Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
Hoferichter, A.
1994-08-01
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Topological susceptibility in lattice QCD with unimproved Wilson fermions
International Nuclear Information System (INIS)
Chowdhury, Abhishek; De, Asit K.; De Sarkar, Sangita; Harindranath, A.; Mondal, Santanu; Sarkar, Anwesa; Maiti, Jyotirmoy
2012-01-01
We address a long standing problem regarding topology in lattice simulations of QCD with unimproved Wilson fermions. Earlier attempt with unimproved Wilson fermions at β=5.6 to verify the suppression of topological susceptibility with decreasing quark mass (m q ) was unable to unambiguously confirm the suppression. We carry out systematic calculations for two degenerate flavours at two different lattice spacings (β=5.6 and 5.8). The effects of quark mass, lattice volume and the lattice spacing on the spanning of different topological sectors are presented. We unambiguously demonstrate the suppression of the topological susceptibility with decreasing quark mass, expected from chiral Ward identity and chiral perturbation theory.
Wilson Fermions and Axion Electrodynamics in Optical Lattices
International Nuclear Information System (INIS)
Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.
2010-01-01
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Improved continuum limit lattice action for QCD with Wilson fermions
International Nuclear Information System (INIS)
Sheikholeslami, B.; Wohlert, R.
1985-03-01
Two possible ways of extending Symanzik's improvement programme to lattice fermions namely improvement to first and second order in the lattice spacing 'a' are discussed. The corresponding lattice actions for fermions are constructed and tree level improvement conditions are derived by considering classical improvement. The concept of on shell improvement is generalized to the lattice fermions studied here and the free parameters are determined for O(a) and O(a 2 ) on shell improved actions to all orders of perturbation theory. No evidence is found that the complicated structure of the O(a 2 ) on shell improved action especially the arising fermion contact terms can be removed beyond tree level. The effect of terms in the action that explicitly break chiral symmetry and therefore remove the phenomenon of species doubling are investigated by considering the energy momentum relations of the arising tree level improved actions. Our main result is that the O(a) improved action is a slightly modified Wilson fermion action which can still be written with only nearest neighbour fermion interactions. (orig.)
Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions
Chandrasekharan, Shailesh; Li, Anyi
2010-01-01
We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...
Wilson Fermions with Four Fermion Interactions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari
2015-01-01
We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...
Chirally improving Wilson fermions I. O(a) improvement
International Nuclear Information System (INIS)
Frezzotti, R.; Rossi, G.C.
2004-01-01
We show that it is possible to improve the chiral behaviour and the approach to the continuum limit of correlation functions in lattice QCD with Wilson fermions by taking arithmetic averages of correlators computed in theories regularized with Wilson terms of opposite sign. Improved hadronic masses and matrix elements can be obtained by similarly averaging the corresponding physical quantities separately computed within the two regularizations. To deal with the problems related to the spectrum of the Wilson-Dirac operator, which are particularly worrisome when Wilson and mass terms are such as to give contributions of opposite sign to the real part of the eigenvalues, we propose to use twisted-mass lattice QCD for the actual computation of the quantities taking part to the averages. The choice ±π/2 for the twisting angle is particularly interesting, as O(a) improved estimates of physical quantities can be obtained even without averaging data from lattice formulations with opposite Wilson terms. In all cases little or no extra computing power is necessary, compared to simulations with standard Wilson fermions or twisted-mass lattice QCD. (author)
Symmetries of Ginsparg-Wilson chiral fermions
International Nuclear Information System (INIS)
Mandula, Jeffrey E.
2009-01-01
The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.
Nambu-Jona-Lasinio model with Wilson fermions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Drach, Vincent; Pica, Claudio
2017-01-01
We present a lattice study of a Nambu-Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking...
More on random-lattice fermions
International Nuclear Information System (INIS)
Kieu, T.D.; Institute for Advanced Study, Princeton, NJ; Markham, J.F.; Paranavitane, C.B.
1995-01-01
The lattice fermion determinants, in a given background gauge field, are evaluated for two different kinds of random lattices and compared to those of naive and wilson fermions in the continuum limit. While the fermion doubling is confirmed on one kind of lattices, there is positive evidence that it may be absent for the other, at least for vector interactions in two dimensions. Combined with previous studies, arbitrary randomness by itself is shown to be not a sufficient condition to remove the fermion doublers. 8 refs., 3 figs
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Monte Carlo calculation with unquenched Wilson-Fermions
International Nuclear Information System (INIS)
Montvay, I.
1984-01-01
A Monte Carlo updating procedure taking into account the virtual quark loops is described. It is based on high order hopping parameter expansion of the quark determinant for Wilson-fermions. In a first test run Wilson-loop expectation values are measured on 6 4 lattice at β=5.70 using 16sup(th) order hopping parameter expansion for the quark determinant. (orig.)
Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions
International Nuclear Information System (INIS)
Fritzsch, Patrick; Stollenwerk, Felix; Wolff, Ulli; Sommer, Rainer
2015-01-01
We develop a strategy for the non-perturbative determination of the O(a)-improvement coefficient c sw for Wilson fermions with massive sea quarks. The improvement condition is defined via the PCAC relation in the Schroedinger functional. It is imposed along a line of constant physics designed to be close to the correct mass of the charm quark. The numerical work uses the tree-level improved Luescher-Weisz gauge action in N f =3+1 Lattice QCD.
Lattice QCD at finite temperature with Wilson fermions
International Nuclear Information System (INIS)
Pinke, Christopher
2014-01-01
The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application CL 2 QCD has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. CL 2 QCD constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite
Shimizu, Yuya; Kuramashi, Yoshinobu
2018-02-01
We have made a detailed study of the phase structure for the lattice Schwinger model with one flavor of Wilson fermion on the (m ,g ) plane. For numerical investigation, we develop a decorated tensor renormalization method for lattice gauge theories with fermions incorporating the Grassmann tensor renormalization. Our algorithm manifestly preserves rotation and reflection symmetries. We find not only a parity-broken phase but also a Berezinskii-Kosterlitz-Thouless (BKT) transition by evaluating the central charge and an expectation value of a projection operator into the parity-odd subspace. The BKT phase boundaries converge into the degenerated doubler pole (m ,g )=(-2 ,0 ), while the parity-breaking transition line ends at the physical pole (m ,g )=(0 ,0 ). In addition, our analysis of scaling dimensions indicates that a conformal field theory with SU(2) symmetry arises on the line of m =-2 .
Improved lattice fermion action for heavy quarks
International Nuclear Information System (INIS)
Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias
2015-01-01
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
Wilson fermions at finite temperature
International Nuclear Information System (INIS)
Creutz, M.
1996-01-01
The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses
Finite size effects in lattice QCD with dynamical Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Orth, B.
2004-06-01
Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass
International Nuclear Information System (INIS)
Levi, A.R.; Lubicz, V.; Rebbi, C.
1997-01-01
We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society
The epsilon regime of chiral perturbation theory with Wilson-type fermions
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division
2009-11-15
In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)
The epsilon regime of chiral perturbation theory with Wilson-type fermions
International Nuclear Information System (INIS)
Jansen, K.; Shindler, A.
2009-11-01
In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)
Chiral Schwinger model and lattice fermionic regularizations
International Nuclear Information System (INIS)
Kieu, T.D.; Sen, D.; Xue, S.
1988-01-01
The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations
SU(3) sextet model with Wilson fermions
DEFF Research Database (Denmark)
Hansen, Martin; Drach, Vincent; Pica, Claudio
2017-01-01
to be inside or very close to the lower boundary of the conformal window. We use the Wilson discretization for the fermions and map the phase structure of the lattice model. We study several spectral and gradient flow observables both in the bulk and the weak coupling phases. While in the bulk phase we find...
Meson masses in electromagnetic fields with Wilson fermions
Bali, G. S.; Brandt, B. B.; Endrődi, G.; Gläßle, B.
2018-02-01
We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured ρ -meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between ρ -mesons and pions. We also derive Ward-Takashi identities for QCD +QED both in the continuum formulation and for (order a -improved) Wilson fermions.
Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8
International Nuclear Information System (INIS)
1998-01-01
The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U A (1) symmetry and the η' for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk
Arbitrary spin fermions on the lattice
International Nuclear Information System (INIS)
Bullinaria, J.A.
1985-01-01
Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out
Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)
2009-09-15
We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
Critical behavior of the Schwinger model with Wilson fermions
International Nuclear Information System (INIS)
Azcoiti, V.; Laliena, V.
1995-09-01
A detailed analysis, in the framework of the MFA approach, of the critical behaviour of the lattice Schwinger model with Wilson fermions on lattices up to 24 2 , through the study of the Lee-Yang zeros and the specific heat, is presented. Compelling evidence is found for a critical line ending at k= 0.25 at large β. Finite size scaling analysis on lattices 8 2 , 12 2 , 16 2 , 20 2 and 24 2 indicates a continuous transition. The hyper scaling relation is verified in the explored β region
Nucleon electromagnetic form factors with Wilson fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-10-01
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Random walks and a simple chirally invariant lattice Hamiltonian without fermion doubling
International Nuclear Information System (INIS)
Belyea, C.I.
1992-01-01
It is shown that there is a simple chirally-invariant lattice Hamiltonian for fermions which is doubling-free but non-Hermitian and which may be valuable in lattice Hamiltonian studies of quantum chromodynamics. A connection is established between the existence of random walk representations of spinor propagators and this doubling-free formulation, in analogy with Wilson fermions. 15 refs
Fermions in light front transverse lattice quantum chromodynamics
Indian Academy of Sciences (India)
Ur(x-aˆr)]}. (3). After eliminating the constraint fields we arrive at the transverse lattice Hamiltonian. P. =P. 1 +P. 2 ,. (4) where P. 1 arises from the elimination of ψ (hence sensitive to how fermions are put on the transverse lattice) and P. 2 contains Wilson plaquette term and the terms arising from the elimination of A . Explicitly.
Novel fat-link fermion actions for lattice QCD
International Nuclear Information System (INIS)
Zanotti, J.; Bilson-Thompson, S.; Bonnet, F.; Leinweber, D.; Melnitchouk, W.; Williams, A.
2000-01-01
Full text: We are currently exploring new ideas for lattice fermion actions. Naive implementations of fermion actions encounter the well known fermion-doubling problem. In order to solve this problem, Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) which explicitly breaks chiral symmetry. The scaling properties of this Wilson action can be improved by introducing any number of irrelevant operators of increasing dimension which also vanish in the continuum limit. In this manner, one can improve fermion actions at finite 'a' by combining operators to eliminate O(a) and perhaps O(a 2 ) errors etc. A popular formulation of a lattice fermion action that achieves this is the Clover action which removes the O(a) error introduced by the Wilson term by introducing an additional irrelevant dimension-five operator. The Clover action can be O(a) improved to all orders in the strong coupling 'g'. While the Clover action displays excellent scaling, it is responsible for revealing the exceptional configuration problem where the quark propagator encounters singular behaviour particularly as the quark mass becomes small. Moreover, its free dispersion relation between energy and momentum is unchanged from the standard Wilson action dispersion and shows a continuum like behaviour only for relatively small momenta [F. X. Lee and D. B. Leinweber, Phys. Rev. D59, 074504 (1999), hep-lat/9711044]. Finally, significant chiral symmetry breaking is apparent as the renormalised quark mass differs significantly from the bare mass of the theory. Hence we propose a different approach to fermion action improvement. One in which the additive renormalisations become small while expressing good chiral behaviour. This can be achieved through the consideration of 'fat-link' fermion actions [T. DeGrand (the MILC collaboration, Phys. Rev. D60, 094501 (1999)]. Fat links are created by averaging or smearing links on the lattice with their nearest neighbours in
A conditioning technique for matrix inversion for Wilson fermions
International Nuclear Information System (INIS)
DeGrand, T.A.
1988-01-01
I report a simple technique for conditioning conjugate gradient or conjugate residue matrix inversion as applied to the lattice gauge theory problem of computing the propagator of Wilson fermions. One form of the technique provides about a factor of three speedup over an unconditioned algorithm while running at the same speed as an unconditioned algorithm. I illustrate the method as it is applied to a conjugate residue algorithm. (orig.)
Compact lattice QED with staggered fermions and chiral symmetry breaking
International Nuclear Information System (INIS)
Hoferichter, A.; Mitrjushkin, V.K.; Mueller-Preussker, M.
1994-07-01
Different formulations of the 4d compact lattice QED with staggered fermions (standard Wilson and modified by suppression of lattice artifacts) are investigated by Monte Carlo simulations within the quenched approximation. We show that after suppressing lattice artifacts the system undergoes a phase transition from the Coulomb phase into a presumably weakly chirally broken phase only at (unphysical) negative β-values. (orig.)
One-loop renormalisation for the second moment of GPDs with Wilson fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Horsley, R.; Perlt, H.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.; Schiller, A.
2005-01-01
We calculate the non-forward quark matrix elements for operators with two covariant derivatives in one-loop lattice perturbation theory using Wilson fermions. These matrix elements are needed in the renormalisation of the second moment of generalised parton distributions measured in lattice QCD. For some commonly used representations of the hypercubic group we determine the sets of all mixing operators and find the matrices of mixing and renormalisation factors
Light quark masses with Nf = 2 Wilson fermions
International Nuclear Information System (INIS)
Eicker, N.; Lippert, Th.; Orth, B.; Schilling, K.
2002-01-01
We present new data on the mass of the light and strange quarks from SESAM/TχL. The results were obtained on lattice-volumes of 16 3 x 32 and 24 3 x 40 points, with the possibility to investigate finite-size effects. Since the SESAM/TχL ensembles at β = 5.6 have been complemented by configurations with β = 5.5, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions
Interacting fermions on a random lattice
International Nuclear Information System (INIS)
Perantonis, S.J.; Wheater, J.F.
1988-01-01
We extend previous work on the properties of the Dirac lagrangian on two-dimensional random lattices to the case where interaction terms are included. Although for free fermions the chiral symmetry of the doubles is spontaneously broken by their interaction with the lattice and tehy decouple from long-distance physics, our results in this paper show that all is undone by quantum corrections in an interacting field theory and taht the end result is very similar to what is found with Wilson fermions. Two field-theoretical models with interacting fermions are studied by perturbation expansion in the field theory coupling constant. These are a model with one fermion and one boson species interacting via a scalar Yukawa coupling and the massive Thirring model. It is shown that on the random lattice ultraviolet finite diagrams and finite parts of ultraviolet divergent diagrams have the correct continuum limit. Ultraviolet divergent parts can be removed by the same renormalisation procedure as in the continuum, but do not exhibit the same dependence on the lagrangian mass. In the case of the massive Thirring model this causes a fermion mass correction of order the cut-off scale, which breaks the chiral symmetry of the remaining light fermion; there is consequently a fine-tuning problem. In the context of the same model we discuss the effect of the Goldstone boson associated with the spontaneous breakdown of the chiral symmetry of the doubles on two-dimensional models with vector couplings. (orig.)
Multigrid for Staggered Lattice Fermions
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.
2018-01-23
Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.
Parallel tempering in full QCD with Wilson fermions
International Nuclear Information System (INIS)
Ilgenfritz, E.-M.; Kerler, W.; Mueller-Preussker, M.; Stueben, H.
2002-01-01
We study the performance of QCD simulations with dynamical Wilson fermions by combining the hybrid Monte Carlo algorithm with parallel tempering on 10 4 and 12 4 lattices. In order to compare tempered with standard simulations, covariance matrices between subensembles have to be formulated and evaluated using the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the hopping parameter κ dynamical does not lead to an essential improvement. We point out possible reasons for this observation and discuss more suitable ways of applying parallel tempering to QCD
Energy Technology Data Exchange (ETDEWEB)
Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)
2014-07-15
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)
Wilson flow and scale setting from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bornyakov, V.G. [Institute for High Energy Physics, Protvino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation). School of Biomedicine; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Hudspith, R. [York Univ., Toronto, ON (Canada). Dept. of Mathematics and Statistics; Collaboration: QCDSF-UKQCD Collaboration; and others
2015-08-15
We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t{sub 0} and w{sub 0} for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum extrapolation to be taken.
Lattice fermions at non-zero temperature and chemical potential
International Nuclear Information System (INIS)
Bender, I.
1993-01-01
We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities. (orig.)
New one-flavor hybrid Monte Carlo simulation method for lattice fermions with γ5 hermiticity
International Nuclear Information System (INIS)
Ogawa, Kenji
2011-01-01
We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this method, γ 5 hermiticity of the lattice Dirac operators is crucial and it can be applied to Wilson, domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors and (1+1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency, (number of accepted trajectories)/(simulation time), is about 3:2. The relation between pseudofermion action of chirally symmetric lattice fermions in four-dimensional (overlap) and five-dimensional (domain-wall) representation are also analyzed.
B-physics with N{sub f}=2 Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, F.; Simma, H.; Sommer, R. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)] [and others
2013-09-15
We report the final results of the ALPHA collaboration for some B-physics observables: f{sub B}, f{sub B{sub s}} and m{sub b}. We employ CLS configurations with 2 flavors of O(a) improved Wilson fermions in the sea and pion masses ranging down to 190 MeV. The b-quark is treated in HQET to order 1/m{sub b}. The renormalization, the matching and the improvement were performed non-perturbatively, and three lattice spacings reaching a=0.048 fm are used in the continuum extrapolation.
Partially quenched lattice QCD with two degenerate dynamical light Wilson quarks
International Nuclear Information System (INIS)
De, Asit K.; Harindranath, A.; Maiti, Jyotirmoy
2006-01-01
We present our results of numerical studies of partially quenched latticed QCD with two degenerate flavors of dynamical quarks. Gauge configurations are generated with Wilson gauge action and tadpole improved Wilson fermions at β = 5.6 and K sea = 0.155, 0.156, 0.157 and 0.158. Suitably smeared gauge configurations are used to calculate the static interquark potential in order to set the physical scale. Mesonic propagators are calculated at above mentioned four different values of K val for each K sea . We present results for pion and rho masses. (author)
Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions
International Nuclear Information System (INIS)
Stollenwerk, Felix
2017-01-01
In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c sw . In this work, a strategy is developed for the non-perturbative determination of c sw in the theory with N f =3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a 2 ) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.
Cost of QCD simulations with nf = 2 dynamical Wilson fermions
International Nuclear Information System (INIS)
Lippert, Th.
2002-01-01
Cost estimates for simulations of full QCD with n f = 2 Wilson fermions by hybrid Monte Carlo are presented. The extrapolations are based on the average number of iterations, N it , of the iterative solver within the fermionic part of the HMC molecular dynamics, which is closely related to the minimal eigenvalue of M † M. The cost formula is determined as a product of the scaling functions of iterative solver and integrated autocorrelation time of 1/N it as function of the inverse lattice pseudoscalar mass. Timings by SESAM/TχL allow to fix the pre-factor. It is demonstrated that a 2-flavor dynamical determination of light hadron masses with a statistical precision comparable to the corresponding quenched results from CP-PACS is the appropriate task for a 100 Tflops system
Sextet Model with Wilson Fermions
DEFF Research Database (Denmark)
Hansen, Martin; Pica, Claudio
2017-01-01
We present new results from our ongoing study of the SU(3) sextet model with two flavors in the two-index symmetric representation of the gauge group. In the simulations use unimproved Wilson fermions to investigate the infrared properties of the model. We have previously presented results...
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Scaled lattice fermion fields, stability bounds, and regularity
O'Carroll, Michael; Faria da Veiga, Paulo A.
2018-02-01
We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free
Fermion determinants in lattice QCD
International Nuclear Information System (INIS)
Johnson, Christopher Andrew
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist
International Nuclear Information System (INIS)
Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.
2015-12-01
We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
A local factorization of the fermion determinant in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Ce, Marco [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy); Giusti, Leonardo [Milano-Bicocca Univ. (Italy). Dipartimento di Fisica; INFN, Milano-Bicocca (Italy); Schaefer, Stefan [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2016-09-15
We introduce a factorization of the fermion determinant in lattice QCD with Wilson-type fermions that leads to a bosonic action which is local in the block fields. The interaction among gauge fields on distant blocks is mediated by multiboson fields located on the boundaries of the blocks. The resultant multiboson domain-decomposed hybrid Monte Carlo passes extensive numerical tests carried out by measuring standard gluonic observables. The combination of the determinant factorization and of the one of the propagator, that we put forward recently, paves the way for multilevel Monte Carlo integration in the presence of fermions. We test this possibility by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and we observe a significant increase of the signal-to-noise ratio due to a two-level integration.
Tuning up an oldtimer: hybrid Monte Carlo with Wilson fermions
International Nuclear Information System (INIS)
Schilling, K.; Hannemann, V.; Lippert, T.; Noeckel, B.
1995-01-01
We show that BiCGStab inversion algorithm helps to speed up by 50% the computation of the fermionic force inside the Hybrid Monte Carlo (HMC) simulation of full QCD with Wilson fermions, in the chiral regime of small quark masses. ((orig.))
Supersymmetry on a space-time lattice
International Nuclear Information System (INIS)
Kaestner, Tobias
2008-01-01
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Supersymmetry on a space-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Nucleon form factors on the lattice with light dynamical fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-09-01
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon form factors on the lattice with light dynamical fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-09-15
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Determination of c{sub sw} in N{sub f}=3+1 lattice QCD with massive Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Stollenwerk, Felix
2017-02-07
In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c{sub sw}. In this work, a strategy is developed for the non-perturbative determination of c{sub sw} in the theory with N{sub f}=3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a{sup 2}) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD
Guagnelli, M; Peña, C; Sint, S; Vladikas, A
2006-01-01
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.
FLIC-overlap fermions and topology
International Nuclear Information System (INIS)
Kamleh, W.; Kusterer, D.J.; Leinweber, D.B.; Williams, A.G.
2003-01-01
APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F μν in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(α 4 )-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Stochastic methods for the fermion determinant in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Finkenrath, Jacob Friedrich
2015-02-17
In this thesis, algorithms in lattice quantum chromodynamics are presented by developing and using stochastic methods for fermion determinant ratios. For that an integral representation is proved which can be used also for non hermitian matrices. The stochastic estimation or the Monte Carlo integration of this integral representation introduces stochastic fluctuations which are controlled by using Domain Decomposition of the Dirac operator and introducing interpolation techniques. Determinant ratios of the lattice fermion operator, here the Wilson Dirac operator, are needed for corrections of the Boltzmann weight. These corrections have interesting applications e.g. in the mass by using mass reweighting. It will be shown that mass reweighting can be used e.g. to improve extrapolation in the light quark mass towards the chiral or physical point or to introduce an isospin breaking by splitting up the mass of the light quark. Furthermore the extraction of the light quark masses will be shown by using dynamical 2 flavor CLS ensembles. Stochastic estimation of determinant ratios can be used in Monte Carlo algorithms, e.g. in the Partial Stochastic Multi Step algorithm which can sample two mass-degenerate quarks. The idea is to propose a new configuration weighted by the pure gauge weight and including afterwards the fermion weight by using Metropolis accept-reject steps. It is shown by using an adequate interpolation with relative gauge fixing and a hierarchical filter structure that it is possible to simulate moderate lattices up to (2.1 fm){sup 4}. Furthermore the iteration of the pure gauge update can be increased which can decouple long autocorrelation times from the weighting with the fermions. Moreover a novel Hybrid Monte Carlo algorithm based on Domain Decomposition and combined with mass reweighting is presented. By using Domain Decomposition it is possible to split up the mass term in the Schur complement and the block operators. By introducing a higher mass
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
International Nuclear Information System (INIS)
Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.
1991-01-01
We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
International Nuclear Information System (INIS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-01-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)
Operator product expansion on the lattice: analytic Wilson coefficients
Perlt, Holger
2006-12-01
We present first results for Wilson coefficients of operators up to first order in the covariant deriva- tives for the case of Wilson fermions. They are derived from the off-shell Compton scattering amplitude Wµν (a, p, q) of massless quarks with momentum p. The Wilson coefficients are clas- sified according to the transformation of the corresponding operators under the hypercubic group H(4). We give selected examples for a special choice of the momentum transfer q. All Wil- son coefficients are given in closed analytic form and in an expansion in powers of a up to first corrections.
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Dynamical fermions in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Szabo, Kalman
2007-01-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Simulation of QCD with N_f=2+1 flavors of non-perturbatively improved Wilson fermions
International Nuclear Information System (INIS)
Bruno, Mattia; Djukanovic, Dalibor; Engel, Georg P.; Francis, Anthony; Herdoiza, Gregorio; Horch, Hanno; Korcyl, Piotr; Korzec, Tomasz; Papinutto, Mauro; Schaefer, Stefan; Scholz, Enno E.; Simeth, Jakob; Simma, Hubert; Söldner, Wolfgang
2015-01-01
We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Lüscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.
Majorana and Majorana-Weyl fermions in lattice gauge theory
International Nuclear Information System (INIS)
Inagaki, Teruaki; Suzuki, Hiroshi
2004-01-01
In various dimensional Euclidean lattice gauge theories, we examine a compatibility of the Majorana decomposition and the charge conjugation property of lattice Dirac operators. In 8n and 1 + 8n dimensions, we find a difficulty to decompose a classical lattice action of the Dirac fermion into a system of the Majorana fermion and thus to obtain a factorized form of the Dirac determinant. Similarly, in 2 + 8n dimensions, there is a difficulty to decompose a classical lattice action of the Weyl fermion into a system of the Majorana-Weyl fermion and thus to obtain a factorized form of the Weyl determinant. Prescriptions based on the overlap formalism do not remove these difficulties. We argue that these difficulties are reflections of the global gauge anomaly associated to the real Weyl fermion in 8n dimensions. For this reason (besides other well-known reasons), a lattice formulation of the N = 1 super Yang-Mills theory in these dimensions is expected to be extremely difficult to find. (author)
Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions
International Nuclear Information System (INIS)
Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas
2008-01-01
We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.
Nucleon electromagnetic form factors from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Koutsou, G.; Negele, J. W.; Tsapalis, A.
2006-01-01
We evaluate the isovector nucleon electromagnetic form factors in quenched and unquenched QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at β=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the unquenched theory we use two degenerate flavors of dynamical Wilson fermions on a lattice of spatial size 1.9 fm at β=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. that unquenching effects are small for the pion masses considered in this work. We compare our lattice results to the isovector part of the experimentally measured form factors
On the chirally rotated Schroedinger functional with Wilson fermions
International Nuclear Information System (INIS)
Gonzalez Lopez, Jenifer
2011-01-01
There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional (χSF). We first perform analytical studies of the χSF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed χSF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the χSF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the χSF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the χSF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior of physical
On the chirally rotated Schroedinger functional with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Lopez, Jenifer
2011-05-25
There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional ({chi}SF). We first perform analytical studies of the {chi}SF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed {chi}SF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the {chi}SF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the {chi}SF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the {chi}SF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior
Twisted mass, overlap and Creutz fermions. Cut-off effects at tree-level of perturbation theory
International Nuclear Information System (INIS)
Cichy, K.; Kujawa, A.; Jansen, K.; Shindler, A.
2008-02-01
We study cutoff effects at tree-level of perturbation theory for maximally twisted mass Wilson, overlap and the recently proposed Creutz fermions. We demonstrate that all three kind of lattice fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. In addition, the sizes of these cutoff effects are comparable for the three kinds of lattice fermions considered here. Furthermore, we analyze situations when twisted mass fermions are not exactly at maximal twist and when overlap fermions are studied in comparison to twisted mass fermions when the quark masses are not matched. (orig.)
Perturbative matching of continuum and lattice quasi-distributions
Directory of Open Access Journals (Sweden)
Ishikawa Tomomi
2018-01-01
Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.
Fermion doubling on a lattice and topological aspects of chiral anomaly
International Nuclear Information System (INIS)
Goswami, G.; Bandyopadhyay, P.
1997-01-01
The problem of fermion doubling on a lattice has been discussed here from the specific geometrical properties of a lattice structure and topological aspects of chiral anomaly. It is argued that there cannot be chiral anomaly on a lattice and as such there cannot be any conserved charge. This unveils the root cause of fermion doubling, and the unwanted fermions just reflect the geometrical properties of a lattice and may be viewed as to represent the open-quotes fictitiousclose quotes chiral spinors associated with the lattice structure which make chiral fermions anomaly free. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Iterative methods for overlap and twisted mass fermions
International Nuclear Information System (INIS)
Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.
2006-09-01
We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)
Iterative methods for overlap and twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik
2006-09-15
We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)
International Nuclear Information System (INIS)
Gerhold, Philipp; Jansen, Karl
2009-12-01
We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)
Negative-Parity Baryon Masses Using O(a)-improved Fermion Action
Energy Technology Data Exchange (ETDEWEB)
M. Gockeler; R. Horsley; D. Pleiter; P.E.L. Rakow; G. Schierholz; C.M. Maynard; D.G. Richards
2001-06-01
We present a calculation of the mass of the lowest-lying negative-parity J=1/2{sup {minus}} state in quenched QCD. Results are obtained using a non-perturbatively {Omicron}(a)-improved clover fermion action, and a splitting found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes, and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.
Chiral lattice fermions, minimal doubling, and the axial anomaly
International Nuclear Information System (INIS)
Tiburzi, B. C.
2010-01-01
Exact chiral symmetry at finite lattice spacing would preclude the axial anomaly. In order to describe a continuum quantum field theory of Dirac fermions, lattice actions with purported exact chiral symmetry must break the flavor-singlet axial symmetry. We demonstrate that this is indeed the case by using a minimally doubled fermion action. For simplicity, we consider the Abelian axial anomaly in two dimensions. At finite lattice spacing and with gauge interactions, the axial anomaly arises from nonconservation of the flavor-singlet current. Similar nonconservation also leads to the axial anomaly in the case of the naieve lattice action. For minimally doubled actions, however, fine-tuning of the action and axial current is necessary to arrive at the anomaly. Conservation of the flavor nonsinglet vector current additionally requires the current to be fine-tuned. Finally, we determine that the chiral projection of a minimally doubled fermion action can be used to arrive at a lattice theory with an undoubled Dirac fermion possessing the correct anomaly in the continuum limit.
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Negative-parity baryon masses using an Ο(α)-improved fermion action
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Maynard, C.M.; Richards, D.G.; Old Dominion Univ., Norfolk, VA
2001-06-01
We present a calculation of the mass of the lowest-lying negative-parity J = 1/2 - state in quenched QCD. Results are obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action. (orig.)
U(1) Wilson lattice gauge theories in digital quantum simulators
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
Fermion Bag Approach to Lattice Hamiltonian Field Theories
Huffman, Emilie
2018-03-01
Using a model in the Gross-Neveu Ising universality class, we show how the fermion bag idea can be applied to develop algorithms to Hamiltonian lattice field theories. We argue that fermion world lines suggest an alternative method to the traditional techniques for calculating ratios of determinants in a stable manner. We show the power behind these ideas by extracting the physics of the model on large lattices.
B-Parameters of 4-Fermion Operators from Lattice QCD
International Nuclear Information System (INIS)
Gupta, Rajan
1997-07-01
This talk summarizes the status of the calculations of B K , B 7 , B 8 , and B s , done in collaboration with T. Bhattacharya, C. Kilcup, and S. Sharpe. Results for staggered, Wilson, and Clover fermions are presented
Finite-lattice form factors in free-fermion models
International Nuclear Information System (INIS)
Iorgov, N; Lisovyy, O
2011-01-01
We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field
The Dirac-Kaehler equation and fermions on the lattice
International Nuclear Information System (INIS)
Becher, P.
1982-05-01
The geometrical description of spinor fields by E. Kaehler is used to formulate a consistent lattice approximation of fermions. The relation to free simple Dirac fields as well as to Susskind's description of lattice fermions is clarified. The first steps towards a quantized interacting theory are given. The correspondence between the calculus of differential forms and concepts of algebraic topology is shown to be a useful method for a completely analogous treatment of the problems in the continuum and on the lattice. (orig.)
Linear systems solvers - recent developments and implications for lattice computations
International Nuclear Information System (INIS)
Frommer, A.
1996-01-01
We review the numerical analysis' understanding of Krylov subspace methods for solving (non-hermitian) systems of equations and discuss its implications for lattice gauge theory computations using the example of the Wilson fermion matrix. Our thesis is that mature methods like QMR, BiCGStab or restarted GMRES are close to optimal for the Wilson fermion matrix. Consequently, preconditioning appears to be the crucial issue for further improvements. (orig.)
Nf=2 Lattice QCD and Chiral Perturbation Theory
International Nuclear Information System (INIS)
Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.
2006-01-01
By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Unorthodox lattice fermion derivatives and their shortcomings
International Nuclear Information System (INIS)
Bodwin, G.T.; Kovacs, E.V.
1987-01-01
We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory
Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms
International Nuclear Information System (INIS)
Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.
2009-01-01
We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.
A lattice formulation of chiral gauge theories
International Nuclear Information System (INIS)
Bodwin, G.T.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration
Light hadrons from Nf=2+1+1 dynamical twisted mass fermions
Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM
2011-01-01
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06
Perturbative analysis for Kaplan's lattice chiral fermions
International Nuclear Information System (INIS)
Aoki, S.; Hirose, H.
1994-01-01
Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls
Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops
International Nuclear Information System (INIS)
Azcoiti, V.; Nakamura, A.
1982-01-01
Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated
Analytic operator approach to fermionic lattice field theories
International Nuclear Information System (INIS)
Duncan, A.
1985-01-01
An analytic Lanczos algorithm previously used to extract the spectrum of bosonic lattice field theories in the continuum region is extended to theories with fermions. The method is illustrated in detail for the (1+1)-dimensional Gross-Neveu model. All parameters in the model (coupling, lattice size N, number of fermion flavors Nsub(F), etc.) appear explicitly in analytic formulas for matrix elements of the hamiltonian. The method is applied to the calculation of the collective field vacuum expectation value and the mass gap, and excellent agreement obtained with explicit results available from the large Nsub(F) solution of the model. (orig.)
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
A study of block algorithms for fermion matrix inversion
International Nuclear Information System (INIS)
Henty, D.
1990-01-01
We compare the convergence properties of Lanczos and Conjugate Gradient algorithms applied to the calculation of columns of the inverse fermion matrix for Kogut-Susskind and Wilson fermions in lattice QCD. When several columns of the inverse are required simultaneously, a block version of the Lanczos algorithm is most efficient at small mass, being over 5 times faster than the single algorithms. The block algorithm is also less susceptible to critical slowing down. (orig.)
Fermion bag approach to Hamiltonian lattice field theories in continuous time
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
N = 1 SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos
International Nuclear Information System (INIS)
Demmouche, Kamel
2009-01-01
The supersymmetric Yang-Mills (SYM) theory with one supercharge (N=1) and one additional Majorana matter-field represents the simplest model of supersymmetric gauge theory. Similarly to QCD, this model includes gauge fields, gluons, with color gauge group SU(N c ) and fermion fields, describing the gluinos. The non-perturbative dynamical features of strongly coupled supersymmetric theories are of great physical interest. For this reason, many efforts are dedicated to their formulation on the lattice. The lattice regularization provides a powerful tool to investigate non-perturbatively the phenomena occurring in SYM such as confinement and chiral symmetry breaking. In this work we perform numerical simulations of the pure SU(2) SYM theory on large lattices with small Majorana gluino masses down to about m g approx 115 MeV with lattice spacing up to a ≅0.1 fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass m g ≠0. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs). (orig.)
Lattice artifacts in the non-Abelian Debye screening mass in one-loop order
International Nuclear Information System (INIS)
Kaste, P.; Rothe, H.J.
1997-01-01
We compute the electric screening mass in lattice QCD with Wilson fermions at finite temperature and chemical potential to one-loop order, and show that lattice artifacts arising from a finite lattice spacing result in an enhancement of the screening mass as compared to the continuum. We discuss the magnitude of this enhancement as a function of the temperature and chemical potential for lattices with a different number of lattice sites in the temporal direction that can be implemented in lattice simulations. Most of the enhancement is found to be due to the fermion loop contribution. copyright 1997 The American Physical Society
Twisted mass lattice QCD with non-degenerate quark masses
International Nuclear Information System (INIS)
Muenster, Gernot; Sudmann, Tobias
2006-01-01
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a
Wilson Dslash Kernel From Lattice QCD Optimization
Energy Technology Data Exchange (ETDEWEB)
Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
International Nuclear Information System (INIS)
Cichy, Krzysztof; Kujawa, Agnieszka
2008-11-01
In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C PS , the mass m PS and the decay constant f PS is comparable for all of them. (orig.)
Mixtures of bosonic and fermionic atoms in optical lattices
International Nuclear Information System (INIS)
Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens
2003-01-01
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof; Kujawa, Agnieszka [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Gonzalez Lopez, Jenifer [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-11-15
In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a{sup 2}) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C{sub PS}, the mass m{sub PS} and the decay constant f{sub PS} is comparable for all of them. (orig.)
Dirac-Kahler fermion with noncommutative differential forms on a lattice
International Nuclear Information System (INIS)
Kanamori, I.; Kawamoto, N.
2004-01-01
Noncommutativity between a differential form and a function allows us to define differential operator satisfying Leibniz's rule on a lattice. We propose a new associative Clifford product defined on the lattice by introducing the noncommutative differential forms. We show that this Clifford product naturally leads to the Dirac-Kaehler fermion on the lattice
Propagator of the lattice domain wall fermion and the staggered fermion
International Nuclear Information System (INIS)
Furui, S.
2009-01-01
We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Probabilistic representation of fermionic lattice systems
International Nuclear Information System (INIS)
Beccaria, Matteo; Presilla, Carlo; De Angelis, Gian Fabrizio; Jona-Lasinio, Giovanni
2000-01-01
We describe an exact Feynman-Kac type formula to represent the dynamics of fermionic lattice systems. In this approach the real time or Euclidean time dynamics is expressed in terms of the stochastic evolution of a collection of Poisson processes. From this formula we derive a family of algorithms for Monte Carlo simulations, parametrized by the jump rates of the Poisson processes
On the overlap prescription for lattice regularization of chiral fermions
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs
On the overlap prescription for lattice regularization of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S; Strathdee, J
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs.
Harmonically trapped dipolar fermions in a two-dimensional square lattice
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...
Improving the lattice axial vector current
International Nuclear Information System (INIS)
Horsley, R.; Perlt, H.; Schiller, A.; Zanotti, J.M.
2015-11-01
For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.
Optical Lattice Gases of Interacting Fermions
2015-12-02
interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
Determining the scale in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bornyakov, V.G. [Institute for High Energy Physics, Protvino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation). School of Biomedicine; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Hudspith, R. [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; and others
2015-12-15
We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach the physical point in the quark mass plane keeping the average quark mass constant. We have simulations at four beta values, and after determining the paths and lattice spacings, we give an estimation of the phenomenological values of various Wilson flow scales.
Fermion masses through four-fermion condensates
Energy Technology Data Exchange (ETDEWEB)
Ayyar, Venkitesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore, 560012 (India)
2016-10-12
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.
Wess-Zumino-Witten term on the lattice
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Matsui, Kosuke; Yamamoto, Masaru
2003-01-01
We construct the Wess-Zumino-Witten (WZW) term in lattice gauge theory by using a Dirac operator which obeys the Ginsparg-Wilson relation. Topological properties of the WZW term known in the continuum are reproduced on the lattice as a consequence of a non-trivial topological structure of the space of admissible lattice gauge fields. In the course of this analysis, we observe that the gauge anomaly generally implies that there is no basis of a Weyl fermion which leads to a single-valued expectation value in the fermion sector. The lattice Witten term, which carries information of a gauge path along which the gauge anomaly is integrated, is separated from the WZW term and the multivaluedness of the Witten term is shown to be related to the homotopy group π 2n+1 (G). We also discuss the global SU(2) anomaly on the basis of the WZW term. (author)
Wilson loops in very high order lattice perturbation theory
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.
2009-10-01
We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)
Bootstrap bound for conformal multi-flavor QCD on lattice
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
2016-07-08
The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.
Quark structure from the lattice operator product expansion
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2009-11-01
We have reported elsewhere in this conference on our continuing project to determine nonperturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing. (orig.)
Lattice QCD at finite density via a new canonical approach
International Nuclear Information System (INIS)
Alexandru, Andrei; Horvath, Ivan; Liu, K.-F.; Faber, Manfried
2005-01-01
We carry out a finite density calculation based on a canonical approach which is designed to address the overlap problem. Two degenerate flavor simulations are performed using Wilson gauge action and Wilson fermions on 4 4 lattices, at temperatures close to the critical temperature T c ≅170 MeV and large densities (5 to 20 times nuclear matter density). In this region, we find that the algorithm works well. We compare our results with those from other approaches
One-loop fermion contribution in an asymmetric lattice regularization of SU(N) gauge theories
International Nuclear Information System (INIS)
Trinchero, R.C.
1983-01-01
Using the background field method we calculate the one-loop fermion corrections in an asymmetric lattice version of SU(N) gauge theories with massless fermions. The introduction of different lattice spacings for spatial (a) and temporal (a 4 ) links requires the introduction of two different bare coupling constants, gsub(sigma) and gsub(tau). Our calculation provides the value of the derivatives of the couplings with respect to xi=a/a 4 at xi=1; these derivatives are of particular relevance for finite-temperature lattice calculations. With xi->infinite, the lattice hamiltonian version is obtained, and the ratio of scale parameters Λsub(H)/Λsub(E) is calculated. (orig.)
Continuum limit of QED2 on a lattice
International Nuclear Information System (INIS)
Weingarten, D.H.; Challifour, J.L.
1979-01-01
A path integral is defined for the vacuum expectation values of Euclidean QED 2 on a periodic lattice. Wilson's expression is used for the coupling between fermion and gauge fields. The action for the gauge field by itself is assumed to be a quadratic in place of Wilson's periodic action. The integral over the fermion field is carried out explicitly to obtain a Matthews--Salam formula for vacuum expectation values. For a combination of gauge and fermion fields G on a lattice with spacing proportional to N -+ , Nelement ofZ + , the Matthews--Salam formula for the vacuum expectation /sub N/ has the form /sub n/=∫ dμW/sub N/(G, f), where dμ is an N-independent measure on a random electromagnetic field f and W/sub N/(G,f) is an N-dependent function of f determined by G. For a class of G we prove that as N→infinity, W/sub N/(G,f) has a limit W (G,f) except possibly for a set of f of measure zero. In subsequent articles it will be shown that ∫ dμW (G,f) exists and lim/sub N/→infinity /sub N/ =∫ dμW
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Light hadrons from N{sub f}=2+1+1 dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, B.; Boucaud, P. [Paris 11 Univ., Orsay (FR). Lab. de Physique Theorique] (and others)
2011-01-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a{approx}0.06 fm, a{approx}0.08 fm and a{approx}0.09 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing. (orig.)
Aspects of Chiral Symmetry Breaking in Lattice QCD
Horkel, Derek P.
In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions
Energy Technology Data Exchange (ETDEWEB)
Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2016-12-15
We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.
Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions
International Nuclear Information System (INIS)
Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.
2016-01-01
We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.
Kaon semileptonic decay form factors from Nf = 2 non-perturbatively O(a)-improved Wilson fermions
International Nuclear Information System (INIS)
Broemmel, D.; Nakamura, Y.; Pleiter, D.
2007-10-01
We present first results from the QCDSF collaboration for the kaon semileptonic decay form factors at zero momentum transfer, using two flavours of non-perturbatively O(a)-improved Wilson quarks. A lattice determination of these form factors is of particular interest to improve the accuracy on the CKM matrix element vertical stroke V us vertical stroke. Calculations are performed on lattices with lattice spacing of about 0.08 fm with different values of light and strange quark masses, which allows us to extrapolate to chiral limit. Employing double ratio techniques, we are able to get small statistical errors. (orig.)
Mott-insulating phases and magnetism of fermions in a double-well optical lattice
International Nuclear Information System (INIS)
Wang, Xin; Zhou, Qi; Das Sarma, S.
2011-01-01
We theoretically investigate, using nonperturbative strong correlation techniques, Mott-insulating phases and magnetic ordering of two-component fermions in a two-dimensional double-well optical lattice. At filling of two fermions per site, there are two types of Mott insulators, one of which is characterized by spin-1 antiferromagnetism below the Neel temperature. The superexchange interaction in this system is induced by the interplay between the interband interaction and the spin degree of freedom. A great advantage of the double-well optical lattice is that the magnetic quantum phase diagram and the Neel temperature can be easily controlled by tuning the orbital energy splitting of the two-level system. Particularly, the Neel temperature can be one order of magnitude larger than that in standard optical lattices, facilitating the experimental search for magnetic ordering in optical lattice systems.
Preparing and probing atomic Majorana fermions and topological order in optical lattices
International Nuclear Information System (INIS)
Kraus, C V; Diehl, S; Zoller, P; Baranov, M A
2012-01-01
We introduce a one-dimensional system of fermionic atoms in an optical lattice whose phase diagram includes topological states of different symmetry classes with a simple possibility to switch between them. The states and topological phase transitions between them can be identified by looking at their zero-energy edge modes which are Majorana fermions. We propose several universal methods of detecting the Majorana edge states, based on their genuine features: the zero-energy, localized character of the wave functions and the induced non-local fermionic correlations. (paper)
Scattering lengths in SU(2) gauge theory with two fundamental fermions
DEFF Research Database (Denmark)
Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist
2014-01-01
We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...... the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods....
International Nuclear Information System (INIS)
Kilcup, G.
1986-01-01
A progress report on a lattice project at Los Alamos is presented. The projects are basically of two sorts: approaching the continuum (determination of MCRG flows under the blocking transformation, and beta-function along Wilson and improved action lines); and arriving at the continuum (hadron spectrum, coupling constants, and matrix elements). Since the ultimate goal is to determine matrix elements for which chiral symmetry is very relevant, the authors choose the formalism whose chiral properties are easier to understand, i.e., staggered fermions
A Lattice Calculation of Parton Distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Univ. of Southern Denmark, Odense; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-04-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N f =2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
International Nuclear Information System (INIS)
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-01-01
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ 5 -Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Energy Technology Data Exchange (ETDEWEB)
Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)
2012-09-15
We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.
The Asymptotic Expansion of Lattice Loop Integrals Around the Continuum Limit
International Nuclear Information System (INIS)
Becher, Thomas G
2002-01-01
We present a method of computing any one-loop integral in lattice perturbation theory by systematically expanding around its continuum limit. At any order in the expansion in the lattice spacing, the result can be written as a sum of continuum loop integrals in analytic regularization and a few genuine lattice integrals (''master integrals''). These lattice master integrals are independent of external momenta and masses and can be computed numerically. At the one-loop level, there are four master integrals in a theory with only bosonic fields, seven in HQET and sixteen in QED or QCD with Wilson fermions
Analytic progress on exact lattice chiral symmetry
International Nuclear Information System (INIS)
Kikukawa, Y.
2002-01-01
Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)
Lattice approximation of gauge theories with Dirac Kaehler fermions
International Nuclear Information System (INIS)
Joos, H.
1988-01-01
A program which tries to overcome the systematic difficulties caused by the lattice fermion problem by the consideration of models which describe Dirac fields by differential forms is reported. In the first lecture the formalism is developped and applied to the formulation of geometric QCD and of a Geometric Standard Model. The second lecture treats the characteristic symmetry problems which appear in the lattice approximation of geometric field theories. In the last lecture strong coupling dynamics of geometric QCD are considered with the final aim of a derivation of the quark model for the hadron spectrum. (author) [pt
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.
2018-01-01
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Fermion production despite fermion number conservation
International Nuclear Information System (INIS)
Bock, W.; Hetrick, J.E.; Smit, J.
1995-01-01
Lattice proposals for a nonperturbative formulation of the Standard Model easily lead to a global U(1) symmetry corresponding to exactly conserved fermion number. The absence of an anomaly in the fermion current would then appear to inhibit anomalous processes, such as electroweak baryogenesis in the early universe. One way to circumvent this problem is to formulate the theory such that this U(1) symmetry is explicitly broken. However we argue that in the framework of spectral flow, fermion creation and annihilation still in fact occurs, despite the exact fermion number conservation. The crucial observation is that fermions are excitations relative to the vacuum, at the surface of the Dirac sea. The exact global U(1) symmetry prohibits a state from changing its fermion number during time evolution, however nothing prevents the fermionic ground state from doing so. We illustrate our reasoning with a model in two dimensions which has axial-vector couplings, first using a sharp momentum cutoff, then using the lattice regulator with staggered fermions. The difference in fermion number between the time evolved state and the ground state is indeed in agreement with the anomaly. Both the sharp momentum cutoff and the lattice regulator break gauge invariance. In the case of the lattice model a mass counterterm for the gauge field is sufficient to restore gauge invariance in the perturbative regime. A study of the vacuum energy shows however that the perturbative counterterm is insufficient in a nonperturbative setting and that further quartic counterterms are needed. For reference we also study a closely related model with vector couplings, the Schwinger model, and we examine the emergence of the θ-vacuum structure of both theories. ((orig.))
SU(2)-breaking effects for meson masses in lattice QCD
International Nuclear Information System (INIS)
Bramon, A.; Casulleras, J.
1989-01-01
The quenched approximation of lattice QCD for Wilson fermions is used to calculate isospin breaking effects in the pseudoscalar- and vector-meson nonets. Mass differences inside the K and K * isodoublets and mixing phenomena for π 0 -η and ρ-ω are found to agree with the experimental data. A new and specific method of analysis is proposed and successfully tested. (orig.)
The realization of Majorana fermions in Kitaev Quantum Spin Lattice
Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae
The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.
Volume dependence of light hadron masses in full lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Orth, B.; Lippert, T.; Schilling, K
2004-03-01
The aim of the GRAL project is to simulate full QCD with standard Wilson fermions at light quark masses on small to medium-sized lattices and to obtain infinite-volume results by extrapolation. In order to establish the functional form of the volume dependence we study systematically the finite-size effects in the light hadron spectrum. We give an update on the status of the GRAL project and show that our simulation data for the light hadron masses depend exponentially on the lattice size.
Volume dependence of light hadron masses in full lattice QCD
International Nuclear Information System (INIS)
Orth, B.; Lippert, T.; Schilling, K.
2004-01-01
The aim of the GRAL project is to simulate full QCD with standard Wilson fermions at light quark masses on small to medium-sized lattices and to obtain infinite-volume results by extrapolation. In order to establish the functional form of the volume dependence we study systematically the finite-size effects in the light hadron spectrum. We give an update on the status of the GRAL project and show that our simulation data for the light hadron masses depend exponentially on the lattice size
Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test
International Nuclear Information System (INIS)
Aoki, S.; Levien, R.B.
1995-01-01
We test perturbatively a recent scheme for implementing chiral fermions on the lattice, proposed by Kaplan and modified by Narayanan and Neuberger, using as our testing ground the chiral Schwinger model. The scheme is found to reproduce the desired form of the effective action, whose real part is gauge invariant and whose imaginary part gives the correct anomaly in the continuum limit, once technical problems relating to the necesary infinite extent of the extra dimension are properly addressed. The indications from this study are that the Kaplan-Narayanan-Neuberger scheme has a good chance at being a correct lattice regularization of chiral gauge theories
The pion form factor from lattice QCD with two dynamical flavours
Energy Technology Data Exchange (ETDEWEB)
Broemmel, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie]|[Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Physik 1 - Theoretische Physik] (and others)
2006-08-15
We compute the electromagnetic form factor of the pion using non-perturbatively O(a) improved Wilson fermions. The calculations are done for pion masses down to 400 MeV and for lattice spacings of 0.07-0.11 fm. We check for finite size effects by repeating some of the measurements on smaller lattices. The large number of lattice parameters we use allows us to extrapolate to the physical point. For the square of the charge radius we find left angle r{sup 2} right angle =0.440(19) fm{sup 2}, in good agreement with experiment. (orig.)
Large-amplitude superexchange of high-spin fermions in optical lattices
International Nuclear Information System (INIS)
Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören
2013-01-01
We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)
Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions
International Nuclear Information System (INIS)
Sinclair, D.K.
1986-10-01
Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass
Effects of a potential fourth fermion generation on the Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)
Continuum symmetry restoration in lattice models with staggered fermions
International Nuclear Information System (INIS)
Morel, A.
1986-09-01
This talk is a report on results obtained by T. Jolicoeur, R. Lacaze, B. Petersson and the author: staggered fermions can be consistently interpreted as flavoured quarks in the continuum limit of asymptotically free theories on the lattice. This statement is supported by analytical results for the Gross-Neveu model at large N and for a QCD two point function, and by a numerical simulation of SU(2) quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy; Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.
International Nuclear Information System (INIS)
Green, Jeremy; Jansen, Karl; Steffens, Fernanda
2017-07-01
Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.
DEFF Research Database (Denmark)
Andersen, Christian Walther; Bulava, John; Hörz, Ben
2018-01-01
We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me......V. At these quark masses, the Δ(1232) resonance pole is found close to the N-π threshold and a Breit-Wigner fit to the amplitude gives gΔNπBW=19.0(4.7) in agreement with phenomenological determinations.......We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me...
Running coupling in SU(2) gauge theory with two adjoint fermions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari
2016-01-01
We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...... with the existence of a fixed point in the interval 2.2g∗23. We also measure the anomalous dimension and find that its value at the fixed point is γ∗≃0.2±0.03....... constant using the step scaling method with the Schrödinger functional and study the remaining discretization effects. At weak coupling we observe significant discretization effects, which make it difficult to obtain a fully controlled continuum limit. Nevertheless, the data remains consistent...
Polarized and unpolarized nucleon structure functions from lattice QCD
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Humboldt-Universitaet, Berlin; Ilgenfritz, E.M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1995-06-01
We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions F 1 , F 2 , g 1 and g 2 of the proton and neutron. The theoretical basis for the calculation is the operator product expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the calculation is done for three values of K, and we perform the extrapolation to the chiral limit. The renormalization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to one loop order. (orig.)
Fermionic flows and tau function of the n = (1|1) superconformal Toda lattice hierarchy
International Nuclear Information System (INIS)
Lechtenfeld, O.; Sorin, A.
1998-01-01
An infinite class of fermionic flows of the N = (1|1) superconformal Toda lattice hierarchy is constructed and their algebraic structure is studied. We completely solve the semi-infinite N = (1|1) Toda lattice and chain hierarchies and derive their tau functions, which may be relevant for building supersymmetric matrix models. Their bosonic limit is also discussed
Comparison of different lattice definitions of the topological charge
International Nuclear Information System (INIS)
Cichy, Krzysztof; Ottnad, Konstantin; Bonn Univ.; Bonn Univ.; Urbach, Carsten; Zimmermann, Falk; Bonn Univ.; Wenger, Urs
2014-11-01
We present a comparison of different definitions of the topological charge on the lattice, using a small-volume ensemble with 2 flavours of dynamical twisted mass fermions. The investigated definitions are: index of the overlap Dirac operator, spectral projectors, spectral flow of the Hermitian Wilson-Dirac operator and field theoretic with different kinds of smoothing of gauge fields (HYP and APE smearings, gradient flow, cooling). We also show some results on the topological susceptibility.
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
Directory of Open Access Journals (Sweden)
Alex Thomson
2018-01-01
Full Text Available Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP^{1} theory of bosonic spinons coupled to a U(1 gauge field, and with a global SU(2 spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z_{2} topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π-flux state are described by (2+1-dimensional quantum chromodynamics (QCD_{3} with a SU(2 gauge group and N_{f}=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017.PRXHAE2160-330810.1103/PhysRevX.7.031051] that this QCD_{3} theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD_{3} and obtain fermionic dual descriptions of the phases with Z_{2} topological order obtained earlier using the bosonic CP^{1} theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1 gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
International Nuclear Information System (INIS)
Ranft, J.
1984-01-01
Hamiltonian lattice models with fermions, gauge bosons and scalar fields are studied in 1+1 dimensions using the local Hamiltonian Monte-Carlo method. Results are presented for the massive Schwinger model with one and two flavors, for a model with interacting Higgs fields, fermions and gauge bosons, where fractionally charged solitons are found as free states of the lattice model, and for Wess-Zumino type models with restricted lattice supersymmetry, where examples for spontaneous breaking of supersymmetry are found
Bogoliubov transformations and fermion condensates in lattice field theories
International Nuclear Information System (INIS)
Caracciolo, Sergio; Palumbo, Fabrizio; Viola, Giovanni
2009-01-01
We apply generalized Bogoliubov transformations to the transfer matrix of relativistic field theories regularized on a lattice. We derive the conditions these transformations must satisfy to factorize the transfer matrix into two terms which propagate fermions and antifermions separately, and we solve the relative equations under some conditions. We relate these equations to the saddle point approximation of a recent bosonization method and to the Foldy-Wouthuysen transformations which separate positive from negative energy states in the Dirac Hamiltonian
Symanzik Improvement with Dynamical Charm: A 3+1 Scheme for Wilson Quarks arXiv
Fritzsch, Patrick; Stollenwerk, Felix; Wolff, Ulli
We discuss the problem of lattice artefacts in QCD simulations enhanced by the introduction of dynamical charmed quarks. In particular, we advocate the use of a massive renormalization scheme with a close to realistic charm mass. To maintain O(a) improvement for Wilson type fermions in this case we define a finite size scheme and carry out a nonperturbative estimation of the clover coefficient $c_\\mathrm{sw}$. It is summarized in a fit formula $c_\\mathrm{sw}(g_0^2)$ that defines an improved action suitable for future dynamical charm simulations.
High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice
Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof
2018-05-01
Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.
Symmetry and symmetry restoration of lattice chiral fermions in the overlap formalism
International Nuclear Information System (INIS)
Kikukawa, Y.
1999-01-01
Three aspects of the symmetry structure of lattice chiral fermions in the overlap formalism are discussed. By the weak coupling expansion of the overlap Dirac operator, the axial anomaly associated to the chiral transformation proposed by Luescher is evaluated and is shown to have the correct form of the topological charge density for perturbative backgrounds. Next we discuss the exponential suppression of the self-energy correction of the lightest mode in the domain-wall fermion/truncated overlap. Finally, we consider a supersymmetric extension of the overlap formula in the case of the chiral multiplet and examine the symmetry structure of the action
A first look at maximally twisted mass lattice QCD calculations at the physical point
International Nuclear Information System (INIS)
Abdel-Rehim, A.
2013-11-01
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N f =2 results and their phenomenological values. Finally, the strategy for extending simulations to N f =2+1+1 is outlined.
Surface representations of Wilson loop expectations in lattice gauge theory
International Nuclear Information System (INIS)
Brydges, D.C.; Giffen, C.; Durhuus, B.; Froehlich, J.
1986-01-01
Expectations of Wilson loops in lattice gauge theory with gauge group G=Z 2 , U(1) or SU(2) are expressed as weighted sums over surfaces with boundary equal to the loops labelling the observables. For G=Z 2 and U(1), the weights are all positive. For G=SU(2), the weights can have either sign depending on the Euler characteristic of the surface. Our surface (or flux sheet-) representations are partial resummations of the strong coupling expansion and provide some qualitative understanding of confinement. The significance of flux sheets with nontrivial topology for permanent confinement in the SU(2)-theory is elucidated. (orig.)
Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)
Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks
Giusti, Leonardo
2009-01-01
The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.
Thermodynamics of lattice QCD with massless quarks and chiral 4-fermion interactions
International Nuclear Information System (INIS)
Kogut, J. B.
1998-01-01
N f = 2 lattice QCD with massless quarks and a weak 4-fermion interaction appears to have the expected second order transition, at least for N t ≥ 6. More work is needed to clarify the N t = 4 case. With more statistics the N t = 6 simulations should produce an accurate determination of the critical exponent β m . Moving to finite mass at β = β c should allow an accurate determination of σ. Hadronic screening masses need further analysis. Other order parameters remain to be analyzed. Unfortunately, there is no obvious way to include 4-fermion interactions with full SU(2) x SU(2) chiral flavor symmetry
Finite-temperature phase structure of lattice QCD with Wilson quark action
International Nuclear Information System (INIS)
Aoki, S.; Ukawa, A.; Umemura, T.
1996-01-01
The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society
A first look at maximally twisted mass lattice QCD calculations at the physical point
Energy Technology Data Exchange (ETDEWEB)
Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Boucaud, P. [Paris XI Univ., Orsay (France). Laboratoire de Physique Theorique; Carrasco, N. [Valencia-CSIC Univ. (Spain). Dept. de Fisica Teorica; IFIC, Valencia (Spain); and others
2013-11-15
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N{sub f}=2 results and their phenomenological values. Finally, the strategy for extending simulations to N{sub f}=2+1+1 is outlined.
An exploratory study of heavy domain wall fermions on the lattice
Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias
2016-01-01
We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.
Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.
Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2017-02-17
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
Very high order lattice perturbation theory for Wilson loops
International Nuclear Information System (INIS)
Horsley, R.
2010-10-01
We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)
Lin, C -J David; Ramos, Alberto
2015-01-01
We perform the step-scaling investigation of the running coupling constant, using the gradient-flow scheme, in SU(3) gauge theory with twelve massless fermions in the fundamental representation. The Wilson plaquette gauge action and massless unimproved staggered fermions are used in the simulations. Our lattice data are prepared at high accuracy, such that the statistical error for the renormalised coupling, g_GF, is at the subpercentage level. To investigate the reliability of the continuum extrapolation, we employ two different lattice discretisations to obtain g_GF. For our simulation setting, the corresponding gauge-field averaging radius in the gradient flow has to be almost half of the lattice size, in order to have this extrapolation under control. We can determine the renormalisation group evolution of the coupling up to g^2_GF ~ 6, before the onset of the bulk phase structure. In this infrared regime, the running of the coupling is significantly slower than the two-loop perturbative prediction, altho...
Global anomalies in chiral lattice gauge theories
International Nuclear Information System (INIS)
Baer, O.
2000-07-01
We study global anomalies in a new approach to chiral gauge theories on the lattice, which is based on the Ginsparg-Wilson relation. In this approach, global anomalies make it impossible to define consistently a fermionic measure for the functional integral. We show that a global anomaly occurs in an SU(2) theory if the fundamental representation is used for the fermion fields. The generalization to higher representations is also discussed. In addition we establish a close relation between global anomalies and the spectral flow of the Dirac operator and employ it in a numerical computation to prove the existence of the global SU(2) anomaly in a different way. This method is inspired by an earlier work of Witten who first discovered this type of anomalies in continuum field theory. (orig.)
International Nuclear Information System (INIS)
Naik, S.
1990-01-01
We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)
Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-12-15
Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)
Scaling properties of Wilson loops pierced by P-vortices
DEFF Research Database (Denmark)
Dunn, Patrick; Greensite, Jeffrey Paul
2012-01-01
P-vortices, in an SU(N) lattice gauge theory, are excitations on the center-projected Z(N) lattice. We study the ratio of expectation values of SU(2) Wilson loops, on the unprojected lattice, linked to a single P-vortex, to that of Wilson loops which are not linked to any P-vortices. When...
Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gutzwiller, Simone
2012-10-08
In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.
Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD
International Nuclear Information System (INIS)
Gutzwiller, Simone
2012-01-01
In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32 3 x 64 and a 40 3 x 64 lattice with N f =2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
International Nuclear Information System (INIS)
Dimopoulos, P.; Giusti, L.; Hernandez, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.
2006-01-01
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1 and ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays
Chiral symmetry breaking for domain wall fermions in quenched lattice QCD
International Nuclear Information System (INIS)
Wu Lingling
2001-01-01
The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with β = 5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8 3 x 32 and 16 3 x 32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)
2011-12-15
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
International Nuclear Information System (INIS)
Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria
2011-12-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Neutron diffraction from the vortex lattice in the heavy-fermion superconductor UPt3
DEFF Research Database (Denmark)
Kleiman, R.N.; Broholm, C.; Aeppli, G.
1992-01-01
We have used neutron diffraction to observe the vortex lattice of UPt3. This is the first such measurement in a heavy-fermion system, a superconductor below 1 K, or in a system with such a long magnetic penetration depth (6000 +/- 75 angstrom). It also provides the first value for the pair...
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Spectrum of the Wilson Dirac operator at finite lattice spacings
DEFF Research Database (Denmark)
Akemann, G.; Damgaard, Poul Henrik; Splittorff, Kim
2011-01-01
We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral Perturbation Theory and chiral Random Matrix Theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator...... as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral Random Matrix Theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral Perturbation Theory. All results are obtained for fixed index...... of the Wilson Dirac operator. The low-energy constants of Wilson chiral Perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator....
Critical point of Nf=3 QCD from lattice simulations in the canonical ensemble
International Nuclear Information System (INIS)
Li Anyi; Alexandru, Andrei; Liu, Keh-Fei
2011-01-01
A canonical ensemble algorithm is employed to study the phase diagram of N f =3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below T c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 fm and quark masses close to that of the strange, we find the critical point at T E =0.925(5)T c and baryon chemical potential μ B E =2.60(8)T c .
Better than $1/Mflops substained: a scalable PC-based parallel computer for lattice QCD
International Nuclear Information System (INIS)
Fodor, Z.; Papp, G.
2002-02-01
We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. Our cluster built at the Eoetvoes Univ., Inst. Theor. Phys. consists of 137 Intel P4-1.7 GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3 . 96 in full QCD simulations. The price/sustained-perfomance ratio for full QCD is better than $1/Mflops for Wilson (and around $1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. (orig.)
B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, Fabio; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, Benoit; Gerardin, Antoine [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; CNRS, Orsay (France); Bulava, John [CERN, Geneva (Switzerland). Physics Department; Della Morte, Michele; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Trinity College, Dublin (Ireland). School of Mathematics; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Collaboration: ALPHA Collaboration
2012-10-15
We report on the ALPHA Collaboration's lattice B-physics programme based on N{sub f}=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a {approx} (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B{sub (s)}-meson decay constants, f{sub B} and f{sub B{sub s}}.
Finite spatial-volume effect for π-N sigma term in lattice QCD
International Nuclear Information System (INIS)
Fukushima, M.; Chiba, S.; Tanigawa, T.
2003-01-01
We report on a finite spatial-volume effect for the pion-nucleon sigma term σ πN for quenched Wilson fermion on 8 3 x 20 and 16 3 x 20 lattices at β = 5.7 with the spatial lattice size of La∼1.12fm and La∼2.24fm, respectively. It is found that the spatial size dependence of the connected part of σ πN con is significant small. We observed the magnitude of finite size effect for the disconnected part of σ πN dis is much larger than for to connected one and an almost drastic decrease of σ πN dis amounting to 50% between La∼2.24fm to the smaller lattice size of La∼1.12fm. (author)
International Nuclear Information System (INIS)
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.
1991-01-01
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model
International Nuclear Information System (INIS)
Joos, H.; Schaefer, M.
1987-01-01
The symmetry group of staggered lattice fermions is discussed as a discrete subgroup of the symmetry group of the Dirac-Kaehler equation. For the representation theory of this group, G. Mackey's generalization of E.P. Wigner's procedure for the construction of unitary representations of groups with normal subgroups is used. A complete classification of these irreducible representations by ''momentum stars'', ''flavour orbits'' and ''reduced spins'' is given. (orig.)
The Schroedinger functional for Gross-Neveu models
International Nuclear Information System (INIS)
Leder, B.
2007-01-01
Gross-Neveu type models with a finite number of fermion flavours are studied on a two-dimensional Euclidean space-time lattice. The models are asymptotically free and are invariant under a chiral symmetry. These similarities to QCD make them perfect benchmark systems for fermion actions used in large scale lattice QCD computations. The Schroedinger functional for the Gross-Neveu models is defined for both, Wilson and Ginsparg-Wilson fermions, and shown to be renormalisable in 1-loop lattice perturbation theory. In two dimensions four fermion interactions of the Gross-Neveu models have dimensionless coupling constants. The symmetry properties of the four fermion interaction terms and the relations among them are discussed. For Wilson fermions chiral symmetry is explicitly broken and additional terms must be included in the action. Chiral symmetry is restored up to cut-off effects by tuning the bare mass and one of the couplings. The critical mass and the symmetry restoring coupling are computed to second order in lattice perturbation theory. This result is used in the 1-loop computation of the renormalised couplings and the associated beta-functions. The renormalised couplings are defined in terms of suitable boundary-to-boundary correlation functions. In the computation the known first order coefficients of the beta-functions are reproduced. One of the couplings is found to have a vanishing betafunction. The calculation is repeated for the recently proposed Schroedinger functional with exact chiral symmetry, i.e. Ginsparg-Wilson fermions. The renormalisation pattern is found to be the same as in the Wilson case. Using the regularisation dependent finite part of the renormalised couplings, the ratio of the Lambda-parameters is computed. (orig.)
Non-perturbative renormalization on the lattice
International Nuclear Information System (INIS)
Koerner, Daniel
2014-01-01
Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.
Quasiparticle scattering spectroscopy (QPS) of Kondo lattice heavy fermions
Greene, L. H.; Narasiwodeyar, S. M.; Banerjee, P.; Park, W. K.; Bauer, E. D.; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Sarrao, J. L.; Thompson, J. D.
2013-03-01
Point-contact spectroscopy (PCS) is a powerful technique to study electronic properties via measurements of non-linear current-voltage characteristic across a ballistic junction. It has been frequently adopted to investigate novel and/or unconventional superconductors by detecting the energy-dependent Andreev scattering. PCS of non-superconducting materials has been much rarely reported. From our recent studies on heavy fermions, we have frequently observed strongly bias-dependent and asymmetric conductance behaviors. Based on a Fano resonance model in a Kondo lattice, we attribute them to energy-dependent quasiparticle scattering off hybridized renormalized electronic states, dubbing it QPS. We will present our QPS results on several heavy-fermion systems and discuss QPS as a novel technique to probe the bulk spectroscopic properties of the electronic structure. For instance, it reveals that the hybridization gap in URu2Si2 opens well above the hidden order transition. The work at UIUC is supported by the U.S. DOE under Award No. DE-FG02-07ER46453 and the NSF DMR 12-06766, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.
Lattice study of finite volume effect in HVP for muon g-2
Directory of Open Access Journals (Sweden)
Izubuchi Taku
2018-01-01
Full Text Available We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp,in lattice QCD by comparison with two different volumes, L4 = (5.44 and (8.14 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a−1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
Lattice study of finite volume effect in HVP for muon g-2
Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo
2018-03-01
We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
Distribution for fermionic discrete lattice gas within the canonical ensemble
International Nuclear Information System (INIS)
Kutner, R.; Barszczak, T.
1991-01-01
The distinct deviations from the Fermi-Dirac statistics ascertained recently at low temperatures for a one-dimensional, spinless fermionic discrete lattice gas with conserved number of noninteracting particles hopping on the nondegenerated, well-separated single-particle energy levels are studied in numerical and theoretical terms. The generalized distribution is derived in the form n(h) = {Y h exp[(var-epsilon h -μ)β]+1} -1 valid even in the thermodynamic limit, when the discreteness of the energy levels is kept. This distribution demonstrates good agreement with the data obtained numerically both by the canonical partition-function technique and by Monte Carlo simulation
Towards the confirmation of QCD on the lattice. Improved actions and algorithms
International Nuclear Information System (INIS)
Krieg, Stefan F.
2009-01-01
Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)
Towards the confirmation of QCD on the lattice. Improved actions and algorithms
Energy Technology Data Exchange (ETDEWEB)
Krieg, Stefan F.
2009-07-01
Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)
Heavy-heavy-light quark potential in SU(3) lattice QCD
International Nuclear Information System (INIS)
Yamamoto, Arata; Suganuma, Hideo; Iida, Hideaki
2008-01-01
We perform the first study for the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD with the Coulomb gauge. The calculations are done with the standard gauge and O(a)-improved Wilson fermion action on the 16 4 lattice at β=6.0. We calculate the energy of QQq systems as the function of the distance R between the two heavy quarks, and find that the QQq potential is well described with a Coulomb plus linear potential form up to the intermediate distance R≤0.8 fm. Compared to the static three-quark case, the effective string tension between the heavy quarks is significantly reduced by the finite-mass valence quark effect. This reduction is considered to be a general property for baryons
Quantum return probability of a system of N non-interacting lattice fermions
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2018-02-01
We consider N non-interacting fermions performing continuous-time quantum walks on a one-dimensional lattice. The system is launched from a most compact configuration where the fermions occupy neighboring sites. We calculate exactly the quantum return probability (sometimes referred to as the Loschmidt echo) of observing the very same compact state at a later time t. Remarkably, this probability depends on the parity of the fermion number—it decays as a power of time for even N, while for odd N it exhibits periodic oscillations modulated by a decaying power law. The exponent also slightly depends on the parity of N, and is roughly twice smaller than what it would be in the continuum limit. We also consider the same problem, and obtain similar results, in the presence of an impenetrable wall at the origin constraining the particles to remain on the positive half-line. We derive closed-form expressions for the amplitudes of the power-law decay of the return probability in all cases. The key point in the derivation is the use of Mehta integrals, which are limiting cases of the Selberg integral.
Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks
International Nuclear Information System (INIS)
Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.
2002-01-01
We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control
One-dimensional model with fermions in the framework of topological expansion
International Nuclear Information System (INIS)
Azakov, S.I.; Aliev, Eh.S.
1986-01-01
Topological expansion for the one-plaquette U(N) gauge model with fermions is investigated in the leading order for the Wilson and Manton actions. It is shown that the introduction of fermions does not change the phase structure
Determination of low-energy constants of Wilson chiral perturbation theory
International Nuclear Information System (INIS)
Herdoiza, Gregorio; Univ. Autonoma de Madrid, Contoblanco; Univ. Autonoma de Madrid; Jansen, Karl; Univ. Cyprus, Nicosia; Michael, Chris; Ottnad, Konstantin; Urbach, Carsten; Univ. Bonn
2013-03-01
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W 6 ' , W 8 ' and their linear combination c 2 . We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
A proposal for B-physics on current lattices
Energy Technology Data Exchange (ETDEWEB)
Blossier, B. [Paris 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P.; Frezzotti, R. [Roma Univ., Tor Vergata (Italy). Dipt. di Fisica; INFN, Roma Tor Vergata (IT)] (and others)
2009-10-15
A method to extract B-physics parameters (b-quark mass and f{sub B}, f{sub Bs} decay constants) from currently available lattice data is presented and tested. The approach is based on the idea of constructing appropriate ratios of heavy-light meson masses and decay constants, respectively, possessing a precisely known static limit, and evaluating them at various pairs of heavy quark masses around the charm. Via a smooth interpolation in the heavy quark mass from the easily accessible charm region to the asymptotic point, B-physics parameters are computed with a few percent (statistical + systematic) error using recently produced N{sub f}=2 maximally twisted Wilson fermions data. (orig.)
Large cutoff effects of dynamical Wilson fermions
International Nuclear Information System (INIS)
Sommer, R.; Hoffmann, R.; Knechtli, F.; Rolf, J.; Wolff, U.; Wetzorke, I.
2003-09-01
We present and discuss results for cutoff effects in the PCAC masses and the mass dependence of r 0 for full QCD and various fermion actions. Our discussion of how one computes mass dependences - here of r 0 - is also relevant for comparisons with chiral perturbation theory. (orig.)
Lattice QCD computations: Recent progress with modern Krylov subspace methods
Energy Technology Data Exchange (ETDEWEB)
Frommer, A. [Bergische Universitaet GH Wuppertal (Germany)
1996-12-31
Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.
International Nuclear Information System (INIS)
Hou Jingmin; Lu Qingqing
2009-01-01
We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed
Determination of low-energy constants of Wilson chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock
Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.
2018-04-01
Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
International Nuclear Information System (INIS)
Baron, R.
2010-04-01
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N f =2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a ∼ 0:078 fm and a ∼0.086 fm with lattice sizes ranging from L∼1.9 fm to L∼2.8 fm. We measure with high statistical precision the light pseudoscalar mass m PS and decay constant f PS in a range 270 PS 0 and anti l 3,4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N f =2 results are performed. (orig.)
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
International Nuclear Information System (INIS)
Huey-Wen Lin; Shigemi Ohta
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS
International Nuclear Information System (INIS)
LIN, H.W.; OHTA, S.
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)
Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul
2014-03-01
Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid
2012-11-01
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration
2012-11-15
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dimopoulos, P. [Roma ' ' La Sapienza' ' Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Frezzotti, R. [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; INFN, Roma (IT)] (and others)
2010-06-15
We present results for the renormalization constants of bilinear quark operators obtained b4>UNL<426>UNL using the tree-level Symanzik improved gauge action and the N{sub f}=2 twisted mass fermion action at maximal twist, which guarantees automatic O(a)- improvement. Our results are also relevant for the corresponding standard (untwisted) Wilson fermionic action since the two actions only differ, in the massless limit, by a chiral rotation of the quark fields. The scale-independent renormalization constants Z{sub V}, Z{sub A} and the ratio Z{sub P}/Z{sub S} have been computed using the RI-MOM approach, as well as other alternative methods. For Z{sub A} and Z{sub P}/Z{sub S}, the latter are based on both standard twisted mass and Osterwalder-Seiler fermions, while for Z{sub V} a Ward Identity has been used. The quark field renormalization constant Z{sub q} and the scale dependent renormalization constants Z{sub S}, Z{sub P} and Z{sub T} are determined in the RI-MOM scheme. Leading discretization effects of O(g{sup 2}a{sup 2}), evaluated in one-loop perturbation theory, are explicitly subtracted from the RI-MOM estimates. (orig.)
Wilson loops to 20th order numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.
Energy Technology Data Exchange (ETDEWEB)
Okumura, M., E-mail: okumura.masahiko@jaea.go.j [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onishi, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Yamada, S. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Machida, M. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan) and JST, TRIP, Sambancho Chiyoda-ku, Tokyo 102-0075 (Japan)
2010-12-15
We study center of mass (CoM) motions of attractively interacting fermionic atoms loaded on an one-dimensional optical lattice confined by a harmonic potential at zero temperature by using adaptive time-dependent density-matrix renormalization-group method. We find that the CoM motions in weak and strong attraction show underdamped and overdamped motions, respectively, which are consistent with the experimental results of the CoM motion in the three-dimensional optical lattice. In addition, we find spin-imbalance effects on the CoM motion, which slow the CoM motion down.
Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim
2008-10-01
We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)
B→π form factor with 2 flavours of O(a) improved Wilson quarks
International Nuclear Information System (INIS)
Bahr, Felix; Bernardoni, Fabio; Ramos, Alberto; Simma, Hubert; Sommer, Rainer; Bulava, John
2012-10-01
The determinations of vertical stroke V ub vertical stroke from the exclusive branching ratios of B→τν and B→πlν tend to show a tension at the level of 3σ. On the theoretical side they depend on the lattice computation of the hadronic matrix elements f B and the B →>π form factor f + (q 2 ). To understand the tension, improved precision and a careful analysis of the systematics involved are necessary. Working towards this goal, we present preliminary lattice results of the ALPHA collaboration for the B→ π form factor f + (q 2 ) with N f =2 flavours of O(a)-improved Wilson fermions. Our computation uses HQET in the static limit, pion masses ranging down to ∼250 MeV, large volumes with m π L>4, three lattice spacings, and non-perturbative renormalization. We describe the techniques adopted to reduce the statistical noise (stochastic all-to-all with full time dilution) and the contamination from excited states (smearing for the B and the pion). We estimate the size of the chiral and continuum extrapolations. We discuss the impact our result could have to clarify the above mentioned discrepancy in the determination of vertical stroke V ub vertical stroke.
Non-perturbative test of the Witten-Veneziano formula from lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Jansen, Karl; Ottnad, Konstantin; Urbach, Carsten; Bonn Univ.
2015-10-01
We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N f =2 +1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.
Fermion bag solutions to some sign problems in four-fermion field theories
International Nuclear Information System (INIS)
Li, Anyi
2013-01-01
Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z 2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.
Fermion bag solutions to some sign problems in four-fermion field theories
Li, Anyi
2013-04-01
Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.
Large Wilson loop averages from the Schwinger-Dyson equation
International Nuclear Information System (INIS)
Xue Shesheng
1987-01-01
Using Schwinger-Dyson equations for the large Wilson loop in abelian lattice gauge theories, we evaluate the vacuum expectation values of the Wilson loop of sizes 1x2, 2x2, 2x3, and so on, from which the string tension is extracted. (orig.)
International Nuclear Information System (INIS)
Cichy, K.
2012-03-01
We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using N f =2+1+1 dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate Σ and topological susceptibility χ top in the range 270 MeV π top in the quenched approximation where we match the lattice spacing to the N f =2+1+1 dynamical simulations. Using the Kaon, η and η' meson masses computed on the N f =2+1+1 ensembles, we then perform a preliminary test of the Witten-Veneziano relation.
International Nuclear Information System (INIS)
Sternbeck, A.
2006-01-01
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
Alternative to domain wall fermions
International Nuclear Information System (INIS)
Neuberger, H.
2002-01-01
An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions
Hadron-hadron potentials from lattice quantum chromodynamics
International Nuclear Information System (INIS)
Rabitsch, K.
1997-10-01
Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate
Advancements in simulations of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Lippert, T.
2008-01-01
An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)
Fermion-number violation in regularizations that preserve fermion-number symmetry
Golterman, Maarten; Shamir, Yigal
2003-01-01
There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.
A lattice calculation of the decay constants of heavy-light pseudoscalars
International Nuclear Information System (INIS)
Labrenz, J.N.
1992-08-01
A lattice calculation of the decay constants for D and B mesons is described. Results are obtained (in the quenched approximation) from wall-source lattices in Coulomb gauge at β = 6.3, through a procedure that interpolates smoothly between the static approximation of Eichten and the conventional (''heavy'' Wilson fermion) method. The previously observed discrepancy between these two approaches has been understood, and we discuss the resolution and its limitations. We find f D = 206(9) ± 37 MeV, f D s = 231(7) ± 39 MeV, f B = 179(10) ± 39 MeV, and f B s = 203(8) ± 42 MeV. The first error in each result is statistical, resulting from the jackknife procedure applied to the full analysis. The second is our estimate of systematic errors due to scale-breaking, axial current renormalization, and fitting or extrapolation uncertainties
Fast algorithms for chiral fermions in 2 dimensions
Directory of Open Access Journals (Sweden)
Hyka (Xhako Dafina
2018-01-01
Full Text Available In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1 lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.
Energy Technology Data Exchange (ETDEWEB)
Sternbeck, A.
2006-07-18
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
Zero Point Energy of Renormalized Wilson Loops
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...
International Nuclear Information System (INIS)
Kamleh, W.; Leinweber, D.B.; Williams, A.G.
2004-01-01
The use of APE smearing or other blocking techniques in fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard. Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants
Energy Technology Data Exchange (ETDEWEB)
Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards
2003-07-22
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices
International Nuclear Information System (INIS)
Galletly, D.; Horsley, R.; Streuer, T.; Freie Univ. Berlin
2006-07-01
We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24 3 48 and for pion masses down to ∼250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a ∼0.1 fm and ∼0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well. (orig.)
Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices
Energy Technology Data Exchange (ETDEWEB)
Galletly, D.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Guertler, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik
2006-07-15
We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3} 48 and for pion masses down to {approx}250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a {approx}0.1 fm and {approx}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well. (orig.)
Nonperturbative volume reduction of large-N QCD with adjoint fermions
International Nuclear Information System (INIS)
Bringoltz, Barak; Sharpe, Stephen R.
2009-01-01
We use nonperturbative lattice techniques to study the volume-reduced 'Eguchi-Kawai' version of four-dimensional large-N QCD with a single adjoint Dirac fermion. We explore the phase diagram of this single-site theory in the space of quark mass and gauge coupling using Wilson fermions for a number of colors in the range 8≤N≤15. Our evidence suggests that these values of N are large enough to determine the nature of the phase diagram for N→∞. We identify the region in the parameter space where the (Z N ) 4 center symmetry is intact. According to previous theoretical work using the orbifolding paradigm, and assuming that translation invariance is not spontaneously broken in the infinite-volume theory, in this region volume reduction holds: the single-site and infinite-volume theories become equivalent when N→∞. We find strong evidence that this region includes both light and heavy quarks (with masses that are at the cutoff scale), and our results are consistent with this region extending toward the continuum limit. We also compare the action density and the eigenvalue density of the overlap Dirac operator in the fundamental representation with those obtained in large-N pure-gauge theory.
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Boucaud, P. [CNRS et Paris-Sud 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Carbonell, J. [Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (FR)] (and others)
2010-04-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a {approx} 0:078 fm and a {approx}0.086 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}2.8 fm. We measure with high statistical precision the light pseudoscalar mass m{sub PS} and decay constant f{sub PS} in a range 270
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
International Nuclear Information System (INIS)
Burkitt, A.N.; Irving, A.C.
1988-01-01
Two of the methods that are widely used in lattice gauge theory calculations requiring inversion of the fermion matrix are the Lanczos and the conjugate gradient algorithms. Those algorithms are already known to be closely related. In fact for matrix inversion, in exact arithmetic, they give identical results at each iteration and are just alternative formulations of a single algorithm. This equivalence survives rounding errors. We give the identities between the coefficients of the two formulations, enabling many of the best features of them to be combined. (orig.)
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures
International Nuclear Information System (INIS)
Illuminati, Fabrizio; Albus, Alexander
2004-01-01
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions
Strong Wilson polygons from the lodge of free and bound mesons
Energy Technology Data Exchange (ETDEWEB)
Bonini, Alfredo; Fioravanti, Davide [Sezione INFN di Bologna, Dipartimento di Fisica e Astronomia, Università di Bologna,Via Irnerio 46, 40126 Bologna (Italy); Piscaglia, Simone [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Rossi, Marco [Dipartimento di Fisica dell’Università della Calabria and INFN, Gruppo collegato di Cosenza,Arcavacata di Rende, 87036 Cosenza (Italy)
2016-04-05
Previously predicted by the S-matrix bootstrap of the excitations over the GKP quantum vacuum, the appearance of a new particle at strong coupling — formed by one fermion and one anti-fermion — is here confirmed: this two-dimensional meson shows up, along with its infinite tower of bound states, while analysing the fermionic contributions to the Operator Product Expansion (collinear regime) of the Wilson null polygon loop. Moreover, its existence, free and bound, turns out to be a powerful idea in re-summing all the contributions (at large coupling) for a general n-gon (n≥6) to a Thermodynamic Bethe Ansatz, which is proven to be equivalent to the known one and suggests new structures for a special Y-system.
Lattice chiral symmetry and the Wess-Zumino model
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Ishibashi, Masato
2002-01-01
A lattice regularization of the supersymmetric Wess-Zumino model is studied by using Ginsparg-Wilson operators. We recognize a certain conflict between the lattice chiral symmetry and the Majorana condition for Yukawa couplings, or in Weyl representation a conflict between the lattice chiral symmetry and Yukawa couplings. This conflict is also related, though not directly, to the fact that the kinetic (Kaehler) term and the superpotential term are clearly distinguished in the continuum Wess-Zumino model, whereas these two terms are mixed in the Ginsparg-Wilson operators. We illustrate a case where lattice chiral symmetry together with naive Bose-Fermi symmetry is imposed by preserving a SUSY-like symmetry in the free part of the Lagrangian; one-loop level non-renormalization of the superpotential is then maintained for finite lattice spacing, though the finite parts of wave function renormalization deviate from the supersymmetric value. All these properties hold for the general Ginsparg-Wilson algebra independently of the detailed construction of lattice Dirac operators
The bosonic mother of fermionic D-branes
Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne
2002-01-01
We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
SU(2) with fundamental fermions and scalars
Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna
2018-03-01
We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
International Nuclear Information System (INIS)
Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.
2002-01-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Wilson lines in quantum field theory
International Nuclear Information System (INIS)
Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der
2014-01-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Fermion bag solutions to some unsolved sign problems
Li, Anyi; Chandrasekharan, Shailesh
2012-03-01
Some interesting lattice four-fermion models containing N flavors of staggered fermions with Z2 and U(1) chiral symmetries suffer from sign problems in the auxiliary field approach. Earlier calculations have either ignored these sign problems or have circumvented them by adding conjugate fermion fields which changes the model. In this talk we show that the recently proposed fermion bag approach solves these sign problems. The basic idea of the new approach is to collect unpaired fermionic degrees of freedom inside a fermion bag. A resummation of all fermion world lines inside the bag is then sufficient to solve the sign problems. The fermion bag approach provides new opportunities to solve in these ``unsolved'' four-fermion models in the chiral limit efficiently.
Geometry of non-degenerate Susskind fermions
International Nuclear Information System (INIS)
Mitra, P.
1983-01-01
The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)
Aspects of thermodynamics and confinement in the lattice formulation of QCD
International Nuclear Information System (INIS)
Liptak, L.
2009-01-01
This dissertation thesis covers selected problems related to two aspects of the theory of strong interactions, quantum chromodynamics: thermodynamics of QCD and color confinement. The problems were treated in a nonperturbative way, in the lattice formulation of the theory. Main results of our investigation can be summarized in the following way: - Our first study was focused on properties of thermodynamical quantities for free massless fermions at non-zero temperature and chemical potential on a lattice. We used the so-called overlap Dirac operator and introduced the chemical potential in a way proposed recently by Bloch and Wettig, based on analytic continuation of the usual sign function in the complex plane. The overlap Dirac operator satisfies the proper lattice chiral symmetry defined by the Ginsparg-Wilson relation, and therefore represents an appropriate formulation for massless fermions. We analyzed the behavior of the free-fermion energy density and the number operator at non-zero chemical potential. We found that the expected behavior of these quantities in the continuum limit was reliably approached both at zero and non-zero temperatures. The conclusion is that overlap fermions with the suggested analytic continuation provide both chiral symmetry and the correct description of fermions at finite density, at least for free fermions. We also showed that the overlap fermions have a quantitatively similar behavior like Wilson fermions. - Further we studied the canonical formalism of thermodynamics. An important aspect which motivates a study of canonical partition functions is the possibility to reproduce the grand canonical partition function from canonical ones via the fugacity expansion; in this way, one can circumvent the fermion sign problem. Recently, a factorization formula of the fermion determinant was proposed by Danzer and Gattringer, which is based on the proper division of the lattice and redefinition of the chemical potential. We investigated
The strange and light quark contributions to the nucleon mass from lattice QCD
International Nuclear Information System (INIS)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf
2011-12-01
We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m q left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n F =2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing ∼0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon σ-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values σ πN =(38±12) MeV at the physical point and f T s =σ s /m N =0.012(14) +10 -3 for the strangeness contribution at our larger than physical sea quark mass. (orig.)
The strange and light quark contributions to the nucleon mass from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m{sub q} left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n{sub F}=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing {approx}0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon {sigma}-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values {sigma}{sub {pi}}{sub N}=(38{+-}12) MeV at the physical point and f{sub T{sub s}}={sigma}{sub s}/m{sub N}=0.012(14){sup +10}{sub -3} for the strangeness contribution at our larger than physical sea quark mass. (orig.)
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature
Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio
2017-09-01
We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.
Hybrid Monte Carlo algorithm with fat link fermion actions
International Nuclear Information System (INIS)
Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Numerical studies of fermionic field theories at large-N
International Nuclear Information System (INIS)
Dickens, T.A.
1987-01-01
A description of an algorithm, which may be used to study large-N theories with or without fermions, is presented. As an initial test of the method, the spectrum of continuum QCD in 1 + 1 dimensions is determined and compared to previously obtained results. Exact solutions of 1 + 1 dimensional lattice versions of the free fermion theory, the Gross-Neveu model, and QCD are obtained. Comparison of these exact results with results from the numerical algorithm is used to test the algorithms, and more importantly, to determine the errors incurred from the approximations used in the numerical technique. Numerical studies of the above three lattice theories in higher dimensions are also presented. The results are again compared to exact solutions for free fermions and the Gross-Neveu model; perturbation theory is used to derive expansions with which the numerical results for QCD may be compared. The numerical algorithm may also be used to study the euclidean formulation of lattice gauge theories. Results for 1 + 1 dimensional euclidean lattice QCD are compared to the exact solution of this model
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations
2018-04-01
We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Zero point energy of renormalized Wilson loops
International Nuclear Information System (INIS)
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.
Quantum transport in d -dimensional lattices
International Nuclear Information System (INIS)
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-01-01
We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)
Quantum computing with Majorana fermion codes
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
Determinant of twisted chiral Dirac operator on the lattice
International Nuclear Information System (INIS)
Fosco, C.D.; Randjbar Daemi, S.
1995-04-01
Using the overlap formulation, we calculate the fermionic determinant on the lattice for chiral fermions with twisted boundary conditions in two dimensions. When the lattice spacing tends to zero we recover the results on the usual string-theory continuum calculations. (author). 13 refs
Lattice sigma models with exact supersymmetry
International Nuclear Information System (INIS)
Simon Catterall; Sofiane Ghadab
2004-01-01
We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)
Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices
International Nuclear Information System (INIS)
Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.
2006-01-01
We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime
Mirror fermions in chiral gauge theories
International Nuclear Information System (INIS)
Montvay, I.
1992-06-01
Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)
Fermionic pentagons and NMHV hexagon
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-05-01
Full Text Available We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N=4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4 R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.
Anomalous gauge theories revisited
International Nuclear Information System (INIS)
Matsui, Kosuke; Suzuki, Hiroshi
2005-01-01
A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)
3-loop heavy flavor corrections to DIS with two massive fermion lines
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Klein, S.
2011-06-01
We report on recent results obtained for the massive operator matrix elements which contribute to the massive Wilson coefficients in deep-inelastic scattering for Q 2 >> m i 2 in case of sub-processes with two fermion lines and different mass assignment. (orig.)
How real are composite fermions?
International Nuclear Information System (INIS)
Kang, W.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.
1995-01-01
A new picture of fractional quantum Hall effect (FQHE) in terms of a novel particle called composite fermion has emerged recently. A composite fermion is a composite of two flux quanta which are effectively bound to an electron as a result of electron-electron interaction. A system of electrons at half-filled Landau level can be transformed to an equivalent system of composite fermions at zero effective magnetic field with a distinct Fermi surface. The FQHE is then viewed as the integral quantum Hall effect of composite fermions away from half-filling. In order to test for these new particles, we have studied transport of anti-dot superlattices in a two-dimensional electron gas. At low magnetic fields electron transport exhibits well-known resonances at fields where the classical cyclotron orbit becomes commensurate with the anti-dot lattice. At half-filling we observe the same dimensional resonances. This establishes the ''semi-classical'' behavior of composite fermions. (orig.)
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Corrections to the Banks-Casher relation with Wilson quarks
Necco, S
2013-01-01
The Banks-Casher relation links the spectral density of the Dirac operator with the existence of a chiral condensate and spontaneous breaking of chiral symmetry. This relation receives corrections from a finite value of the quark mass, a finite space-time volume and, if evaluated on a discrete lattice, from the finite value of the lattice spacing a. We present a status report of a determination of these corrections for Wilson quarks.
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Bragg diffraction of fermions at optical potentials
International Nuclear Information System (INIS)
Deh, Benjamin
2008-01-01
This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)
Anomalous diffusion of fermions in superlattices
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.
1996-03-01
Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)
Infrared singularities of fermion propagator and their connection with the Wilson loop
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1987-01-01
The factorization of infrared singularities of gauge-invariant spinor propagator is proved in the framework of QED. It turns out that this infrared factor coincides with the Wilson loop and accumulates all the dependence on the form of the path of the initial Green function
Continuum extrapolation of moments of nucleon quark distributions in full QCD
International Nuclear Information System (INIS)
Dreher, P.; Brower, R.; Capitani, S.; Dolgov, D.; Edwards, R.; Eicker, N.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Renner, D.B.; Schilling, K.
2003-01-01
Moments of light cone quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD at β = 5.5 and β = 5.3 using Wilson fermions on 163 x 32 lattices. These results are combined with earlier calculations at β = 5.6 using SESAM configurations to study the continuum limit
Topology, the Wilson flow and the HMC algorithm
Luscher, Martin
2010-01-01
An old and apparently persistent problem in numerical lattice QCD is that the simulations tend to get trapped in a sector of fixed topological charge when the lattice spacing is taken to zero. The effect sets in very rapidly and may invalidate the simulation results in certain cases. In this talk, the issue is discussed using the Wilson flow as a tool. The flow has a simple scaling behaviour and allows one to understand how exactly the topological sectors emerge in the continuum limit. Further studies however suggest that the observed slowdown of the simulations at small lattice spacings is only partly caused by the emergence of the sectors.
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Fermions as generalized Ising models
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-04-01
Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
Gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Witten, E.
1989-01-01
Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Green-Schwarz superstring on the lattice
Energy Technology Data Exchange (ETDEWEB)
Bianchi, L. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, M.S. [Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Forini, V.; Leder, B.; Vescovi, E. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-07-04
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
Green-Schwarz superstring on the lattice
International Nuclear Information System (INIS)
Bianchi, L.; Bianchi, M.S.; Forini, V.; Leder, B.; Vescovi, E.
2016-01-01
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
Continuum-limit scaling of overlap fermions as valence quarks
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; Jansen, Karl
2009-10-01
We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L∼1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)
Topological susceptibility from the overlap
DEFF Research Database (Denmark)
Del Debbio, Luigi; Pica, Claudio
2003-01-01
The chiral symmetry at finite lattice spacing of Ginsparg-Wilson fermionic actions constrains the renormalization of the lattice operators; in particular, the topological susceptibility does not require any renormalization, when using a fermionic estimator to define the topological charge....... Therefore, the overlap formalism appears as an appealing candidate to study the continuum limit of the topological susceptibility while keeping the systematic errors under theoretical control. We present results for the SU(3) pure gauge theory using the index of the overlap Dirac operator to study...
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.
2016-02-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.
International Nuclear Information System (INIS)
Bitar, K.M.; Edwards, R.G.; Heller, U.M.; Kennedy, A.D.
1998-01-01
The research primarily involved lattice field theory simulations such as Quantum Chromodynamics (QCD) and the Standard Model of electroweak interactions. Among the works completed by the members of the lattice group and their outside collaborators in QCD simulations are extensive hadronic spectrum computations with both Wilson and staggered fermions, and calculations of hadronic matrix elements and wavefunctions. Studies of the QCD β function with two flavors of Wilson fermions, and the study of a possible flavor-parity breaking phase in QCD with two flavors of Wilson fermions have been completed. Studies of the finite temperature behavior of QCD have also been a major activity within the group. Studies of non-relativistic QCD, both for heavy-heavy mesons and for the heavy quark in heavy-light mesons have been done. Combining large N analytic computations within the Higgs sector of the standard model and numerical simulations at N = 4 have yielded a computation of the upper bound of the mass of the Higgs particle, as well as the energy scale above which deviations from the Standard Model may be expected. A major research topic during the second half of the grant period was the study of improved lattice actions, designed to diminish finite lattice spacing effects and thus accelerate the approach to the continuum limit. A new exact Local Hybrid Monte Carlo (overrelaxation) algorithm with a tunable overrelaxation parameter has been developed for pure gauge theories. The characteristics of this algorithm have been investigated. A study of possible instabilities in the global HMC algorithm has been completed
Optimised Dirac operators on the lattice. Construction, properties and applications
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2006-11-15
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)
Optimised Dirac operators on the lattice: construction, properties and applications
International Nuclear Information System (INIS)
Bietenholz, Wolfgang
2006-12-01
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)
Optimised Dirac operators on the lattice. Construction, properties and applications
International Nuclear Information System (INIS)
Bietenholz, W.; Deutsches Elektronen-Synchrotron
2006-11-01
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)
Optimised Dirac operators on the lattice: construction, properties and applications
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Humbolt-Universitaet zu Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing (NIC)
2006-12-15
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
International Nuclear Information System (INIS)
Cramer, M.; Eisert, J.; Illuminati, F.
2004-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
The electric dipole moment of the neutron from Nf=2+1+1 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Cyprus Institute, Nicosia; Hadjiyiannakou, K.; Cyprus Institute, Nicosia; George Washington Univ., Washington, DC; Jansen, K.; Koutsou, G.; Ottnad, K.; Bonn Univ.; Petschlies, M.; Bonn Univ.
2015-11-01
We extract the neutron electric dipole moment (nEDM) vertical stroke vector d n vertical stroke on configurations produced with N f =2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M π ≅ 373 MeV. We do so by evaluating the CP-odd form factor F 3 for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F 3 at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d n vertical stroke /θ=0.045(6)(1) e.fm.
Chirality correlation within Dirac eigenvectors from domain wall fermions
International Nuclear Information System (INIS)
Blum, T.; Christ, N.; Cristian, C.; Liao, X.; Liu, G.; Mawhinney, R.; Wu, L.; Zhestkov, Y.; Dawson, C.
2002-01-01
In the dilute instanton gas model of the QCD vacuum, one expects a strong spatial correlation between chirality and the maxima of the Dirac eigenvectors with small eigenvalues. Following Horvath et al. we examine this question using lattice gauge theory within the quenched approximation. We extend the work of those authors by using weaker coupling, β=6.0, larger lattices, 16 4 , and an improved fermion formulation, domain wall fermions. In contrast with this earlier work, we find a striking correlation between the magnitudes of the chirality density, |ψ † (x)γ 5 ψ(x)|, and the normal density, ψ † (x)ψ(x), for the low-lying Dirac eigenvectors
Probing Wilson loops in N=4 Chern–Simons-matter theories at weak coupling
Directory of Open Access Journals (Sweden)
Luca Griguolo
2016-02-01
Full Text Available For three-dimensional N=4 super-Chern–Simons-matter theories associated to necklace quivers U(N0×U(N1×⋯U(N2r−1, we study at quantum level the two kinds of 1/2 BPS Wilson loop operators recently introduced in arXiv:1506.07614. We perform a two-loop evaluation and find the same result for the two kinds of operators, so moving to higher loops a possible quantum uplift of the classical degeneracy. We also compute the 1/4 BPS bosonic Wilson loop and discuss the quantum version of the cohomological equivalence between fermionic and bosonic Wilson loops. We compare the perturbative result with the Matrix Model prediction and find perfect matching, after identification and remotion of a suitable framing factor. Finally, we discuss the potential appearance of three-loop contributions that might break the classical degeneracy and briefly analyze possible implications on the BPS nature of these operators.
Anderson localization in bipartite lattices
International Nuclear Information System (INIS)
Fabrizio, Michele; Castellani, Claudio
2000-01-01
We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely, the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder
Anderson localization in bipartite lattices
International Nuclear Information System (INIS)
Fabrizio, M.; Castellani, C.
2000-04-01
We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder. (author)
Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models
International Nuclear Information System (INIS)
Derzhko, O.
2007-01-01
The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four-fermion
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Virotta, Francesco
2012-02-21
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Virotta, Francesco
2012-01-01
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as τ exp (a)∝a -5 , where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10)τ exp . This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N f =2 simulations using the Kaon decay constant f K as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Tool kit for staggered fermions
International Nuclear Information System (INIS)
Kilcup, G.W.; Sharpe, S.R.
1986-01-01
The symmetries of staggered fermions are analyzed both discrete and continuous. Tools are presented that allow a simple decomposition of representations of the continuum symmetries into representations of the discrete lattice symmetries, both at zero and non-zero spatial momenta. These tools are used to find the lattice transcriptions of the operators that appear in the weak interaction Hamiltonian. The lattice Ward Identities are derived that follow from the single partially conserved axial symmetry. Using these identities, the lattice equivalents of the continuum PCAC relations are found. Combining all these tools, Ward Identities are obtained, for the matrix elements of the weak interaction Hamiltonian, from which the behavior of the matrix elements as the pion and kaon masses vanish are derived. The same behavior as in the continuum is found
End States, Ladder Compounds, and Domain-Wall Fermions
International Nuclear Information System (INIS)
Creutz, M.
1999-01-01
A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society
Real-Time Dynamics in the (1+1)-D Abelian Higgs Model with Fermions
Aarts, G.; Smit, J.
2000-01-01
In approximate dynamical equations, inhomogenous classical (mean) gauge and Higgs fields are coupled to quantized fermions. The equations are solved numerically on a spacetime lattice. The fermions appear to equilibrate according to the Fermi-Dirac distribution with time-dependent temperature and
Ultraviolet stability of three-dimensional lattice pure gauge field theories
International Nuclear Information System (INIS)
Balaban, T.
1985-01-01
We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)
Mixed meson masses with domain-wall valence and staggered sea fermions
International Nuclear Information System (INIS)
Orginos, Kostas; Walker-Loud, Andre
2008-01-01
Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.
The electric dipole moment of the neutron from N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Athenodorou, A.; Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; George Washington Univ., Washington, DC (United States). Dept. of Physics; Jansen, K. [DESY Zeuthen (Germany). NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Petschlies, M. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2015-11-15
We extract the neutron electric dipole moment (nEDM) vertical stroke vector d{sub n} vertical stroke on configurations produced with N{sub f}=2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M{sub π} ≅ 373 MeV. We do so by evaluating the CP-odd form factor F{sub 3} for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F{sub 3} at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d{sub n} vertical stroke /θ=0.045(6)(1) e.fm.
Multi-boson block factorization of fermions
Giusti, Leonardo; Cè, Marco; Schaefer, Stefan
2018-03-01
The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.
Moments of nucleon spin-dependent generalized parton distributions
International Nuclear Information System (INIS)
Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.
2004-01-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Non-perturbative studies of QCD at small quark masses
Energy Technology Data Exchange (ETDEWEB)
Wennekers, J.
2006-07-15
We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)
Symmetry and fermion degeneracy on a lattice
International Nuclear Information System (INIS)
Raszillier, H.
1982-03-01
In this paper we consider the general form of finite difference approximation to the Dirac (Weyl) Hamiltonian on a lattice and investigate systematically the dependence on symmetry of the number of particles described by it. Our result is, that to a symmetry - expressed by a crystallographic space group - there corresponds a minimal number of particles, which are associated to prescribed points of momentum space (the unit cell of the reciprocal lattice). For convenience of the reader we show, using the existing detailed descriptions of space groups, how these results look for all the relevant (symmorphic) symmetry groups. Only for lattice Hamiltonians with a momentum dependent mass term can this degeneracy be reduced and even eliminated without reducing the symmetry. (orig./HSI)
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
Moments of nucleon's parton distribution for the sea and valence quarks from lattice QCD
International Nuclear Information System (INIS)
Deka, M.; Doi, T.; Dong, S. J.; Draper, T.; Liu, K. F.; Streuer, T.; Mathur, N.; Thomas, A. W.
2009-01-01
We extend the study of lowest moments, and 2 >, of the parton distribution function of the nucleon to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is carried out on a 16 3 x24 quenched lattice with Wilson fermion. The quark loops are calculated with Z 2 noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the statistical errors. We obtain 5σ signals for for the u, d, and s quarks, but 2 > is consistent with zero within errors. We provide results for both the connected and disconnected insertions. The perturbatively renormalized for the strange quark at μ=2 GeV is s+s =0.027±0.006 which is consistent with the experimental result. The ratio of for s vs u/d in the disconnected insertion with quark loops is calculated to be 0.88±0.07. This is about twice as large as the phenomenologically fitted ( s+s / u + d ) from experiments where u and d include both the connected and disconnected insertion parts. We discuss the source and implication of this difference.
Diffusion in higher dimensional SYK model with complex fermions
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
The hidden fermions in Z(2) theories
International Nuclear Information System (INIS)
Srednicki, M.
1983-01-01
Low dimensional Z(2) gauge theories have been rewritten in terms of locally coupled fermionic degrees of freedom by means of the Jordan-Wigner transformation. In this paper it is shown that higher dimensional Z(2) gauge theories are also fermionic theories in disguise. The SML solution to the 1+1 dimension Ising model is reviewed. Psi operators are represented pictorially as arrows, psi 1 points to the left, psi 2 to the right, each site of H a multiple of two operators. The 2+1 dimension Ising model is then considered. A fermion plaquette operator is introduced as the generator of a gauge symmetry for the fermionic H. Findings in 1+1 and 2+1 are then applied to 3+1 dimensional Z(2) gauge theory. A construction of this lattice is undertaken. Psi formalism replaces sigma formalism, as it permits extremely simple duality transformations to be made on any Z(2) Hamiltonian. It is shown that the fermionic formalism will lead to new ideas in Z(2) theories
On the magnetoresistance of heavy fermion compounds
International Nuclear Information System (INIS)
Lee Chengchung; Chen Chung
1992-09-01
Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs
Kitaev honeycomb model. Majorana fermion representation and disorder
International Nuclear Information System (INIS)
Zschocke, Fabian
2016-01-01
Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schroedinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau's theory of Fermi liquids, the BCS theory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction. One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states
Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
International Nuclear Information System (INIS)
Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.
2002-01-01
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size
Diagrammatic Monte Carlo simulations of staggered fermions at finite coupling
Vairinhos, Helvio
2016-01-01
Diagrammatic Monte Carlo has been a very fruitful tool for taming, and in some cases even solving, the sign problem in several lattice models. We have recently proposed a diagrammatic model for simulating lattice gauge theories with staggered fermions at arbitrary coupling, which extends earlier successful efforts to simulate lattice QCD at finite baryon density in the strong-coupling regime. Here we present the first numerical simulations of our model, using worm algorithms.
Global anomalies in chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Baer, O.; Campos, I.
2000-01-01
We discuss the issue of global anomalies in chiral gauge theories on the lattice. In Luescher's approach, these obstructions make it impossible to define consistently a fermionic measure for the path integral. We show that an SU(2) theory has such a global anomaly if the Weyl fermion is in the fundamental representation. The anomaly in higher representations is also discussed. We finally show that this obstruction is the lattice analogue of the SU(2) anomaly first discovered by Witten. (orig.)
Simulating the SU(2) sector of the standard model with dynamical fermions
International Nuclear Information System (INIS)
Lee, I. Hsiu.
1988-01-01
The two-generation SU(2) sector of the standard model with zero Yukawa couplings is studied on the lattice. The results from analytic studies and simulations with quenched fermions are reviewed. The methods and results of a Langevin simulation with dynamical fermions are presented. Implications for the strongly coupled standard model are mentioned. 23 refs
Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model
International Nuclear Information System (INIS)
Catterall, Simon; Karamov, Sergey
2002-01-01
We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing
International Nuclear Information System (INIS)
Katz, G.R.
1986-01-01
Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
Hidden symmetry of a free fermion model
International Nuclear Information System (INIS)
Bazhanov, V.V.; Stroganov, Yu.G.
1984-01-01
A well-known eight-vertex free fermion model on a plane lattice is considered. Solving triangle equations and using the symmetry properties of the model, an elliptic parametrization for Boltzmann vertex weights is constructed. In the parametrization the weights are meromorphic functions of three complex variables
Parameters of heavy quark effective theory from N{sub f}=2 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS, Orsay (France). LPT; Paris-11 Univ., 91 - Orsay (France); Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tantalo, Nazario [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)
2012-07-15
We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N{sub f} = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m{sub h} order, and the heavy mass m{sub h} covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m{sub h} in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.
ON-SHELL IMPROVEMENT OF THE MASSIVE WILSON QUARK ACTION.
Energy Technology Data Exchange (ETDEWEB)
AOKI, S.; KAYABA, Y.; KURAMASHI, Y.; YAMADA, N.
2005-04-01
We review a relativistic approach to the heavy quark physics in lattice QCD by applying a relativistic O(a) improvement to the massive Wilson quark action on the lattice. After explaining how power corrections of m{sub Q}a can be avoided and remaining uncertainties are reduced to be of order (a{Lambda}{sub QCD}){sup 2}, we demonstrate a determination of four improvement coefficients in the action up to one-loop level in a mass dependent way. We also show a perturbative determination of mass dependent renormalization factors and O(a) improvement coefficients for the vector and axial vector currents. Some preliminary results of numerical simulations are also presented.
BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)
2014-06-19
We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.
SU(2) string tension from large Wilson loops
International Nuclear Information System (INIS)
Karsch, F.; Lang, C.B.
1984-01-01
We determine expectation values of Wilson loops and correlations of Polyakov loops on lattices of size 10 X 16 3 and 8 X 16 3 at β values 2.25 and 2.375. Utilizing a recently proposed method to reduce the variance of loop expectation values, we are able to measure loops up to 6 X 6. We find Λsub(L) = 0.0151 +- 0.0006√sub(K) at β = 2.375. (orig.)
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M
2006-01-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2006-05-28
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
Phase diagram and Chiral Magnetic Effect in Dirac Semimetals from Lattice Simulation
Directory of Open Access Journals (Sweden)
Boyda D.L.
2018-01-01
Full Text Available Dirac Semimetals Na3Bi and Cd3As2 are recently discovered materials, which low energy electronic spectrum is described by two flavours of massless 3+1D fermions. In order to study electronic properties of these materials we formulated lattice field theory with rooted staggered fermions on anisotropic lattice. It is shown that in the limit of zero temporal lattice spacing this theory reproduces effective theory of Dirac semimetals. Using the lattice field theory we study the phase diagram of Dirac semimetals in the plane effective coupling constant - Fermi velocity anisotropy. We also measure conductivity of Dirac Semimetals within lattice field theory in external magnetic field. Our results confirm the existence of Chiral Magnetic Effect in Dirac Semimetals.
International Nuclear Information System (INIS)
Gottlieb, S.A.
1990-05-01
My research in lattice gauge theory during the past year is described. Several projects were completed dealing with QCD simulations including dynamical fermions. Under the DOE Grand Challenge program, a large scale calculation of the QCD spectrum with two light flavors of dynamical staggered quarks was carried out. This calculation is one of the most significant efforts to data to take into account the effects of dynamical fermions. Smaller lattice spacing and lighter quark masses were used than in previous attempts. QCD thermodynamics was studied on the ST-100 array processor and on an ETA supercomputer at the John von Neumann Supercomputer Center. On the ST-100, a study with two flavors of dynamical staggered quarks with am q = 0.025 and 0.0125 was carried out on a 12 3 x 8 lattice. These results give a rough estimate of the crossover couplings where we see the restoration of chiral symmetry. A study of QCD with dynamical Wilson fermions was carried out with N t = 4 to try to bring the study of QCD with dynamical Wilson fermions to the level that has been attained with staggered fermions over the past two years. We have calculated screening lengths to elucidate the properties of the high temperature phase. In the pure gluon theory, claims that the finite temperature deconfinement transition is second order, rather than first order, were investigated using a finite size scaling analysis. Our results support a first order transition. Finally, work was done to port computer code to new environments involving parallelism in order to pursue more ambitious calculations on more powerful hardware than the ST-100 and ETA10 used for the calculations reported here
Deconfining chiral transition in QCD on the lattice
International Nuclear Information System (INIS)
Kanaya, Kazuyuki
1995-01-01
The deconfining chiral transition in finite-temperature QCD is studied on the lattice using Wilson quarks. After discussing the nature of chiral limit with Wilson quarks, we first study the case of two degenerate quarks N F =2, and find that the transition is smooth in the chiral limit on both N t =4 and 6 lattices. For N F =3, on the other hand, clear two state signals are observed for m q t =4 lattices. For a more realistic case of N F =2+1, i.e. two degenerate u and d-quarks and a heavier s-quark, we study the cases m s ≅ 150 and 400 MeV with m u = m d ≅ 0: In contrast to a previous result with staggered quarks, clear two state signals are observed for both cases, suggesting a first order QCD phase transition in the real world. (author)
The quest for light sea quarks: algorithms for the future
International Nuclear Information System (INIS)
Schroers, W.; Eicker, N.; D'Elia, M.; Forcrand, Ph. de; Gebert, C.; Lippert, Th.; Montvay, I.; Orth, B.; Pepe, M.; Schilling, K.
2002-01-01
As part of a systematic algorithm study, we present first results on a performance comparison between a multibosonic algorithm and the hybrid Monte Carlo algorithm as employed by the SESAM collaboration. The standard Wilson fermion action is used on 32 x 16 3 lattices at β = 5.5
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Excitation spectrum of correlated Dirac fermions
Jalali, Z.; Jafari, S. A.
2015-04-01
Motivated by the puzzling optical conductivity measurements in graphene, we speculate on the possible role of strong electronic correlations on the two-dimensional Dirac fermions. In this work we employ the slave-particle method to study the excitations of the Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density of doublonscan be generated. We therefore extend the Ioff-Larkin composition rule to include a finite density of doublons. We then investigate the role played by each of these auxiliary particles in the optical absorption of strongly correlated Dirac fermions.
Quenched lattice QCD with domain wall fermions and the chiral limit
International Nuclear Information System (INIS)
Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Kaehler, A.; Liao, X.; Liu, G.; Malureanu, C.; Mawhinney, R.; Siegert, G.; Sui, C.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.
2004-01-01
Quenched QCD simulations on three volumes 8 3 x, 12 3 x and 16 3 x32 and three couplings β=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (m res ) whose size decreases as the separation between the domain walls (L s ) is increased. However, at stronger couplings much larger values of L s are required to achieve a given physical value of m res . For β=6.0 and L s =16, we find m res /m s =0.033(3), while for β=5.7, and L s =48, m res /m s =0.074(5), where m s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of m π 2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in f π over our entire range, with inverse lattice spacing varying between 1 and 2 GeV
Evaluating the fermionic determinant of dynamical configurations
International Nuclear Information System (INIS)
Hasenfratz, Anna; Alexandru, Andrei
2002-01-01
We propose and study an improved method to calculate the fermionic determinant of dynamical configurations. The evaluation or at least stochastic estimation of the ratios of fermionic determinants is essential for a recently proposed updating method of smeared link dynamical fermions. This update creates a sequence of configurations by changing a subset of the gauge links by a pure gauge heat bath or over-relaxation step. The acceptance of the proposed configuration depends on the ratio of the fermionic determinants on the new and original configurations. We study this ratio as a function of the number of links that are changed in the heat bath update. We find that even when every link of a given direction and parity of a 10 fm 4 configuration is updated, the average of the determinant ratio is still close to one and with the improved stochastic estimator the proposed change is accepted with about 20% probability. This improvement suggests that the new updating technique can be efficient even on large lattices and could provide an updating method for dynamical overlap actions
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J P =0 + , S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the ΛΛ threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2003-01-01
We present our final results for the mass of the six quark flavor singlet state (J P = 0 + , S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation
Superfluid response in heavy fermion superconductors
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
Decays of mesons with charm quarks on the lattice
International Nuclear Information System (INIS)
Ali Khan, A.; Braun, V.; Burch, T.; Goeckeler, M.; Schaefer, A.; Schierholz, G.
2007-10-01
We investigate mesons containing charm quarks on fine lattices with a -1 ∝ 5 GeV. The quenched approximation is employed using theWilson gauge action at β = 6.6 and nonperturbatively O(a) improvedWilson quarks. We present results for decay constants using various interpolating fields and give preliminary results for form factors of semileptonic decays of D s mesons to light pseudoscalar mesons. (orig.)
Improved quasi parton distribution through Wilson line renormalization
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, Center for Theoretical Sciences, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 106, Taiwan (China); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ji, Xiangdong [INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China); Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Zhang, Jian-Hui, E-mail: jianhui.zhang@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2017-02-15
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Improved quasi parton distribution through Wilson line renormalization
Directory of Open Access Journals (Sweden)
Jiunn-Wei Chen
2017-02-01
Full Text Available Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Monte Carlo calculations with dynamical fermions by a local stochastic process
International Nuclear Information System (INIS)
Rossi, P.; Zwanziger, D.
1984-01-01
We develop and test numerically a Monte Carlo method for fermions on a lattice which accounts for the effect of the fermionic determinant to arbitrary accuracy. It is tested numerically in a 4-dimensional model with SU(2) color group and scalar fermionic quarks interacting with gluons. Computer time grows linearly with the volume of the lattice and the updating of gluons is not restricted to small jumps. The method is based on random location updating, instead of an ordered sweep, in which quarks are updated, on the average, R times more frequently than gluons. It is proven that the error in R is only of order 1/R instead of 1/Rsup(1/2) as one might naively expect. Quarks are represented by pseudofermionic variables in M pseudoflavors (which requires M times more memory for each physical fermionic degree of freedom) with an error in M of order 1/M. The method is tested by calculating the self-energy of an external quark, a quantity which would be infinite in the absence of dynamical or sea quarks. For the quantities measured, the dependence on R -1 is linear for R >= 8, and, within our statistical uncertainty, M = 2 is already asymptotic. (orig.)
The Wilson loop expectation values in 2-and 3-dimensional SU(2) LGT
International Nuclear Information System (INIS)
Li Zhibing; Zheng Weihong; Guo Shuohong
1989-01-01
An improved Monte Carlo scheme is applied to the computation of expectation values of nxm Wilson loops in both 2-and 3-dimensional SU(2) lattice gauge theories. The results are compared with those simulated by the discrete group Y 120 and the exact results in two dimensions
Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators arXiv
Francis, A.; Junnarkar, P.M.; Miao, Ch.; Rae, T.D.; Wittig, H.
We present a lattice QCD spectroscopy study in the isospin singlet, strangeness $-2$ sectors relevant for the conjectured $H$ dibaryon. We employ both hexaquark and two-baryon interpolating operators to isolate the ground state in the rest frame and in moving frames. Calculations are performed using two flavors of O($a$)-improved Wilson fermions and a quenched strange quark. Our initial point-source method for constructing correlators does not allow for two-baryon operators at the source; nevertheless, results from using these operators at the sink indicate that they provide an improved overlap onto the ground state in comparison with the hexaquark operators. We also present results, in the rest frame, using a second method based on distillation to compute a hermitian matrix of correlators with two-baryon operators at both the source and the sink. This method yields a much more precise and reliable determination of the ground-state energy. In the flavor-SU(3) symmetric case, we apply L\\"uscher's finite-volume...
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Eguchi-Kawai reduction with one flavor of adjoint Moebius fermion
Cunningham, William; Giedt, Joel
2013-01-01
We study the single site lattice gauge theory of SU(N) coupled to one Dirac flavor of fermion in the adjoint representation. We utilize M\\"obius fermions for this study, and accelerate the calculation with graphics processing units (GPUs). Our Monte Carlo simulations indicate that for sufficiently large inverse 't Hooft coupling b = 1/g^2 N, and for N \\leq 10 the distribution of traced Polyakov loops has "fingers" that extend from the origin. However, in the massless case the distribution of ...
Universality and scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Michael, C.; Teper, M.; Oxford Univ.
1988-01-01
We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ernst, Stefan
2011-06-24
in the framework of this thesis different heavy-fermion systems were studied by means of scanning tunneling microscopy and spectroscopy. In the experiment two main topics existed. On the one hand the heavy-fermion superconductivity in the compounds CeCu{sub 2}Si{sub 2}, CeCoIn{sub 5}, and on the other hand the Kondo effect in the Kondo-lattice system YbRh{sub 2}Si{sub 2}.
Performance tests of the Kramers equation and boson algorithms for simulations of QCD
International Nuclear Information System (INIS)
Jansen, K.; Liu Chuan; Jegerlehner, B.
1995-12-01
We present a performance comparison of the Kramers equation and the boson algorithms for simulations of QCD with two flavors of dynamical Wilson fermions and gauge group SU(2). Results are obtained on 6 3 12, 8 3 12 and 16 4 lattices. In both algorithms a number of optimizations are installed. (orig.)
Comparison of the mass preconditioned HMC and the DD-HMC algorithm for two-flavour QCD
Marinkovic, Marina
2010-01-01
Mass preconditioned HMC and DD-HMC are among the most popular algorithms to simulate Wilson fermions. We present a comparison of the performance of the two algorithms for realistic quark masses and lattice sizes. In particular, we use the locally deflated solver of the DD-HMC environment also for the mass preconditioned simulations.
Open boundary condition, Wilson flow and the scalar glueball mass
International Nuclear Information System (INIS)
Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy
2014-01-01
A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.
Energy Technology Data Exchange (ETDEWEB)
Deh, Benjamin
2008-10-27
This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a {sup 6}Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 {mu}s. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)
On bare and induced masses of Susskind fermions
International Nuclear Information System (INIS)
Mitra, P.; Weisz, P.
1983-03-01
It is shown that the mass matrix for Susskind fermions on the lattice cannot have more than two distinct eigenvalues if cubic symmetry is enforced. If the standard interaction is replaced by one proposed by Becher and Joos, degeneracy-lifting mass counterterms are induced. The #betta#-parameter is calculated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Karsch, F. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P}=0{sup +}, S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the {lambda}{lambda} threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F
2003-05-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P} = 0{sup +}, S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation.
Probing the topological structure of the QCD vacuum with overlap fermions
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Schierholz, G.; Deutsches Elektronen-Synchrotron; Streuer, T.; Weinberg, V.; Freie Univ. Berlin
2005-12-01
Overlap fermions implement exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects on Luescher-Weisz-type quenched gauge field configurations using overlap fermions as a probe. Particular emphasis is placed upon the analysis of the spectral density and the localisation properties of the eigenmodes as well as on the local structure of topological charge fluctuations. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Blossier, B.; Brinet, M.; Carrasco, N.; Dimopoulos, P.; Du, X.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Palao, D.; Pallante, E.; Pene, O.; Petrov, K.; Reker, S.; Rossi, G. C.; Sanfilippo, F.; Scorzato, L.; Simula, S.; Urbach, C.
2011-01-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark
The effect of six-point one-particle reducible local interactions in the dual fermion approach
International Nuclear Information System (INIS)
Katanin, A A
2013-01-01
We formulate the dual fermion approach for strongly correlated electronic systems in terms of the lattice and dual effective interactions, obtained by using the covariation splitting formula. This allows us to consider the effect of six-point one-particle reducible interactions, which are usually neglected by the dual fermion approach. We show that the consideration of one-particle reducible six-point (as well as higher order) vertices is crucially important for the diagrammatic consistency of this approach. In particular, the relation between the dual and lattice self-energy, derived in the dual fermion approach, implicitly accounts for the effect of the diagrams, containing six-point and higher order local one-particle reducible vertices, and should be applied with caution, if these vertices are neglected. Apart from that, the treatment of the self-energy feedback is also modified by six-point and higher order vertices; these vertices are also important to account for some non-local corrections to the lattice self-energy, which have the same order in the local four-point vertices as the diagrams usually considered in the approach. These observations highlight an importance of six-point and higher order vertices in the dual fermion approach, and call for the development of new schemes of treatment of non-local fluctuations, which are based on one-particle irreducible quantities. (paper)
Topological color codes and two-body quantum lattice Hamiltonians
Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.
2010-02-01
Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.; Sugamoto, Akio
2004-01-01
There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. relying on deconstruction and Coleman-Weinberg mechanism. The freedom comes from the winding modes of the link variable (Wilson operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical breaking of SU(2) gauge symmetry, mass hierarchy patterns of fermions and Cabbibo-Kobayashi-Maskawa matrix may be obtained
Nucleon form factors with NF=2 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.
2009-10-01
We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Infrared dynamics of Minimal Walking Technicolor
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-01-01
We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying...
Spin-orbital quantum liquid on the honeycomb lattice
Corboz, Philippe
2013-03-01
The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.
A partitioned conjugate gradient algorithm for lattice Green functions
International Nuclear Information System (INIS)
Bowler, K.C.; Kenway, R.D.; Pawley, G.S.; Wallace, D.J.
1984-01-01
Partitioning reduces by one the dimensionality of the lattice on which a propagator need be calculated using, for example, the conjugate gradient algorithm. Thus the quark propagator in lattice QCD may be determined by a computation on a single spatial hyperplane. For free fermions on a 16 3 x N lattice 2N-bit accuracy in the propagator is required to avoid rounding errors. (orig.)
Proton decay matrix elements from lattice QCD
International Nuclear Information System (INIS)
Aoki, Yasumichi; Shintani, Eigo
2012-01-01
We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.
Monte Carlo algorithms for lattice gauge theory
International Nuclear Information System (INIS)
Creutz, M.
1987-05-01
Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations
Athenodorou, Andreas; Boucaud, Philippe; de Soto, Feliciano; Rodríguez-Quintero, José; Zafeiropoulos, Savvas
2018-03-01
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively). We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination of phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing. We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.
Magnetic properties of heavy-fermion superconductors
International Nuclear Information System (INIS)
Rauchschwalbe, U.
1986-01-01
In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)
Lattice simulation of 2d Gross-Neveu-type models
International Nuclear Information System (INIS)
Limmer, M.; Gattringer, C.; Hermann, V.
2006-01-01
Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)
Can the couplings in the fermion-Higgs sector of the standard model be strong?
International Nuclear Information System (INIS)
Bock, W.; Frick, C.; Smit, J.; Vink, J.C.
1993-01-01
We present results for the renormalized quartic self-coupling λ R and the Yukawa coupling y R in a lattice fermion-Higgs model with two SU(2) L doublets, mostly for large values of the bare couplings. One-component ('reduced') staggered fermions are used in a numerical simulation with the Hybrid Monte Carlo algorithm. The fermion and Higgs masses and the renormalized scalar field expectation value are computed on L 3 24 lattices where L ranges from 6 to 16. In the scaling region these quantities are found to have a 1/L 2 dependence, which is used to determine their values in the infinite-volume limit. We then calculate the y R and λ R from their tree-level definitions in terms of the masses and renormalized scalar field expectation value, extrapolated to infinite volume. The scalar field propagators can be described momenta up to the cut-off by one-fermion-loop renormalized perturbation theory and the results for λ R and y R come out to be close to the tree-level unitarity bounds. There are no signs that are in contradiction with the triviality of the Yukawa and quartic self-coupling. (orig.)
Hadronic matrix elements in lattice QCD
International Nuclear Information System (INIS)
Jaeger, Benjamin
2014-01-01
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is
Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics
2016-03-15
We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.
A status report of the QCDSF N{sub f}=2+1 project
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Yoshifumi [DESY, Zeuthen (DE). John von Neumann Institute NIC] (and others)
2007-12-20
We report about on-going simulations of N{sub f}=2+1 lattice QCD. We use a tadpole improved Symanzik gauge action and stout link smeared Wilson fermions with a clover term. We employ the Hasenbusch trick for the degenerate u- and d-quarks, and the RHMC algorithm for the simulation of the strange quark. (orig.)
Evolution kernel for the Dirac field
International Nuclear Information System (INIS)
Baaquie, B.E.
1982-06-01
The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
Kraus, Christina V.
2009-01-01
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they
SU (2) with fundamental fermions and scalars
DEFF Research Database (Denmark)
Hansen, Martin; Janowski, Tadeusz; Pica, Claudio
2018-01-01
We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...
Static-light meson masses from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-08-01
We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV PS S mesons. (orig.)
Fundamental parameters of QCD from non-perturbative methods for two and four flavors
International Nuclear Information System (INIS)
Marinkovic, Marina
2013-01-01
The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.
Low-energy scattering on the lattice
International Nuclear Information System (INIS)
Bour Bour, Shahin
2014-01-01
In this thesis we present precision benchmark calculations for two-component fermions in the unitarity limit using an ab initio method, namely Hamiltonian lattice formalism. We calculate the ground state energy for unpolarized four particles (Fermi gas) in a periodic cube as a fraction of the ground state energy of the non-interacting system for two independent representations of the lattice Hamiltonians. We obtain the values 0.211(2) and 0.210(2). These results are in full agreement with the Euclidean lattice and fixed-node diffusion Monte Carlo calculations. We also give an expression for the energy corrections to the binding energy of a bound state in a moving frame. These corrections contain information about the mass and number of the constituents and are topological in origin and will have a broad applications to the lattice calculations of nucleons, nuclei, hadronic molecules and cold atoms. As one of its applications we use this expression and determine the low-energy parameters for the fermion dimer elastic scattering in shallow binding limit. For our lattice calculations we use Luescher's finite volume method. From the lattice calculations we find κa fd =1.174(9) and κr fd =-0.029(13), where κ represents the binding momentum of dimer and a fd (r fd ) denotes the scattering length (effective-range). These results are confirmed by the continuum calculations using the Skorniakov-Ter-Martirosian integral equation which gives 1.17907(1) and -0.0383(3) for the scattering length and effective range, respectively.
Improving the quark number susceptibilities for staggered fermions
International Nuclear Information System (INIS)
Gavai, Rajiv V.
2003-01-01
Quark number susceptibilities approach their ideal gas limit at sufficiently high temperatures. As in the case of other thermodynamic quantities, this limit itself is altered substantially on lattices with small temporal extent, N t = 4-8, making it thus difficult to check the validity of perturbation theory. Unlike other observables, improving susceptibilities or number densities is subject to constraints of current conservation and absence of chemical potential (μ) dependent divergences. We construct such an improved number density and susceptibility for staggered fermions and show that they approximate the continuum ideal gas limit better on small temporal lattices
International Nuclear Information System (INIS)
Wissel, S.
2006-10-01
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
Resonating-valence-bond superconductors with fermionic projected entangled pair states
Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.
2014-01-01
We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately
Evidence for the existence of Gribov copies in Landau gauge lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)
1991-09-16
We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Baryon axial charges from chirally improved fermions - first results
Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.
Spectroscopy of hadron resonances on the lattice
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar; Burch, Tommy; Ehmann, Christian; Goeckeler, Meinulf; Hagen, Christian; Schaefer, Andreas [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Gattringer, Christof; Lang, Christian; Limmer, Markus; Mohler, Daniel [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria)
2009-07-01
The reproduction of the hadron mass spectrum from first principles is an important task for lattice QCD. While ground state spectroscopy, especially in the quenched approximation, is by now well understood, a clean extraction of excited hadron masses from a lattice QCD simulation still is a serious challenge. We discuss the relevant techniques for spectroscopy calculations on the lattice, in particular the variational technique which is needed for separating the different excited states from the ground state. Using this method we study three different sectors of the hadron spectrum. In the light quark sector we present hadron masses obtained from simulations with dynamical approximately chiral fermions, so-called Chirally Improved Fermions. For charmonium, we are able to extract masses for a number of excited states including ones with higher spin and exotic quantum numbers. The heavy-light hadron sector is investigated in the static-light approximation, i.e., the heavy quark is treated as infinitely heavy. Also here we are able to determine a large number of excitations.
Results form 2+1 flavours of SLiNC fermions
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.
2009-10-01
QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum. (orig.)
Studies of heavy fermion systems: Progress report, July 1, 1986-December 31, 1987
International Nuclear Information System (INIS)
Stewart, G.R.
1987-08-01
Studies of the resistivity, susceptibility, and specific heat of the new heavy fermion system UPt/sub 5-x/Au/sub x/ have shown: (1) the high effective mass, m*, can be varied by almost an order of magnitude by varying x near x = 1; and (2) the occurrence of high m* in this system and (presumably) in heavy fermion systems in general is typified by a nearness to magnetic instability. High field (24 T) specific heat studies of CeCu 6 show a total suppression of the low temperature heavy fermion ground state by magnetic field, in direct contradiction of present non-interacting ''Kondo lattice'' theory
The Kaon B-parameter from Two-Flavour Dynamical Domain Wall Fermions
International Nuclear Information System (INIS)
Dawson, C.
2005-01-01
We report on the calculation of the kaon B-parameter using two dynamical flavours of domain wall fermions. Our analysis is based on three ensembles of configurations, each consisting of about 5,000 HMC trajectories, with a lattice spacing of approximately 1.7 GeV for 16 3 x32 lattices; dynamical quark masses range from approximately the strange quark mass to half of that. Both degenerate and non-degenerate quark masses are used for the kaons
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Cyprus Institute, Nicosia, Cyprus; Boucaud, Philippe [Univ. Paris-Sud, Orsay (France); de Soto, Feliciano [Univ. Pablo de Olavide, 41013 Sevilla; Spain; Univ. of Granada (Spain); Rodriguez-Quintero, Jose [Universidad de Huelva, 21071 Huelva; Spain; Univ. of Granada (Spain); Zafeiropoulos, Savvas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik
2018-04-01
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively).We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination of phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing.We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.
Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model
Energy Technology Data Exchange (ETDEWEB)
Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)
2010-02-15
We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)
Extrapolation of lattice gauge theories to the continuum limit
International Nuclear Information System (INIS)
Duncan, A.; Vaidya, H.
1978-01-01
The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references
A scalable PC-based parallel computer for lattice QCD
International Nuclear Information System (INIS)
Fodor, Z.; Katz, S.D.; Pappa, G.
2003-01-01
A PC-based parallel computer for medium/large scale lattice QCD simulations is suggested. The Eoetvoes Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes. Gigabit Ethernet cards are used for nearest neighbor communication in a two-dimensional mesh. The sustained performance for dynamical staggered (wilson) quarks on large lattices is around 70(110) GFlops. The exceptional price/performance ratio is below $1/Mflop
A scalable PC-based parallel computer for lattice QCD
International Nuclear Information System (INIS)
Fodor, Z.; Papp, G.
2002-09-01
A PC-based parallel computer for medium/large scale lattice QCD simulations is suggested. The Eoetvoes Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7 GHz nodes. Gigabit Ethernet cards are used for nearest neighbor communication in a two-dimensional mesh. The sustained performance for dynamical staggered(wilson) quarks on large lattices is around 70(110) GFlops. The exceptional price/performance ratio is below $1/Mflop. (orig.)
Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion
Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu
2017-03-01
We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.
Some approximate calculations in SU2 lattice mean field theory
International Nuclear Information System (INIS)
Hari Dass, N.D.; Lauwers, P.G.
1981-12-01
Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)
Upper bound on the cutoff in lattice electroweak theory
International Nuclear Information System (INIS)
Veselov, A.I.; Zubkov, M.A.
2008-01-01
We investigate numerically lattice Weinberg-Salam model without fermions for realistic values of the fine structure constant and the Weinberg angle. We also analyze the data of the previous numerical investigations of lattice Electroweak theory. We have found that moving along the line of constant physics when the lattice spacing a is decreased, one should leave the physical Higgs phase of the theory at a certain value of a. Our estimate of the minimal value of the lattice spacing is a c = [430 ± 40 GeV] -1 .
Simulating at realistic quark masses. Light quark masses
International Nuclear Information System (INIS)
Goeckeler, M.; Streuer, T.
2006-11-01
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a ∝0.07 fm and pion masses down to m π ∝340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
Towards critical physics in 2+1d with U(2N)-invariant fermions
Energy Technology Data Exchange (ETDEWEB)
Hands, Simon [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-11-04
Interacting theories of N relativistic fermion flavors in reducible spinor representations in 2+1 spacetime dimensions are formulated on a lattice using domain wall fermions (DWF), for which a U(2N) global symmetry is recovered in the limit that the wall separation L{sub s} is made large. The Gross-Neveu (GN) model is studied in the large-N limit and an exponential acceleration of convergence to the large-L{sub s} limit is demonstrated if the usual parity-invariant mass mψ̄ψ is replaced by the U(2N)-equivalent im{sub 3}ψ̄γ{sub 3}ψ. The GN model and two lattice variants of the Thirring model are simulated for N=2 using a hybrid Monte Carlo algorithm, and studies made of the symmetry-breaking bilinear condensate and its associated susceptibility, the axial Ward identity, and the mass spectrum of both fermion and meson excitations. Comparisons are made with existing results obtained using staggered fermions. For the GN model a symmetry-breaking phase transition is observed, the Ward identity is recovered, and the spectrum found to be consistent with large-N expectations. There appears to be no obstruction to the study of critical UV fixed-point physics using DWF. For the Thirring model the Ward identity is not recovered, the spectroscopy measurements are inconclusive, and no symmetry breaking is observed all the way up to the effective strong coupling limit. This is consistent with a critical Thirring flavor number N{sub c}<2, contradicting earlier staggered fermion results.
International Nuclear Information System (INIS)
Yamaguchi, A.; Sugamoto, A.
2000-01-01
Applying Genetic Algorithm for the Lattice Gauge Theory is formed to be an effective method to minimize the action of gauge field on a lattice. In 4 dimensions, the critical point and the Wilson loop behaviour of SU(2) lattice gauge theory as well as the phase transition of U(1) theory have been studied. The proper coding methodi has been developed in order to avoid the increase of necessary memory and the overload of calculation for Genetic Algorithm. How hichhikers toward equilibrium appear against kidnappers is clarified
SU(2) Gauge Theory with Two Fundamental Flavours
DEFF Research Database (Denmark)
Arthur, Rudy; Drach, Vincent; Hansen, Martin
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite...... (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter...
Baryon Wilson loop area law in QCD
International Nuclear Information System (INIS)
Cornwall, J.M.
1996-01-01
There is still confusion about the correct form of the area law for the baryonic Wilson loop (BWL) of QCD. Strong-coupling (i.e., finite lattice spacing in lattice gauge theory) approximations suggest the form exp[-KA Y ], where K is the q bar q string tension and A Y is the global minimum area, generically a three-bladed area with the blades joined along a Steiner line (Y configuration). However, the correct answer is exp[-(K/2)(A 12 +A 13 +A 23 )], where, e.g., A 12 is the minimal area between quark lines 1 and 2 (Δ configuration). This second answer was given long ago, based on certain approximations, and is also strongly favored in lattice computations. In the present work, we derive the Δ law from the usual vortex-monopole picture of confinement, and show that, in any case, because of the 1/2 in the Δ law, this law leads to a larger value for the BWL (smaller exponent) than does the Y law. We show that the three-bladed, strong-coupling surfaces, which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the non-Abelian Stokes close-quote theorem for the BWL, which we derive, and lead via this Stokes close-quote theorem to the correct Δ law. Finally, we extend these considerations, including perturbative contributions, to gauge groups SU(N), with N>3. copyright 1996 The American Physical Society
Microscopic conductivity of lattice fermions at equilibrium. I. Non-interacting particles
Energy Technology Data Exchange (ETDEWEB)
Bru, J.-B., E-mail: jb.bru@ikerbasque.org [Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain, and BCAM–Basque Center for Applied Mathematics, Mazarredo, 14, 48009 Bilbao, Spain, and Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain); Siqueira Pedra, W. de, E-mail: wpedra@if.usp.br [Departamento de Física Matemåtica, Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, São Paulo, SP 05314-970 (Brazil); Hertling, C. [Johannes Gutenberg University Mainz, D 55099 Mainz (Germany)
2015-05-15
We consider free lattice fermions subjected to a static bounded potential and a time- and space-dependent electric field. For any bounded convex region ℛ ⊂ ℝ{sup d} (d ≥ 1) of space, electric fields E within R drive currents. At leading order, uniformly with respect to the volume |R| of R and the particular choice of the static potential, the dependency on E of the current is linear and described by a conductivity (tempered, operator-valued) distribution. Because of the positivity of the heat production, the real part of its Fourier transform is a positive measure, named here (microscopic) conductivity measure of R, in accordance with Ohm’s law in Fourier space. This finite measure is the Fourier transform of a time-correlation function of current fluctuations, i.e., the conductivity distribution satisfies Green–Kubo relations. We additionally show that this measure can also be seen as the boundary value of the Laplace–Fourier transform of a so-called quantum current viscosity. The real and imaginary parts of conductivity distributions are related to each other via the Hilbert transform, i.e., they satisfy Kramers–Kronig relations. At leading order, uniformly with respect to parameters, the heat production is the classical work performed by electric fields on the system in presence of currents. The conductivity measure is uniformly bounded with respect to parameters of the system and it is never the trivial measure 0 dν. Therefore, electric fields generally produce heat in such systems. In fact, the conductivity measure defines a quadratic form in the space of Schwartz functions, the Legendre–Fenchel transform of which describes the resistivity of the system. This leads to Joule’s law, i.e., the heat produced by currents is proportional to the resistivity and the square of currents.
Microscopic conductivity of lattice fermions at equilibrium. I. Non-interacting particles
International Nuclear Information System (INIS)
Bru, J.-B.; Siqueira Pedra, W. de; Hertling, C.
2015-01-01
We consider free lattice fermions subjected to a static bounded potential and a time- and space-dependent electric field. For any bounded convex region ℛ ⊂ ℝ d (d ≥ 1) of space, electric fields E within R drive currents. At leading order, uniformly with respect to the volume |R| of R and the particular choice of the static potential, the dependency on E of the current is linear and described by a conductivity (tempered, operator-valued) distribution. Because of the positivity of the heat production, the real part of its Fourier transform is a positive measure, named here (microscopic) conductivity measure of R, in accordance with Ohm’s law in Fourier space. This finite measure is the Fourier transform of a time-correlation function of current fluctuations, i.e., the conductivity distribution satisfies Green–Kubo relations. We additionally show that this measure can also be seen as the boundary value of the Laplace–Fourier transform of a so-called quantum current viscosity. The real and imaginary parts of conductivity distributions are related to each other via the Hilbert transform, i.e., they satisfy Kramers–Kronig relations. At leading order, uniformly with respect to parameters, the heat production is the classical work performed by electric fields on the system in presence of currents. The conductivity measure is uniformly bounded with respect to parameters of the system and it is never the trivial measure 0 dν. Therefore, electric fields generally produce heat in such systems. In fact, the conductivity measure defines a quadratic form in the space of Schwartz functions, the Legendre–Fenchel transform of which describes the resistivity of the system. This leads to Joule’s law, i.e., the heat produced by currents is proportional to the resistivity and the square of currents
Composite (Goldstone) Higgs Dynamics on the Lattice
DEFF Research Database (Denmark)
Arthur, Rudy; Drach, Vincent; Hansen, Martin Rasmus Lundquist
2014-01-01
We study the meson spectrum of the SU(2) gauge theory with two Wilson fermions in the fundamental representation. The theory unifies both Technicolor and composite Goldstone Boson Higgs models of electroweak symmetry breaking. We have calculated the masses of the lightest spin one vector and axial...... for accelerator experiments, whereas the scalar meson will mix with a pGB of the theory and produce two scalar states. The lighter of the states is the 125 GeV Higgs boson, and the heavier would be a new yet unobserved scalar state....
DEFF Research Database (Denmark)
Bownik, Marcin; Jakobsen, Mads Sielemann; Lemvig, Jakob
2017-01-01
A Wilson system is a collection of finite linear combinations of time frequency shifts of a square integrable function. In this paper we give an account of the construction of bimodular Wilson bases in higher dimensions from Gabor frames of redundancy two.......A Wilson system is a collection of finite linear combinations of time frequency shifts of a square integrable function. In this paper we give an account of the construction of bimodular Wilson bases in higher dimensions from Gabor frames of redundancy two....
Samuel Alexander Kinnier Wilson. Wilson's disease, Queen Square and neurology.
Broussolle, E; Trocello, J-M; Woimant, F; Lachaux, A; Quinn, N
2013-12-01
This historical article describes the life and work of the British physician Samuel Alexander Kinnier Wilson (1878-1937), who was one of the world's greatest neurologists of the first half of the 20th century. Early in his career, Wilson spent one year in Paris in 1903 where he learned from Pierre-Marie at Bicêtre Hospital. He subsequently retained uninterrupted links with French neurology. He also visited in Leipzig the German anatomist Paul Flechsig. In 1904, Wilson returned to London, where he worked for the rest of his life at the National Hospital for the Paralysed and Epileptic (later the National Hospital for Nervous Diseases, and today the National Hospital for Neurology and Neurosurgery) in Queen Square, and also at Kings' College Hospital. He wrote on 'the old motor system and the new', on disorders of motility and muscle tone, on the epilepsies, on aphasia, apraxia, tics, and pathologic laughing and crying, and most importantly on Wilson's disease. The other objective of our paper is to commemorate the centenary of Wilson's most important work published in 1912 in Brain, and also in Revue Neurologique, on an illness newly recognized and characterized by him entitled "Progressive lenticular degeneration, a familial nervous disease associated with liver cirrhosis". He analyzed 12 clinical cases, four of whom he followed himself, but also four cases previously published by others and a further two that he considered in retrospect had the same disease as he was describing. The pathological profile combined necrotic damage in the lenticular nuclei of the brain and hepatic cirrhosis. This major original work is summarized and discussed in the present paper. Wilson not only delineated what was later called hepato-lenticular degeneration and Wilson's disease, but also introduced for the first time the terms extrapyramidal syndrome and extrapyramidal system, stressing the role of the basal ganglia in motility. The present historical work emphasizes the special
Automatically generating Feynman rules for improved lattice field theories
International Nuclear Information System (INIS)
Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.
2005-01-01
Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories
Renormalisaton of composite operators in lattice QCD. Perturbative versus nonperturbative
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M.; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)
2010-07-01
The perturbative and nonperturbative renormalisation of quark-antiquark operators in lattice QCD with two flavours of clover fermions is investigated within the research programme of the QCDSF collaboration. Operators with up to three derivatives are considered. The nonperturbative results based on the RI-MOM scheme are compared with estimates from one- and two-loop lattice perturbation theory. (orig.)
Research program in computational physics: [Progress report for Task D
International Nuclear Information System (INIS)
Guralnik, G.S.
1987-01-01
Studies are reported of several aspects of the purely gluonic sector of QCD, including methods for efficiently generating gauge configurations, properties of the standard Wilson action and improved actions, and properties of the pure glue theory itself. Simulation of quantum chromodynamics in the ''quenched approximation'', in which the back reaction of quarks upon gauge fields is neglected, is studied with fermions introduced on the lattice via both Wilson and staggered formulations. Efforts are also reported to compute QCD matrix elements and to simulate QCD theory beyond the quenched approximation considering the effect of the quarks on the gauge fields. Work is in progress toward improving the algorithms used to generate the gauge field configurations and to compute the quark propagators. Implementation of lattice QCD on a hypercube is also reported
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2011-12-15
We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)
Lattice QCD at the physical point meets S U (2 ) chiral perturbation theory
Dürr, Stephan; Fodor, Zoltán; Hoelbling, Christian; Krieg, Stefan; Kurth, Thorsten; Lellouch, Laurent; Lippert, Thomas; Malak, Rehan; Métivet, Thibaut; Portelli, Antonin; Sastre, Alfonso; Szabó, Kálmán; Budapest-Marseille-Wuppertal Collaboration
2014-12-01
We perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant, based on 2 +1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O (a )-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of S U (2 ) chiral perturbation theory (χ PT ) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of next-to-leading order (NLO) S U (2 ) χ PT in two different expansions: the first in quark mass (x expansion), and the second in pion mass (ξ expansion). We find that these expansions begin showing signs of failure for Mπ≳300 MeV , for the typical percent-level precision of our Nf=2 +1 lattice results. We further determine the LO low energy constants (LECs), F =88.0 ±1.3 ±0.2 and BMS ¯(2 GeV )=2.61 (6 )(1 ) GeV , and the related quark condensate, ΣMS ¯(2 GeV )=(272 ±4 ±1 MeV )3 , as well as the NLO ones, ℓ¯3=2.6 (5 )(3 ) and ℓ¯4=3.7 (4 )(2 ), with fully controlled uncertainties. We also explore the next-to-next-to-leading order (NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.
Transformation of renormalization groups in 2N-component fermion hierarchical model
International Nuclear Information System (INIS)
Stepanov, R.G.
2006-01-01
The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
MR of the liver in Wilson`s disease; MRT der Leber bei Morbus Wilson
Energy Technology Data Exchange (ETDEWEB)
Vogl, T.J. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Steiner, S. [Klinikum Grosshadern, Radiologische Klinik und Poliklinik, Univ. Muenchen (Germany); Hammerstingl, R. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Schwarz, S. [Klinikum Grosshadern, Neurologische Klinik, Univ. Muenchen (Germany); Kraft, E. [Klinikum Grosshadern, Neurologische Klinik, Univ. Muenchen (Germany); Weinzierl, M. [Klinikum Grosshadern, 2. Medizinische Klinik, Univ. Muenchen (Germany); Felix, R. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)
1994-01-01
To show that Wilson`s disease is one likely cause of multiple low-intensity nodules of the liver we obtained MR images in 16 patients with clinically and histopathologically confirmed Wilson`s disease. Corresponding to morphological changes MRI enabled the subdivision of the patients into two groups. Using a T{sub 2}-weighted spin-echo sequence (TR/TE=2000/45-90) liver parenchyma showed multiple tiny low-intensity-nodules surrounded by high-intensity septa in 10 out of 16 patients. 5 patients had also low-intensity nodules in T{sub 1}-weighted images (TR/TE=600/20). In patients of this group histopathology revealed liver cirrhosis (n=7) and fibrosis (n=2). Common feature of this patient group was marked inflammatory cell infiltration into fibrous septa, increase of copper concentration in liver parenchyma and distinct pathological changes of laboratory data. In the remaining 6 patients no pathological change of liver morphology was demonstrated by MRI corresponding to slight histopathological changes of parenchyma and normal laboratory data. As low-intensity nodules surrounded by high intensity septa can be demonstrated in patients with marked inflammatory infiltration of liver parenchyma MRI may help to define Wilson patients with poorer prognosis. In patients with low-intensity nodules of the liver and unknown cause of liver cirrhosis laboratory data and histopathology should be checked when searching for disorders of copper metabolism. (orig.) [Deutsch] Im Rahmen einer prospektiven Studie wurde die Leber bei 16 Patienten mit klinisch gesichertem Morbus Wilson magnetresonanztomographisch untersucht. Zum Einsatz kamen T{sub 1}- und T{sub 2}-gewichtete Spin-Echo-Sequenzen vor und nach Applikation von Gd-DTPA (0,1 mmol/kg KG). Anhand der MRT-Befunde konnten zwei unterschiedliche Patientenkollektive definiert werden. 10 Patienten wiesen in der T{sub 2}-gewichteten Sequenz hypointense Regeneratknoten auf und zeigten histopathologisch ausgepraegte Befunde einer
Free expansion of fermionic dark solitons in a boson-fermion mixture
International Nuclear Information System (INIS)
Adhikari, Sadhan K
2005-01-01
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion
Grassmann phase space methods for fermions. II. Field theory
Energy Technology Data Exchange (ETDEWEB)
Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-02-15
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Grassmann phase space methods for fermions. II. Field theory
International Nuclear Information System (INIS)
Dalton, B.J.; Jeffers, J.; Barnett, S.M.
2017-01-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Energy Technology Data Exchange (ETDEWEB)
Wissel, S.
2006-10-15
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
Lattice fields and strong interactions
International Nuclear Information System (INIS)
Creutz, M.
1989-06-01
I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs
Lattice QCD with light quark masses: Does chiral symmetry get broken spontaneously
International Nuclear Information System (INIS)
Barbour, I.M.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-03-01
We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological interest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We use these methods to calculate directly on presently used lattice sizes with different boundary conditions. As is to be expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions for fermions. (orig.)
Dual fermion approach to disordered correlated systems
International Nuclear Information System (INIS)
Haase, Patrick
2015-01-01
Disorder is ubiquitous in real materials and influences the physical properties like the conductivity to varying degrees. If electron-electron interactions are strong, theoretical and numerical treatment of these systems becomes challenging. In this thesis a numerical approach is developed to address these systems, treating both interactions and disorder on equal footing. The approach is based on the dual fermion approach for interacting systems developed by Rubtsov et al. Terletska et al. applied the ideas of the dual fermion approach to disordered non-interacting systems. In this approach, the replica trick is used to integrate out the disorder in favor of an effective electron-electron interaction. We extended the approach from Terletska et al. to treat disordered interacting systems. Dual Fermions allow to take into account non-local fluctuations by means of a perturbative expansion around an impurity problem. The impurity reference system is determined self-consistently, analogously to the dynamical mean-field theory. The perturbative expansion is expected to yield good results for small and large values of interaction strength and disorder. A priori, it is not clear what to expect for intermediate values, but experience shows that oftentimes good results are obtained for this region. An advantage of the dual fermion approach is that there is no sign-problem for a single orbital model if quantum Monte Carlo is used to solve the interacting reference system. Additionally, perturbation theory is usually numerically much cheaper than fully solving an interacting lattice or cluster problem. Thus, the dual fermion approach allows to address regions of parameter space that are not accessible to lattice quantum Monte Carlo calculations or cluster extension of dynamical mean-field theory. Cluster extensions of the dynamical mean-field theory are for example the dynamical cluster approximation or the cellular dynamical mean-field theory. The new approach is benchmarked
Light Hadron Spectroscopy on course lattices with
Lee, F
1999-01-01
The masses and dispersions of light hadrons are calculated in lattice QCD using an O(a sup 2) tadpole-improved gluon action and an O(a sup 2) tadpole-improved next-nearest-neighbor fermion action originally proposed by Hamber and Wu. Two lattices of constant volume with lattice spacings of approximately 0.40 fm and 0.24 fm are considered. The results reveal some scaling violations at the coarser lattice spacing on the order of 5%. At the finer lattice spacing, the nucleon to rho mass ratio reproduces state-of-the-art results using unimproved actions. Good dispersion and rotational invariance up to momenta of pa approx = 1 are also found. The relative merit of alternative choices for improvement operators is assessed through close comparisons with other plaquette-based tadpole-improved actions.
Magnetic monopole plasma phase in (2+1)d compact quantum electrodynamics with fermionic matter
International Nuclear Information System (INIS)
Armour, Wesley; Hands, Simon; Lucini, Biagio; Kogut, John B.; Strouthos, Costas; Vranas, Pavlos
2011-01-01
We present the first evidence from lattice simulations that the magnetic monopoles in three-dimensional compact quantum electrodynamics (cQED 3 ) with N f =2 and N f =4 four-component fermion flavors are in a plasma phase. The evidence is based mainly on the divergence of the monopole susceptibility (polarizability) with the lattice size at weak gauge couplings. A weak four-Fermi term added to the cQED 3 action enabled simulations with massless fermions. The exact chiral symmetry of the interaction terms forbids symmetry breaking lattice discretization counterterms to appear in the theory's effective action. It is also shown that the scenario of a monopole plasma does not depend on the strength of the four-Fermi coupling. Other observables such as the densities of isolated dipoles and monopoles and the so-called specific heat show that a crossover from a dense monopole plasma to a dilute monopole gas occurs at strong couplings. The implications of our results on the stability of U(1) spin liquids in two spatial dimensions are also discussed.
Simulating at realistic quark masses. Light quark masses
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y.; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)
2006-11-15
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a {proportional_to}0.07 fm and pion masses down to m{sub {pi}} {proportional_to}340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
Baryon axial charges and momentum fractions with N{sub f}=2+1 dynamical fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M.; Haegler, P. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)
2011-02-15
We report on recent results of the QCDSF/UKQCD Collaboration on investigations of baryon structure using configurations generated with N{sub f}=2+1 dynamical flavours of O(a) improved Wilson fermions. With the strange quark mass as an additional dynamical degree of freedom in our simulations we avoid the need for a partially quenched approximation when investigating the properties of particles containing a strange quark, e.g. the hyperons. In particular, we focus on the nucleon and hyperon axial coupling constants and quark momentum fractions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)
2017-03-01
Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.
The static-light meson spectrum from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-10-01
We compute the static-light meson spectrum with N f =2 flavours of sea quarks using Wilson twisted mass lattice QCD. We consider five different values for the light quark mass corresponding to 300 MeV PS s mesons. (orig.)
A new simulation algorithm for lattice QCD with dynamical quarks
Bunk, B.; Jegerlehner, B.; Luscher, M.; Simma, H.; Sommer, R.; Bunk, B; Jansen, K; Jegerlehner, B; Luscher, M; Simma, H
1994-01-01
A previously introduced multi-boson technique for the simulation of QCD with dynamical quarks is described and some results of first test runs on a 6^3\\times12 lattice with Wilson quarks and gauge group SU(2) are reported.
Relativistic corrections to the static energy in terms of Wilson loops at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Peset, Clara [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica y IFAE-BIST, Barcelona (Spain); Stahlhofen, Maximilian [Johannes Gutenberg University, PRISMA Cluster of Excellence, Institute of Physics, Mainz (Germany)
2017-10-15
We consider the O(1/m) and the spin-independent momentum-dependent O(1/m{sup 2}) quasi-static energies of heavy quarkonium (with unequal masses). They are defined nonperturbatively in terms of Wilson loops. We determine their short-distance behavior through O(α{sup 3}) and O(α{sup 2}), respectively. In particular, we calculate the ultrasoft contributions to the quasi-static energies, which requires the resummation of potential interactions. Our results can be directly compared to lattice simulations. In addition, we also compare the available lattice data with the expectations from effective string models for the long-distance behavior of the quasi-static energies. (orig.)
Flavor-singlet meson decay constants from Nf=2 +1 +1 twisted mass lattice QCD
Ottnad, Konstantin; Urbach, Carsten; ETM Collaboration
2018-03-01
We present an improved analysis of our lattice data for the η - η' system, including a correction of the relevant correlation functions for residual topological finite size effects and employing consistent chiral and continuum fits. From this analysis we update our physical results for the masses Mη=557 (11 )stat(03 )χ PT MeV and Mη'=911 (64 )stat(03 )χ PT MeV , as well as the mixing angle in the quark flavor basis ϕ =38.8 (2.2 )stat(2.4 )χPT ∘ in excellent agreement with other results from phenomenology. Similarly, we include an analysis for the decay constant parameters, leading to fl=125 (5 )stat(6 )χ PT MeV and fs=178 (4 )stat(1 )χ PT MeV . The second error reflects the uncertainty related to the chiral extrapolation. The data used for this study has been generated on gauge ensembles provided by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical flavors of Wilson twisted mass fermions. These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the physical η , η'→γ γ decay widths and the singly-virtual η , η'→γ γ* transition form factors in the limit of large momentum transfer.
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Updated lattice results for parton distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Updated lattice results for parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Shaking the entropy out of a lattice
DEFF Research Database (Denmark)
C. Tichy, Malte; Mølmer, Klaus; F. Sherson, Jacob
2012-01-01
, for which we implement a protocol that circumvents the constraints of unitarity. The preparation of large regions with precisely one atom per lattice site is discussed for both bosons and fermions. The resulting low-entropy Mott-insulating states may serve as high-fidelity register states for quantum...
Implementing the sine transform of fermionic modes as a tensor network
Epple, Hannes; Fries, Pascal; Hinrichsen, Haye
2017-09-01
Based on the algebraic theory of signal processing, we recursively decompose the discrete sine transform of the first kind (DST-I) into small orthogonal block operations. Using a diagrammatic language, we then second-quantize this decomposition to construct a tensor network implementing the DST-I for fermionic modes on a lattice. The complexity of the resulting network is shown to scale as 5/4 n logn (not considering swap gates), where n is the number of lattice sites. Our method provides a systematic approach of generalizing Ferris' spectral tensor network for nontrivial boundary conditions.
Topological charge and cooling scales in pure SU(2) lattice gauge theory
Berg, Bernd A.; Clarke, David A.
2018-01-01
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. A John Wilson. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 7 July 2006 pp 70-76 Classroom. Inverting Matrices Constructed from Roots of Unity · A John Wilson · More Details Fulltext PDF ...
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-01-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions
Evaluation of physical constants and operators in the SU(2) and SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Tsuchida, R.H.
1987-01-01
Wilson loops and Wilson lines in the fundamental and the adjoint representations of SU(2) on the lattice are measured using the icosahedral subgroup and a noise reduction technique. The string tension was evaluated by fitting the expectation value of loops of all sizes to a 6-parameter curve. From the Wilson lines in the adjoint representation of SU(2), two kinds of gluon potentials were measured: the gluon-gluon interaction potential and the gluon-image interaction potential. The effective mass of the gluon was evaluated on each of those potentials and compared. In SU(3), the contribution of s anti σ/sub μnu/F/sub μnu/d operator to the correction of effective weak four-quark operator in the measurement of ΔI = 1/2 amplitude of kaon decay is examined. The renormalization of the critical hopping parameter is calculated perturbatively and compared with the Monte Carlo results. The VEV of psi anti psi operator is measured on the lattice. In the hopping parameter renormalization calculation and the psi anti psi measurements, the effects of expanding of Feynman diagrams in power of a, the lattice spacing, are examined
Standard model and chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Smit, J.
1990-01-01
A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)
Spin-Orbital Quantum Liquid on the Honeycomb Lattice
Directory of Open Access Journals (Sweden)
Philippe Corboz
2012-11-01
Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.
Theory of a peristaltic pump for fermionic quantum fluids
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
Lattice chiral gauge theories with finely-grained fermions
International Nuclear Information System (INIS)
Hernandez, P.; Sundrum, R.
1996-01-01
The importance of lattice gauge field interpolation for our recent non-perturbative formulation of chiral gauge theory is emphasized. We illustrate how the requisite properties are satisfied by our recent four-dimensional non-abelian interpolation scheme, by going through the simpler case of U(1) gauge fields in two dimensions. (orig.)
Phase transitions: the lattice QCD approach
International Nuclear Information System (INIS)
Gavai, R.V.
1986-01-01
Recent results in the field of finite temperature lattice quantum chromodynamics (QCD) are presented with special emphasis on comparison of the different methods used to incorporate the dynamical fermions. Attempts to obtain a nonperturbative estimate of the velocity of sound in both the hadronic and quark-gluon phase are summarized along with the results. 15 refs., 7 figs