nanosat launch system. We propose to develop an integrated propulsion...

  6. Magnetic Launch Assist System Demonstration Test

    Science.gov (United States)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Water-cooled spacecraft: DART to be launched by Russian Volna (Stingray) rocket

    NARCIS (Netherlands)

    Hartmann, L.

    2002-01-01

    A25 September 2005, Barents Sea, near Murmansk.Ten metres under the surface of the sea, the launch tube of the Mstislav, a Rostropovich class nuclear submarine, grinds open. The countdown for the launch of a Volna R-29R slbm (Submarine-Launched Ballistic Missile) starts: For many years, satellites w

  8. Parallelization of Rocket Engine System Software (Press)

    Science.gov (United States)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  9. Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis

    Science.gov (United States)

    Dalle, Derek J.; Rogers, Stuart E.

    2015-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.

  10. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  11. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  12. NASA Facts: Nanosatellite Launch Adapter System (NLAS)

    Science.gov (United States)

    Chartres, James; Cappuccio, Gelsomina

    2013-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or cubesats, onto launch vehicles. A standard cubesat measures about 4inches (10 cm) long, 4 inches wide,and 4 inches high, and is called a one-unit (1U) cubesat. A single NLAS provides the capability to deploy 24U of cubesats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  13. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    Science.gov (United States)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  14. Space Launch System Mission Flexibility Assessment

    Science.gov (United States)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  15. Space Launch System (SLS) Mission Planner's Guide

    Science.gov (United States)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  16. Techniques for developing approximate optimal advanced launch system guidance

    Science.gov (United States)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  17. 75 FR 20344 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Rocket Launches from...

    Science.gov (United States)

    2010-04-19

    ... because no seal lions were present at the traditional haulout on the gravel spit at Ugak. This haulout was... similar acoustic monitoring measurements from both launches. No mortality or injury was observed...

  18. Navigation System for Reusable Launch Vehicle

    OpenAIRE

    Schlotterer, Markus

    2008-01-01

    PHOENIX is a downscaled experimental vehicle to demonstrate automatic landing capabilities of future Reusable Launch Vehicles (RLVs). PHOENIX has flown in May 2004 at NEAT (North European Aerospace Test range) in Vidsel, Sweden. As the shape of the vehicle has been designed for re-entry, the dynamics are very high and almost unstable. This requires a fast and precise GNC system. This paper describes the navigation system and the navigation filter of PHOENIX. The system is introduced and the h...

  19. White list management system was officially launched

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    March 28,in China International Exhibition Center the China National Textile and Apparel Council,held a seminar on the Japanese textile industry standards & white list management system,marking the two sides to build a white list management system was officially launched. It is understood that the white list management system developed self-regulatory standards for the Japanese textile industry,that textiles do

  20. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  1. NASA's Space Launch System: A Transformative Capability for Exploration

    Science.gov (United States)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple

  2. NASA's Space Launch System: A Transformative Capability for Exploration

    Science.gov (United States)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads

  3. Hail Disrometer Array for Launch Systems Support

    Science.gov (United States)

    Lane, John E.; Sharp, David W.; Kasparis, Takis C.; Doesken, Nolan J.

    2008-01-01

    Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a

  4. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  5. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    Science.gov (United States)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  6. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  7. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  8. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    Science.gov (United States)

    Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar

    2016-10-01

    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.

  9. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  10. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    Science.gov (United States)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed

  11. Grenade-launched imaging projectile system (GLIMPS)

    Science.gov (United States)

    Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Lum, Chris

    2001-09-01

    A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a video-bandwidth transmitter. Impact and launch g-loads have been limited to less than 10,000 g's, enabling sensor payloads to be assembled using Commercial Off-The-Shelf components. The GLIMPS projectile is intended to be a general-purpose delivery system for a variety of sensor payloads under the Unattended Ground Sensors program. Test results and development issues are presented.

  12. Orion Launch Abort System Performance on Exploration Flight Test 1

    Science.gov (United States)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  13. A compact and robust diode laser system for atom interferometry on a sounding rocket

    CERN Document Server

    Schkolnik, V; Wenzlawski, A; Grosse, J; Kohfeldt, A; Döringshoff, K; Wicht, A; Windpassinger, P; Sengstock, K; Braxmaier, C; Krutzik, M; Peters, A

    2016-01-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technol...

  14. Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW)

    Science.gov (United States)

    2013-12-01

    Unit Cost BA - Budget Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development...Strategey for GMLRS AW, signed on January 7, 2013, states the program will conduct the Inital Operational Test and Evaluation ( IOT &E) during the Engineering...needed. Necessary assets will be procured to support IOT &E during EMD. The Current Total LRIP reported in the December 31, 2012 SAR was 4943. This

  15. Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW)

    Science.gov (United States)

    2015-12-01

    Operational Test and Evaluation ( IOT &E) during the EMD phase and combine Milestone C with the FRP Decision Review. Therefore, no LRIP is needed. Necessary...assets will be procured to support IOT &E during EMD. GMLRS/GMLRS AW December 2015 SAR March 21, 2016 18:19:01 UNCLASSIFIED 20 Foreign Military Sales...the Cost Review Board process regarding the Program Executive Group (PEG) for Stockpile reliability and training devices . (Previously these were

  16. Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)

    Science.gov (United States)

    Jones, Daniel S.

    2015-01-01

    This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  17. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    Science.gov (United States)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  18. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    Science.gov (United States)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  19. Launch Pad 39 Hail Monitor Array System

    Science.gov (United States)

    2008-01-01

    Weather conditions at Kennedy Space Center are extremely dynamic, and they greatly affect the safety of the Space Shuttles sitting on the launch pads. For example, on May 13, 1999, the foam on the External Tank (ET) of STS-96 was significantly damaged by hail at the launch pad, requiring rollback to the Vehicle Assembly Building. The loss of ET foam on STS-114 in 2005 intensified interest in monitoring and measuring damage to ET foam, especially from hail. But hail can be difficult to detect and monitor because it is often localized and obscured by heavy rain. Furthermore, the hot Florida climate usually melts the hail even before the rainfall subsides. In response, the hail monitor array (HMA) system, a joint effort of the Applied Physics Laboratory operated by NASA and ASRC Aerospace at KSC, was deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network, in conjunction with Colorado State University, continue to test duplicate hail monitor systems deployed in the high plains of Colorado.

  20. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    Science.gov (United States)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  1. Wireless Data Acquisition System for Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Sabooj Ray

    2013-03-01

    Full Text Available Present launch vehicle integration architecture for avionics uses wired link to transfer data between various sub-systems. Depending on system criticality and complexity, MIL1553 and RS485 are the common protocols that are adopted. These buses have their inherent complexity and failure issues due to harness defects or under adverse flight environments. To mitigate this problem, a prototype wireless, data acquisition system for telemetry applications has been developed and demonstrated. The wireless system simplifies the integration, while reducing weight and costs. Commercial applications of wireless systems are widespread. Few systems have recently been developed for complex and critical environments. Efforts have been underway to make such architectures operational in promising application scenarios. This paper discusses the system concept for adapting a wireless system to the existing bus topology. The protocol involved and the internal implementation of the different modules are described. The test results are presented; some of the issues faced are discussed and the; future course of action is identified.Defence Science Journal, 2013, 63(2, pp.186-191, DOI:http://dx.doi.org/10.14429/dsj.63.4262

  2. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  3. Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

    2005-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

  4. Systems Integration Challenges for a National Space Launch System

    Science.gov (United States)

    May, Todd A.

    2011-01-01

    System Integration was refined through the complexity and early failures experienced in rocket flight. System Integration encompasses many different viewpoints of the system development. System Integration must ensure consistency in development and operations activities. Human Space Flight tends toward large, complex systems. Understanding the system fs operational and use context is the guiding principle for System Integration: (1) Sizeable costs can be driven into systems by not fully understanding context (2). Adhering to the system context throughout the system fs life cycle is essential to maintaining efficient System Integration. System Integration exists within the System Architecture. Beautiful systems are simple in use and operation -- Block upgrades facilitate manageable steps in functionality evolution. Effective System Integration requires a stable system concept. Communication is essential to system simplicity

  5. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  6. Beyond Percheron - Launch vehicle systems from the private sector

    Science.gov (United States)

    Horne, W. C.; Pavia, T. C.; Schrick, B. L.; Wolf, R. S.; Fruchterman, J. R.; Ross, D. J.

    Private ventures for operation of spacecraft launching services are discussed in terms of alternative strategies for commercialization of space activities. The Percheron was the product of a philosophy of a cost-, rather than a weight-, minimized a lunch vehicle. Although the engine exploded during a static test firing, other private projects continued, including the launch of the Conestoga, an Aries second stage Minuteman I. Consideration is being directed toward commercial production and launch of the Delta rocket, and $1 and a $1.5 billion offers have been tendered for financing a fifth Orbiter for NASA in exchange for marketing rights. Funding for the ventures is contingent upon analyses of the size and projected growth rate of payload markets, a favorable national policy, investor confidence, and agreeable capitalization levels. It is shown that no significant barriers exist against satisfying the criteria, and private space ventures are projected to result in more cost-effective operations due to increased competition.

  7. Mini-RPV Launch System Conceptual Study

    Science.gov (United States)

    1978-12-01

    are needed to produce total launch forces sufficient to launch mini-RPV’s. 4. Votta , F. A. Jr.;THE THEORY AND DESIGN OF LONG DEFLECTION, CONSTANT...Amendment 1, 29 September 1966. 4. Votta , F. A., Jr., THE THEORY AND DESIGN OF LONG DEFLECTION, CONSTANT FORCE SPRING ELEMENTS, Transactions of the ASME

  8. Aerodynamic Characteristics Simulation Study of Air-launched Launch Vehicle in the Process of Rocket Separating from Plane%空射火箭箭机分离过程气动特性仿真

    Institute of Scientific and Technical Information of China (English)

    屈亮; 张登成; 张艳华; 胡孟权; 李达

    2013-01-01

    为研究内装式空中发射运载火箭在箭机分离过程中的气动特性尤其是大迎角情况下的气动变化规律,应用计算流体力学(CFD)软件中的k-w模型对火箭气动特性进行了仿真研究,得到火箭气动特性随马赫数和迎角的变化规律,同时对改进后的火箭模型进行气动特性分析.仿真结果表明:发现火箭尾部改进成收敛-扩张型喷管可使火箭下落初期有一个抬头力矩,有利于运载火箭初期快速调整姿态;当快到达预期点火姿态时,由于气动力作用点后移产生的与角速度方向相反的力矩,可迫使运载火箭稳定,从而更容易地捕捉到点火角度,并保证点火时的姿态稳定.%For studying the aerodynamic characteristics of rocket in the process of the rocket separating from the plane internally carried air-launched launch vehicle,especially when the rocket is at high angle of attack,CFD is applied to the simulation of rocket aerodynamic characteristics.Based on the improvement of rocket shape,the rocket aerodynamic characteristics with Mach number and angle of attack can be obtained.The analysis of the aerodynamic characteristics of the improved rocket model shows that the rocket tail improved into a convergent nozzle is of great benefit to the attitude adjustment.These analyses provide a theoretical foundation for the further research on rocket attitude stabilization and track design.

  9. System for Acquisition and Analysis of Energy-Based Acoustic Data for Rocket Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  10. A compact and robust diode laser system for atom interferometry on a sounding rocket

    Science.gov (United States)

    Schkolnik, V.; Hellmig, O.; Wenzlawski, A.; Grosse, J.; Kohfeldt, A.; Döringshoff, K.; Wicht, A.; Windpassinger, P.; Sengstock, K.; Braxmaier, C.; Krutzik, M.; Peters, A.

    2016-08-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase.

  11. A Low-Cost Launch Assistance System for Orbital Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Oleg Nizhnik

    2012-01-01

    Full Text Available The author reviews the state of art of nonrocket launch assistance systems (LASs for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks.

  12. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  13. Design and qualification of an UHV system for operation on sounding rockets

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, 28359, Germany and German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Seidel, Stephan Tobias; Becker, Dennis; Lachmann, Maike Diana [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167 (Germany); Scharringhausen, Marco [German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Rasel, Ernst Maria [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167, Bremen (Germany)

    2016-05-15

    The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, as well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.

  14. Damage assessment of long-range rocket system by electromagnetic pulse weapon

    Science.gov (United States)

    Cao, Lingyu; Liu, Guoqing; Li, Jinming

    2017-08-01

    This paper analyzes the damage mechanism and characteristics of electromagnetic pulse weapon, establishes the index system of survivability of long-range rocket launcher system, and uses AHP method to establish the combat effectiveness model of long-range rocket missile system. According to the damage mechanism and characteristics of electromagnetic pulse weapon, the damage effect of the remote rocket system is established by using the exponential method to realize the damage efficiency of the remote rocket system.

  15. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Overview

    Science.gov (United States)

    Popp, Chris; Butt, Adam; Sharp, David; Pitts, Hank

    2008-01-01

    NASA's Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J-2X engine upper stage, is the vehicle that's been chosen to return humans to the moon, mars, and beyond. This paper provides an overview of the work that has taken place on the Ares I launch vehicle roll and reaction control systems. Reaction control systems are found on many launch vehicles and provide a vehicle with a three degree of freedom stabilization during the mission. The Ares I baseline configuration currently consists of a first stage roll control system that will provide the vehicle with a method of counteracting the roll torque that is expected during launch. An upper stage reaction control system will allow the upper stage three degrees of freedom control as needed. Design assessments and trade studies are being conducted on the roll and reaction control systems including: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Other vehicle considerations and issues include thruster plume impingement, thruster module aerothermal and aerodynamic effects, and system integration. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  16. Test on launch jet noise of liquid rocket with single nozzle%单喷管液体火箭发射喷流噪声模拟试验研究

    Institute of Scientific and Technical Information of China (English)

    陈劲松; 曾玲芳; 胡小伟; 范虹

    2015-01-01

    Based on the distinguishing launch technology of trapped launch vehicle,a simpli-fied launch jet noise test system is designed and developed.The test system can be used to simu-late jet noise and jet flow field about liquid rocket launching with single nozzle.Then the series of launch jet noise tests are accomplished.The test results show that the height domain SPL curves of launch jet noise are different from that of free jet noise,while changes of SPL along with time among different test points show the similar tendency,which is caused by the launch pad distur-bing.The frequency domain SPL curves indicate that there are wide frequency characteristics and distinct screams about the launch jet noise,and the screams of launch jet noise usually have har-monic multiple frequencies or monophonic frequency.The launch jet flow field tests accomplished with the launch jet noise tests show that the developing tendencies of time domain SPL curves of launch jet noise are also similar with that of the engine working pressure and the launch jet flow pressure.%针对捆绑式运载火箭发射噪声问题,研制了一种相对简化的单喷管液体火箭发射喷流噪声模拟试验系统,开展了发射喷流噪声模拟试验研究。研究表明:受发射平台结构扰动效应影响,空间高度方向发射喷流噪声变化规律不同于自由喷流噪声变化规律,但不同测点之间噪声声压级随时间变化规律存在相似性;发射喷流噪声频谱存在宽频特性,同时还存在突出倍谐频啸叫特征或突出单基频啸叫特征。发射喷流噪声模拟试验过程中综合了喷流流场研究,研究发现:喷流噪声声压时域变化规律与发动机工作压力、喷流流场压力时域变化规律也存在相似性。

  17. Study on risk measurement about ammunition-rocket system

    Institute of Scientific and Technical Information of China (English)

    Gu Xiaohui; Zhao Youshou

    2005-01-01

    Modern ammunition-rocket system is a complicated multidisciplinary system. During its development,undetermined factors will bring many risks. This paper elaborates the importance of risk analysis approach to ammunition-rocket system development and analyses various methods of risk analysis and estimation. Combined with practical situation of weapon system development, the risk measurement function with characteristics of risk preference is given provided that the risk preference characteristic of behavior maker is risk neutral of fixed constant. The development risk analysis based on risk measurement function enables effective risk decision to be made on the basis of quantified risk.Taking anti-helicopter intelligent mine warhead as an example, the paper verifies the efficiency of the method and shows that it has a scientific and practical value.

  18. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  19. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  20. 闭锁力对火箭弹发射的影响研究%Research on the Effect of Lock Force on Rocket Launching

    Institute of Scientific and Technical Information of China (English)

    崔二巍; 于存贵; 靳青梅; 李猛

    2015-01-01

    In order to investigate the effect of lock force on rocket launching, using the method of launch dynamics simulation, the dynamics model of rocket launcher is built in Adams,launching process with different lock forces is simulated respectively,and the curves of speed, rotational speed and angle displacement of rocket are got. The effect of lock force on initial disturbance and firing dispersion is analyzed according to the simulation results. The research result shows that the effect of lock force on muzzle velocity and muzzle rotational speed is very smal, but it is the main factor inducing the initial disturbance. In order to meet the lock require ̄ments,the lock force should be reduced as much as possible.%为研究闭锁力对火箭弹发射的影响,采用发射动力学仿真的方法,在Adams中建立火箭炮的动力学模型,分别仿真不同闭锁力下火箭弹的发射过程,得到火箭弹速度、转速和角位移等曲线。根据仿真结果,分析闭锁力对火箭弹初始扰动和射击密集度的影响。研究结果表明,闭锁力对火箭弹炮口速度和炮口转速影响微弱,是引起初始扰动的主要因素,在满足闭锁性能要求的情况下应尽可能减小。

  1. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  2. Rocket launchers as passive controllers

    Science.gov (United States)

    Cochran, J. E., Jr.; Gunnels, R. T.; McCutchen, R. K., Jr.

    1981-12-01

    A concept is advanced for using the motion of launchers of a free-flight launcher/rocket system which is caused by random imperfections of the rockets launched from it to reduce the total error caused by the imperfections. This concept is called 'passive launcher control' because no feedback is generated by an active energy source after an error is sensed; only the feedback inherent in the launcher/rocket interaction is used. Relatively simple launcher models with two degrees of freedom, pitch and yaw, were used in conjunction with a more detailed, variable-mass model in a digital simulation code to obtain rocket trajectories with and without thrust misalignment and dynamic imbalance. Angular deviations of rocket velocities and linear deviations of the positions of rocket centers of mass at burnout were computed for cases in which the launcher was allowed to move ('flexible' launcher) and was constrained so that it did not rotate ('rigid' launcher) and ratios of flexible to rigid deviations were determined. Curves of these error ratios versus launcher frequency are presented. These show that a launcher which has a transverse moment of inertia about its pivot point of the same magnitude as that of the centroidal transverse moments of inertia of the rockets launched from it can be tuned to passively reduce the errors caused by rocket imperfections.

  3. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  4. Distributed Web-Based Expert System for Launch Operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  5. Engineering Next Generation Launch Systems for Supportability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to meet the challenges of high probability of mission success for space exploration, ground support system for various launch operations that responds...

  6. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  7. Nuclear thermal rocket workshop reference system Rover/NERVA

    Science.gov (United States)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  8. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    Science.gov (United States)

    Schorr, Andrew A.; Creech, Stephen D.

    2016-01-01

    Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding

  9. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    Science.gov (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  10. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  11. Overview of C/C-SiC Composite Development for the Orion Launch Abort System

    Science.gov (United States)

    Allen, Lee R.; Valentine, Peter G.; Schofield, Elizabeth S.; Beshears, Ronald D.; Coston, James E.

    2012-01-01

    Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.

  12. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    Science.gov (United States)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  13. Academician V.F. Utkin, General Designer of Space Launch Systems

    Science.gov (United States)

    Konyukhov, S.; Novykov, O.

    2002-01-01

    Academician Vladimir Fedorovich Utkin was an outstanding scientist and designer of rocket and space machinery, Doctor of Technical Science, Professor, Twice Hero of Socialist Labor, Lenin Prize and USSR State Prize winner, bearer of six Orders of Lenin and many other government awards. For 19 years, 1971 - 1990, V. F. Utkin held a position of General Designer in Yuzhnoye SDO having inherited this post from Academician Mikhail Kuzmich Yangel - Yuhnoye's founder. From 1990 till 2000 V. F. Utkin headed Central Scientific Research Institute of Machinery of Russia (TsNIIMash) as its General Designer. Under leadership of V. F. Utkin Yuzhnoye SDO designed several generations of unique strategic missile systems that laid the foundation for Rocket Strategic Forces of the Soviet Union and Russia, subsequently, developed one of the largest high-performance liquid- propellant ICBM SS-18 (Satan), solid-propellant ICBM SS-24 designed for both silo and rail- road deployment, environment friendly Zenit launch vehicle, delivered more than three hundred military, scientific and environmental satellites with tasks. A series of complicated scientific and technical problems has been resolved, a number of unique designing and technological solutions has been implemented in course of development, e.g. separating and orbital warheads, pop-up launch of heavy missiles from a container, continuous and persistent combat duty of liquid-propellant missiles, missile tolerance to nuclear explosion damage, liberation of vessels from ice captivity in the Arctic Ocean using Cosmos-1500 satellite - ancestor of the Ocean satellite constellation designed for accomplishment of seafaring tasks. The existing Russian Program for Rocket and Space Machinery development was designed under leadership of V.F. Utkin.

  14. An expert system for spectroscopic analysis of rocket engine plumes

    Science.gov (United States)

    Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy

    The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.

  15. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    Science.gov (United States)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  16. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  17. Flight Performance Feasibility Studies for the Max Launch Abort System

    Science.gov (United States)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  18. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  19. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  20. NASA's Space Launch System: An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  1. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  2. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  3. Multiple dopant injection system for small rocket engines

    Science.gov (United States)

    Sakala, G. G.; Raines, N. G.

    1992-07-01

    The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.

  4. On the Elastic Vibration Model for High Length-Diameter Ratio Rocket with Attitude Control System

    Institute of Scientific and Technical Information of China (English)

    朱伯立; 杨树兴

    2003-01-01

    An elastic vibration model for high length-diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.

  5. Evolved expendable launch vehicle system: RS-68 main engine development

    Energy Technology Data Exchange (ETDEWEB)

    Conley, David [USAF SMC/MVB (United States); Lee, Norman Y.; Portanova, Peter L. [Aerospace Corp. (United States); Wood, Byron K. [Boeing Co., Rocketdyne Propulsion and Power (United States)

    2003-11-01

    Delta IV is one of two competing Evolved Expendable Launch Vehicle (EELV) systems being developed in an industry/United States Government partnership to meet the needs of the new era of space launch for the early decades of the 21st Century. The Rocketdyne Division of The Boeing Company and the United States Air Force have developed a 650 Klbf sea-level (2.9 MN) class liquid hydrogen/liquid oxygen main engine for the Delta IV family of EELV. The purpose of this paper is to present the innovative approach to the design, development, testing and certification of the RS-68 engine. (Author)

  6. Slit scan radiographic system for intermediate size rocket motors

    Science.gov (United States)

    Bernardi, Richard T.; Waters, David D.

    1992-12-01

    The development of slit-scan radiography capability for the NASA Advanced Computed Tomography Inspection System (ACTIS) computed tomography (CT) scanner at MSFC is discussed. This allows for tangential case interface (bondline) inspection at 2 MeV of intermediate-size rocket motors like the Hawk. Motorized mounting fixture hardware was designed, fabricated, installed, and tested on ACTIS. The ACTIS linear array of x-ray detectors was aligned parallel to the tangent line of a horizontal Hawk motor case. A 5 mm thick x-ray fan beam was used. Slit-scan images were produced with continuous rotation of a horizontal Hawk motor. Image features along Hawk motor case interfaces were indicated. A motorized exit cone fixture for ACTIS slit-scan inspection was also provided. The results of this SBIR have shown that slit scanning is an alternative imaging technique for case interface inspection. More data is required to qualify the technique for bondline inspection.

  7. Guidance and dispersion studies of National Launch System ascent trajectories

    Science.gov (United States)

    Hanson, John M.; Shrader, M. W.; Chang, Hopen; Freeman, Scott E.

    1992-01-01

    The National Launch System (NLS) is a joint concept, between DoD and NASA, for building a family of new launch vehicles. Two of the many choices to be made are the trajectory shaping methods and the onboard guidance scheme. This paper presents results from some ongoing studies to address these issues. First, potential gains from new guidance concepts are listed. Next the paper gives a list of possible discriminators between different guidance schemes, lists a number of potential guidance schemes, and explains two in some detail. A reference scheme is tested to determine its performance versus the discriminators. Finally, results from some special studies using the reference guidance scheme are given, including the effects of closed-loop guidance initiation time, time of enforcement of sideslip, vehicle roll for engine out, time and location of an engine out, use of load relief control, and use of day of launch wind biasing.

  8. Direct launch using the electric rail gun

    Science.gov (United States)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  9. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    Science.gov (United States)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  10. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    Science.gov (United States)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I sp) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I sp) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  11. The Max Launch Abort System - Concept, Flight Test, and Evolution

    Science.gov (United States)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  12. 航天发射场导流槽综合性能评价指标体系研究%Research on Global Performance Design Method of Blast Deflector in Rocket Launch Site

    Institute of Scientific and Technical Information of China (English)

    刘利宏; 张志成; 周旭

    2014-01-01

    导流槽是航天发射场的重要核心设施,作用是排导火箭发动机产生的高温高压燃气射流。基于计算流体动力学原理,利用理论分析、试验研究和数值仿真方法,开展发动机燃气射流在导流槽内部流动特性以及射流噪声传播和辐射特性等火箭发射环境效应问题研究,对导流槽设计中关心的冲击、烧蚀、通畅性以及喷水冷却系统的效率和噪声防护等问题进行评价,初步建立导流槽优化设计综合性能评价指标,为导流槽综合性能设计提供重要的参考依据。%Blast deflector is one of the key infrastructures in the rocket launch site which deflects the high temperature and high pressure jet emitted by the rocket engine .Based on the computational flu-id dynamics theory , theoretical analysis , experimental investigations and numerical simulation were adopted to study the launch environment effects including the flow characteristic of jet engine flame in blast deflector and the disseminated property of jet engine noise .Issues concerning the flow safety and smoothness and the efficiency of spray system in design of blast deflector were evaluated .The performance assessment index of blast deflector was preliminarily set up by multiple analysis methods which may provide reference for the global performance optimization design of the blast deflector .

  13. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  14. Integrated Navigation System for the Second Generation Reusable Launch Vehicle

    Science.gov (United States)

    2002-01-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  15. Aerospace propulsion products; high-quality rocket ignition systems for the future

    NARCIS (Netherlands)

    Van Zon, N.; Nevinskaia, A.

    2013-01-01

    Aerospace Propulsion Products is the leading European company in designing and producing rocket ignition systems and spinoff products. One of their directors, Edwin Vermeulen, gave us an insight on the company and its future. He states that “whatever rocket technology is needed, we have the

  16. Aerospace propulsion products; high-quality rocket ignition systems for the future

    NARCIS (Netherlands)

    Van Zon, N.; Nevinskaia, A.

    2013-01-01

    Aerospace Propulsion Products is the leading European company in designing and producing rocket ignition systems and spinoff products. One of their directors, Edwin Vermeulen, gave us an insight on the company and its future. He states that “whatever rocket technology is needed, we have the technolo

  17. Decision Support Systems for Launch and Range Operations Using Jess

    Science.gov (United States)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  18. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. The liquid rocket booster as an element of the U.S. national space transportation system

    Science.gov (United States)

    Bialla, Paul H.; Simon, Michael C.

    Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined

  20. Simulation of an advanced techniques of ion propulsion Rocket system

    Science.gov (United States)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  1. Gaseous Helium Reclamation at Rocket Test Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into...

  2. Mars McLOX Rocket Propulsion System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Methane and Carbon Monoxide/LOX rocket (MCLOX) is a technology for accomplishing ascent from Mars. Current Mars in-situ propellant production (ISPP) technologies...

  3. Gaseous Helium Reclamation at Rocket Test Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GHe reclamation is critical in reducing operating costs at rocket engine test facilities. Increases in cost and shortages of helium will dramatically impact testing...

  4. Variable Length Inflatable Ramp Launch and Recovery System

    Science.gov (United States)

    2016-09-22

    DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708...recovery system for towed bodies. (2) Description of the Prior Art [0004] Various at-sea training exercises require the launch, tracking and recovery...continuously circular braided material, reinforced with tensile webbing straps for shaping. As is known to those of skill in the art , tubes fabricated in

  5. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    Science.gov (United States)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical

  6. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    Science.gov (United States)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  7. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  8. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  9. Full-Envelope Launch Abort System Performance Analysis Methodology

    Science.gov (United States)

    Aubuchon, Vanessa V.

    2014-01-01

    The implementation of a new dispersion methodology is described, which dis-perses abort initiation altitude or time along with all other Launch Abort System (LAS) parameters during Monte Carlo simulations. In contrast, the standard methodology assumes that an abort initiation condition is held constant (e.g., aborts initiated at altitude for Mach 1, altitude for maximum dynamic pressure, etc.) while dispersing other LAS parameters. The standard method results in large gaps in performance information due to the discrete nature of initiation conditions, while the full-envelope dispersion method provides a significantly more comprehensive assessment of LAS abort performance for the full launch vehicle ascent flight envelope and identifies performance "pinch-points" that may occur at flight conditions outside of those contained in the discrete set. The new method has significantly increased the fidelity of LAS abort simulations and confidence in the results.

  10. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  11. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  12. Analysis and Results from a Flush Airdata Sensing (FADS) System in Close Proximity to Firing Rocket Nozzles

    Science.gov (United States)

    Ali, Aliyah N.; Borrer, Jerry L.

    2013-01-01

    This presentation presents information regarding the nose-cap flush airdata sensing (FADS) system on Orion's Pad Abort 1 (PA-1) vehicle. The purpose of the nose-cap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rockets nozzles like the attitude control motor (ACM) nozzles on the PA-1 launch abort system (LAS). The nose-cap FADS systems use pressure measurements from a series of pressure ports which are arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of side-slip, Mach number, impact pressure and free-stream static pressure.

  13. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  14. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  15. Design of launch systems using continuous improvement process

    Science.gov (United States)

    Brown, Richard W.

    1995-01-01

    The purpose of this paper is to identify a systematic process for improving ground operations for future launch systems. This approach is based on the Total Quality Management (TQM) continuous improvement process. While the continuous improvement process is normally identified with making incremental changes to an existing system, it can be used on new systems if they use past experience as a knowledge base. In the case of the Reusable Launch Vehicle (RLV), the Space Shuttle operations provide many lessons. The TQM methodology used for this paper will be borrowed from the United States Air Force 'Quality Air Force' Program. There is a general overview of the continuous improvement process, with concentration on the formulation phase. During this phase critical analyses are conducted to determine the strategy and goals for the remaining development process. These analyses include analyzing the mission from the customers point of view, developing an operations concept for the future, assessing current capabilities and determining the gap to be closed between current capabilities and future needs and requirements. A brief analyses of the RLV, relative to the Space Shuttle, will be used to illustrate the concept. Using the continuous improvement design concept has many advantages. These include a customer oriented process which will develop a more marketable product and a better integration of operations and systems during the design phase. But, the use of TQM techniques will require changes, including more discipline in the design process and more emphasis on data gathering for operational systems. The benefits will far outweigh the additional effort.

  16. Heat exchanger. [rocket combustion chambers and cooling systems

    Science.gov (United States)

    Sokolowski, D. E. (Inventor)

    1978-01-01

    A heat exchanger, as exemplified by a rocket combustion chamber, is constructed by stacking thin metal rings having microsized openings therein at selective locations to form cooling passages defined by an inner wall, an outer wall and fins. Suitable manifolds are provided at each end of the rocket chamber. In addition to the cooling channel openings, coolant feed openings may be formed in each of rings. The coolant feed openings may be nested or positioned within generally U-shaped cooling channel openings. Compression on the stacked rings may be maintained by welds or the like or by bolts extending through the stacked rings.

  17. Advanced Tactical Booster Technologies: Applications for Long-Range Rocket Systems

    Science.gov (United States)

    2016-09-07

    System HIMARS [3] which can employ the MGM- 140 Army Tactical Missile System (ATacMS) solid propellant missile [4] to achieve the required range...launcher. 15. SUBJECT TERMS solid rocket; optimisation; artillery 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...the volumetrically constrained environment of a land-based launcher. Keywords— solid rocket; optimisation; artillery I. INTRODUCTION The Australian

  18. Testing Strategies and Methodologies for the Max Launch Abort System

    Science.gov (United States)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  19. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  20. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  1. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  2. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  3. Launch Processing System operations with a future look to Operations Analyst (OPERA)

    Science.gov (United States)

    Heard, Astrid E.

    1987-01-01

    The Launch Processing System architecture and the ground support operations required to provide Shuttle System engineers with the capability to safely process and launch an Orbiter are described. The described ground operations are the culmination of eleven years of experience and redesign. Some of the 'lessons learned' are examined, and problem areas which ground support operations have identified over the years as the Shuttle and Launch Processing Systems continue to grow in complexity are discussed. The Operational Analyst for Distributed Systems (OPERA), a proposed set of expert systems for the Launch Processing System Operational assistance, is discussed along with its extensions to prospective future configurations and components for the Launch Processing System.

  4. Launch Processing System operations with a future look to Operations Analyst (OPERA)

    Science.gov (United States)

    Heard, Astrid E.

    1987-01-01

    The Launch Processing System architecture and the ground support operations required to provide Shuttle System engineers with the capability to safely process and launch an Orbiter are described. The described ground operations are the culmination of eleven years of experience and redesign. Some of the 'lessons learned' are examined, and problem areas which ground support operations have identified over the years as the Shuttle and Launch Processing Systems continue to grow in complexity are discussed. The Operational Analyst for Distributed Systems (OPERA), a proposed set of expert systems for the Launch Processing System Operational assistance, is discussed along with its extensions to prospective future configurations and components for the Launch Processing System.

  5. The Triangle of the Space Launch System Operations

    Science.gov (United States)

    Fayolle, Eric

    2010-09-01

    Firemen know it as “fire triangle”, mathematicians know it as “golden triangle”, sailormen know it as “Bermuda triangle”, politicians know it as “Weimar triangle”… This article aims to present a new aspect of that shape geometry in the space launch system world: “the triangle of the space launch system operations”. This triangle is composed of these three following topics, which have to be taken into account for any space launch system operation processing: design, safety and operational use. Design performance is of course taking into account since the early preliminary phase of a system development. This design performance is matured all along the development phases, thanks to consecutives iterations in order to respect the financial and timing constraints imposed to the development of the system. This process leads to a detailed and precise design to assess the required performance. Then, the operational use phase brings its batch of constraints during the use of the system. This phase is conducted by specific procedures for each operation. Each procedure has sequences for each sub-system, which have to be conducted in a very precise chronological way. These procedures can be processed by automatic way or manual way, with the necessity or not of the implication of operators, and in a determined environment. Safeguard aims to verify the respect of the specific constraints imposed to guarantee the safety of persons and property, the protection of public health and the environment. Safeguard has to be taken into account above the operational constraints of any space operation, without forgetting the highest safety level for the operators of the space operation, and of course without damaging the facilities or without disturbing the external environment. All space operations are the result of a “win-win” compromise between these three topics. Contrary to the fire triangle where one of the topics has to be suppressed in order to avoid the

  6. Potential large missions enabled by NASA's space launch system

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  7. 40th Annual Armament Systems: Guns-Ammunition-Rockets-Missiles Conference and Exhibition

    Science.gov (United States)

    2005-04-28

    PM] Abraham Overview, Mr. Robert Daunfeldt, Bofors Defence Summary Overview of an Advanced 2.75 Hypervelocity Weapon, Mr. Larry Bradford, CAT Flight...Engineer Tank Ammunition Directorate - IMI Ammunition Group A105/120/125 mm PELE Firing Results, Dr. Lutz Börngen, Rheinmetall Wafe Munition Line Of Sight...Missiles & Rockets Critical Asset Defense - ABRAHAM Rocket Assisted Projectile Mr. Robert Daunfeldt, Bofors Defence Hypervelocity Propulsion System

  8. Reverse Launch Abort System Parachute Architecture Trade Study

    Science.gov (United States)

    Litton, Daniel K.; O'Keefe, Stephen A.; Winski, Richard G.

    2011-01-01

    This study investigated a potential Launch Abort System (LAS) Concept of Operations and abort parachute architecture. The purpose of the study was to look at the concept of jettisoning the LAS tower forward (Reverse LAS or RLAS) into the free-stream flow rather than after reorienting to a heatshield forward orientation. A hypothesized benefit was that due to the compressed timeline the dynamic pressure at main line stretch would be substantially less. This would enable the entry parachutes to be designed and sized based on entry loading conditions rather than the current stressing case of a Pad Abort. Ultimately, concerns about the highly dynamic reorientation of the CM via parachutes, and the additional requirement of a triple bridle attachment for the RLAS parachute system, overshadowed the potential benefits and ended this effort.

  9. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  10. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    Science.gov (United States)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  11. NASA's Space Launch System: Deep-Space Deployment for SmallSats

    Science.gov (United States)

    Schorr, Andy

    2017-01-01

    From its upcoming first flight, NASA's new Space Launch System (SLS) will represent a game-changing opportunity for smallsats. On that launch, which will propel the Orion crew vehicle around the moon, the new exploration-class launch vehicle will deploy 13 6U CubeSats into deep-space, where they will continue to a variety of destinations to perform diverse research and demonstrations. Following that first flight, SLS will undergo the first of a series of performance upgrades, increasing its payload capability to low Earth orbit from 70 to 105 metric tons via the addition of a powerful upper stage. With that change to the vehicle's architecture, so too will its secondary payload accommodation for smallsats evolve, with current plans calling for a change from the first-flight limit of 6U to accommodating a range of sizes up to 27U and potentially ESPA-class payloads. This presentation will provide an overview and update on the first launch of SLS and the secondary payloads it will deploy. Currently, flight hardware has been produced for every element of the vehicle, testing of the vehicle's propulsion elements has been ongoing for years, and structural testing of its stages has begun. Major assembly and testing of the Orion Stage Adapter, including the secondary payload accommodations, will be completed this year, and the structure will then be shipped to Kennedy Space Center for integration of the payloads. Progress is being made on those CubeSats, which will include studies of asteroids, Earth, the sun, the moon, and the impacts of radiation on organisms in deep space. They will feature revolutionary innovations for smallsats, including demonstrations of use of a solar sail as propulsion for a rendezvous with an asteroid, and the landing of a CubeSat on the lunar surface. The presentation will also provide an update on progress of the SLS Block 1B configuration that will be used on the rocket's second flight, a discussion of planned secondary payload accommodations

  12. Advanced Solid Rocket Launcher and Its Evolution

    Science.gov (United States)

    Morita, Yasuhiro; Imoto, Takayuki; Habu, Hiroto; Ohtsuka, Hirohito; Hori, Keiichi; Koreki, Takemasa; Fukuchi, Apollo; Uekusa, Yasuyuki; Akiba, Ryojiro

    The research on next generation solid propellant rockets is actively underway in various spectra. JAXA is developing the Advanced Solid Rocket (ASR) as a successor to the M-V launch vehicle, which was utilized over past ten years for space science programs including planetary missions. ASR is a result of the development of the next generation technology including a highly intelligent autonomous check-out system, which is connected to not only the solid rocket but also future transportation systems. It is expected to improve the efficiency of the launch system and double the cost performance. Far beyond this effort, the passion of the volunteers among the industry-government-academia cooperation has been united to establish the society of the freewheeling thinking “Next generation Solid Rocket Society (NSRS)”. It aims at a larger revolution than what the ASR provides so that the order of the cost performance is further improved. A study of the Low melting temperature Thermoplastic Propellant (LTP) is now at the experimental stage, which is expected to reform the manufacturing process of the solid rocket propellant and lead to a significant increase in cost performance. This paper indicates the direction of the big flow towards the next generation solid-propellant rockets: the concept of the intelligent ASR under development; and the innovation behind LTP.

  13. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  14. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  15. Neptune modular rockets for breakthrough low-cost space access Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interorbital Systems is developing a new generation of modular, low-cost, rapid-response space launch vehicles. Interorbital modular rockets core element is the...

  16. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  17. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  18. Development of the Architectural Simulation Model for Future Launch Systems and its Application to an Existing Launch Fleet

    Science.gov (United States)

    Rabadi, Ghaith

    2005-01-01

    A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required

  19. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  20. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  1. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    Science.gov (United States)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  2. Non-rocket Earth-Moon transportation system

    Science.gov (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  3. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  4. A 16 MJ compact pulsed power system for electromagnetic launch

    Science.gov (United States)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  5. Small Space Launch: Origins & Challenges

    Science.gov (United States)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  6. The Saab spinning rocket attitude control (SPINRAC): An attitude control system for obtaining low impact dispersion

    Science.gov (United States)

    Hall, L.; Helmersson, A.

    The Spining Rocket Attitude Control system, (SPINRAC) system for three-stage sounding rocket impact dispersion reduction is described. The SPINRAC points the spin-stabilized third stage to a predetermined attitude, prior to ignition. The SPINRAC uses a roll-stabilized gyro platform for inertial attitude information, processes the signals in a microcomputer, and uses a cold-gas system for actuation. Using control theory the guidance time can be kept small and thrust force low. Typically a reorientation angle of 20 deg and a coning half-angle of 10 deg is controlled to an accuracy of 0.4 deg 3-sigma value within 20 sec. Using the SPINRAC on a three-stage sounding rocket (Black Brant X, Skylark 12) makes it possible to reach apogee altitudes of 1000 km while maintaining low impact dispersion.

  7. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  8. Advanced Launch System (ALS) Space Transportation Expert System Study

    Science.gov (United States)

    1991-03-01

    CONTROL ELECTRONICS DEVELOPMENT ENGR CONTROL SYSTEMS DEVELOPMENT BRANCH DAVID K. BOWSER ASST CHIEF FLIGHT CONTROL DIVISION IF YOUR ADDRESS HAS CHANGED...Routers) to Processed Facts ato Conclusions. high& -- %sm memcry) omands . lee requestslevel KNOWLEDGE-BASE SYSTEMS Internal World (Layered Structure) kw...Kaiser, Gail E. and David Garlan ttl: MELDIng Data Flow and Object Oriented Programming - OPSLA 󈨛 Proceedings, October 1987 -eoories: Object Oriented

  9. Space Launch System Trans Lunar Payload Delivery Capability

    Science.gov (United States)

    Jackman, A. L.; Smith, D. A.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion to a lunar vicinity every year after the first 2 flights starting in the early 2020's. So as early as 2021 these Orion flights will deliver ancillary payload, termed "Co-Manifested Payload", with a mass of at least 5.5 metric tons and volume up to 280 cubic meters to a cis-lunar destination. Later SLS flights have a goal of delivering as much as 10 metric tons to a cis-lunar destination. This presentation will describe the ground and flight accommodations, interfaces, and resources planned to be made available to Co-Manifested Payload providers as part of the SLS system. An additional intention is to promote a two-way dialogue between vehicle developers and potential payload users in order to most efficiently evolve required SLS capabilities to meet diverse payload requirements.

  10. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    Science.gov (United States)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  11. NERVA-derived rocket module for solar system exploration

    Science.gov (United States)

    Zweig, Herbert R.; Cooper, Martin H.

    1993-06-01

    A 50,000 pound thrust nuclear thermal rocket engine module concept based on Rover/NERVA technology is presented. Key engine features selected for reliability and safety have been integrated into this concept to provide 4.5 hours of full-thrust operation at a specific impulse of over 850 seconds. Those features include a single turbopump with an expander turbine, tank-head start in space, open-cycle decay heat removal with minimal loss of propellant, reactor cold end axial reflector, and tie tubes which are insulated end which are not used to provide turbine power. The tie tube configuration complements the open cycle decay heat removal concept. Retractable safety rods for water immersion subcriticality were considered and a design concept was developed. Other important safety issues were identified, and their method for accommodation in the design were considered for future implementation.

  12. Fiber Optic Sensing Systems for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  13. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    Science.gov (United States)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  14. Dynamics of a variable mass system applied to spacecraft rocket attitude theory

    Science.gov (United States)

    Mudge, Jason Dominic

    This research project is a study of the dynamics of a variable mass system. The scope of this research project is to gain understanding as to how a variable mass system will behave. The intent is to bring the level of understanding of variable mass dynamics higher and closer to the level of constant mass dynamics in the area of spacecrafts in particular. A main contribution is the finding of a set of criteria to minimize or eliminate the deviation of the nutation angle (or cone angle or angle of attack) of spacecraft rockets passively, i.e. without active control. The motivation for this research project is the Star 48 anomaly. The Star 48 is a solid rocket motor which has propelled (boosted) communication satellites from lower earth orbit to a higher one during the 1980's. The anomaly is that when the spacecraft rocket is being propelled, the nutation angle may deviate excessively which is considered undesirable. In the first part of this research project, a variable mass system is described and defined and the governing equations are derived. The type of governing equations derived are those that are most useful for analyzing the motion of a spacecraft rocket. The method of derivation makes use of Leibnitz Theorem, Divergence Theorem and Newton's Second Law of Motion. Next, the governing equations are specialized with several assumptions which are generally accepted assumptions applied in the analysis of spacecraft rockets. With these assumptions, the form governing equations is discussed and then the equations are solved analytically for the system's angular velocity. Having solved for the angular velocity of the system, the attitude of the system is obtained using a unique method which circumvents the nonlinearities that exist using Euler Angles and their kinematical equations. The attitude is approximately found analytically and a set of criteria is discussed which will minimize or eliminate the deviation of the nutation angle of a spacecraft rocket. Finally

  15. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge

    Science.gov (United States)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele

    2013-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  16. Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    Science.gov (United States)

    Stewart, R. B.; Grose, W. L.

    1975-01-01

    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

  17. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  18. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  19. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  20. Planck pre-launch status: The optical system

    DEFF Research Database (Denmark)

    Tauber, J. A.; Nørgaard-Nielsen, Hans Ulrik; Ade, P. A. R.

    2010-01-01

    Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors...

  1. Micro, nano and pico satellites launched from the Romanian territory

    Science.gov (United States)

    Savu, G.

    2006-10-01

    In the frame of National Program "Aerospatial" The National Institute of Turbomachinery—COMOTI, Bucharest, Romania proposes a project of launching with minimum cost of microsatellites using the national territory. The geographical position of Romania is optimum for satellites launching due to the presence of the Black Sea in the eastern part of the country and due to its elongated shape, West-East, offering a launching surface of 1500 km (W-E) ×250km (N-S). Two modes of launching were analyzed: vertical, from the soil and horizontal, from a carrier aircraft. The second mode of launching doubtless has some advantages, particularly from the point of view of costs. It was analyzed the launching of a LEO satellite as a payload of a single stage rocket with solid propellant, launched from a fighter aircraft. The aerodynamic coefficients of the rocket, the equation of movement on the trajectory and the rocket engine thrust were calculated using a FORTRAN program—LSCS (language for the simulation the continuous systems). The shape of the trajectory was imposed (not optimized), finally resulting the performances, the main geometrical dimensions of the rocket and the mass of the satellite.

  2. Investigation of Capabilities and Technologies Supporting Rapid UAV Launch System Development

    Science.gov (United States)

    2015-06-01

    other launch methods. Since the launch only requires that each UAV be equipped with landing gear of some type, this launch method is both highly...simple machines such as levers or pulley systems are often used to provide the mechanical advantage necessary to increase the relatively slow motion...consid- ering the Zephyr’s size and configuration constraints. For example, since the Zephyr II has no wheels or landing gear , a conventional runway

  3. Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities

    Science.gov (United States)

    Sabahi, D.; Graf, J. E.

    2000-01-01

    A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.

  4. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  5. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  6. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  7. Launch processing system operations with a future look to operations analyst (OPERA)

    Science.gov (United States)

    Heard, Astrid E.

    The launch processing system at Kennedy Space Center is used to process a Shuttle vehicle from its initial arrival in an Orbiter processing facility to a launch pad. This paper describes the launch processing system architecture and the ground support operations required to provide Shuttle system engineers with the capability to safely process and launch an Orbiter. The described ground operations are the culmination of 11 years of experience and redesign. In this paper, I examine some of the "lessons learned" and discuss problem areas which ground support operations have identified over the years as the Shuttle and launch processing systems continue to grow in complexity. As we strive to maintain the efficient level of support currently provided, some benefits have been gained through standard information management and automation techniques. However, problems requiring complex correlational analyses of information have defied resolution until artificial intelligence research developed expert system applications technology. The operational analyst for distributed systems (OPERA), a proposed set of expert systems for launch processing system operational assistance, is discussed along with its extensions to prospective future configurations and components for the launch processing system.

  8. A Multi-disciplinary Tool for Space Launch Systems Propulsion Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate predictive capability of coupled fluid-structure interaction in propulsion system is crucial in the development of NASA's new Space Launch System (SLS)....

  9. Altitude-Limiting Airbrake System for Small to Medium Scale Rockets

    Science.gov (United States)

    Aaron, Robert F., III

    2013-01-01

    The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.

  10. Design and Flight Performance of the Orion Pre-Launch Navigation System

    Science.gov (United States)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  11. Electromagnetic launch systems for civil aircraft assisted take-off

    Directory of Open Access Journals (Sweden)

    Bertola Luca

    2015-12-01

    Full Text Available This paper considers the feasibility of different technologies for an electromagnetic launcher to assist civil aircraft take-off. This method is investigated to reduce the power required from the engines during initial acceleration. Assisted launch has the potential of reducing the required runway length, reducing noise near airports and improving overall aircraft efficiency through reducing engine thrust requirements. The research compares two possible linear motor topologies which may be efficaciously used for this application. The comparison is made on results from both analytical and finite element analysis (FEA.

  12. Benchmarking File System Benchmarking: It *IS* Rocket Science

    OpenAIRE

    Seltzer, Margo I.; Tarasov, Vasily; Bhanage, Saumitra; Zadok, Erez

    2011-01-01

    The quality of file system benchmarking has not improved in over a decade of intense research spanning hundreds of publications. Researchers repeatedly use a wide range of poorly designed benchmarks, and in most cases, develop their own ad-hoc benchmarks. Our community lacks a definition of what we want to benchmark in a file system. We propose several dimensions of file system benchmarking and review the wide range of tools and techniques in widespread use. We experimentally show that even t...

  13. A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems

    Institute of Scientific and Technical Information of China (English)

    Erfu Yang; Hongjun Xiang; Dongbing Gu; Zhenpeng Zhang

    2007-01-01

    Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.

  14. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  15. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  16. Research on the Reliability Centered Maintenance Plan of a Launching System

    Institute of Scientific and Technical Information of China (English)

    XIE Chao; SUN Ming-fang; DU Jun-min

    2011-01-01

    Aiming at the shortcomings of the traditional maintenance plan of a launching system, an analysis was made on the development of the reliability centered maintenance methods (RCM) and the basic models for reliability centered maintenance of a launching system are presented in this paper. The common methods for functional impor- tant product determination, failure modes and effect analysis ( FMEA ) and logic decision analysis were illustrated and the basic methods for maintenance interval calculation models were studied based on availability. According to the research, the reliability centered maintenance plan of a certain launching system was given.

  17. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  18. The Space Launch System and Missions to the Outer Solar System

    Science.gov (United States)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and

  19. Dual-theodolite real-time computation method used during the optical alignment of the Excitation by Electron Deposition (EXCEDE) III rocket payload

    Science.gov (United States)

    Akerstrom, David S.; Galanis, Charles J.; Stuart, Robert F.

    1994-09-01

    Phillips Laboratory and Systems Integration Engineering developed a two-theodolite, reflecting-surface technique for measuring the lines of sight (LOS) of sensors in rocket payload modules. A flat mirror, keyed to one theodolite provides a stable and adjustable reference by which the angular separation of sensor LOS's can be measured and referenced to the rocket's coordinate system. The rocket's Attitude Control System and external launch pad geodetic survey points are referenced to the vehicle's geometry using this procedure.

  20. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  1. Dual-fuel versus single-fuel propulsion systems for AMLS applications. [Advanced Manned Launch System

    Science.gov (United States)

    Stanley, Douglas O.; Talay, T. A.

    1989-01-01

    The results of using a computerized preliminary design system to integrate propulsion systems examined as a part of the Space Transportation Main Engine (STME) and Space Transportation Booster Engine (STBE) studies with reference vehicle concepts from the Advanced Manned Launch System (AMLS) study are presented. The major trade study presented is an analysis of the effect of using a single fuel for both stages of two-stage AMLS reference vehicles as opposed to using a separate fuel for the boosters. Other trade studies presented examine the effect of varying relevant engine parameters in an attempt to optimize the reference engines for use with the AMLS launch vehicles. In each propulsion trade discussed, special attention is given to the major vehicle performance and operational issues involved.

  2. White certificate: how to launch the system?; Les certificats blancs: comment lancer le systeme?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    White certificates are a supple and suitable economical system for the quest of diffuse energy saving. It relies on the energy distribution networks and is complementary to other existing system (fiscality, regulation, etc). It is an open system, based on a market logics in order to make energy savings where they are the less costly. This document gathers the synthesis of the conference about white certificates, held in Paris in October 2005, the presentations (transparencies) given by J. Percebois (Creden) about the French system of energy savings and by P. Guyonnet (ATEE) about the way to launch the system of white certificates. The debate with the audience is also reported. (J.S.)

  3. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  4. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  5. Performance evaluation of multi-sensor data-fusion systems in launch vehicles

    Indian Academy of Sciences (India)

    B N Suresh; K Sivan

    2004-04-01

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included. The role of an integrated system level-test bed for evaluating multi-sensors and mission performance in a typical launch vehicle mission is described. Some of the typical simulation results to evaluate the effect of the sensors on the overall system are highlighted.

  6. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  7. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  8. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  9. Lunar soft landing with minimum-mass propulsion system using H2O2/kerosene bipropellant rocket system

    Science.gov (United States)

    Moon, Yongjun; Kwon, Sejin

    2014-06-01

    Minimum-mass propulsion specifications using a H2O2/kerosene bipropellant rocket system for a small lunar lander were derived. A multivariable optimization was conducted with propulsion specifications and propellant consumptions obtained by solving optimal control problems for a lunar soft landing. In this paper, the optimal specifications, trajectory, and mass budget are presented.

  10. A new ball launching system with controlled flight parameters for catching experiments.

    Science.gov (United States)

    d'Avella, A; Cesqui, B; Portone, A; Lacquaniti, F

    2011-03-30

    Systematic investigations of sensorimotor control of interceptive actions in naturalistic conditions, such as catching or hitting a ball moving in three-dimensional space, requires precise control of the projectile flight parameters and of the associated visual stimuli. Such control is challenging when air drag cannot be neglected because the mapping of launch parameters into flight parameters cannot be computed analytically. We designed, calibrated, and experimentally validated an actuated launching apparatus that can control the average spatial position and flight duration of a ball at a given distance from a fixed launch location. The apparatus was constructed by mounting a ball launching machine with adjustable delivery speed on an actuated structure capable of changing the spatial orientation of the launch axis while projecting balls through a hole in a screen hiding the apparatus. The calibration procedure relied on tracking the balls with a motion capture system and on approximating the mapping of launch parameters into flight parameters by means of polynomials functions. Polynomials were also used to estimate the variability of the flight parameters. The coefficients of these polynomials were obtained using the launch and flight parameters of 660 launches with 65 different initial conditions. The relative accuracy and precision of the apparatus were larger than 98% for flight times and larger than 96% for ball heights at a distance of 6m from the screen. Such novel apparatus, by reliably and automatically controlling desired ball flight characteristics without neglecting air drag, allows for a systematic investigation of naturalistic interceptive tasks.

  11. Super Cold Arctic Mesopause Project (CAMP): A research project to investigate the polar middle atmosphere in summer with rocket launches from 65 deg-80 deg N

    Science.gov (United States)

    Kopp, E.; Philbrick, C. R.; Thomas, G. E.; Witt, G.

    A Cold Arctic Mesopause Project for summer to study the structure and dynamics of the middle atmosphere (50 to 150 km) above the north polar region is proposed. It should concentrate on measurements of water vapor, ozone and temperature and their variability as a function of time, and geomagnetic and meteor shower activity; formation, particle size and density, transport and life time of noctilucent cloud (NLC) particles; dynamics and temperature and their effects on ice particle growths and the distribution of minor constituents including the ionospheric plasma; and electric fields, charged aerosols, and massive positive and negative ions in the vicinity of NLC. In situ measurements from rockets, grouped in two to three salvos should be supported by ground, airborne and satellite remote sensing experiments.

  12. On 23 March ESA’s third Automated Transfer Vehicle (ATV), named in honour of Amaldi, was launched on board an Ariane rocket.

    CERN Multimedia

    CERN Video Productions

    2012-01-01

    Live webcast from CERN on the occasion of the launch of a "Space Ferry", named after Edoardo Amaldi, by the European Space Agency (ESA). Amaldi was CERN's first Secretary General and founding father, and a visionary pioneer for ESA. With the participation of Ugo Amaldi, CERN physicist and son of Edoardo Amaldi, Carlo Rubbia, Nobel Laureate in Physics and Former Director General of CERN and Arturo Russo, historian and author with John Kriege of CERN and ESA's History

  13. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  14. Three-dimensional Numerical Study of Impactive Flowfield of Liquid Rocket Exhaust Plume while Space Launching%航天发射火箭尾焰冲击流场三维数值研究

    Institute of Scientific and Technical Information of China (English)

    宋华; 蔡体敏; 李彬

    2012-01-01

    航天发射时火箭燃烧尾焰冲击干扰效应对发射稳定性和发射架、导流槽等地面设施有重要影响.采用压力隐式算子分裂算法,通过求解Navier-Stokes方程,对火箭外流场、发动机燃烧室内与尾焰流场进行了一体化三维数值计算.得到了火箭发射后尾焰与地面撞击产生的冲击流场.结果表明:尾焰流场计算模型、方法与结果合理;尾焰冲击干扰效应会大幅提高地面附近的压力和温度.火箭尾焰撞击地面后,高温区出现在离地面一定距离的高温层内,此时地面附近为低速区.尾焰对其正下面的地面区域产生冲击最大,主要干扰区域集中于半径为15 m的圆形区域.%The impactive and interferential effect of rocket combustion exhaust plume has important influence on launching stability and ground equipments including of rocket launcher and flow channel. Basing on PISO algorithm , three-dimensional numerical simulation both of plume flow field of hydrogen-oxygen liquid rocket and outside flow field of rocket is conducted by^olving Navier-Stokes equation. The impactive flow field while exhaust plume is impacting ground is obtained. The results show that the physical model, numerical method and flow field data herein are reasonable. The pressure and temperature increase greatly because of the impactive and interferential effect of plume. During impacting ground, plume has a high temperature zone appearing in a high temperature level near ground while the velocity in this zone is lower. The most impactive and interferential effect appears in ground area under exhaust plume, and the main interferential zone is focus on a round area with a radius of 15 m.

  15. Vibration Isolation Design for the Micro-X Rocket Payload

    Science.gov (United States)

    Danowski, M. E.; Heine, S. N. T.; Figueroa-Feliciano, E.; Goldfinger, D.; Wikus, P.; McCammon, D.; Oakley, P.

    2016-08-01

    Micro-X is a NASA-funded sounding rocket-borne X-ray imaging spectrometer designed to enable high precision measurements of extended astrophysical systems. To perform high energy resolution measurements and capture unprecedented spectra of supernova remnants and galaxy clusters, Micro-X must maintain tight temperature control. One of the biggest challenges in payload design is to prevent heating of the detectors due to the vibrational loads on the rocket skin during launch. Several stages of vibration damping systems are implemented to prevent energy transmission from the rocket skin to the detector stage, each stage more rigid than the last. We describe recent redesign efforts to improve this vibration isolation by tuning the resonant frequencies of the various stages to minimize heating prior to the projected launch in 2016.

  16. Smart Sensor Node Development, Testing and Implementation for Rocket Propulsion Systems

    Science.gov (United States)

    Mengers, Timothy R.; Shipley, John; Merrill, Richard; Eggett, Leon; Johnson, Mont; Morris, Jonathan; Figueroa, Fernando; Schmalzel, John; Turowski, Mark P.

    2007-01-01

    Successful design and implementation of an Integrated System Health Management (ISHM) approach for rocket propulsion systems requires the capability improve the reliability of complex systems by detecting and diagnosing problems. One of the critical elements in the ISHM is an intelligent sensor node for data acquisition that meets specific requirements for rocket motor testing including accuracy, sample rate and size/weight. Traditional data acquisition systems are calibrated in a controlled environment and guaranteed to perform bounded by their tested conditions. In a real world ISHM system, the data acquisition and signal conditioning needs to function in an uncontrolled environment. Development and testing of this sensor node focuses on a design with the ability to self check in order to extend calibration times, report internal faults and drifts and notify the overall system when the data acquisition is not performing as it should. All of this will be designed within a system that is flexible, requiring little re-design to be deployed on a wide variety of systems. Progress in this design and initial testing of prototype units will be reported.

  17. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    Science.gov (United States)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  18. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  19. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  20. Rocket noise - A review

    Science.gov (United States)

    McInerny, S. A.

    1990-10-01

    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  1. Electromagnetic Aircraft Launching System: Do the Benefits Outweigh the Costs?

    Science.gov (United States)

    2010-03-29

    levitation ( MAGLEV ) trains . State-of-the-art systems make up the components of the system. There are several benefits the EIV1ALS has over the current...around for’ many years in other applications such as magnetic levitation (MAGL~V) trains . State-of-the-ali systems make up the components of the...detail the aspect of training a new rate to maintain and service i the new technology. Also, due to no significant testing done on Electro Magnetic

  2. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  3. EXODUS: Integrating intelligent systems for launch operations support

    Science.gov (United States)

    Adler, Richard M.; Cottman, Bruce H.

    1991-01-01

    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described.

  4. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    Science.gov (United States)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  5. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  6. Optimization and Sizing for Propulsion System of Liquid Rocket Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Saqlain Akhtar; He Lin-shu

    2007-01-01

    Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives to develop a propulsion system design strategy for liquid rocket to optimize take-off mass, satisfying the mission range under the constraint of axial overload. The method by which this process is accomplished by using GA as optimizer is outlined in this paper. Convergence of GA is improved by introducing initial population based on Design of Experiments Technique.

  7. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  8. Technical and educational improvements of the Student Rocket Program at NAROM and Andøya Rocket Range

    Science.gov (United States)

    Nylund, Amund; Rønningen, Jan-Erik

    2007-06-01

    Norwegian Centre for Space-Related Education (NAROM) is co-located with Andøya Rocket Range (ARR) and was established in 2000 as a field station for space-related education. The Student Rocket Program (SRP) was introduced to give the students hands-on experience and a comprehensive introduction to an ordinary scientific rocket launch. NAROM and ARR have since 1998 developed and launched more than 30 student rockets. Since summer 2005 the SRP has been significantly improved with a more powerful rocket motor and a new telemetry system. With these technical improvements, NAROM can introduce new challenges for the students concerning rocket technique, instrumentation, telemetry and data processing. It has also opened possibilities for new pedagogical improvements in terms of a larger curriculum, more use of the ARR infrastructure and making the SRP more adapted to the different participants' qualifications and background. But even though the SRP has been significantly improved during the last years, the program still is in continuously development, making the SRP at NAROM and ARR a unique educational activity for students at different levels of education.

  9. The development of space solid rocket motors in China

    Science.gov (United States)

    Jianding, Huang; Dingyou, Ye

    1997-01-01

    China has undertaken to research and develop composite solid propellant rocket motors since 1958. At the request of the development of space technology, composite solid propellant rocket motor has developed from small to large, step by step. For the past thirty eight years, much progress has made, many technical obstacles, such as motor design, case materials and their processing technology, propellant formulations and manufacture, nozzles and thrust vector control, safe ignition, environment tests, nondestructive inspection and quality assurance, static firing test and measurement etc. have been solved. A serial of solid rocket motors have been offered for China's satellites launch. The systems of research, design, test and manufacture of solid rocket motors have been formed.

  10. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Science.gov (United States)

    2010-10-01

    ... capable of individual release from its stowage rack. (3) Each inflatable liferaft used in conjunction with...) Stowage. Each marine evacuation system must be stowed as follows: (1) There must not be any openings..., when deployed, its stowage container, and its operational arrangement must not interfere with...

  11. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Science.gov (United States)

    2010-10-01

    ... individual release from its stowage rack. (3) Each inflatable liferaft used in conjunction with the marine... evacuation. (b) Stowage. Each marine evacuation system must be stowed as follows: (1) There must not be any... deployed; its stowage container; and its operational arrangement must not interfere with the operation...

  12. Rocket Rendezvous at Preassigned Destinations with Optimum

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1982-10-01

    Full Text Available The problem of rendezvous of an interceptor rocket vehicle through optimal exit path with a destination rocket vehicle at a preassigned location on the destination orbit has been investigated for non-coaxial coplanar elliptic launch and destination orbits in an inverse square gravitational field. The case, when launch and destination orbits are coplanar circular, is also discussed. In the end numerical results for rendezvous have been obtained taking Earth and Mars orbits as launch and destination orbits respectively.

  13. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    Science.gov (United States)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  14. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  15. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  16. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  17. Cusp Alfven and Plasma Electrodynamics Rocket (CAPER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch a single rocket from Andoya Rocket Range into an active cusp event. Observe electric and magnetic fields, HF waves, electron and ion distributions and...

  18. Illustration of Ares I During Launch

    Science.gov (United States)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  19. On the history of the development of solid-propellant rockets in the Soviet Union

    Science.gov (United States)

    Pobedonostsev, Y. A.

    1977-01-01

    Pre-World War II Soviet solid-propellant rocket technology is reviewed. Research and development regarding solid composite preparations of pyroxyline TNT powder is described, as well as early work on rocket loading calculations, problems of flight stability, and aircraft rocket launching and ground rocket launching capabilities.

  20. Water rocket - Electrolysis propulsion and fuel cell power

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H

    1999-07-24

    Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

  1. 21st century space transportation system design approach - HL-20 personnel launch system

    Science.gov (United States)

    Stone, Howard W.; Piland, William M.

    1993-10-01

    This article provides an introduction to and overview of the research that was conducted on the HL-20 lifting body. The concept has been defined as an option for a personnel launch system (PLS) that is intended to carry six to eight Space Station Freedom crew persons. In this role the HL-20 will complement the Space Shuttle operation and ensure the ability to transport people to and from Earth orbit after the year 2000. The research covers a broad range of disciplines, including aerodynamics, aerodynamic heating and thermal protection systems, structural design, subsystem definition, trajectory and guidance system development for entry and abort, production and operations, and human factors. This article also presents the lifting-body heritage, design features of the concept, and HL-20/PLS mission requirements.

  2. Atlas V Launch Incorporated NASA Glenn Thermal Barrier

    Science.gov (United States)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    military's Enhanced Expendable Launch Vehicle program designed to provide assured military access to space. It can lift payloads up to 19,100 lb to geosynchronous transfer orbit and was designed to meet Department of Defense, commercial, and NASA needs. The Atlas V and Delta IV are two launch systems being considered by NASA to launch the Orbital Space Plane/Crew Exploration Vehicle. The launch and rocket costs of this mission are valued at $250 million. Successful application of the Glenn thermal barrier to the Atlas V program was an enormous breakthrough for the program's technical and schedule success.

  3. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  4. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    Science.gov (United States)

    Christie, Robert J.; Plachta, David W.

    2006-01-01

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  5. StarTram: An Ultra Low Cost Launch System to Enable Large Scale Exploration of the Solar System

    Science.gov (United States)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    StarTram is a new approach for low launch to space using Maglev technology. Spacecraft are magnetically levitated and accelerated without propellants to orbital speeds in an evacuated tunnel at ground level using only electrical energy. The cost of the electric energy for acceleration to 8 kilometers per second is only 60 cents per kilogram of payload. After reaching orbital speed, the StarTram spacecraft coast upwards inside an evacuated levitated launch tube to an altitude, of 10 kilometers or more, where they enter the low-pressure ambient atmosphere. The launch tube is magnetically levitated by the repulsive force between a set of high current superconducting cables on it and oppositely directed currents in a set of superconducting cables on the ground beneath. High strength Kevlar tethers anchor the launch tube against crosswinds and prevent it from moving laterally or vertically. A Magneto Hydro Dynamic (MHD) pump at the exit of the evacuated launch tube prevents air from entering the tube. Two StarTram systems are described, a high G (30G) system for cargo only launch and a moderate G (2.5 G) system for passenger/cargo spacecraft. StarTram's projected unit cost is $30 per kilogram of payload launched, including operating and amortization costs. A single StarTram facility could launch more than 100,000 tons of cargo per year and many thousands of passengers. StarTram would use existing superconductors and materials, together with Maglev technology similar to that now operating. The StarTram cargo launch system could be implemented by 2020 AD and the passenger system by 2030 AD.

  6. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  7. Cassini launch contingency effort

    Science.gov (United States)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  8. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  9. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  10. Study of Electro-Optical Measuring System for Measuring the Swaying of Rocket Launcher and Artillery Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yang; YAN Yu-feng; CAI Li-juan; LIU Zhen-bo

    2008-01-01

    A scheme is proposed, of that the axis of directional barrel is simulated by a laser beam and an electro-optical axial angle encoder is using to measure the swaying of rocket Muncher or artillery. The measuring principle is stated, and an electro-optical measuring system is designed, including automatic force-applying device, angle-measurement device and photodetecting screen. The measurement accuracy of the system is analyzed. The measuring error of system is less then 17.3"(0.08 mil).

  11. Refractory Materials for Flame Deflector Protection System Corrosion Control: Similar Industries and/or Launch Facilities Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Sampson, Jeffrey W.; Kolody, Mark R.; Curran, Jerome P.; Perusich, Stephen A.; Trejo, David; Whitten, Mary C.; Zidek, Jason

    2009-01-01

    A trade study and litera ture survey of refractory materials (fi rebrick. refractory concrete. and si licone and epoxy ablatives) were conducted to identify candidate replacement materials for Launch Complexes 39A and 398 at Kennedy Space Center (KSC). In addition, site vis its and in terviews with industry expens and vendors of refractory materials were conducted. As a result of the si te visits and interviews, several products were identified for launch applications. Firebrick is costly to procure and install and was not used in the si tes studied. Refractory concrete is gunnable. adheres well. and costs less 10 install. Martyte. a ceramic fi lled epoxy. can protect structural stccl but is costly. difficullto apply. and incompatible with silicone ablatives. Havanex, a phenolic ablative material, is easy to apply but is costly and requires frequent replacement. Silicone ablatives are ineJ[pensive, easy to apply. and perl'onn well outside of direct rocket impingement areas. but refractory concrete and epoxy ablatives provide better protection against direcl rocket exhaust. None of the prodUCIS in this trade study can be considered a panacea for these KSC launch complexes. but the refractory products. individually or in combination, may be considered for use provided the appropriate testing requirements and specifications are met.

  12. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  13. EPA Launches Technology Challenge for an Advanced Septic System Nitrogen Sensor

    Science.gov (United States)

    Today, the U.S. EPA and its partners launched a technology challenge for an Advanced Septic System Nitrogen Sensor. The total award pool for this phase is $55,000. The Challenge is open for submissions today. Submissions are due on or before March 17, 2017

  14. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    Science.gov (United States)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  15. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    Science.gov (United States)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and

  16. Gun Launch System: efficient and low-cost means of research and real-time monitoring

    Science.gov (United States)

    Degtyarev, Alexander; Ventskovsky, Oleg; Korostelev, Oleg; Yakovenko, Peter; Kanevsky, Valery; Tselinko, Alexander

    2005-08-01

    The Gun Launch System with a reusable sub-orbital launch vehicle as a central element is proposed by a consortium of several Ukrainian high-tech companies as an effective, fast-response and low-cost means of research and real-time monitoring. The system is described in details, with the emphasis on its most important advantages. Multiple applications of the system are presented, including ones for the purposes of microgravity research; chemical, bacteriological and radiation monitoring and research of atmosphere and ionosphere; operational monitoring of natural and man-made disasters, as well as for some other areas of great practical interest. The current level of the system development is given, and the way ahead towards full system's implementation is prescribed.

  17. Tabletop Experimental Track for Magnetic Launch Assist

    Science.gov (United States)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. An Analysis of the Internal Truth Files for a CAST 4000 GPS Simulator for Two Rocket Launches and One Weather Balloon Flight

    Science.gov (United States)

    Simpson, James C.

    2004-01-01

    The CAST GPS 4000 simulator can create scenarios using external trajectories. The following information must be provided: time from a given epoch (a constant sampling rate must be used); position, velocity and acceleration in Earth Centered Earth Fixed (ECEF) coordinates; elements of the matrix that transforms from the body-axis coordinate system to the ECEF frame; and the angular velocity of the body-axis system relative to ECEF coordinates. The initial latitude, longitude, altitude, and UTC time must also be provided during the scenario setup. The simulator recomputes the positions and velocities using the given accelerations and a constant jerk model. The results are the internal "truth file".

  19. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    Science.gov (United States)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  20. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  1. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  2. Launch Pad Flame Trench Refractory Materials

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  3. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    Science.gov (United States)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  4. SSV Launch Monitoring Strategies: HGDS Design and Development Through System Maturity

    Science.gov (United States)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    This poster presentation reviews the design and development of the Hazardous Gas Detection System (HGDS). It includes a overview schematic of the HGDS, pictures of the shuttle on the Mobile Launch platform, the original HGDS, the current HGDS and parts of the original and current system. There are charts showing the dynamics of the orbiter during external tank loading, and transient leaks observed on HGDS during Power Reactant Storage and Distribution (PRSD) load.

  5. NONLINEAR DYNAMIC SIMULATION OF AN AXIALLY SLIDE-SPIN ROCKET FLEXIBLE SYSTEM WITH CLEARANCE

    Institute of Scientific and Technical Information of China (English)

    Zhu Huailiang; Zhang Fuxiang

    2005-01-01

    A hybrid approach is presented to investigate the dynamic behavior of an axially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexible rocket are derived based upon Euler-Bernoulli beam theory and Hamilton principle and the finite element method. The characteristics of clearance between the spinning rocket and launcher are considered to be piecewise linear. Numerical solution is developed by direct integration method and demonstrates the validity of the method. The coupled dynamic behavior of axial motion and transverse vibrations of rocket are analyzed, and the influences of axially moving acceleration, spin speed, linking stiffness of elastic "shoes", and the nonlinearity of clearance on the motion attitude of rocket are studied.

  6. Rocket University at KSC

    Science.gov (United States)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  7. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  8. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Science Measurement Performance since Launch

    Science.gov (United States)

    Sun, X.; Abshire, J. B.; Riris, H.; McGarry, J.; Sirota, M.

    2004-12-01

    The Geoscience Laser Altimeter System is a space lidar and the primary instrument on NASA's ICESat mision. Since launch in January 2003 GLAS has produced about 544 million measurements of the Earth's surface and atmosphere. It has made global measurements of the Earth's icesheets, land topography and atmosphere with unprecedented vertical resolution and accuracy. GLAS was first activated for science measurements in February 2003. Since then its operation and performance has confirmed many pre-launch expectations and exceed a few of the most optimistic expectations in vertical resolution and sensitivity. However GLAS also suffered an unexpected failure with its first laser, and the GLAS measurements have yielded some surprises in other areas. This talk will give a post-launch assessment of the science measurement performance of the GLAS instrument, and compare the measurement environment and its science measurements to pre-launch expectations. It also will address some of what has been learned from the GLAS design, operations and measurements which may benefit future space lidar.

  9. Comparison of Two Recent Launch Abort Platforms

    Science.gov (United States)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  10. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    Science.gov (United States)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    payloads of up to 1900 kilograms in near- earth orbit. The rocket is 29 meters long with a diameter of 2.5 meters. The launch weight is about 107 tons. Satellite launches with Rockot are a service offered and carried out by Eurockot Launch Service GmbH. It is a European Russian joint venture which is 51% controlled by Astrium and 49 % by Khrunichev, Russia's leading launch vehicle firm. The Rockot vehicles can be launched from Plesetsk in northern Russia and Baikonur in Kazakhstan. EUROCKOT provides a wide choice of flight-proven adapters and multi-satellite platforms to the customer to allow such payloads to be accommodated. These range from the Russian Single Pyro Point Attachment System (SPPA)

  11. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    Science.gov (United States)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  12. NASA's Space Launch System: A New Opportunity for CubeSats

    Science.gov (United States)

    Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.

    2016-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward

  13. First Soviet Sea-Launched Ballistic Rockets

    Directory of Open Access Journals (Sweden)

    Yuri F. Katorin

    2013-03-01

    Full Text Available In the article it is told about the creation of the first generation of Soviet ballistic missiles for the armament of submarines. The basic stages of their development, tests and adoption for the armament are described. Are cited the data about the people, is most which actively participated in these processes.

  14. Maturation of Structural Health Management Systems for Solid Rocket Motors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid rocket motor cases are subject to a variety of external environmental and loading conditions from cradle-to-grave. These conditions can significantly impact...

  15. Launch Vehicle Performance with Solid Particle Feed Systems for Atomic Propellants

    Science.gov (United States)

    Palaszewski, Bryan

    1998-01-01

    An analysis of launch vehicle Gross Liftoff Weight (GLOW) using high energy density atomic propellants with solid particle feed systems was conducted. The analyses covered several propellant combinations, including atoms of aluminum (Al), boron (B). carbon (C), and hydrogen (H) stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents (wt%) for the liquid carrier were investigated and the gross lift off weight (GLOW) of the vehicles using the solid particle feed systems were compared with a conventional 02/H2 propellant vehicle. The potential benefits and effects of feed systems using solid particles in a liquid cryogenic fluid are discussed.

  16. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Flachbart, Robin

    2003-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  17. A Monte Carlo Analysis of the Thrust Imbalance for the Space Launch System Booster During Both the Ignition Transient and Steady State Operation

    Science.gov (United States)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.

  18. Peregrine 100-km Sounding Rocket Project

    Science.gov (United States)

    Zilliac, Gregory

    2012-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University, and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of this technology to a small launch system. The approach is to design, build, and fly a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked off in October of 2006 and has seen considerable progress in the subsequent 18 months. This research group began studying liquifying hybrid rocket fuel technology more than a decade ago. The overall goal of the research was to gain a better understanding of the fundamental physics of the liquid layer entrainment process responsible for the large increase in regression rate observed in these fuels, and to demonstrate the effect of increased regression rate on hybrid rocket motor performance. At the time of this reporting, more than 400 motor tests were conducted with a variety of oxidizers (N2O, GOx, LOx) at ever increasing scales with thrust levels from 5 to over 15,000 pounds (22 N to over 66 kN) in order to move this technology from the laboratory to practical applications. The Peregrine program is the natural next step in this development. A number of small sounding rockets with diameters of 3, 4, and 6 in. (7.6, 10.2, and 15.2 cm) have been flown, but Peregrine at a diameter of 15 in. (38.1 cm) and 14,000-lb (62.3-kN) thrust is by far the largest system ever attempted and will be one of the largest hybrids ever flown. Successful Peregrine flights will set the stage for a wide range of applications of this technology.

  19. Using Monte Carlo techniques and parallel processing for debris hazard analysis of rocket systems

    Energy Technology Data Exchange (ETDEWEB)

    LaFarge, R.A.

    1994-02-01

    Sandia National Laboratories has been involved with rocket systems for many years. Some of these systems have carried high explosive onboard, while others have had FTS for destruction purposes whenever a potential hazard is detected. Recently, Sandia has also been involved with flight tests in which a target vehicle is intentionally destroyed by a projectile. Such endeavors always raise questions about the safety of personnel and the environment in the event of a premature detonation of the explosive or an activation of the FTS, as well as intentional vehicle destruction. Previous attempts to investigate fragmentation hazards for similar configurations have analyzed fragment size and shape in detail but have computed only a limited number of trajectories to determine the probabilities of impact and casualty expectations. A computer program SAFETIE has been written in support of various SNL flight experiments to compute better approximations of the hazards. SAFETIE uses the AMEER trajectory computer code and the Engineering Sciences Center LAN of Sun workstations to determine more realistically the probability of impact for an arbitrary number of exclusion areas. The various debris generation models are described.

  20. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Science.gov (United States)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  1. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    Science.gov (United States)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  2. Rocket experiment on microwave power transmission with Furoshiki deployment

    Science.gov (United States)

    Kaya, Nobuyuki; Iwashita, Masashi; Tanaka, Kohei; Nakasuka, Shinichi; Summerer, Leopold

    2009-07-01

    Huge antennas has many useful applications in space as well as on the ground, for example, Solar Power Satellite to provide electricity to the ground, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. The S-310-36 sounding rocket was successfully launched on 22 January 2006 to verify our newly proposed scheme to construct huge antennas under microgravity condition in space. The rocket experiment has three main objectives, the first objective of which is to verify the Furoshiki deployment system [S. Nakasuka, R. Funase, K. Nakada, N. Kaya, J. Mankins, Large membrane "FUROSHIKI Satellite" applied to phased array antenna and its sounding rocket experiment, in: Proceedings of the 54th International Astronautical Congress, 2003. [1

  3. Probe experiment with RIKI device on a meteorological rocket

    Energy Technology Data Exchange (ETDEWEB)

    Chapknov, S.K.; Ivanova, T.N.; Gusheva, M.N.; Knchev, A.G.; Tsvetkov, Z.I.

    1979-01-01

    The RIKI device carried on board the Centaure-II ionospheric sounding rocket launched on October 31, 1978 from the equatorial rocket base at Tumba, India in order to measure local plasma ion concentrations and temperatures is described. The device consists of a four-spherical-electrode and a three-spherical-electrode spherical ion trap and a block of measuring electronics mounted in the air-tight rocket container. The volt-ampere characteristics of protons traversing a system of concentric grids are determined in fine or coarse resolution as sweeping voltages are supplied to the grids from a sawtooth wave generator. Positive ions which penetrate the grids are collected by the ion trap collectors, and the current generated is used to determine operational modes. Measurements of ion concentration obtained with the RIKI device have been found to be in good agreement with electron concentration measurements obtained concurrently.

  4. Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model

    Science.gov (United States)

    Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.

    2017-06-01

    This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.

  5. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    Science.gov (United States)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-01

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  6. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    Science.gov (United States)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  7. Vibro-acoustic launch protection experiment (VALPE)

    Science.gov (United States)

    Henderson, Benjamin; Gerhart, Charlotte; Lane, Steven; Jensen, Elizabeth; Griffin, Steve; Lazzaro, Anthony

    2003-10-01

    Launch acoustic and vibration loads have the potential to damage sensitive payloads within a payload fairing, often requiring more structural mass to withstand these loads than would otherwise be necessary to survive launch. Experiments demonstrating several vibro-acoustic mitigation technologies developed by AFRL/VS and its contractors flew on the Vibro-Acoustic Launch Protection Experiment 2 (VALPE-2) aboard a Terrier-Improved Orion sounding rocket from Wallops Island Flight Facility in August 2003. Flight data collected in November 2002 from a nearly identical launch (VALPE-1) was used to characterize the fairing environment for comparison. Preparations for the flight experiments are discussed along with the performance of the various experiments in flight. The several experiments include an Adaptive Vibro-Acoustic Device (AVAD) to mitigate acoustic loads, an active/passive hybrid vibration isolation system using voice-coil actuation and a ShockRing passive component, a voice-coil regenerative electronics vibration isolation system to absorb a portion of the vibration energy during launch and use it to power an active isolation system during a staging event, and a ChamberCore composite fairing with implications for passive acoustic performance.

  8. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    Science.gov (United States)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  9. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    Science.gov (United States)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload

  10. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    Science.gov (United States)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  11. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  12. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  13. Design of Neural Network Variable Structure Reentry Control System for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    HU Wei-jun; ZHOU Jun

    2008-01-01

    A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory. The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method. High precise and robust tracking of required attitude angles can be achieved in complicated air space. A mathematical model of reusable launch vehicle is pre-sented first, and then a controller of flight system is presented. Base on the mathematical model, the controller is divided into two parts: variable-structure controller and neural network module which is used to modify the parameters of con-troller. This control system decouples the lateral/directional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles. After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters. The final simulation shows that the control system has a good accurate, robust and de-coupled tracking performance. The stable state error is less than 1°, and the overshoot is less than 5%.

  14. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    Science.gov (United States)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  15. Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles

    Science.gov (United States)

    Braun, Benjamin; Markgraf, Markus; Montenbruck, Oliver

    2016-06-01

    European space launch operators consider the potential of GNSS (global navigation satellite system) as a promising novel means of localization for the purpose of range safety of launch vehicles like Ariane and Vega, since it is expected that recurring costs are lower and accuracy is higher than currently existing systems like radar tracking. Range safety requires continuous information about the position and velocity of the launch vehicle to quickly detect the occurrence of catastrophic events. However, GNSS outages due, for example, to high jerks at fairing and stage jettisons or other external interferences like (un-)intentional jamming cannot be precluded. The OCAM-G experiment on Ariane 5 flight VA219 has provided evidence that GNSS is capable of providing a highly accurate position and velocity solution during most of the flight, but that outages of several seconds do occur. To increase the continuity of a GNSS-based localization system, it is proposed that the GNSS receiver is augmented by an inertial measurement unit (IMU), which is able to output a position and velocity solution even during GNSS outages. Since these outages are expected to be short, a tactical- or even consumer-grade IMU is expected to be sufficient. In this paper, the minimum IMU performance that is required to bridge outages of up to 10 s, and thereby meeting the accuracy requirements of range safety, is determined by means of a thorough simulation study. The focus of the analysis is on current generation microelectromechanical system (MEMS)-based IMU, which is lightweight, low-cost, available commercially and has reached acceptable maturity in the last decade.

  16. A Scaled Underwater Launch System Accomplished by Stress Wave Propagation Technique

    Institute of Scientific and Technical Information of China (English)

    WEI Yan-Peng; WANG Yi-Wei; FANG Xin; HUANG Cheng-guang; DUAN Zhu-Ping

    2011-01-01

    A scaled underwater launch system based on the stress wave theory and the slip Hopkinson pressure bar (SHPB)technique is developed to study the phenomenon of cavitations and other hydrodynamic features of high-speed submerged bodies. The present system can achieve a transient acceleration in the water instead of long-time acceleration outside the water. The projectile can obtain a maximum speed of 30m/s in about 200μs by the SHPB launcher. The cavitation characteristics in the stage of acceleration and deceleration are captured by the high-speed camera. The processes of cavitation inception, development and collapse are also simulated with the business software FLUENT, and the results are in good agreement with experiment. There is about 20-30%energy loss during the launching processes, the mechanism of energy loss is also preliminary investigated by measuring the energy of the incident bar and the projectile.%@@ A scaled underwater launch system based on the stress wave theory and the slip Hopkinson pressure bar (SHPB) technique is developed to study the phenomenon of cavitations and other hydrodynamic features of high-speed submerged bodies.The present system can achieve a transient acceleration in the water instead of long-time acceleration outside the water.The projectile can obtain a maximum speed of 30m/s in about 200 μs by the SHPB launcher.The cavitation characteristics in the stage of acceleration and deceleration are captured by the high-speed camera.

  17. Procedure of Forecasting Operational and Extremal State of Critical Systems of the Rocket Technique Under Repeated Thermo-Force Loading

    Directory of Open Access Journals (Sweden)

    Shevchenko Yu.M.

    2015-09-01

    Full Text Available The mathematical model for investigation of the thermoelastoplastic stress-strain state and the strength of the rocket technique systems under the repeated starting is proposed. The thermal conductivity equation and constitutive equations of thermoplasticity for the repeated elastic-plastic deformation processes of isotropic materials along small-curvature paths, the strength and low-cyclic fatigue criteria, numerical methods for solving the boundary-value heat conduction problems and corresponding computer software are used.

  18. Design of the Remote Steerable ECRH launching system for the ITER upper ports

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, A G A [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Elzendoorn, B S Q [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Bongers, W A [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands)] (and others)

    2005-01-01

    An ECRH (electron-cyclotron resonance heating) launching system for the ITER upper ports is being designed. The aim of the system is to inject Electron Cyclotron Waves (ECW) in the ITER plasma in order to stabilize neoclassical tearing modes (NTM). Each of the four upper-port launchers consists of six mm-wave lines capable of transmitting high power up to 2 MW per line at 170 GHz. In order to exploit the capability of ECW for localized heating and current drive over a range of plasma radii in ITER, the ECH and CD upper port launcher must have a beam steering capability. The Remote Steering (RS) principle has great advantages, because it enables to avoid steerable mirrors with flexible cooling lines at the plasma-facing end of the launcher. The principle consists of a long, corrugated, square waveguide having the steerable optics placed outside of the first confinement boundary of the vacuum vessel. All vulnerable components are far away from the hostile plasma environment. Furthermore, the RS launching system enables to do maintenance on the system during shutdown, without affecting the torus vacuum and the blanket cooling circuits.

  19. Evaluating the Stability of NASA's Space Launch System with Adaptive Augmenting Control

    Science.gov (United States)

    VanZwieten, Tannen S.; Hannan, Michael R.; Wall, John H.

    2017-01-01

    NASA's baseline Space Launch System (SLS) flight control system (FCS) design includes an adaptive augmenting control (AAC) component that modifies the attitude control system response to provide the classical gain-scheduled control architecture with additional performance and robustness. The NASA Engineering and Safety Center (NESC) teamed with the Space Launch System (SLS) Program to perform a comprehensive assessment of the stability and robustness of the FCS with AAC. This paper provides an overview of the approach, specific analysis techniques, and outcomes that were particularly relevant for the SLS Program. Multiple analysis techniques that specifically target the nonlinear AAC were commissioned as part of this assessment, which was completed outside of the Program's standard design analysis cycle. The following analyses were included, with each technique adding its own valuable insights: Lyapunov-based stability analysis, classical stability analysis with static AAC gain variations, circle criterion-based analysis of the FCS with a time-varying element, time-domain stability margin assessment, Monte Carlo simulations with expanded dispersions, and an extensive set of stressing cases. Several of the completed analyses focused on determining whether the inclusion of AAC introduced risk to the FCS, while others quantified the benefits of the adaptive augmentation.

  20. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  1. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  2. Launch mission summary and terminal countdown, Delta 153 Satellite Business Systems satellite (SBS-A)

    Science.gov (United States)

    1980-01-01

    A brief summary of the launch vehicle, spacecraft, and mission is contained. Information relative to launch windows, vehicle telemetry coverage, realtime data flow, telemetry coverage by station, selected trajectory information, and a brief sequence of flight events is also included.

  3. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  4. Instrumentation and Communication Systems for Sounding Rockets and Shuttle-Borne Experiments.

    Science.gov (United States)

    1987-04-27

    samarium into the ionosphere was scheduled for flight during the fall of 1983. Two virtually identical payloads were to be carried on Brazilian Sonda III...stage of the Sonda III rocket burned for only 5 out of the required 20 seconds, thus yielding no scientific data as the vehicle never reached minimum

  5. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    Science.gov (United States)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  6. A Date Recovery System launched for chronological studies in ancient China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Benefited from the performance of the Xia-Shang-Zhou Chronology Project (XSZP) in China and our new astronomical chronology method designed and processed for Chinese particular 60-day-cycle Ganzhi (the heavenly stems and earthly branches) date records, we launch a Date Recovery System (DRS) for ancient China. Of high analysis function, this software can recover and convert the complete or incomplete date information originally from Ganzhi style in the historical period of China to the Gregorian Calendar System, which may have wide applications in the area of literary history, archaeology and cultural relic, etc., and solve the Goldbach Puzzles of Chinese nations. As an example, we give the detailed process for the sculptures on four bronze wares with the Ganzhi data and afterwards employ this software and provide their possible dates corresponding to Gregorian system.

  7. A Date Recovery System launched for chronological studies in ancient China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Benefited from the performance of the Xia-Shang-Zhou Chronology Project(XSZP) in China and our new astronomical chronology method designed and processed for Chinese particular 60-day-cycle Ganzhi(the heavenly stems and earthly branches)date records,we launch a Date Recovery System(DRS)for ancient China. Of high analysis function,this software can recover and convert the complete or incomplete date information originally from Ganzhi style in the historical period of China to the Gregorian Calendar System,which may have wide applications in the area of literary history,archaeology and cultural relic,etc.,and solve the Goldbach Puzzles of Chinese nations.As an example,we give the detailed process for the sculptures on four bronze wares with the Ganzhi data and afterwards employ this software and provide their possible dates corresponding to Gregorian system.

  8. A Lunar Electromagnetic Launch System for In-Situ Resource Utilization

    Science.gov (United States)

    Wright, Michael R.; Kuznetsov, Steven B.; Kloesel, Kurt J.

    2010-01-01

    Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested.

  9. Personnel launch system (PLS) lifting body and low lift-to-drag (L/D)

    Science.gov (United States)

    Erwin, Harry O.

    1990-09-01

    The Personnel Launch System (PLS) is a small transportation system designed to transport people, but no cargo, to and from low-earth orbit. The PLS is being considered as an addition to the manned launch capability of the United States for three main reasons: (1) to assure manned access to space, (2) to achieve a first-stage abort ability, and (3) to reduce operations costs. To those ends, two designs are being considered for the PLS that differ in their lift-to-drag (L/D) ratio. The Lyndon B. Johnson Space Center was assigned the task of examining low L/D capsules with no wings and a parachute landing capability. The Langley Research Center is studying a higher L/D PLS with wings and runway landings. Whichever design is selected, the PLS will act as a complement to the Space Shuttle fleet and will enhance the ability of our Nation to achieve reliable, safe, and cost-effective access to space flight, thus furthering the goals of the U.S. space program and increasing the safety of the human crews manning a future space station.

  10. Time Domain Stability Margin Assessment of the NASA Space Launch System GN&C Design for Exploration Mission One

    Science.gov (United States)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  11. Time Domain Stability Margin Assessment of the NS Space Launch System GN&C Design for Exploration Mission One

    Science.gov (United States)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  12. Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher%Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher

    Institute of Scientific and Technical Information of China (English)

    郭亚军; 马大为; 王晓峰; 乐贵高

    2011-01-01

    An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions. The simulation results illustrate that the method is applicable and robust.

  13. Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results

    Science.gov (United States)

    Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro

    2017-04-01

    A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.

  14. Illustration of Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  15. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    Directory of Open Access Journals (Sweden)

    Leonardo W. T. Silva

    2014-08-01

    Full Text Available In launching operations, Rocket Tracking Systems (RTS process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs with phased arrays (PAs. These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs, the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs. For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  16. Analysis of Rocket Weapon System Decision Based on Virtual Simulation%基于虚拟仿真的火箭武器系统决策分析法

    Institute of Scientific and Technical Information of China (English)

    付昆; 于存贵

    2011-01-01

    In view of the defects in classical expert system exist that the lack of dynamic prediction function and principium illumination problem, an improved frame work of multiple rocket weapon expert system based on virtual simulation model is proposed. By building the virtual simulation model, and multiple rocket launch weapon system performance without servo system control, process control and intermittent control three control mode of the simulation analysis, and taking an example calculation. The results show that the model is feasible and effective, can provide an efficient and intuitionistic new way for solve the weapon system analysis.%针对传统武器专家系统缺少动态预测功能和机理性解释的问题,提出基于虚拟样机仿真的多管火箭武器专家系统集成框架,建立仿真模型,对多管火箭武器发射系统性能进行没有伺服系统控制、全过程控制和间断性控制3种控制方式的仿真分析,并通过实例进行演算.结果表明:该模型是可行、有效的,可为解决武器系统分析提供一种有效、直观的新途径.

  17. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    Science.gov (United States)

    Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions

  18. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    Science.gov (United States)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility

  19. Launching of Microwaves into a Dense Plasma in Open Confinement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2001-02-15

    A study is made of the propagation of microwave beams in a plasma and their passage through the critical surface. It is shown that, in order for microwaves to penetrate deeply into a dense plasma, it is necessary to launch them through a magnetic mirror at a slight angle to the device axis. The characteristic features of ray trajectories are analyzed both ahead of and behind the critical surface. In a dense plasma behind the critical surface, microwaves tend to run out of the axial region toward the plasma periphery. This tendency may be unfavorable for heating plasmas whose radial density profiles are strongly peaked about the system axis. The problems under analysis are particularly important for assessing the prospects for ECR heating of dense plasmas in open confinement systems.

  20. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    Science.gov (United States)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  1. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    Science.gov (United States)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  2. First China-Europe Satellite Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    HeYing

    2004-01-01

    On December 30, 2003 China successfully launched TC-1,the first of two scientific satellites known as Double Star, The mission,the first time that European instruments were integrated with Chinese satellites,was carried out by a Long March 2C/SM rocket at 3:06 am from the Xichang Satellite Launch Center in Sichuan province.

  3. A photovoltaic 12/1 concentrating solar power system with a unique launch stowing configuration

    Energy Technology Data Exchange (ETDEWEB)

    Falbel, G.

    1998-07-01

    Recent advancements in photovoltaic solar cells made from gallium arsenide (GaAs) have shown that with concentration ratios greater than one solar constant, overall efficiencies up to 23% can be achieved. A second issue applicable to solar power systems for spacecraft is the cost driver, which requires that the efficiency/weight ratio be improved so that solar panels with high output, weighing less, will reduce payload weights, which, in turn, reduces launch costs. This has resulted in a Figure of Merit being introduced to grade the characteristics of solar panels for spacecraft. This Figure of Merit defines a ratio of watts/kilogram for a solar panel. Typical flat plate panels on current spacecraft, fabricated with silicon solar cells without concentration, provide Figures of Merit of 25 to 30 watts/Kg. This paper describes a new design of a 12/1 solar concentrator in which conservative calculations show improvements on this Figure of Merit by a major factor. An ultra-lightweight cylindrical solar concentrator is coiled up around a spacecraft in the launch mode, using the same principle as is used in Lufkin type metal measuring tapes. This provides a high volumetric efficiency launch folded mode as compared to the current method of accordion pleats of flat solar panels. The deployment means of this coiled launch mode configuration is much simpler and inherently more reliable than the current unfolding of accordion pleats, and is self powered by the spring action of the coiled cylindrical aluminum mirror. A special triangular heat pipe transfers the heat absorbed by the solar array to the cylindrical mirror, which also acts as the heat dissipator. Through the use of flexible bellows in the heat pipe assembly the assembly collapses to a cylindrical shape having a radial thickness of less than 1 inch, so that only two coils of this concentrating collector around a 10 ft diameter spacecraft results in a 2 ft. wide, x 66 ft. long deployed collector module capable of

  4. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations

    Science.gov (United States)

    García-Rigo, Alberto; Núñez, Marlon; Qahwaji, Rami; Ashamari, Omar; Jiggens, Piers; Pérez, Gustau; Hernández-Pajares, Manuel; Hilgers, Alain

    2016-07-01

    A web-based prototype system for predicting solar energetic particle (SEP) events and solar flares for use by space launch operators is presented. The system has been developed as a result of the European Space Agency (ESA) project SEPsFLAREs (Solar Events Prediction system For space LAunch Risk Estimation). The system consists of several modules covering the prediction of solar flares and early SEP Warnings (labeled Warning tool), the prediction of SEP event occurrence and onset, and the prediction of SEP event peak and duration. In addition, the system acquires data for solar flare nowcasting from Global Navigation Satellite Systems (GNSS)-based techniques (GNSS Solar Flare Detector, GSFLAD and the Sunlit Ionosphere Sudden Total Electron Content Enhancement Detector, SISTED) as additional independent products that may also prove useful for space launch operators.

  5. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

    Science.gov (United States)

    Bowling, T. J.; Calais, E.; Dautermann, T.

    2010-12-01

    Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

  6. Nuclear thermal rockets using indigenous extraterrestrial propellants

    Science.gov (United States)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  7. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  8. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    is a vast and desolate world, this is a strip of mir- aculous land! How many struggling dramas full of power and * grandeur were cheered, resisted and...rocket officers and men, a group enormous and powerful , marched into this land soaked with the fresh blood of our ancestors. This place is about to...and tough pestering said he wanted an American aircraft ob- tained on the battlefield to transport goods from Lanzhou, Xian, Beijing, Guangzhou and

  9. Illustration of Ares I Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  10. Space Systems Failures Disasters and Rescues of Satellites, Rockets and Space Probes

    CERN Document Server

    Harland, David M

    2005-01-01

    In the 1960s and 1970s deep space missions were dispatched in pairs in case one was lost in launch or failed during its journey. Following the triumphs of the Viking landings on Mars in 1976 and both Voyagers spacecraft successfully surveying the outer giant planets of the Solar System, it was decided by NASA to cut costs and send out just a single probe. Although Magellan successfully mapped Venus by radar, it suffered from problems during the flight. Then came the loss of Mars Observer, whose engine exploded as it was preparing to enter Mars’ orbit because it was using technology designed for Earth’s satellites and the engine was not suited to spending several months in space. Later came the high-profile losses of Mars Climate Observer and Mars Polar Lander - a consequence of the faster, better, cheaper philosophy introduced by Dan Goldin in 1993. Even the highly successful Galileo mission suffered a major setback when its high-gain antenna (also based on satellite mission suffered a major setback when ...

  11. LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; MSFC Advanced Concept Office

    2016-01-01

    NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.

  12. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  13. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  14. Iridium-Coated Rhenium Radiation-Cooled Rockets

    Science.gov (United States)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  15. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  16. VSB-30 sounding rocket: history of flight performance

    Directory of Open Access Journals (Sweden)

    Wolfgang Jung

    2011-09-01

    Full Text Available The VSB-30 vehicle is a two-stage, unguided, rail launched sounding rocket, consisting of two solid propellant motors, payload, with recovery and service system. By the end of 2010, ten vehicles had already been launched, three from Brazil (Alcântara and seven from Sweden (Esrange. The objective of this paper is to give an overview of the main characteristics of the first ten flights of the VSB-30, with emphasis on performance and trajectory data. The circular 3σ dispersion area for payload impact point has around 50 km of radius. In most launchings of such vehicle, the impact of the payload fell within 2 sigma. This provides the possibility for further studies to decrease the area of dispersion from the impact point.

  17. Expert system decision support for low-cost launch vehicle operations

    Science.gov (United States)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  18. Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System

    Science.gov (United States)

    Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.

    2014-01-01

    A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.

  19. Near-term U.S. military and commercial launch systems. A post cold war assessment of future needs

    Science.gov (United States)

    Whitehair, C. L.; Wolfe, M. G.

    In late 1992, the Vice President's Space Policy Advisory Board made a number of major space policy recommendations that impact the United States launch industry. These recommendations included greater cooperation and synergism and less duplication between the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD); development of a new, more efficient space launch capability to replace the aging and operationally expensive current launch systems that are finding it increasingly difficult to compete in the global commercial market place; transition to more cost-effective ways of meeting both unmanned and manned space transportation needs in the 21st century; prudent relaxation of security regulations to foster increased world trade; sharing of capabilities with allies and friendly states; and expansion of efforts to forge partnerships with other nations in carefully selected areas. The recommendations were intended to aid the incoming administration and the new president in making funding decisions for near-term future launch systems. In the light of these recommendations, this paper examines the limitations of the current U.S. expendable launch fleet; the performance, operability, reliability, and cost-effectiveness enhancement options available; the availability of new technologies and design changes that can be applied to current systems; the requirements that would have to be met to make U.S. systems more competitive in the global market place; and the advisability of replacing or augmenting current systems with a new "Spacelift" vehicle or family of vehicles. The Spacelift concept is described and assessed against projected domestic and global mission requirements, including possible manned missions. Expendable options are compared with current launch systems and with near-term future systems such as Ariane 5. Alternative design approaches, such as partially reusable concepts; fully reusable systems; and the possibility of using

  20. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  1. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  2. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  3. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  4. Study on Water Jet Noise Reduction Mechanism during Single-nozzle Rocket Launch%单喷管火箭发射喷水降噪机理研究

    Institute of Scientific and Technical Information of China (English)

    陈劲松; 吴新跃; 张国栋; 曾玲芳; 贺建华

    2015-01-01

    Aiming at the launch technical characteristics of strap-on launch vehicle, a simplified test system used for water jet noise reduction mechanism simulation is proposed and the preliminary test study has been finished. The analysis of water jet noise reduction simulation flow field data shows that once the low-speed, normal temperature liquid water jet flow injects into high-speed gaseous jet flow, liquid water is atomized instantaneously. Momentum of high-speed gaseous jet flow generates and energy exchange happens. The sound transformation ability that makes the high-speed gaseous jet flow form high sound intensity noise is weakened. It is also shown that the concentration of the atomized flow is uniform during the follow-up propelling process, changing or even cutting off the transmission path of original jet flow noise. The frequency analysis of water jet noise reduction simulation test shows that within wide frequency spectrum, water jet has the ability to suppress noise, particularly for whistler-type noise.%针对捆绑式运载火箭发射技术特点,提出并研发相对简化的单喷管火箭发射喷水降噪机理模拟试验系统,完成单喷管火箭发射喷水降噪机理初步试验研究.对喷水降噪模拟试验流场数据、资料的分析表明,低速常温液态水射流喷入高速气态喷流后,液态水瞬间雾化,实现高速气态喷流动量、能量交换,高速气态喷流形成高声强噪声的声效转换能力由此下降.雾化水汽在后续推进过程浓度十分均匀,改变甚至切断原喷流噪声传播途径.发射喷水降噪模拟试验噪声频谱分析表明,喷水条件下喷水具备宽频范围内抑制噪声能力,同时,喷水抑制喷流噪声中啸音能力突出.

  5. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  6. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  7. Rocket Projectile Detection Information Analysis System%火箭弹检测信息分析系统

    Institute of Scientific and Technical Information of China (English)

    范志锋; 崔平; 文健; 徐敬青

    2014-01-01

    In allusion to the problem of using detection information of factory and army past years to receive the variation law of the control system electrical capability of a type of rocket projectile, developing a rocket projectile detection information analysis system based on mixed programming of PB/Matlab/SQL Server/Excellis put forward. Overall function, development tools and technology and design of development function module of the system are introduced. Some basically sport technique segments of design and implementation of the system are mainly explained and the main characteristics of the system are analyzed. It is shown by the application that the system has virtues of good interface, universality, operability and easy to maintain. The system has solved the problems of management, analysis and plotting of mass detection information.%针对利用出厂检测信息和部队历年检测信息得到火箭弹控制系统电性能变化规律存在的难题,提出基于PB/Matlab/SQL Server/Excel 混合编程开发火箭弹检测信息分析系统。介绍系统总体功能、开发工具与技术、开发功能模块设计,重点对系统开发与实现的一些主要技术环节进行说明,并分析系统主要特点。应用结果表明:该系统界面友好,通用性、可操作性强,易于维护,能高效解决海量检测信息管理、分析和绘图等问题。

  8. How to Improve the Supportive Role of Estonian Innovation System toward Launching New Products by High Technology Companies?

    Directory of Open Access Journals (Sweden)

    Liisi Sepp

    2013-01-01

    Full Text Available The purpose of the study is to evaluate how supportive is Estonian national innovation system toward the launching of new innovative products by high technology firms. The article intends to combine two broad areas of research – national innovation system approach and the different models of the new product launching. Based on the literature review and in-depth analysis of three case studies of Estonian high-tech company’s major barriers as well success factors of highly innovative product launches were identified. The barriers of the new product launching were linked with the systemic failures of the national innovation system. The most relevant failures of Estonian national innovation system inhibiting the new product development are capability and networking failures. The sources of innovation of high-technology firms are too narrow, linkages with domestic firms and higher education institutions as well with foreign firms are poorly developed. High-tech firms have also serious capacity problems due to the extremely weak support mechanism by national innovation system on the seed funding stage of product development and prototype building stage as well. Paper argues that resources needed for the innovation should not be looked too narrowly following linear innovation model approach. Instead interactive approach is needed, which combines capability building, network development, interactive learning with direct investments into fundamental research.

  9. A Modular Minimum Cost Launch System for Nano-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As minimum cost will be required for a dedicated Nano-Sat Launch Vehicle, a parallel staged, highly modular vehicle architecture is proposed for development. The...

  10. A long way to market launching. Fuel cell heating systems; Ein langer Weg zur Marktreife. Brennstoffzellenheizungen

    Energy Technology Data Exchange (ETDEWEB)

    Wilming, Wilhelm

    2010-07-01

    Although the launching of fuel cells in the market has often been announced but never realized. The end of the current decade is now envisaged for serial production and marketing. Will the technology be successful or will it flop? (orig.)

  11. Low Cost, High Efficiency, Pressurization System for Responsive Launch Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — KT Engineering (KTE) is pleased to submit this proposal to address the stated need for "innovative solutions that will allow spaceport launch service providers to...

  12. Analyzing the Impacts of Natural Environments on Launch and Landing Availability for NASA's Exploration Systems Development Programs

    Science.gov (United States)

    Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.

  13. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  14. Methodology for CFD Design Analysis of National Launch System Nozzle Manifold

    Science.gov (United States)

    Haire, Scot L.

    1993-01-01

    The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.

  15. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    Science.gov (United States)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  16. Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System

    Directory of Open Access Journals (Sweden)

    Luciana de Barros

    2016-04-01

    Full Text Available The application of fluoropolymers in high-energy-release pyrotechnic compositions is common in the space and defense areas. Pyrotechnic compositions of magnesium/Teflon/Viton are widely used in military flares and pyrogen igniters for igniting the solid propellant of a rocket motor. Pyrotechnic components are considered high-risk products as they may cause catastrophic accidents if initiated or ignited inadvertently. To reduce the hazards involved in the handling, storage and transportation of these devices, the magnesium/Teflon/Viton composition was subjected to various sensitivity tests, DSC and had its stability and compatibility tested with other materials. This composition obtained satisfactory results in all the tests, which qualifies it as safe for production, handling, use, storage and transportation.

  17. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    Science.gov (United States)

    Tomkins, James L.; Camp, William J.

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  18. Effectiveness of M.A. EPM Program Launched Through Distance Education System of Allama Iqbal Open University Islamabad

    Science.gov (United States)

    Hussain Shah, Syed Manzoor; Ahmad, Masoor

    2014-01-01

    The study focus the effectiveness of the M.A EPM program launched through distance education system of AIOU. For this purpose the performance of heads of educational institutions with and without M.A EPM degree was analyzed keeping in view different major aspects i.e. planning strategies, managerial approaches, coordination, administration and use…

  19. Performance comparisons of nuclear thermal rocket and chemical propulsion systems for piloted missions to Phobos/Mars

    Science.gov (United States)

    Borowski, S. K.; Mulac, M. W.; Spurlock, O. F.

    1989-01-01

    Performance capability of nuclear thermal rocket (NTR) and chemical propulsion systems, operating with and without aerobraking, are compared for a selected set of Mars mission opportunities in the 2000 to 2020 timeframe. Both high- and low-energy mission opportunities are investigated. Results are presented as the required initial mass in low earth orbit (IMLEO) to perform the missions. Missions exclusively using chemical propulsion systems have the greatest initial masses. Significant mass reductions are realized by utilizing either aerobrake or NTR technology or both. As mission energy requirements increase, the benefit of implementing aerobrake or NTR technology increases, resulting in IMLEO mass reductions on the order of 60 to 75 percent when compared with all-propulsive chemical missions. By combining both advanced technologies, still greater mass reductions are possible.

  20. Economical Mars Exploration Supported by a Nuclear Thermal Rocket

    Science.gov (United States)

    Howe, S. D.; O'Brien, R. C.

    2012-06-01

    A nuclear thermal rocket (NTR) developed for human Mars missions could act as a "mother ship" and carry multiple unmanned platforms to Mars for independent deployment. Use of the NTR could increase the science per dollar for each Earth launch.

  1. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  2. NASA's Advanced solid rocket motor

    Science.gov (United States)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  3. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  4. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft Aerosp

  5. Lunar landing and launch facilities (Complex 39L): Guidance systems and propellant systems

    Science.gov (United States)

    1989-01-01

    After a general, overall definition of Complex 39L during the previous two years, the 1988-89 projects were chosen to focus on more specific aspects, specifically, guidance systems and propellant systems. Six teams or subtasks were formulated: cascade refrigeration for boil-off recovery of cryogenic storage vessels; lunar ground-based radar system to track space vehicles; microwave altimeter for spacecraft; development of a computational model for the determination of lunar surface and sub-surface temperatures; lunar cryogenic facility for the storage of fuels; and lunar lander fuel inventory tent for the storage of cryogenic vessels. At the present time, a cascade refrigeration system for a cryogenic boil-off recovery system has been designed. This is to serve as a baseline system. The ground-based tracking system uses existing technology to implement a reliable tracking radar for use on the lunar surface. A prototype has been constructed. The microwave altimeter is for use on lunar landers. It makes use of the Doppler effect to measure both altitude and the vertical velocity component of the spacecraft. A prototype has been constructed. A computational model that predicts the spatial and temporal temperature profiles of the lunar subsurface was formulated. Propellant storage vessels have been designed. A support for these vessels which minimizes heat leaks was also designed. Further work on the details of the Fuel Inventory Tent (FIT) was performed. While much design work on the overall Complex 39L remains to be done, significant new work has been performed in the subject areas.

  6. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  7. Air-Launch TSTO With Subsonic In-Flight Collection-System and Technology Study

    Science.gov (United States)

    2007-11-02

    glider based on the FDL-7 series of hypersonic gliders developed and tested by A. Draper and M. Buck at the Flight Dynamics Laboratory in the ‘70’s...lot of kilograms and specific weight may be increased by a factor 2 to 2.5. By comparison, collecting at high supersonic / low hypersonic conditions...The vehicle of figure 4.7 is not a winged-cylindrical body configuration like on figure 4.8. It is a very efficient rocket-derived powered hypersonic

  8. Liquid rocket engine injectors

    Science.gov (United States)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  9. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  10. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  11. The Norwegian Sounding Rocket and Balloon Program

    Science.gov (United States)

    Skatteboe, Rolf

    2001-08-01

    The status and recent developments of the Norwegian Sounding Rocket and Balloon Program are presented with focus on national activities and recent achievements. The main part of the Norwegian program is sounding rocket launches conducted by Andøya Rocket Range from the launch facilities on Andøya and at Svalbard. For the majority of the programs, the scientific goal is investigation of processes in the middle and upper atmosphere. The in situ measurements are supplemented by a large number of ground-based support instruments located at the ALOMAR Observatory. The ongoing and planned projects are described and the highlights of the latest completed projects are given. The scientific program for the period 2001-2003 will be reviewed. Several new programs have been started to improve the services available to the international science comunity. The Hotel Payload project and MiniDusty are important examples that will be introduced in the paper. Available space related infrastructure is summarized.

  12. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    capability to expand the capability of a reusable first stage, including ground launch, powered return to the launch site, and a fully reusable rocket propulsion system. A Bantam technology goal is to demonstrate twenty-five flights with no unplanned rocket engine maintenance and only minor planned maintenance or inspections. The design goal of the propulsion system is a mission life of one hundred.

  13. Computer controlled vent and pressurization system. [of launch vehicle cryogenic propellant tanks

    Science.gov (United States)

    Cieslewicz, E. J.

    1975-01-01

    The paper illustrates how the Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  14. Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems

    Science.gov (United States)

    2015-06-01

    varies greatly, but the core functionality remains the same. Figure 3.7 is a computer-aided design (CAD) image generated using SOLIDWORKS soft- ware...of a sample UAV launching section. From this point forward, all referenced CAD images were created using SOLIDWORKS software. Also, some components of

  15. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    Science.gov (United States)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  16. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  17. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    Science.gov (United States)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  18. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  19. Space Station Freedom electric power system photovoltaic power module integrated launch package

    Science.gov (United States)

    Nathanson, Theodore H.; Clemens, Donald D.; Spatz, Raymond R.; Kirch, Luke A.

    1990-01-01

    The launch of the Space Station Freedom solar power module requires a weight efficient structure that will include large components within the limited load capacity of the Space Shuttle cargo bay. The design iterations to meet these requirements have evolved from a proposal concept featuring a separate cradle and integrated equipment assembly (IEA), to a package that interfaces directly with the Shuttle. Size, weight, and cost have been reduced as a result.

  20. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  1. CANSAT: Design of a Small Autonomous Sounding Rocket Payload

    Science.gov (United States)

    Berman, Joshua; Duda, Michael; Garnand-Royo, Jeff; Jones, Alexa; Pickering, Todd; Tutko, Samuel

    2009-01-01

    CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.

  2. Parametric Testing of Launch Vehicle FDDR Models

    Science.gov (United States)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  3. Rocket propulsion elements

    CERN Document Server

    Sutton, George P

    2011-01-01

    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  4. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  5. Design and Analysis of Outer Mold Line Close-outs for the Max Launch Abort System (MLAS) Flight Experiment

    Science.gov (United States)

    Woods-Vedeler, Jessica A.; Knutson, Jeffrey R.; Schuster, David M.; Tyler, Erik D.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale, passive aerodynamically stabilized Max Launch Abort System (MLAS) pad abort demonstrator was successfully launched from NASA Goddard Space Flight Center's Wallops Flight Facility. Aerodynamic close-outs were required to cover openings on the MLAS fairing to prevent aerodynamic flow-through and to maintain the MLAS OML surface shape. Two-ply duct tape covers were designed to meet these needs. The duct tape used was a high strength fiber reinforced duct tape with a rubberized adhesive that demonstrated 4.6 lb/in adhesion strength to the unpainted fiberglass fairing. Adhesion strength was observed to increase as a function of time. The covers were analyzed and experimentally tested to demonstrate their ability to maintain integrity under anticipated vehicle ascent pressure loads and to not impede firing of the drogue chute mortars. Testing included vacuum testing and a mortar fire test. Tape covers were layed-up on thin Teflon sheets to facilitate installation on the vehicle. Custom cut foam insulation board was used to fill mortar hole and separation joint cavities and provide support to the applied tape covers. Flight test results showed that the tape covers remained adhered during flight.

  6. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles

    Science.gov (United States)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2011-01-01

    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  7. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  8. Evaluation of Product Launch

    OpenAIRE

    MARŠÁLKOVÁ, Nina

    2012-01-01

    This bachelor thesis deals with the evaluation of the launch of product on the market and the proposal of a more appropriate solution. Author has chosen company Aponia software, s.r.o. with a place of business in Brno. It is small company which produces and sells navigations for mobile devices. During writing this thesis author focus on the launch of navigation for operating system Android on the market.

  9. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  10. Product Lifecycle Management Technology Applied in Missile Launching Systems Production and Installation

    Directory of Open Access Journals (Sweden)

    V. O. Karasev

    2016-01-01

    Full Text Available The article highlights the problems in the construction of the launch-site "Vostochniy" production and installation logistic. The stages of complex high-end product lifecycle described. The concepts and techniques of life cycle management and variants of their application offered as solution of this problems. Practical way to optimize logistics and lifecycle management processes using ILS Suite multi-agent software submitted. Side effect of this solution is creating of relevant integrated logistic support database, that could be used in the future projects. Results for tests and some perspectives for future investigation described.

  11. Solar Thermal Rocket Propulsion

    Science.gov (United States)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  12. An air launched, highly responsive military transatmospheric vehicle (TAV), based on existing aerospace systems

    Science.gov (United States)

    Hampsten, Kenneth R.

    1996-03-01

    A novel vehicle design is presented that minimizes Research Development Test and Evaluation (RDT&E) cost. The proposed TAV can satisfy a broad range of military mission applications for the 21st century. TAV deployment is provided by a Rockwell B-1B bomber. Pre-launch orientation of the vehicle is centerline, underneath the B-1B forward weapon bays. Launch occurs at 30,000 ft, Mach 0.90, and at a flight path angle of 15-20 degrees. The TAV is a Two-Stage-To-Orbit (TSTO) vehicle utilizing Liquid Oxygen (LOX) and RP-1 (kerosene) propellants. The reusable upper stage, or TAV, incorporates a 130 cubic foot payload bay for mission specific equipment. The booster can either be expended, or potentially recovered for reuse. TAV reentry relies on a biconic aeroshell for the hypersonic flight phase and a parafoil for the subsonic, terminal recovery phase. Nominal mission performance is between 1,150-1,800 lbs of payload into a 100 nmi circular orbit.

  13. Research on Design and Actualization of Vibration Controlled System of Launch Guider of MLRS%多管火箭定向器振动控制器设计与实现

    Institute of Scientific and Technical Information of China (English)

    贺军义; 芮筱亭; 王国平; 杨富峰; 展志焕

    2013-01-01

    为了对定向器振动进行有效控制,提高多管火箭射击精度,以多管火箭发射动力学与控制理论为依据,研究并设计了定向器振动脉冲推力控制方案;基于PXI总线技术,设计并实现了定向器X/Y/Z三方向共128路脉冲点火控制系统。系统主要由中心控制模块、多路通信模块、三方向数字控制输出模块组成;该控制系统具有多路数据通信、三方向多路脉冲点火指令形成和控制输出功能。物理仿真结果表明,该控制器可很好地完成定向器姿态信号的实时采集处理和三方向多路脉冲点火控制任务,为利用脉冲推力控制定向器振动,提高多管火箭射击精度奠定了现实基础。%To control the vibration of launch guider effectively and improve firing precision of Multiple Launch Rocket System (MLRS),the vibration of launch guider controlled plan by using plush thrust force is researched and designed based on the firing dynamics theory and the control theory;the pulse firing controlled system with 128 channels in three direction (X/Y/Z) is designed and actualized based on PXIbus. The system is composed of the center control module, the communication module with multi-channels and the digital output in three direction control module mainly. Data received from measuring devices by many channels at the same time,the pulse firing commands generated and output in three direction can be controlled by the control system. The physical simulative results shows that the control system can receive and dispose the data for orientation of launch guider in many channels and control the pulse firing and output with many channels in three direction. So the system is very important to realize the technology for improving the firing precision of MLRS by controlling the vibration of launcher guider by using plush thrust force.

  14. Influence of Rocket Engine Characteristics on Shaft Sealing Technology Needs

    Science.gov (United States)

    Keba, John E.

    1999-01-01

    This paper presents viewgraphs of The Influence of Rocket Engine Characteristics on Shaft Sealing Technology Needs. The topics include: 1) Rocket Turbomachinery Shaft Seals (Inter-Propellant-Seal (IPS) Systems, Lift-off Seal Systems, and Technology Development Needs); 2) Rocket Engine Characteristics (Engine cycles, propellants, missions, etc., Influence on shaft sealing requirements); and 3) Conclusions.

  15. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  16. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  17. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  18. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  19. NASA Rocket Propulsion Test Replacement Effort for Oxygen System Cleaner - Hydrochlorofluorocarbon (HCFC) 225

    Science.gov (United States)

    DeWitt Burns, H.; Mitchell, Mark A.; Lowrey, Nikki M.; Farner, Bruce R.; Ross, H. Richard

    2014-01-01

    Gaseous and liquid oxygen are extremely reactive materials used in bipropellant propulsion systems. Both flight and ground oxygen systems require a high level of cleanliness to support engine performance, testing, and prevent mishaps. Solvents used to clean and verify the cleanliness of oxygen systems and supporting test hardware must be compatible with the system's materials of construction and effective at removing or reducing expected contaminants to an acceptable level. This paper will define the philosophy and test approach used for evaluating replacement solvents for the current Marshall Space Flight Center/Stennis Space Center baseline HCFC-225 material that will no longer be available for purchase after 2014. MSFC/SSC applications in cleaning / sampling oxygen propulsion components, support equipment, and test system were reviewed then candidate replacement cleaners and test methods selected. All of these factors as well as testing results will be discussed.

  20. Reducing Thrusts In Solid-Fuel Rockets

    Science.gov (United States)

    Bement, Laurence J.

    1989-01-01

    Thrust-terminating system conceived to reduce thrust of solid-propellant rocket motor in controlled manner such that thrust loads not increased or decreased beyond predictable levels. Concept involves explosively cutting opposing venting pairs in case of rocket motor above nozzles to initiate venting of chamber and reduction of thrust. Vents sized and numbered to control amount and rate of reduction in thrust.

  1. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    Science.gov (United States)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  2. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  3. CGWIC S gned The Contract for Launching APStar 6B

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    Following the successful launch of APStar 6 on April 12, 2005,China Great Wall Industry Corporation (CGWIC), as the general contractor, will provide APStar 6B satellite and launch service with the LM-3B rocket for APT Satellite Holdings Ltd., Hong Kong (APT)

  4. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  5. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle

    Directory of Open Access Journals (Sweden)

    S.V.S. Narayana Murty

    2016-10-01

    Full Text Available Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.

  6. A DYNAMIC MODEL FOR ROCKET LAUNCHER WITH COUPLED RIGID AND FLEXIBLW MOTION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding-guo; XIAO Jian-qiang

    2005-01-01

    The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies,the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.

  7. Identification of a physically idealized human rated rocket based interplanetary transportation system

    Science.gov (United States)

    Ewig, Ralph

    Every system engineering trade study has to address the challenge of eliminating unintentional bias towards one of the available system options. This challenge becomes especially difficult when trading conceptual options, where the amount and fidelity of data available to characterize the options is highly variable. This dissertation introduces the methodology of Physical Idealization as a tool to remove unintentional bias from conceptual trade studies. The premise is that (1) given the options available based on our understanding of physics, and (2) within the set of constraints necessary to define the problem, it is possible to identify the optimal physically idealized solution. This solution can then be used as a benchmark for technology development and real world system implementation. The methodology of Physical Idealization is developed to support a study of Interplanetary Transportation Systems (ITS). The ITS is modeled as consisting of payload, power, and propulsion subsystems, and optimized using a simplified two-dimensional equation of motion set. Both a genetic algorithm and gradient based optimization methods are used in a nested loop process. The presented results illustrate both the strengths and weaknesses associated with using physical idealization in a trade study, showing the methodology to be a useful addition to the system engineer's selection of tools.

  8. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    Science.gov (United States)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a

  9. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    Science.gov (United States)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a

  10. 无人机箱式发射助推火箭燃气流场数值模拟%Numerical Simulation of Jet Flow Field of Booster Rocket in the Unmanned Vehicle Container Launching Process

    Institute of Scientific and Technical Information of China (English)

    卞海忠; 李志刚; 郭丽芳

    2011-01-01

    对计算流体力学中的域动分层法动网格更新技术进行了阐述,并且应用该方法对无人机发射时的燃气流场进行数值模拟,得到全流场参数在三维空间上的时间分布.无人机每个时刻的运动速度事先根据推力曲线计算好,随着无人机的运动,根据相应变化的运动边界更新网格,并且计算新网格下的流场分布,相应的流场边界条件也会发生变化.通过分析计算得到的箱上各监测点的压力分布曲线,了解冲击波在箱体表面传播的过程和产生的影响,结果可以为工程应用提供有力的参考.%A new dynamic mesh update method which is zone moving and dynamic layering method in the computational fluid dynamics was presented.The method was used for numerical simulation of the unmanned vehicle launching,and three-dimensional jet flow field distribution was obtained.The velocity-time curve of the unmanned vehicle was previously calculated.New jet flow field distribution was computed using new updated mesh and the boundary conditions of the flow field changed by the motion of the plane.The distribution curves of the monitoring points are obtained and it provides a powerful reference for engineering.

  11. FY-3A Launched Atop A LM-4C Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Rain.L

    2008-01-01

    @@ FY-3A,the first satellite of China's new generation of polar-orbiting meteorological satellites,was launched into space atop a modified LM-4C launch vehicle.The satellite separated from the rocket 19 minutes after the takeoff.Flying at an altitude of 807km with an inclination of 98.8 degrees,the satellite circles in polar orbit 14 times everyday,covering the whole globe twice a day.

  12. Analyzing the Impacts of Natural Environments on Launch and Landing Availability for NASA's Eploration Systems Development Programs

    Science.gov (United States)

    Altino, Karen M.; Burns, K. Lee; Barbre, Robert E.; Leahy, Frank B.

    2014-01-01

    NASA is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development Program, which includes the Space Launch System (SLS) and MultiPurpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from prelaunch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting or exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds.

  13. Integrated approach for hybrid rocket technology development

    Science.gov (United States)

    Barato, Francesco; Bellomo, Nicolas; Pavarin, Daniele

    2016-11-01

    Hybrid rocket motors tend generally to be simple from a mechanical point of view but difficult to optimize because of their complex and still not well understood cross-coupled physics. This paper addresses the previous issue presenting the integrated approach established at University of Padua to develop hybrid rocket based systems. The methodology tightly combines together system analysis and design, numerical modeling from elementary to sophisticated CFD, and experimental testing done with incremental philosophy. As an example of the approach, the paper presents the experience done in the successful development of a hybrid rocket booster designed for rocket assisted take off operations. It is thought that following the proposed approach and selecting carefully the most promising applications it is possible to finally exploit the major advantages of hybrid rocket motors as safety, simplicity, low cost and reliability.

  14. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    Science.gov (United States)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology

  15. 2005 40th Annual Armament Systems: Guns - Ammunition - Rockets - Missiles Conference and Exhibition. Volume 2: Wednesday

    Science.gov (United States)

    2005-04-28

    system SRL 6 24 CTA INTERNATIONAL UK and French Government Collaboration Warrior = VCI EBM = FRES UK TDP Manned Turret Integration...WARRIOR FRES VBCI EBM EMD & PROD’N 25 CTA INTERNATIONAL CTAI Turret Demonstrator Programmes MTIP 4 Tonne Conventional Manned Turret Toutatis 1,5...learned that do not apply 8 Grouping • Sort out those that do not apply • Combine lessons learned into themes – Facilitates comparing Lessons Learns

  16. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  17. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  18. Telemaxus: A telescience oriented sounding rocket experiment

    Science.gov (United States)

    Monti, R.; Fortezza, R.; Desiderio, G.; Capuano, G.; Titomanlio, D.

    Following the success of the Texus 23 Campaign (November 1989), during which the Teletexus experiment was conducted a more ambitious Telescience experiment was accomodated on the 1991 MAXUS 1 Payload. The fluidynamic experiment on the oscillatory Marangoni flow was performed on board the rocket (launched at Kiruna, Sweden) using a modified TEM-06/4 module. The experiment was fully controlled by the PI (Professor Monti) directly from the Telescience Control Room located at MARS Center (Naples, Italy). The experiment was also aimed to demonstrate the capabilities of Telescience Service that ESA offers to the European Microgravity User Community. Respect to other experiments already tested and assessed during previous Texus missions (14b, 23), the Telescience operation mode included new state-of-art technologies and subsystems to demonstrate capabilities, flexibility and usefulness of this operation concept mainly in the perspective of Columbus utilization. Unfortunately due to a failure of the rocket system, the microgravity condition was not reached during the flight and the fluidynamic results were missed. However, in spite of the tumbling attitude of the rocket, the telescience link was successfully tested and the video/data/audio communication was correctly established between MARS and Esrange. This paper illustrates the technological aspects and gives an overview of the systems/equipments integrated and realized for the experiment control. In the first part the H/W configurations for the experiment monitoring and control, identified by the research team are illustrated. The relevant items of the H/W configuration include: the Telescience Work Stations architecture, the link channels used for the selection, transmission and reception of video/data/commands and the subsystems manufactured to improve the system versatility. The second part deals with the communication link used for transmission between Sweden and Italy of experimental data, facility status, voice

  19. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    Science.gov (United States)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  20. Development of a full scale remote steerable ECRH mm-wave launching system test set-up for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Elzendoorn, B.S.Q. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, Nieuwegein, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands)], E-mail: ben@rijnh.nl; Bongers, W.A.; Graswinckel, M.F. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, Nieuwegein, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Jamar, J. [TNO Science and Industry, Business Unit Design and Manufacturing, Eindhoven, P.O. Box 6235, 5600 HE Eindhoven (Netherlands); Kruijt, O.G.; Lamers, B.; Ronden, D.M.S. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, Nieuwegein, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); Verhoeven, A.G.A

    2007-10-15

    FOM is developing a full-scale mock-up of the mm-wave upper-port launching system for electron cyclotron resonance heating in ITER. The test set-up foresees in most of the typical ITER operation conditions, e.g. primary vacuum and the secondary vacuum, blanket cooling and component cooling conditions. All relevant operational ITER conditions except neutron radiation can be simulated, including baking conditions. The fabrication of the launching system mock-up will be the last step in the development phase, which will be characterized by the fabrication of test samples and mm-wave tests and calculations. The parameterized modeling of mm-wave beam propagation in CATIA [D.M.S. Ronden, et al., Parameterized modeling of mm-wave beam propagation of the ITER ECRH remote steering upper port launcher in CATIA, this conference] (8th figure in this article) the test and calculation results will be used for the built to print design of the remote steering ECRH launcher for the ITER upper ports [A.G.A. Verhoeven, et al., Design of the Remote Steering ITER ECRH Upper Port Launcher, this conference].

  1. Oxidation of Copper Alloy Candidates for Rocket Engine Applications

    Science.gov (United States)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.

    2002-01-01

    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  2. Computational modeling of nuclear thermal rockets

    Science.gov (United States)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  3. Performance Charts for Multistage Rocket Boosters

    Science.gov (United States)

    MacKay, John S.; Weber, Richard J.

    1961-01-01

    Charts relating the stage propellant fractions are given for two-and three-stage rockets launching payloads into nominal low-altitude circular orbits about the earth. A simple method is described for extending these data to higher orbit or escape missions. Various combinations of stages using RP - liquid-oxygen and hydrogen - liquid-oxygen propellants are considered. However, the results can be generalized with little error to any other propellant combination.Charts relating the stage propellant fractions are given for two-and three-stage rockets launching payloads into nominal low-altitude circular orbits about the earth. A simple method is described for extending these data to higher orbit or escape missions. Various combinations of stages using RP - liquid-oxygen and hydrogen - liquid-oxygen propellants are considered. However, the results can be generalized with little error to any other propellant combination.

  4. Experimental investigation and CFD simulation of active damping mechanism for propellant slosh in spacecraft launch systems

    Science.gov (United States)

    Leuva, Dhawal

    2011-07-01

    Motion of propellant in the liquid propellant tanks due to inertial forces transferred from actions like stage separation and trajectory correction of the launch vehicle is known as propellant slosh. If unchecked, propellant slosh can reach resonance and lead to complete loss of the spacecraft stability, it can change the trajectory of the vehicle or increase consumption of propellant from the calculated requirements, thereby causing starvation of the latter stages of the vehicle. Predicting the magnitude of such slosh events is not trivial. Several passive mechanisms with limited operating range are currently used to mitigate the effects of slosh. An active damping mechanism concept developed here can operate over a large range of slosh frequencies and is much more effective than passive damping devices. Spherical and cylindrical tanks modeled using the ANSYS CFX software package considers the free surface of liquid propellant exposed to atmospheric pressure. Hydrazine is a common liquid propellant and since it is toxic, it cannot be used in experiment. But properties of hydrazine are similar to the properties of water; therefore water is substituted as propellant for experimental study. For close comparison of the data, water is substituted as propellant in CFD simulation. The research is done in three phases. The first phase includes modeling free surface slosh using CFD and validation of the model by comparison to previous experimental results. The second phase includes developing an active damping mechanism and simulating the behavior using a CFD model. The third phase includes experimental development of damping mechanism and comparing the CFD simulation to the experimental results. This research provides an excellent tool for low cost analysis of damping mechanisms for propellant slosh as well as proves that the concept of an active damping mechanism developed here, functions as expected.

  5. A study of early korean rockets (1377-1600)

    Science.gov (United States)

    Chae, Yeon Seok

    The first Korean rocket was fired between 1377 and 1389 and began the Korean development of rockets as a tactical weapon. Although, Korea had successfully demonstrated the use of rockets as firearms in the fifteenth century, there had been no effort to present the historical development of the early Korean rockets in a paper which will be useful to both historians and scientists. The book entitled Kuk Cho Ore Sorye (1474) in the Korean language provided extensive rocket system description, however it required considerable research to interpret them. This paper is the first study of early Korean rockets and launchers. The major effort in this study is directed toward the development of design concepts and details of early Korean rockets. Also, to substantiate support of the historical data presented, some versions of the early Korean rockets were made according to their specifications and fired successfully by the author in 1981.

  6. Introduction to rocket science and engineering

    CERN Document Server

    Taylor, Travis S

    2009-01-01

    What Are Rockets? The History of RocketsRockets of the Modern EraRocket Anatomy and NomenclatureWhy Are Rockets Needed? Missions and PayloadsTrajectoriesOrbitsOrbit Changes and ManeuversBallistic Missile TrajectoriesHow Do Rockets Work? ThrustSpecific ImpulseWeight Flow RateTsiolkovsky's Rocket EquationStagingRocket Dynamics, Guidance, and ControlHow Do Rocket Engines Work? The Basic Rocket EngineThermodynamic Expansion and the Rocket NozzleExit VelocityRocket Engine Area Ratio and LengthsRocket Engine Design ExampleAre All Rockets the Same? Solid Rocket EnginesLiquid Propellant Rocket Engines

  7. Rocket and Laboratory Studies in Astronomy

    Science.gov (United States)

    Feldman, Paul D.

    2001-01-01

    This is the final report for NASA Grant NAG5-5122 and covers the period from March 1, 1997 to February 28, 2001. This grant was a continuation of a program in rocket and laboratory studies in ultraviolet astronomy that was supported by NASA grant NAG5-619. As of March 1, 2001, this program is continuing under grant NAG5-5315. During the period of the grant, annual status reports have been submitted detailing the scientific achievements and current objectives of each report period. These will not be repeated here. Among the highlights of the program are four successful rocket launches including participation in the campaign to study comet Hale-Bopp in April 1997. We have continued our emphasis on long-slit spectroscopy of extended sources in the shorter wavelength far-ultraviolet, necessitating the development of evacuated telescope/spectrograph payloads. Finally, we also note the use of our ultraviolet calibration facilities in support of other sounding rocket investigators and for other space missions such as the Far Ultraviolet Spectroscopic Explorer. We include a list of the sounding rocket launches performed under NASA sponsorship during this period, a list of Ph.D. degrees awarded to students who worked in this program, and a summary bibliography of publications between 1997 and 2001.

  8. Flight Record of the Long March Series of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2010-01-01

    @@ (Continued) THE 56TH LAUNCH The FY-1C meteorological satellite and the Shijian 5 (SJ-5) satellite were put into their predetermined orbits by a LM-4B launch vehicle on May 10,1999. Launch Site: Taiyuan Satellite Launch Center Launch Result: Success At 09:33 on May 10, a LM-4B lifted off with two satellites.749 seconds after the lift-off, the FY-1C satellite separated with the rocket, and the SJ-5 satellite separated with LM-4B 814 seconds after it was fired.The two satellites entered sun-synchronous orbit which is 870km above the Earth.

  9. Estimation of Initial Disturbances for Rockets Based on Interactions of Rockets and Directional Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the range of the rockets/launcher system itself, the dynamic equations for rocket and directional tube during semi-constraint period have been constructed by using Newton-Euler method. Considering the interaction of rockets and directional tubes when clearances exist, the method of estimating initial disturbances for the rocket by using vibration data of the directional tube has been given. The estimated results have been compared with the simulation results computed by the dynamic simulating software ADAMS. Results computed by the two methods are basically consistent and the computing errors do not increase with the variation of the clearance. The validity of the proposed method has been proved.

  10. Illustration of Ares V Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  11. The Design of Adaptive Seeking Fuzzy Sliding Mode for Position Controller of Rocket Launcher Servo System%火箭炮位置控制器的自寻迹模糊滑模设计

    Institute of Scientific and Technical Information of China (English)

    李平; 王瑞华; 李伟华; 吴坤

    2013-01-01

    Considering the atrocious load property when the rocket is launched, an adaptive position controller is designed, which comprises of the baseline mode design and the curbing controller design, the first one is for the nominal plant, and the second one is designed to overcome the uncertainties, including parameter variations and external disturbance in the whole control process. Simulated results due to step command shows that the dynamic behaviors of the proposed control system is robust with regard to uncertainties.%针对多管火箭炮随动系统位置控制器转动惯量和外部干扰变化大的特性,设计了一种自寻迹模糊滑模控制器。由自寻迹滑模控制器和模糊滑模控制器组成,自寻迹滑模策略作用于系统名义模型保证全局鲁棒性,模糊滑模策略用于消减外部干扰及系统参数变化等不确定性的影响。仿真结果表明该控制策略有效改善了系统的静、动态特性。

  12. Origin of how steam rockets can reduce space transport cost by orders of magnitude

    Science.gov (United States)

    Zuppero, Anthony; Larson, Thomas K.; Schnitzler, Bruce G.; Werner, James E.; Rice, John W.; Hill, Thomas J.; Richins, William D.; Parlier, Lynn

    1999-01-01

    A brief sketch shows the origin of why and how thermal rocket propulsion has the unique potential to dramatically reduce the cost of space transportation for most inner solar system missions of interest. Orders of magnitude reduction in cost are apparently possible when compared to all processes requiring electrolysis for the production of rocket fuels or propellants and to all electric propulsion systems. An order of magnitude advantage can be attributed to rocket propellant tank factors associated with storing water propellant, compared to cryogenic liquids. An order of magnitude can also be attributed to the simplicity of the extraction and processing of ice on the lunar surface, into an easily stored, non-cryogenic rocket propellant (water). A nuclear heated thermal rocket can deliver thousands of times its mass to Low Earth Orbit from the Lunar surface, providing the equivalent to orders of magnitude drop in launch cost for mass in Earth orbit. Mass includes water ice. These cost reductions depend (exponentially) on the mission delta-v requirements being less than about 6 km/s, or about 3 times the specific velocity of steam rockets (2 km/s, from Isp 200 sec). Such missions include: from the lunar surface to Low Lunar Orbit, (LLO), from LLO to lunar escape, from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO), from LEO to Earth Escape, from LEO to Mars Transfer Orbit, from LLO to GEO, missions returning payloads from about 10% of the periodic comets using propulsive capture to orbits around Earth itself, and fast, 100 day missions from Lunar Escape to Mars. All the assertions depend entirely and completely on the existence of abundant, nearly pure ice at the permanently dark North and South Poles of the Moon.

  13. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  14. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o

  15. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  16. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    Science.gov (United States)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace

  17. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    CERN Document Server

    Christe, Steven; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most importantly, sounding rockets remain the only way to explore the tenuous regions of the Earth's atmosphere (the upper stratosphere, mesosphere, and lower ionosphere/thermosphere) above balloon altitudes ($\\sim$40 km) and below satellite orbits ($\\sim$160 km). They can lift remote sensing telescope payloads with masses up to 400 kg to altitudes of 350 km providing observing times of up to 6 minutes above the blocking influence of Earth's atmosphere. Though a number of sounding rocket research programs exist around the world, th...

  18. 火箭弹几何尺寸测量系统及测量原理研究%Research on Measurement Systems and Principles of Rocket Geometry

    Institute of Scientific and Technical Information of China (English)

    张雪峰; 冯进良; 王蕾

    2014-01-01

    针对体积庞大的火箭弹轴向尺寸和径向尺寸难以测量的问题,提出了一种基于位移传感器的火箭弹几何尺寸测量系统。首先将弹体稳定支撑,然后通过测量装置对火箭弹轴向尺寸、径向尺寸及翼展进行测量,最后对测量结果进行精度分析。结果表明,文中提出的火箭弹几何尺寸检测系统,可用于直径达500mm、长度达5000mm的火箭弹的非接触测量。并实现对火箭弹的径向尺寸和轴向任意两点之间距离以及翼展的测量,具备测量精度高、自动化程度好、测量时间短、实用性强等优点。%For bulky rockets, it is difficult to measure the axial dimension and radial dimension, in order to solve this problem the rockets geometry measurement system was proposed which based on the displacement sensor. Firstly the projectile was supported stably. Then the radial size and axial size of rockets were measured through measuring device. Finally the measurement results were analyzed accurately. The results show that the rocket geometric dimension mea-surement system can be used for noncontact measurement of rockets which diameter is up to 500mm and length is up to 5000mm. The measurement of the distance between the radial dimension and the axial measurement and the wing-span measurement are realized.At the same time it has the advantages of high accuracy, good degree of automation, time saving and practical.

  19. Range Safety Real-time System for Satellite Launch Vehicle Missions–Testing Methodologies

    Directory of Open Access Journals (Sweden)

    R. Varaprasad

    2006-11-01

    Full Text Available A real-time system plays a critical role in the range safety decision-making in a satellitelaunch mission. Real-time software, the heart of such systems, is becoming an issue of criticality.Emphasis is being laid on the development of reliable, robust, and operational system. Thispaper purports to delineate prudent testing methodologies implemented to test the real-timesystem.

  20. Expected Value Analysis for an Unmanned Expendable Launch Vehicle Payload Escape System

    Science.gov (United States)

    1987-12-01

    68 i V List of Figures Figure Page 2.1 Apollo Spacecraft . . . . . . . . . . . . . . . . 10 2.2 Paraglider Recovery...few cm/s at the moment of contact" (17t5). Paraglider System. Crawford and MoNerney discuss Space-General Corporation’s study of three applications of... paragliders as recovery systems (4:293). The first, was a paraglider assembly designed to recover the Saturn SI-C 10 I booster. The second, a system

  1. RBCC可重复使用运载器上升段轨迹优化设计%Since the multi-phase and multi-control-variable trajectory of the reusable launch vehicle ( RLV) which is coupled with the thrust powered by rocket based combined cycle (RBCC) is difficult to solve,the numerical optimization model and method based on Gau

    Institute of Scientific and Technical Information of China (English)

    龚春林; 韩璐

    2012-01-01

    Since the multi-phase and multi-control-variable trajectory of the reusable launch vehicle ( RLV) which is coupled with the thrust powered by rocket based combined cycle (RBCC) is difficult to solve,the numerical optimization model and method based on Gauss Pseudospectral Method (CPM) were proposed,and the optimal-fuel ascent trajectory was obtained. Hie trajectory is divided into three phases powered by rocket,ramjet and scramjet in sequence. The angle of attack and fuel flow are control variables,and according to the trajectory mission,the ignition and work condition of the each mode,the optimization model was built,the terminal and path constraints were imposed. The optimal trajectory was solved by using GPM and the boundary control variables were solved by a special method. Compared with the result by traditional method,the optimization model and GPM can solve trajectory optimization problems effectively, and the optimal result accords with the characteristic of the RBCC-powered RLV and satisfies all the constraints.%针对火箭基组合动力(RBCC)可重复使用运载器(RLV)轨迹多段、多控制变量、推力与飞行轨迹耦合,飞行轨迹设计困难的问题,提出了基于高斯伪光谱方法的数值优化求解模型和求解方法,并获得满足要求的上升段燃料最省轨迹.将该轨迹分为3部分,分别由引射火箭、亚燃冲压和超燃冲压发动机提供动力,以攻角和燃料秒流量为控制变量,根据轨迹任务和各模态发动机启动及工作条件建立优化模型、设定各段末端和路径约束,利用高斯伪谱法求解最优轨迹并利用特殊方法计算边界控制变量.通过与传统方法所得轨迹的对比表明,所建立的优化模型和方法可快速求解出RBCC运载器上升段最优轨迹,优化结果符合RBCC运载器工作特点.

  2. Analysis and optimization of an air-launch-to-orbit separation

    Science.gov (United States)

    Sohier, Henri; Piet-Lahanier, Helene; Farges, Jean-Loup

    2015-03-01

    In an air-launch-to-orbit, a space rocket is launched from a carrier aircraft. Air-launch-to-orbit appears as particularly interesting for nano- and microsatellites which are generally launched as secondary loads, that is, placed in the conventional launch vehicle's payload section with a larger primary satellite. In an air-launch-to-orbit, a small satellite can be launched alone as a primary load, away from a carrier aircraft, aboard a smaller rocket vehicle, and in doing so, benefit from more flexible dates and trajectories. One of the most important phases of the mission is the separation between the carrier aircraft and the space rocket. A flight simulator including a large number of factors of uncertainties has been especially developed to study the separation, and a safety criteria has been defined with respect to store collision avoidance. It is used for a sensitivity analysis and an optimization of the possible trajectories. The sensitivity analysis first requires a screening method to select unessential factors that can be held constant. The Morris method is amongst the most popular screening methods. It requires limited calculations, but may result in keeping constant an essential factor which would greatly affect the results of the sensitivity analysis. This paper shows that this risk can be important in spite of recent improvements of the Morris method. It presents an adaptation of this method which divides this risk by a factor of ten on a standard test function. It is based on the maximum of the elementary effects instead of their average. The method focuses the calculations on the factors with a low impact, checking the convergence of this set of factors, and uses two different factor variations instead of one. This adaptation of the Morris method is used to limit the amount of the air-launch-to-orbit simulations and simplify the uncertainty domain for analysis by Sobol's method. The aerodynamic perturbations due to wind, the parameters defining the

  3. Centaur Rocket Installation in PSL #1

    Science.gov (United States)

    1962-01-01

    Centaur Rocket Installation in PSL - Propulsion Systems Laboratory #1. The RL-10 Rocket was developed by Pratt and Whitney in the late 1950's and tested at the Lewis Research Center (now known as the John H. Glenn Research Lewis Field). This power plant was the propulsion system for NASA's upper stage Centaur rocket and was significant for being the first to use liquid hydrogen and oxygen as fuel. The Centaur suffered a number of early failures, but later proved to be a very successful upper stage for numerous commercial, NASA and military payloads.

  4. Cleared for Launch - Lessons Learned from the OSIRIS-REx System Requirements Verification Program

    Science.gov (United States)

    Stevens, Craig; Adams, Angela; Williams, Bradley; Goodloe, Colby

    2017-01-01

    Requirements verification of a large flight system is a challenge. It is especially challenging for engineers taking on their first role in space systems engineering. This paper describes our approach to verification of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) system requirements. It also captures lessons learned along the way from developing systems engineers embroiled in this process. We begin with an overview of the mission and science objectives as well as the project requirements verification program strategy. A description of the requirements flow down is presented including our implementation for managing the thousands of program and element level requirements and associated verification data. We discuss both successes and methods to improve the managing of this data across multiple organizational interfaces. Our approach to verifying system requirements at multiple levels of assembly is presented using examples from our work at instrument, spacecraft, and ground segment levels. We include a discussion of system end-to-end testing limitations and their impacts to the verification program. Finally, we describe lessons learned that are applicable to all emerging space systems engineers using our unique perspectives across multiple organizations of a large NASA program.

  5. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  6. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  7. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    Science.gov (United States)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade. In 1988, NASA reissued that first volume of the data book and added two additional volumes on the agency's programs and projects, one each for 1958-1968 and 1969-1978. NASA published a fourth volume in 1994 that addressed NASA resources for the period between 1969 and 1978. This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions. A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988. NASA began its operations as the nation's civilian space agency in 1958 following the passage of the National Aeronautics and Space Act. It succeeded the National Advisory Committee for Aeronautics (NACA). The new organization was charged with preserving the role of the United States "as a leader in aeronautical and space science and technology" and in its application, with expanding our knowledge of the Earth's atmosphere and space, and with

  8. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    Science.gov (United States)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  9. Final Environmental Assessment: For the M270 Multiple Launch Rocket System (MLRS) Expanded Training Use Areas at Avon Park Air Force Range, Florida

    Science.gov (United States)

    2005-11-10

    panther Puma concolor coryi E E Florida black bear Ursus americanus floridans N T Reptiles and Amphibians Eastern indigo snake Drymarchon corais...hyacinth Eugenia uniflora Surinam cherry Hydrilla verticillata Hydrilla Hymenachne amplexicaulis West Indian marsh grass Imperata cylindrica Cogon grass...garnoti) are some amphibian and reptile species that occur within the built up areas of APAFR (U.S. Navy, 2004). Sub-tropical bird species noted to

  10. The Ion Rocket

    Science.gov (United States)

    1961-05-29

    discharge velocity w and the speci- fic impulse lap respectively cannot be increased. At this limit condition the thermal rocket oecouos "choked up...structural quality is 900 t, 3) In the case of an atomic-driven thermal rocket ’,;lth specific Ipipulse ISjy«8C0 sec and thrust to weight ratio « 1, the

  11. Model Rockets and Microchips.

    Science.gov (United States)

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  12. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  13. ZY-1 02C Flew into Space- A Perfect Ending for the 2011 Space Launches

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    at 11:26 on December 22,a LM-4B launch vehicle lifted the ZY-1 02C satellite into space from the Taiyuan Satellite Launch Center,marking the complete success of the final launch mission of this year.13 minutes later,the satellite entered into sun-synchronous circular orbit after separating with the rocket.

  14. Military Handbook: Management and Design Guidance Electromagnetic Radiation Hardness for Air Launched Ordnance Systems

    Science.gov (United States)

    1981-01-15

    35 E-25. Composite Worst-Case Sueaeptibility Values for’CMOS Devices .......... . ... 3.-37 E-26. Typical Input-Output Trans3er Char;aceri; tic for 9615...system is attacted to the delivery aircraft until it Impacto a target, it is exposed to electromagnetic radiation from emitters aboard the delivery...hardness characteristics of the system. 18 ?41L-HDBK-335 (USA?) 15 JANUARY 1981 ii iii &Sb u C6 I too Iwo9 6 I 1 9~I n. II !- 00j6 Is a tic ,20 MIL

  15. The second Ariane launch complex (ELA-2)

    Science.gov (United States)

    Dana, C.

    1985-05-01

    ELA-2 will, in 1986, become the primary Ariane launch complex, with ELA-1 being relegated to back-up roles. Both Ariane 3 and Ariane 4 vehicles can lift-off from ELA 2, but not ELA-1. In the Preparation Zone, spacecraft, launch vehicles and propellant are unloaded from shipment, stored and assembled in a one month process. The assembly building is equipped with stored ice to ensure continued air conditioning and cooling of electronic equipment and stored fuels in case of power outage. The launch gantry to which the Ariane is transported by rail is equipped with blast channels to redirect the rocket exhausts. The control center has remote cameras and sensors for monitoring launch pad activities and an underground, concrete bunker for the safety of up to 200 personnel.

  16. STS-114: Post Launch Press Conference

    Science.gov (United States)

    2005-01-01

    Dean Acosta, Deputy Assistant Administrator for Public Affairs hosted this post launch press conference. Present were Mike Griffin, NASA Administrator; William Ready, Associate Administrator for Space Operations; Bill Parsons, Space Shuttle Program Manager; Mike Leinbach, NASA Launch Director; and Wayne Hill, Deputy Program Manager for Space Shuttle Program. Each expressed thanks to all of NASA Officials and employees, contractors, vendors and the crew for their hard work the past two and a half years that resulted the successful and pristine launch of Space Shuttle Discovery. The Panel emphasized that through extensive technical analysis, thorough planning and tremendous amount of public support brought them full circle again to return to flight. Flight safety, debris during rocket separation, sensors, observations from the mission control, launch conditions were some of the topics discussed with the News media.

  17. LM-3A Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    The LM-3A launch vehicle is a large three-stage liquidpropellant launch vehicle developed on the basis ot LM-3 ana LM-2C. By incorporating the mature technologies of LM-3 and adding a more powerful improved LOX/LH cryogenic third stage and more capable control system, LM-3A has a

  18. The Gaia astrophysical parameters inference system (Apsis). Pre-launch description

    CERN Document Server

    Bailer-Jones, C A L; Arcay, B; Astraatmadja, T; Bellas-Velidis, I; Berihuete, A; Bijaoui, A; Carrión, C; Dafonte, C; Damerdji, Y; Dapergolas, A; de Laverny, P; Delchambre, L; Drazinos, P; Drimmel, R; Frémat, Y; Fustes, D; García-Torres, M; Guédé, C; Heiter, U; Janotto, A -M; Karampelas, A; Kim, D -W; Knude, J; Kolka, I; Kontizas, E; Kontizas, M; Korn, A J; Lanzafame, A C; Lebreton, Y; Lindstrøm, H; Liu, C; Livanou, E; Lobel, A; Manteiga, M; Martayan, C; Ordenovic, Ch; Pichon, B; Recio-Blanco, A; Rocca-Volmerange, B; Sarro, L M; Smith, K; Sordo, R; Soubiran, C; Surdej, J; Thévenin, F; Tsalmantza, P; Vallenari, A; Zorec, J

    2013-01-01

    The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. ...

  19. The TWINS Science Data System after the launch of TWINS 1

    Science.gov (United States)

    Goldstein, J.; Valek, P.; Skoug, R.; Delapp, D.; Redfern, J.; Carruth, B.; McComas, D.

    2007-05-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) 1 satellite is in orbit and science data are expected to commence in the near future. TWINS-1 comprises half of the TWINS stereoscopic neutral atom imaging system that will advance our knowledge of the Earth's ring current. To support the expected data return, we have developed a Science Data System (SDS) for the TWINS mission. The TWINS SDS is an IDL- and Java- driven data interface that operates primarily via a web browser, and has as its spine an SQL-queryable database. Through this interface, TWINS science data will be provided to the TWINS team, the space science community, and the public. In this paper we present the current and future capabilities of the TWINS SDS, as well as how the SDS fits into virtual observatory infrastructure.

  20. New Projects Planed/launched By Cei Wg On Satellite Navigation Systems

    Science.gov (United States)

    Oszczak, S.; Manzoni, G.

    In the paper a short description of main projects on satellite positioning and naviga- tion in CEI countries is given. Special attention is devoted to the activity of members of Working Group on Satellite Navigation Systems. The projects in which they are involved and results of performed experiments can be specified as follows: - EGNOS positioning - the first results in CEI area, - application of various transmission tech- niques to diffusion of DGPS/RTK data from reference stations (SWIFT/DARC, RDS, radiobeacons, UHF transmission), - development of integrated GPS/INS methods for car navigation and GIS purposes, - development of software for integration of satellite vehicle position with numerical maps for car navigation, monitoring and acquisition of terrestrial data for GIS, - elaboration of method and software development for nav- igation and monitoring of aircraft during approaching and landing phase of flight, - elaboration of methods and software for integration of 3D satellite positions of user with Digital Terrain Model (DTM), - development of digital technology for bathy- metric survey with satellite positioning technique; mapping of shallow waters, lakes, rivers and inland water reservoirs, The recently planned studies and experiments cover land, marine and aircraft satellite navigation with EGNOS system in CEI countries. The project of extension of the EGNOS system to the Central and East European region is under preparation. Other important research is conducted on mapping of roads and rails tracks using integrated DGPS/INS techniques.